MAA HL ## **Test on Sequences and Binomial theorem** by Christos Nikolaidis Date: 17 January 2020 Paper 1: without GDC | No. | no of atudonts | |-----|--| | nai | me of student: | | | | | 1. | [Maximum mark: 5] | | | The eleventh term of an arithmetic sequence is 69 while the sum of the first 3 terms | | | is 45. Find the third term. | Marks: /40 | Expand | $(\sqrt{3}-\sqrt{2})$ | and ex | ress t | he resu | ılt in the | e form | $a+b\sqrt{6}$ |) | | |--------|-----------------------|--------|--------|---------|------------|---|---------------|-------|-----------| | | | | | | | | | |
 | | | | | | | | | | |
 | | | | | | | | | | |
 | | | | | | | | | | |
 |
•••• | | | | | | | | | | |
 | | | | | | | | | | |
••••• | | | | | | | | | | |
 | | | | | | •••••• | ••••• | • | | ••••• |
•••• | | | | | | | | | | |
 | | ••••• | •••• | | | | | | | |
 | | | | | | | | ••••• | | |
 | | | | | | | | | | |
•••• | | | ••••• | | | | | | | |
 | | | | | | | | | | |
 | | | | | | | | | | |
 | | | | | | | | | | |
•••• | | | | | | | | | | |
 | | | | | | | | | | |
 | | | •••• | | | | | | | |
 | | | | | | | | | | |
 | | | | | | | | | | |
 | | | | | | | | | | |
 | | | Find 12 <i>C</i> 4 | |----|-----------------------------| | b) | Prove that | | | 2020C19 = 2019C19 + 2019C18 | 4. | [Maximum mark: 7] | | |----|--|-----| | | Let $x \in R$, $ x < 1$ and | | | | $A = 1 + x + x^2 + x^3 + \cdots$ | | | | (a) Show that | | | | $1 + x^2 + x^4 + x^6 + \dots = \frac{A^2}{2A - 1}$ | [5] | | | (b) Find the value of x if $A = 5$. | [2] | | [Maximum mark: 6] | |--| | Find $\sum_{n=0}^{\infty} \frac{1+3^n}{5^n}$ | | $\frac{1}{n=0}$ 3 | The coefficient of x^4 is twice the coefficient of x^2 in the expansion of $(x^2 + a)^n$.
Show that $n - 4a = 1$. | |--| [Maximum mark: 5] | thre | e terms of a geometric sequence. | | |---------------|---|-----| | (a) | Find the common ratio of the geometric sequence. | [5] | | (b) | Find the 5 th term of the arithmetic sequence. | [2] | | | | | | | | | | ••••• | | | | | | | | | | | | | | | | ••••• | | | | ••••• | ••••• | | | | ••••• | • • • • • • • | | | [Maximum mark: 7] ## MAA HL ## **Test on Sequences and Binomial theorem** by Christos Nikolaidis Date: 17 January 2020 Paper 2: with GDC | 1. [Maximum mark: 5] The constant term in the expansion of $\left(\frac{9}{x^3} - ax\right)^8$ is 145152. Find the values of a . | | |--|----------| | | | | | possible | **Turn over** Marks: /40 | the | m of the first 100 terms of an arithmetic sequence is 15250 while that 100 terms is 45250. Find the sum of the next 100 terms. | | |-----|--|--| amum mark: 6] | |-----|---| | (a) | Express $10x^2 - 19x + 6$ in the form $(ax - b)(cx - d)$, where a, b, c, d are | | | positive integers. | | (b) | Hence or otherwise find the coefficient of x^2 in the expansion of | | | $(10x^2-19x+6)^6$. | Let | | |-----|--| | | $S = 27 + 32 + 37 + 42 + \dots + 362$ | | (a) | Express the sum S in the form $\sum_{k=1}^{n} (ak+b)$, where a,b,n are integers to be | | | determined. | | (b) | Hence find the value of $S.$ | (a) | Find the sum of all integers between 300 and 800 which are multiples of 6. | |-----|--| | b) | Find the sum of all integers between 300 and 800 which are not multiples of 6 | o. [iviaxiiiiuiii iiiaik. o | 6. | [Maximum | mark: | 6] | |------------------------------------|----|----------|-------|----| |------------------------------------|----|----------|-------|----| The sum of the first n terms of an arithmetic sequence is given by $$S_n = 104n - 4n^2$$ | (a)
(b) | Find the second term. Find the sum of the positive terms of the sequence. | [2]
[4] | |------------|---|------------| ••••• | [Ma | ximum mark: 6] | | |------|--|-----| | File | as invests 800€ at 8% per year (compounded yearly). | | | Filo | mila invests 760€ at 8% per year compounded quarterly . | | | (a) | Find whether Fileas or Filomila would receive more money after 10 years. | [3] | | (b) | Filomila would receive more money that Fileas after n complete years. | | | | Find the minimum value of n . | [3] |