
Topic 2 Part 4 [47 marks]

1a. [1 mark]

Markscheme
     A1

[1 mark]

Examiners report
[N/A]

sum = , product =45
9

40
9

1b. [6 marks]

Markscheme
it follows that

 and

     A1A1

solving,

     A1

     M1

     A1

the other two roots are 2,

     A1

[6 marks]

Examiners report
[N/A]

3α = 45
9

α( − ) =α2 β2 40
9

α = 5
3

( − ) =5
3

25
9

β2 40
9

β = (±) 1
3

4
3

2a. [3 marks]

Markscheme
     M1

     A1

therefore f is even     A1

[3 marks]

Examiners report
[N/A]

f(−x) = 2 cos(−x) + (−x)sin(−x)

= 2 cosx + x sin x (= f(x))



2b. [2 marks]

Markscheme
     A1

     A1

so

     AG

[2 marks]

Examiners report
[N/A]

(x) = −2 sin x + sin x + xcosx (= −sin x + xcosx)f ′

(x) = −cosx + cosx − x sin x (= −x sin x)f ′′

(0) = 0f ′′

2c. [2 marks]

Markscheme
John’s statement is incorrect because

either; there is a stationary point at (0, 2) and since f is an even function and therefore symmetrical about the y-axis it must be a

maximum or a minimum

or;

 is even and therefore has the same sign either side of (0, 2)     R2

[2 marks]

Examiners report
[N/A]

(x)f ′′

3a. [3 marks]

Markscheme
(i)    

     A1

 

(ii)     by inspection the two roots are 1, e     A1A1

[3 marks]

Examiners report
[N/A]

(x) = − ef ′ ex xe−1



3b. [3 marks]

Markscheme

    A3

Note: Award A1 for maximum, A1 for minimum and A1 for general shape.

 

[3 marks]

Examiners report
[N/A]

3c. [1 mark]

Markscheme
from the graph:

 for all

 except x = e     R1

putting

 , conclude that

     AG

[1 mark]

Examiners report
[N/A]

>ex xe

x > 0

x = π

>eπ πe



4a. [6 marks]

Markscheme
f continuous

     M1

     A1

     A1

     A1

solve simultaneously     M1

to obtain a = –1 and b = 6     A1

[6 marks]

Examiners report
[N/A]

⇒ f(x) = f(x)lim
x→2−

lim
x→2÷

4a + 2b = 8

(x) = {f ′ 2,
2ax + b,

x < 2
2 < x < 3

 continuous ⇒ (x) = (x)f ′ lim
x→2−

f ′ lim
x→2÷

f ′

4a + b = 2

4b. [3 marks]

Markscheme
for

     A1

for

     A1

since

 for all values in the domain of f , f is increasing     R1

therefore one-to-one     AG

[3 marks]

Examiners report
[N/A]

x ⩽ 2,  (x) = 2 > 0f ′

2 < x < 3, (x) = −2x + 6 > 0f ′

(x) > 0f ′

4c. [5 marks]

Markscheme
     M1

     M1

therefore

     A1A1A1

Note: Award A1 for the first line and A1A1 for the second line.

 

[5 marks]

x = 2y − 1 ⇒ y = x+1
2

x = − + 6y − 5 ⇒ − 6y + x + 5 = 0y2 y2

y = 3 ± 4 − x
− −−−−√

(x) = {f−1 ,x+1
2

3 − ,4 − x
− −−−−√

x ⩽ 3

3 < x < 4
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Examiners report
[N/A]

5. [6 marks]

Markscheme
     M1

     A1

     M1

     A1

solving,

     A1A1

[6 marks]

Examiners report
[N/A]

f(2) = 8 + 4a + 2b − 4 = 0

⇒ 4a + 2b = −4

f(1) = 1 + a + b − 4 = −6

⇒ a + b = −3

a = 1, b = −4

6. [6 marks]

Markscheme
vertical asymptote

     M1

horizontal asymptote

     M1

     A1A1

     M1

     A1

[6 marks]

Examiners report
[N/A]

x = −4 ⇒ −4b + c = 0

y = −2 ⇒ = −21
b

b = −  and c = −21
2

1 =
+a2

3

− × −21
2

2
3

a = −3
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