Learning Objectives

- Understand the difference between vector and scalar
- displacement VS distance
- velocity VS speed
- Know how to calculate displacement by using Pythagorean theorem
- Know motions diagram, and know how to extract information from different diagrams
- Velocity VS Time
- Acceleration VS time
- Understand kinematics equation and be able to solve problems
- Understand freefall motion
- Motion diagram: Acceleration VS Time, Velocity VS Time

Vector and Scalar

Vector

- Contains both magnitude/seize and direction
- Direction is expressed by a negative sign "-" or a positive sign " + ".
- Usually, right/east/north/upward are expressed with a positive sign, and left/west/downward/south are expressed with a negative sign
Scalar
- Has not direction
- The value is always greater or equal to zero

Example

- A person is running at 1.5 meter per second to the left
- 1.5 meter per second is the magnitude
- To the left is the direction
- Expressed in mathematical way: $-1.5 m$'s

Displacement and Distance

Displacement

- A vector quantity
- Final position subtracted by initial position

Distance

- A scalar quantity

Kinematics Formula

- $\mathrm{a}=\frac{\Delta \mathrm{v}}{\Delta t}=\frac{\left(\mathrm{v}_{\mathrm{f}}-\mathrm{v}_{\mathrm{i}}\right)}{\Delta t}$
- $\mathrm{v}_{\mathrm{f}}=\mathrm{v}_{\mathrm{i}}+\mathrm{at}$
- $\mathrm{X}_{\mathrm{f}}=\mathrm{X}_{\mathrm{i}}+\frac{\left(\mathrm{v}_{\mathrm{f}}+\mathrm{v}_{\mathrm{i}}\right)}{2} t$
- $\mathrm{X}_{\mathrm{f}}=\mathrm{X}_{\mathrm{i}}+\mathrm{v}_{\mathrm{i}} \mathrm{t}+\frac{1}{2} a t^{2}$
- $\mathrm{v}_{\mathrm{f}}{ }^{2}=\mathrm{v}_{\mathrm{i}}{ }^{2}+2 a s$

For IB Student, the symbol in the test might be different. $u=i n i t i a l ~ v e l o c i t y, ~ v=f i n a l ~ v e l o c i t y, ~$ s=displacement, a=acceleration

Motion Diagram

Velocity VS Time

- Area under the curve is equal to displacement
- Slope of the graph is equal to acceleration
- Constant slope means constant acceleration
- Positive slope means the acceleration is greater than zero
- Negative slope means the acceleration is less than zero = the object is decelerating
- Slope of zero means not acceleration. The object is moving at a constant velocity Velocity-time graph

Free-Fall Motion

- $\mathrm{h}=\frac{1}{2} \mathrm{gt}^{2}$ (gravitational acceleration $\mathrm{g}=-9.81$)
- An object is dropped (initial velocity of zero) at hight h
- Hoizontal velocity of zero
- Affected by gravity only
- Gravity is equal to the object's vertical acceleration
- Acceleration VS Time graph is constant (Acceleration=-9.81, slope is zero)
- Velocity VS time Graph has a slope of -9.81. The graph starts at its origin

Acceleration

