SL Paper 1

Which are definitions of an acid according to the Brønsted-Lowry and Lewis theories?

	Brønsted-Lowry theory	Lewis theory
Α.	proton donor	electron pair acceptor
B.	proton acceptor	electron pair acceptor
C.	proton acceptor	electron pair donor
D.	proton donor	electron pair donor

Which statement is **incorrect** for a 0.10 mol dm⁻³ HCOOH solution?

A. pH = 1

- B. [H⁺] << 0.10 mol dm⁻³
- C. [HCOO⁻] is approximately equal to [H⁺]
- D. HCOOH is partially ionized

Which species behave as Brønsted-Lowry acids in the following reversible reaction?

 $\mathrm{H_2PO_4^-(aq)} + \mathrm{CN^-(aq)} \rightleftharpoons \mathrm{HCN(aq)} + \mathrm{HPO_4^{2-}(aq)}$

- A. HCN and CN^-
- B. HCN and HPO_4^{2-}
- C. $H_2PO_4^-$ and HPO_4^{2-}
- D. HCN and $H_2PO_4^-$

Which row correctly describes $1.0\ mol\ dm^{-3}\ NaOH(aq)?$

	рН	Colour in universal indicator solution	Electrical conductivity
Α.	14	purple	good
B.	10	green	poor
C.	14	red	good
D.	10	blue	poor

What is the formula of the conjugate base of the hydrogenphosphate ion, HPO_4^{2-} ?

- A. $H_2PO_4^-$
- B. H_3PO_4
- C. HPO_4^-
- D. PO_4^{3-}

Consider the equilibrium below.

 $\mathrm{CH}_3\mathrm{CH}_2\mathrm{COOH}(\mathrm{aq}) + \mathrm{H}_2\mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{CH}_3\mathrm{CH}_2\mathrm{COO}^-(\mathrm{aq}) + \mathrm{H}_3\mathrm{O}^+(\mathrm{aq})$

Which species represent a conjugate acid-base pair?

- A. $CH_3CH_2COOH \text{ and } H_2O$
- B. H_2O and $CH_3CH_2COO^-$
- C. H_3O^+ and H_2O
- D. $CH_{3}CH_{2}COO^{-}$ and $H_{3}O^{+}$

What will happen if the pressure is increased in the following reaction mixture at equilibrium?

$$CO_2$$
 (g) + H₂O (l) \rightleftharpoons H⁺ (aq) + HCO₃⁻ (aq)

- A. The equilibrium will shift to the right and pH will decrease.
- B. The equilibrium will shift to the right and pH will increase.
- C. The equilibrium will shift to the left and pH will increase.
- D. The equilibrium will shift to the left and pH will decrease.

Activity series of selected elements:

Which react with dilute sulfuric acid?

- I. Cu
- II. CuO
- III. CuCO₃
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

A student carried out a titration to determine the concentration of an acid and found that his value had good precision but poor accuracy. Which

process explains this outcome?

- A. Consistently overshooting the volume of solution from the burette into the flask.
- B. Collection of insufficient titration data.
- C. Reading the meniscus in the burette at a different angle each time.
- D. Forgetting to rinse the flask after one of the titrations.

Three aqueous solutions of nitric acid are listed below.

- W. $0.100 \text{ mol } dm^{-3} HNO_3(aq)$
- X. $0.001 \ mol \ dm^{-3} \ HNO_3(aq)$
- Y. $0.010 \text{ mol } dm^{-3} \text{ HNO}_3(aq)$

What is the correct order of increasing pH of these solutions?

- $\mathsf{A.} \quad \mathrm{W} < \mathrm{X} < \mathrm{Y}$
- $\mathsf{B.} \quad W < Y < X$
- $\mathsf{C}. \quad X < W < Y$
- $\mathsf{D}. \quad X < Y < W$

Which pH value is that of an aqueous solution of carbon dioxide?

- A. 2.1
- B. 5.6
- C. 9.8
- D. 12.2

Which is an acid-base conjugate pair?

- A. H₃O⁺ / OH⁻
- B. H₂SO₄ / SO₄²⁻
- C. CH_3COOH / H_3O^+
- D. $CH_3NH_3^+ / CH_3NH_2$

Which statement is correct?

- A. A strong acid is a good proton donor and has a strong conjugate base.
- B. A weak acid is a poor proton acceptor and has a strong conjugate base.
- C. A strong acid is a good proton donor and has a weak conjugate base.
- D. A strong base is a good proton donor and has a weak conjugate acid.

When equal volumes of four $0.1 \ {
m mol} \ {
m dm}^{-3}$ solutions are arranged in order of increasing pH (lowest pH first), what is the correct order?

- $\label{eq:alpha} \mbox{A.} \quad CH_3COOH < HNO_3 < CH_3CH_2NH_2 < KOH$
- $\mathsf{B}. \quad \mathsf{HNO}_3 < \mathsf{CH}_3\mathsf{COOH} < \mathsf{CH}_3\mathsf{CH}_2\mathsf{NH}_2 < \mathsf{KOH}$
- $\label{eq:charge} \mbox{C.} \quad CH_3CH_2NH_2 < HNO_3 < CH_3COOH < KOH$

What is the pH of the solution formed when $10~{
m cm}^3$ of HCl(aq) with pH 1.0 is added to $990~{
m cm}^3$ of water?

- A. 1.5
- B. 2.0
- C. 2.5
- D. 3.0

Which are acid-base pairs according to the Brønsted-Lowry theory?

- I. HNO_3/NO_3^-
- II. H_3O^+/OH^-
- III. HCOOH/HCOO⁻
- A. I and II only
- B. I and III only
- C. II and III only

D. I, II and III

The pH of a solution changes from pH = 2 to pH = 5. What happens to the concentration of the hydrogen ions during this pH change?

- A. It decreases by a factor of 1000
- B. It increases by a factor of 1000
- C. It decreases by a factor of 100
- D. It increases by a factor of 100

What is the Brønsted–Lowry conjugate base of $H_2PO_4^-\ref{eq:homoscale}$

- A. H_3PO_4
- B. HPO_4^{2-}
- C. PO_4^{3-}
- $D. HO^{-}$

10.0 cm³ of an aqueous solution of sodium hydroxide of pH = 10 is mixed with 990.0 cm³ of distilled water. What is the pH of the resulting solution?
A. 8
B. 9
C. 11
D. 12

Which of the following is correct?

- A. A weak acid is a proton donor and its aqueous solution shows good conductivity.
- B. A weak acid is a proton donor and its aqueous solution shows poor conductivity.
- C. A weak acid is a proton acceptor and its aqueous solution shows good conductivity.
- D. A weak acid is a proton acceptor and its aqueous solution shows poor conductivity.

A student adds 0.3 g of magnesium metal to equal volumes of hydrochloric acid and ethanoic acid of the same concentrations in separate flasks.

Which statement is correct?

- B. A greater total volume of H_2 gas is produced with hydrochloric acid than with ethanoic acid.
- C. The same total volume of H_2 gas is produced with both hydrochloric acid and ethanoic acid.
- D. Ethanoic acid reacts more slowly because it has a lower pH than hydrochloric acid.

What is the conjugate base of H_2CO_3 according to the Brønsted-Lowry theory?

- A. CO_3^{2-}
- B. HCO_3^-
- C. $H_3CO_3^+$
- D. CO_2

Which products would be formed when hydrochloric acid reacts with magnesium oxide?

- A. magnesium chloride and carbon dioxide
- B. magnesium chloride, hydrogen gas and water
- C. magnesium, hydrogen gas and water
- D. magnesium chloride and water

A solution of acid A has a pH of 1 and a solution of acid B has a pH of 2. Which statement must be correct?

- A. Acid A is stronger than acid B.
- $\mathsf{B}. \quad [A] > [B].$
- C. The concentration of \boldsymbol{H}^+ ions in A is higher than in B.
- D. The concentration of H^+ ions in B is twice the concentration of H^+ ions in A.

Which gas in the atmosphere causes the pH of unpolluted rain to be approximately 6?

- A. Carbon dioxide
- B. Sulfur dioxide
- C. Oxygen
- D. Nitrogen

	Brønsted–Lowry acid	Brønsted–Lowry base	Conjugate acid	Conjugate base
Α.	HCO3 ⁻ (aq)	H ₂ O (1)	$H_2CO_3(aq)$	OH ⁻ (aq)
B.	$H_2CO_3(aq)$	OH ⁻ (aq)	HCO3 ⁻ (aq)	H ₂ O (1)
C.	H ₂ O (1)	HCO3 (aq)	$H_2CO_3(aq)$	OH ⁻ (aq)
D.	H ₂ O (1)	HCO3⁻(aq)	OH⁻(aq)	H ₂ CO ₃ (aq)

 $\mathrm{HCO}_{3}^{-}(\mathrm{aq}) + \mathrm{H}_{2}\mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{OH}^{-}(\mathrm{aq}) + \mathrm{H}_{2}\mathrm{CO}_{3}(\mathrm{aq})$

Which of the following are weak acids in aqueous solution?

- I. CH₃COOH
- II. H_2CO_3
- III. HCI
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

Which list contains only strong bases?

- A. ammonia, sodium hydroxide, ethylamine
- B. potassium hydroxide, ammonia, sodium hydroxide
- C. lithium hydroxide, potassium hydroxide, barium hydroxide
- D. ammonia, ethylamine, barium hydroxide

 $10.0~{
m cm}^3$ of a solution of a strong acid with a pH of 3 is added to a volumetric flask and the total volume is made up to $1.00~{
m dm}^3$ by adding distilled

water. The resulting solution is then thoroughly mixed.

What is the pH of the diluted solution?

- A. 1
- B. 2
- C. 4
- D. 5

A solution of acid HX has a pH = 1 and a solution of acid HY has a pH = 3. Which statement **must** be correct?

- A. HX is a stronger acid than HY.
- B. HY is a stronger acid than HX.
- C. The $[H^+]$ in the solution of HX is 100 times greater than the $[H^+]$ in the solution of HY.
- D. The $[\mathrm{H^+}]$ in the solution of HY is 100 times greater than the $[\mathrm{H^+}]$ in the solution of HX.

Which compound reacts with calcium oxide, CaO?

- A. K_2O
- B. Na_2O
- C. SO_2
- D. MgO

Which 1.0 mol dm⁻³ solution has the highest pH?

- A. Ammonium chloride
- B. Sulfuric acid
- C. Sodium chloride
- D. Ammonia

Which is **not** a conjugate acid-base pair?

- A. HNO_3 and NO_3^-
- B. CH_3COOH and CH_3COO^-
- C. H_3O^+ and OH^-
- D. HSO_4^- and SO_{42}^{2-}

Which group of three compounds contains only weak acids and bases?

А.	Ba(OH) ₂	$\rm CH_3 \rm NH_2$	CH ₃ COOH
B .	CH ₃ CH ₂ CH ₂ COOH	$\rm CH_3 CH_2 NH_2$	НСООН
C.	NH ₃	HNO3	CH ₃ CH ₂ COOH
D.	NH ₃	NaOH	H ₂ CO ₃

Which compound is a strong acid?

- A. NH₃
- B. HNO₃
- C. H_2CO_3
- $\mathsf{D}.\quad \mathrm{CH}_3\mathrm{COOH}$

What occurs when solid sodium hydrogen carbonate reacts with aqueous sulfuric acid?

- A. Bubbles of sulfur dioxide form.
- B. Bubbles of both hydrogen and carbon dioxide form.
- C. Bubbles of hydrogen form.
- D. Bubbles of carbon dioxide form.

A solution of 50 cm^3 hydrochloric acid has a pH of 4. What is the final pH if 450 cm^3 of water is added?

- A. 3
- B. 4
- C. 5
- D. 6

What are the products of the reaction between sulfuric acid and sodium hydrogen carbonate?

- A. $NaSO_4 + H_2O + CO_2$
- B. $Na_2SO_4 + CO_2$
- $\mathsf{C}. \quad \mathsf{Na}_2\mathsf{SO}_4 + \mathsf{H}_2\mathsf{O} + \mathsf{CO}_2$
- D. NaSO₄ + H₂CO₃

An example of a strong acid solution is perchloric acid, HClO₄, in water. Which statement is correct for this solution?

- A. $HClO_4$ is completely dissociated in the solution.
- B. $HClO_4$ exists mainly as molecules in the solution.
- C. The solution reacts only with strong bases.
- D. The solution has a pH value greater than 7.

Which is a conjugate Brønsted-Lowry acid-base pair?

$CH_{3}COOH(aq) + H_{2}O(l) \rightleftharpoons CH_{3}COO^{-}(aq) + H_{3}O^{+}(aq)$

A. CH₃COO⁻ / H₃O⁺

B. H₂O / CH₃COO⁻

C. H_2O / H_3O^+

D. CH₃COOH / H₂O

Which $0.10 \ mol \ dm^{-3}$ solution would have the highest conductivity?

- A. HCI
- B. NH_3
- $C. \quad CH_3COOH$
- $\mathsf{D}. \quad H_2CO_3$

Which list contains only strong acids?

- A. $CH_3COOH, H_2CO_3, H_3PO_4$
- $\mathsf{B}.\quad \mathrm{HCl}, \mathrm{HNO}_3, \mathrm{H}_2\mathrm{CO}_3$
- C. CH₃COOH, HNO₃, H₂SO₄
- D. HCl, HNO_3 , H_2SO_4

For equal volumes of 1.0 mol dm^{-3} solutions of hydrochloric acid, HCl(aq), and methanoic acid, HCOOH(aq), which statements are correct?

- I. HCI dissociates more than HCOOH
- II. HCI is a better electrical conductor than HCOOH
- III. HCI will neutralize more NaOH than HCOOH
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

A. CO₂
B. NO₂
C. NO
D. SO₂

Which classification is correct for the reaction?

	Brønsted–Lowry Acid	Brønsted-Lowry Base
A.	H ₂ O	H ₂ PO ₄ ⁻
В.	HPO4 ²⁻	H ₂ PO ₄ ⁻
C.	H ₂ PO ₄ ⁻	H₃O⁺
D.	H ₂ PO ₄ ⁻	H ₂ O

 $\mathrm{H_2PO_4^{-}(aq) + H_2O(l) \rightarrow HPO_4^{2-}(aq) + H_3O^{+}(aq)}$

Which descriptions are correct for both a Brønsted-Lowry acid and a Lewis acid?

	Brønsted–Lowry acid	Lewis acid
A.	proton donor	electron pair donor
В.	proton donor	electron pair acceptor
C.	proton acceptor	electron pair donor
D.	proton acceptor	electron pair acceptor

Which species behave as Brønsted-Lowry bases in the following reaction?

$$H_2SO_4 + HNO_3 \rightleftharpoons H_2NO_3^+ + HSO_4^-$$

A. HNO₃ and HSO₄⁻

B. HNO_3 and $H_2 NO_3^{\scriptscriptstyle +}$

C. H_2SO_4 and HSO_4^-

D. $\mathrm{H_2NO_3^+}$ and $\mathrm{HSO_4^-}$