MAA HL

Test on Sequences and Binomial theorem

by Christos Nikolaidis Date: 17 January 2020

Paper 1: without GDC

No.	no of atudonts
nai	me of student:
1.	[Maximum mark: 5]
	The eleventh term of an arithmetic sequence is 69 while the sum of the first 3 terms
	is 45. Find the third term.

Marks: /40

Expand	$(\sqrt{3}-\sqrt{2})$	and ex	ress t	he resu	ılt in the	e form	$a+b\sqrt{6}$)	
									 ••••
									 •••••
				••••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	 ••••
•••••	••••								
						•••••			
									 ••••
	•••••								
									 ••••
	••••								

	Find 12 <i>C</i> 4
b)	Prove that
	2020C19 = 2019C19 + 2019C18

4.	[Maximum mark: 7]	
	Let $x \in R$, $ x < 1$ and	
	$A = 1 + x + x^2 + x^3 + \cdots$	
	(a) Show that	
	$1 + x^2 + x^4 + x^6 + \dots = \frac{A^2}{2A - 1}$	[5]
	(b) Find the value of x if $A = 5$.	[2]

.....

.....

[Maximum mark: 6]
Find $\sum_{n=0}^{\infty} \frac{1+3^n}{5^n}$
$\frac{1}{n=0}$ 3

The coefficient of x^4 is twice the coefficient of x^2 in the expansion of $(x^2 + a)^n$. Show that $n - 4a = 1$.

[Maximum mark: 5]

thre	e terms of a geometric sequence.	
(a)	Find the common ratio of the geometric sequence.	[5]
(b)	Find the 5 th term of the arithmetic sequence.	[2]
•••••		
•••••		
•••••		
•••••		
•••••		
• • • • • • •		

[Maximum mark: 7]

MAA HL

Test on Sequences and Binomial theorem

by Christos Nikolaidis Date: 17 January 2020

Paper 2: with GDC

1. [Maximum mark: 5] The constant term in the expansion of $\left(\frac{9}{x^3} - ax\right)^8$ is 145152. Find the values of a .	
	possible

Turn over

Marks: /40

the	m of the first 100 terms of an arithmetic sequence is 15250 while that 100 terms is 45250. Find the sum of the next 100 terms.	

	amum mark: 6]
(a)	Express $10x^2 - 19x + 6$ in the form $(ax - b)(cx - d)$, where a, b, c, d are
	positive integers.
(b)	Hence or otherwise find the coefficient of x^2 in the expansion of
	$(10x^2-19x+6)^6$.

Let	
	$S = 27 + 32 + 37 + 42 + \dots + 362$
(a)	Express the sum S in the form $\sum_{k=1}^{n} (ak+b)$, where a,b,n are integers to be
	determined.
(b)	Hence find the value of $S.$

(a)	Find the sum of all integers between 300 and 800 which are multiples of 6.
b)	Find the sum of all integers between 300 and 800 which are not multiples of 6

o. [iviaxiiiiuiii iiiaik. o	6.	[Maximum	mark:	6]
------------------------------------	----	----------	-------	----

The sum of the first n terms of an arithmetic sequence is given by

$$S_n = 104n - 4n^2$$

(a) (b)	Find the second term. Find the sum of the positive terms of the sequence.	[2] [4]
•••••		

[Ma	ximum mark: 6]	
File	as invests 800€ at 8% per year (compounded yearly).	
Filo	mila invests 760€ at 8% per year compounded quarterly .	
(a)	Find whether Fileas or Filomila would receive more money after 10 years.	[3]
(b)	Filomila would receive more money that Fileas after n complete years.	
	Find the minimum value of n .	[3]