2.1 Motion

This section is an introduction to the basic concepts used in describing
motion. We will begin with motion in a straight line with constant
velocity and then constant acceleration. Knowledge of uniformly
accelerated motion allows analysis of more complicated motions, such as

the motion of projectiles.

Kinematical quantities

We will begin our discussion of motion with straight line motion in one
dimension. This means that the particle that moves is constrained to move
along a straight line. The position of the particle is then described by its
coordinate on the straight line (Figure 2.1a). If the line is horizontal, we
may use the symbol x to represent the coordinate and hence the position.
If the line is vertical, the symbol y is more convenient. In general, for an
arbitrary line we may use a generic name, s, for position. So in Figure 2.1,

x=6m, y=—4m and s=0.
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Figure 2.1 The position of a particle is determined by the coordinate on the number

line.

As the particle moves on the straight line its position changes. In
uniform motion the graph of position against time is a straight line
(Figure 2.2). In equal intervals of time, the position changes by the same
amount. This means that the slope of the position—time graph is constant.
This slope is defined to be the average velocity of the particle:

A
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where As is the change in position.

The average velocity during an interval of time Af is the ratio of
the change in position As during that time interval to At.
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Learning objectives

Understand the difference
between distance and
displacement.

Understand the difference
between speed and velocity.
Understand the concept of
acceleration.

Analyse graphs describing
motion.

Solve motion problems using
the equations for constant
acceleration.

Discuss the motion of a
projectile.

Show a qualitative understanding
of the effects of a fluid resistance
force on motion.

Understand the concept of
terminal speed.
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Figure 2.2 In uniform motion the graph of
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(In uniform motion velocity is constant so the term ‘average’ is
unnecessary. The velocity is the same at all times.)

Positive velocity means that the coordinate s that gives the position is
increasing. Negative velocity means that s is decreasing.

Suppose we choose a time interval from =0 to some arbitrary time ¢
later. Let the position at t=0 (the initial position) be s; and the position at
time ¢ be s. Then:

_57S
=0

which can be re-arranged to give:

v

s=situvt

This formula gives, in uniform motion, the position s of the moving
object f seconds after time zero, given that the velocity is v and the initial

position is sj.

Worked example

2.1 Two cyclists, A and B, start moving at the same time. The initial position of A is O m and her velocity is
+20kmh ™" The initial position of B is 150km and he cycles at a velocity of =30kmh™". Determine the time
and position at which they will meet.

The position of A is given by the formula: sa=0+20¢
The position of B is given by the formula: sg =150 —30¢

They will meet when they are the same position, i.e. when sa = sg. This implies:

20¢t=150—30¢
50t=150
t=3.0 hours

The common position is found from either sy =20 X 3.0 =60km or sy =150 — 30 X 3.0 =60 km.

Consider two motions shown in Figure 2.3. In the first, the particle leaves
its initial position s; at —4m and continues to its final position at 16 m.
The change in position is called displacement and in this case equals

16 — (—4) =20 m.The distance travelled is the actual length of the path
followed and in this case is also 20m.

-

45 0 2 4 6 8 1012141618 20 +/m Displacement = change in position
Distance =length of path followed

1 1 1 1 1 1 1 1 1 1 1 1
-

4-2 02 4 6 8 10121416 18 20 s/m

In the second motion, the particle leaves its initial position at 12m, arrives

Figure 2.3 A motion in which the particle at position 20m and then comes back to its final position at 4.0m.

changes direction.
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The second motion is an example of motion with changing direction.
The change in the position of this particle, i.e. the displacement is
As=s¢—5;=4.0—12=—-8.0m. But the distance travelled by the particle
(the length of the path) is 8.0m in the outward trip and 16 m on the
return trip, making a total distance of 24 m. So we must be careful
to distinguish distance from displacement. Distance is a scalar but
displacement is a vector. Numerically, they are different if there is a
change of direction, as in this example.

For constant velocity, the graph of velocity versus time gives a
horizontal straight line (Figure 2.4a). An example of this type of motion is
coasting in a straight line on a bicycle on level ground (Figure 2.4b).

Velocity

Figure 2.4 aIn uniform motion the graph of velocity versus time is a horizontal
straight line. b This motion is a good approximation to uniform motion.

But we now observe that the area under the graph from =0 to time ¢
is vt. From s=s; + vt we deduce that this area is the change in position or
the displacement.

Uniformly accelerated motion

In the last section we discussed uniform motion. This means motion in
a straight line with constant velocity. In such motion the graph of
position versus time is a straight line.

In most motions velocity is not constant. In uniformly accelerated
motion the graph of velocity versus time is a non-horizontal straight line
(Figure 2.5).

In equal intervals of time the velocity changes by the same amount. The
slope of the velocity—time graph is constant. This slope is defined to be the
acceleration of the particle:

_Av

A

I Acceleration is the rate of change of velocity.

When the acceleration is positive, the velocity is increasing (Figure 2.6).
Negative acceleration means that v is decreasing. The plane reaches a take-off
speed of 260kmh™ (about 72ms™") in about 2 seconds, implying an average

acceleration of about 36 ms 2. The distance travelled until take-off is about 72m.

0 t
Figure 2.5 In uniformly accelerated motion
the graph of velocity versus time is a straight
line with non-zero slope.

Figure 2.6 This F/ A-18C s accelerating!
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Suppose we choose a time interval from =0 to some arbitrary time ¢
later. Let the velocity at £=0 (the initial velocity) be u and the velocity at
time ¢ be v. Then:

v—u
=0

which can be re-arranged to:

a

v=u-+at

For uniformly accelerated motion, this formula gives the velocity v of the
moving object f seconds after time zero, given that the initial velocity is u
and the acceleration is a.

Worked example

2.2 A particle has initial velocity 12ms~" and moves with a constant acceleration of —=3.0ms . Determine the
time at which the particle stops instantaneously.

The particle is getting slower. At some point it will stop instantaneously, i.e. its velocity v will be zero.
We know that v=u+ at. Just substituting values gives:

0=12+(=3.0) X ¢

3.06=12

Hence t=4.0s.

Defining velocity in non-uniform motion

But how 1s velocity defined now that it is not constant? We define the
average velocity as before:

v=—"o
At
But since the velocity changes, it has different values at different times.
We would like to have a concept of the velocity at an instant of time,
N the instantaneous velocity. We need to make the time interval Af very
small. The instantaneous velocity is then defined as:
As

v Emar

“L

—

In other words, instantaneous velocity is the average velocity obtained
during an interval of time that is very, very small. In calculus, we learn that
. As . . .

iltg}) AL has the following meaning: look at the graph of position s versus

time t shown in Figure 2.7a.As there is uniform acceleration, the graph is
a curve. Choose a point on this curve. Draw the tangent line to the curve
at the point. The slope of the tangent line is the meaning of i%g})% and
therefore also of velocity.
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Figure 2.7 a In uniformly accelerated motion the graph of position versus time is a curve. b The slope of the tangent at a particular
point gives the velocity at that point.

In Figure 2.7b the tangent is drawn at t=3.0s. We can use this to find
the instantaneous velocity at t=3.0s.The slope of this tangent line is:
25-1.0 _ —1
m—ﬁOms The slope of the tangent to the
graph of position versus time is
To find the instantaneous velocity at some other instant of time we must velocity
take another tangent and we will find a different instantaneous velocity. At
the point at =0 it is particularly easy to find the velocity: the tangent is
horizontal and so the velocity is zero.
Instantaneous velocity can be positive or negative. The magnitude of
the instantaneous velocity is known as the instantaneous speed.
We define the average speed to be the total distance travelled divided
by the total time taken.The average velocity is defined as the change in
position (i.e. the displacement) divided by the time taken:

total distance travelled
total time taken

average speed =

displacement

average velocity = -
g ty total time taken

Consider the graph of velocity versus time in Figure 2.8. Imagine
approximating the straight line with a staircase. The area under the
staircase is the change in position since at each step the velocity is
constant. If we make the steps of the staircase smaller and smaller, the area
under the line and the area under the staircase will be indistinguishable

Velocity
and so we have the general result that:

v

The area under the curve in a velocity versus time graph is the
change in position.

From Figure 2.8 this area is (the shape is a trapezoid):

1
1
1
1
1
1
1
1
1
1
1
I
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0

As= (“ + UJI Figure 2.8 The straight-line graph may be
2 approximated by a staircase.
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But v=u+ at, so this becomes:

u+tutat
As=(T)t=ut+§at2

So we have two formulas for position in the case of uniformly accelerated
motion (recall that As=s—5):

_ .+(”+V)t
S5 >

S=s;+ut+%at2

We get a final formula if we combine s=g+ ut+%at2 with v=u+ at. From

. . v—u . . .
the second equation write = and substitute in the first equation to get:

_v-u 1(v+u)?
smsmuT s

After a bit of uninteresting algebra this becomes:
=1+ 2a(s— )

This is useful in problems in which no information on time is given.

Graphs of position versus time for uniformly accelerated motion are
parabolas (Figure 2.9). If the parabola ‘holds water’ the acceleration is
positive. If not, the acceleration is negative.

S N

AN
N~ — t

a b
Figure 2.9 Graphs of position s against time t for uniformly accelerated motion. a Positive
acceleration. b Negative acceleration.

N Exam tip
The table summarises the meaning of the slope and area for the different motion graphs.
) Graph of ... Slope Area
: position against time velocity
velocity against time acceleration | change in position
acceleration against time change in velocity

These formulas can be used for constant acceleration only (if the initial position is zero,
As may be replaced by just s).

utv
v=utat As=ut+%at2 As=( )t v? = u? + 2aAs

2
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Worked examples

2.3 A particle has initial velocity 2.00ms ' and acceleration a=4.00ms 2 Find its displacement after 10.0s.

Displacement is the change of position, i.e. As=s—s;. We use the equation:
As=ut+ %at2
As=2.00% 10.0 +3% 4.00 X 10.0°

As=220m

2.4 A car has an initial velocity of #=5.0ms"'. After a displacement of 20m, its velocity becomes 7.0ms .

Find the acceleration of the car.

Here, As=s—5,=20m. So use v*=u>+2aAs to find a.
7.0°=5.0>+2a% 20
24=40a

Therefore a=0.60ms 2.

2.5 A body has initial velocity 4.0ms ™. After 6.0s the velocity is 12ms~'. Determine the displacement of the
body in the 6.0s.

We know u, v and t. We can use:

+
As=(V 5 u)t
to get:
A52(12+4LO)>< 6.0
2
As=48m

A slower method would be to use v=u+ at to find the acceleration:
12=4.0+6.0a
= a=1333ms™’
Then use the value of a to find As:
As=ut+ %mﬁ2
As=4.0%6.0+3%1.333 %36

As=48m
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2.6 Two balls start out moving to the right with constant velocities of 5.0ms™" and 4.0ms™". The slow ball starts
first and the other 4.0 later. Determine the position of the balls when they meet.

Let the two balls meet fs after the first ball starts moving.
The position of the slow ball is:  s=4¢
The position of the fast ball is: 5(t—4)
(The factor t—4 is there because after ¢s the fast ball has actually been moving for only ¢— 4 seconds.)
These two positions are equal when the two balls meet, and so:
4t=5¢t—20
= =205

Substituting into the equation for the position of the slow ball, the position where the balls meet is 80 m to the
right of the start.

2.7 A particle starts out from the origin with velocity 10ms ! and continues moving at this velocity for 5.
The velocity is then abruptly reversed to —5ms™ " and the object moves at this velocity for 10s. For this
motion find:

a the change in position, i.e. the displacement
b the total distance travelled

c the average speed

d the average velocity.

The problem is best solved using the velocity—time graph, v/ms™ 10

which is shown in Figure 2.10.

0 t/s

=5

-10
Figure 2.10

a The initial position is zero. Thus, after 5.0s the position is 10 X5.0m =50 m (the area under the first part of the
graph). In the next 10s the displacement changes by —5.0 X 10 =—=50m (the area under the second part of the
graph). The change in position, i.e. the displacement, is thus 50 —50 =0 m.

b Take the initial velocity as moving to the right. The object moved toward the right, stopped and returned to its
starting position (we know this because the displacement was 0). The distance travelled is 50 m in moving to the
right and 50 m coming back, giving a total distance travelled of 100 m.

100 -
¢ The average speed is T;n:6.7ms L

d The average velocity is zero, since the displacement is zero.




2.8 An object with initial velocity 20ms ' and initial position of =75m experiences a constant acceleration of
—2ms 2. Sketch the position—time graph for this motion for the first 20s.

Use the equation s= ut+ %atz. Substituting the values we know, the displacement is given by s=—75+20¢— .
This is the function we must graph. The result is shown in Figure 2.11.

s/m 40

0 t/s
5 10 15\ 20

-20 / \

-40 / \

-60 /

Figure 2.11

At 55 the object reaches the origin and overshoots it. It returns to the origin 10s later (t=15s). The furthest it gets
from the origin is 25m. The velocity at 55 is 10ms ' and at 15s it is —10ms~'. At 10 s the velocity is zero.

A special acceleration

Assuming that we can neglect air resistance and other frictional forces,
an object thrown into the air will experience the acceleration of free
fall while in the air. This is an acceleration caused by the attraction
between the Earth and the body. The magnitude of this acceleration is
denoted by g. Near the surface of the Earth ¢=9.8ms 2. The direction
of this acceleration is always vertically downward. (We will sometimes
approximate ¢ by 10m s72)

Worked example

2.9 An object is thrown vertically upwards with an initial velocity of 20ms™ 20ms’’
from the edge of a cliff that is 30 m from the sea below, as shown in
Figure 2.12.

1

Determine:

a the ball’s maximum height o
b the time taken for the ball to reach its maximum height
c the time to hit the sea

d the speed with which it hits the sea.

(You may approximate ¢ by 10ms2.) Figure 2.12 A ball is thrown
upwards from the edge of a cliff.
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We have motion on a vertical line so we will use the symbol y for position (Figure 2.13a). We make the vertical

line point upwards. The zero for displacement is the ball’s initial position.
a The quickest way to get the answer to this part is to use 1° = u*>— 2gy.

(The acceleration is a= —g.) At the highest point v=0, and so:
0=20>—2x10y

= y=20m

b At the highest point the object’s velocity is zero. Using v=0 in v=u — gt gives:

0=20—10X%¢
_20_
t—10—2.Os

¢ There are many ways to do this. One is to use the displacement
arrow shown in blue in Figure 2.13a. Then when the ball hits the sea,
y=—30m. Now use the formula y= ut—%gtz to find an equation that
only has the variable #:

—30=20xt—5x¢
#—4t—6=0

This is a quadratic equation. Using your calculator you can find the two
roots as —1.2s and 5.2s. Choose the positive root to find the answer
t=52s.

Another way of looking at this is shown in Figure 2.13b. Here we start
at the highest point and make the line along which the ball moves point
downwards. Then, at the top y=0, at the sea y=+50 and g=+10ms 2.
Now, the initial velocity is zero because we take our initial point to be at
the top.

Using y=ut+ %gtz with =0, we find:
50=>5¢

= t=32s

y/m“
20ms™!
0 1

30m

50 m

y/my
b

Figure 2.13 Diagrams for solving
the ball’s motion. a Displacement
upwards is positive. b The highest
point is the zero of displacement.

This is the time to fall to the sea. It took 2.0 to reach the highest point, so the total time from launch to hitting

the sea 1s:

2.0+3.2=5.2s.

d Use v=u—gtand  =5.25 to get v=20—10%5.2=—32ms" .. The speed is then 32ms" .

(If you preferred the diagram in Figure 2.13b for working out part ¢ and you want to continue this method
for part d, then you would write v=u+ gt with t =3.25 and u=0 to get v=10%3.2=+32ms ')




Projectile motion

Figure 2.14 shows the positions of two objects every 0.2s: the first was
simply allowed to drop vertically from rest, the other was launched
horizontally with no vertical component of velocity. We see that in the
vertical direction, both objects fall the same distance in the same time.

0 20 40 60 80 100
0 x/m

2 L 3
2 L 3

-1
a L 3

-2

-3
2 L 2

-4

y/m -5

Figure 2.14 A body dropped from rest and one launched horizontally cover the same
vertical displacement in the same time.

§ How do we understand this fact? Consider Figure 2.15, in which
a black ball is projected horizontally with velocity v. A blue ball
is allowed to drop vertically from the same height. Figure 2.15a
shows the situation when the balls are released as seen by an observer X
at rest on the ground. But suppose there is an observerY, who moves to
the right with velocity 5 with respect to the ground. What doesY see?
ObserverY sees the black ball moving to the right with velocity 5 and the
blue ball approaching with velocity —5 (Figure 2.15b)The motions of the
two balls are therefore identical (except for direction). So this observer
will determine that the two bodies reach the ground at the same time.
Since time is absolute in Newtonian physics, the two bodies must reach the
ground at the same time as far as any other observer is concerned as well.

% _v
2 2
.—v> [ ) .—2> -+—Q
X Y v v X Y
= -4 4
B —

a b

Figure 2.15 a A ball projected horizontally and one simply dropped from rest
from the point of view of observer X. Observer Y is moving to the right with

v
velocity 3 with respect to the ground. b From the point of view of observerY,
the black and the blue balls have identical motions.
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Figure 2.16 A projectile is launched at an
angle 6 to the horizontal with speed u.

The discussion shows that the motion of a ball that is projected at some

angle can be analysed by separately looking at the horizontal and the
vertical directions. All we have to do is consider two motions, one in the
horizontal direction in which there is no acceleration, and another in the
vertical direction in which we have an acceleration, g.

Consider Figure 2.16, where a projectile is launched at an angle 6 to
the horizontal with speed u.The components of the initial velocity vector
are u,=ucost and u,=usin6 . At some later time ¢ the components of
velocity are v, and v,. In the x-direction we do not have any acceleration

and so:
V= Uy
vy =1ucosf

In the y-direction the acceleration is —¢ and so:
vy =uy,—gt
v, = usin @ — gt

The green vector in Figure 2.17a shows the position of the projectile ¢
seconds after launch. The red arrows in Figure 2.17b show the velocity

10
y /
5

-5

vectors.
y/m 20 |
1
P 15 -1 ]
1
I
10
AN t /L N
5 |
1
1
- x/m 0 -1 x/m
0 H5 2.0 s 0.5 1.0 H5 2,0
b

Figure 2.17 aThe position of the particle is determined if we know the x- and y-components of the position vector.
b The velocity vectors for projectile motion are tangents to the parabolic path.

Exam tip

All that we are doing is using
the formulas from the previous
section for velocity and
position v=u+ at and

s=ut+ %atz and rewriting them
separately for each direction
x and y.

In the x-direction there is
zero acceleration and in
the y-direction there is an
acceleration —g.

We would like to know the x- and y-components of the position
vector. We now use the formula for position. In the x-direction:

X = Uyt

x=utcosd

And in the y-direction:
Y= upt— %gtz

y= utsinﬁ—%gtz

- BT



Let us collect what we have derived so far. We have four equations with
which we can solve any problem with projectiles, as we will soon see:

vy =ucoso, vy =u cost— gt
x-velocity y-velocity
_ o 1 -
x=utcos@, y—utsm@—zgt

x-displacement y-displacement

The equation with ‘squares of speeds’ is a bit trickier (carefully review the

following steps). It is:

v2=u2—2gy

Since ¥ =v,2+ I/Y2 and w?=u+ uyz, and in addition v,> = u,”, this is also

equivalent to:

Vy2 = llyz —2gy

Worked examples

Exam tip

Always choose your x- and
y-axes so that the origin is the
point where the launch takes
place.

2.10 A body is launched with a speed of 18.0ms ! at the following angles:

a 30° to the horizontal
b 0° to the horizontal
¢ 90° to the horizontal.

Find the x- and y-components of the initial velocity in each case.

a v,=ucosb vy = usin

vy = 18.0 X cos 30° v, = 18.0 Xsin 30°

v,=15.6ms ' By = 9.00ms '
b v,=18.0ms™! 1/),=0ms_1
c v,=0 vy=18.0ms_1

2.11 Sketch graphs to show the variation with time of the horizontal and vertical components of velocity for a

projectile launched at some angle above the horizontal.

The graphs are shown in Figure 2.18.

Vy vy

0 0
Time \Time

Figure 2.18
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2.12 An object is launched horizontally from a height of 20m above the ground with speed 15ms ™', Determine:
a the time at which it will hit the ground
b the horizontal distance travelled
c the speed with which it hits the ground.
(Take ¢=10ms 2.)

a The launch is horizontal, i.e. §=0°, and so the formula for vertical displacement is just y = —% g’

The object will hit the ground when y=—20m.

Substituting the values, we find: Exam tip

5 This is a basic problem —
—20==5¢ you must know how to do this!

= t=20s
b The horizontal distance is found from x = ut. Substituting values:
x=15%2.0=30m
(Remember that =0°).
c Use v"=u>— 2gy to get:
1?=15%2—2 %10 X (—20)

p=25ms"!

2.13 An object is launched horizontally with a velocity of 12ms™'. Determine:
a the vertical component of velocity after 4.0s
b the x- and y-components of the position vector of the object after 4.0s.

a The launch is again horizontal, i.e. = 0°, so substitute this value in the formulas. The horizontal component of
velocity is 12ms " at all times.

From v, = —gt, the vertical component after 4.0s is v,=—20ms .

b The coordinates after time f are:

X = ut and y=—%gt2
x=12.0%4.0 y=-5%16
x=48m y=—80m

Figure 2.19 shows an object thrown at an angle of €=30° to the
horizontal with initial speed 20ms™~". The position of the object is shown
every 0.2s. Note how the dots get closer together as the object rises (the
speed is decreasing) and how they move apart on the way down (the
speed is increasing). It reaches a maximum height of 5.1m and travels a
horizontal distance of 35 m.The photo in Figure 2.20 show an example
of projectile motion.




] 4
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Figure 2.19 A launch at of § =30° to the horizontal with initial speed 20ms™".

At what point in time does the vertical velocity component become
zero? Setting v,= 0 we find:

0=usinf—gt
1sin @
t=——
g

The time when the vertical velocity becomes zero is, of course, the time
when the object attains its maximum height. What is this height? Going
back to the equation for the vertical component of displacement, we find
that when:

tzusin@
g

y is given by:

Ymax — U

usin@ . 0_1 (usin@)z
sinf—3¢ <

_ WsinZ 0
Ylnax 2 g

What about the maximum displacement in the horizontal direction
(sometimes called the range)? At this point the vertical component of
displacement y is zero. Setting y=0 in the formula for y gives:

0= utsin&—%gt2

0=t(t4sin9—%gt)

and so:

t=0 and

2 MECHANICS g

Figure 2.20 A real example of projectile
motion!

Exam tip

You should not remember
these formulas by heart.You
should be able to derive them
quickly.




Worked examples

The first time ¢=0 is, of course, when the object first starts out. The
second time is what we want — the time in which the range is covered.
Therefore the range is:

_ 21 sin O cos O
£

A bit of trigonometry allows us to rewrite this as:

B u*sin (26)
=2
Y

One of the identities in trigonometry is 2 sin § cos 6 = sin 26

The maximum value of sin20 is 1, and this happens when 26=90° (i.e.
6= 45°); in other words, we obtain the maximum range with a launch
angle of 45°.This equation also says that there are two different angles
of launch that give the same range for the same initial speed. These two
angles add up to a right angle (can you see why?).

2.14 A projectile is launched at 32.0° to the horizontal with initial speed 25.0ms™'. Determine the maximum

height reached. (Take ¢=9.81ms 2.)

The vertical velocity is given by v, = usin#— gt and becomes zero at the highest point. Thus:

usin @
t:
&
_ 25.0 Xsin 32.0°
9.81
t=1.35s

Substituting in the formula for y, y = utsin —% g%, we get:

y=25X5in32.0° X 1.35 -3 X 9.81 X 1.352

y=8.95m




2.15 A projectile is launched horizontally from a height of 42m above the ground. As it hits the ground, the
velocity makes an angle of 55° to the horizontal. Find the initial velocity of launch. (Take ¢=9.8ms2)

The time it takes to hit the ground is found from y =% gf* (here 6= 0° since the launch is horizontal).
The ground is at y=—42m and so:
—42=—3%9.87
=  1=2.928s
Using v=u — at, when the projectile hits the ground:
r,=0—-9.8X2.928
v,=—28.69ms™"

We know the angle the final velocity makes with the ground (Figure 2.21). Hence:

o Vy Vx .
tan55°=|— 0 'i
_ 28.69 i
" tan55° K | tn 0=|¥]
1, =20.03=20ms" i
| l
Figure 2.21

Fluid resistance

The discussion of the previous sections has neglected air resistance forces.
In general, whenever a body moves through a fluid (gas or liquid) it
experiences a fluid resistance force that is directed opposite to the
velocity. Typically F= kv for low speeds and F= kv? for high speeds (where
k is a constant). The magnitude of this force increases with increasing speed.

Imagine dropping a body of mass m from some height. Assume that the
force of air resistance on this body is F= kv. Initially, the only force on the
body is its weight, which accelerates it downward. As the speed increases,
the force of air resistance also increases. Eventually, this force will become
equal to the weight and so the acceleration will become zero: the body
will then move at constant speed, called terminal speed, vr This speed
can be found from:

mg = kv
which leads to:

mg
k

vr=
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Figure 2.22 The variation with time of a
speed and b acceleration in motion with an
air resistance force proportional to speed.

Worked example

Figure 2.22 shows how the speed and acceleration vary for motion with
an air resistance force that is proportional to speed. The speed eventually
becomes the terminal speed and the acceleration becomes zero. The initial
acceleration is g.

The effect of air resistance forces on projectiles is very pronounced.
Figure 2.23 shows the positions of a projectile with (red) and without
(blue) air resistance forces. With air resistance forces the range and
maximum height are smaller and the shape is no longer symmetrical. The
projectile hits the ground with a steeper angle.

y/m
1500 s oo 0s
o o+ Y ®e
'} ° 1 Lt
o L]
1000 A TLLIN ‘.
oo o, °
s° ° °
® % d
o o o
°
500 & L2 *
' . ¢
' L L]
L .0 hd
O Iy (]
0 500 1000 1500 2000 2500 3000 3500

x/m

Figure 2.23 The effect of air resistance on projectile motion.

2.16 The force of air resistance in the motion described by Figure 2.22 is given by F=0.653v. Determine the

mass of the projectile.

The particle is getting slower. At some point it will stop instantaneously; 1.e. its velocity v will be zero.

We know that v=u+ at. Just substituting values gives:

0=12+(=3.0) X ¢

3.0t=12
N Hence t=4.0s.
The terminal speed is 30ms ™! and is given by VT:%. Hence:
5 _ kVT
=L
\ K4
_0.653x30
"TT98
m=2.0kg
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Nature of science

The simple and the complex

Careful observation of motion in the natural world led to the equations
for motion with uniform acceleration along a straight line that we have
used in this section. Thinking about what causes an object to move links
to the idea of forces. However, although the material in this section is
perhaps some of the ‘easiest’ material in your physics course, it does not
enable one to understand the falling of a leaf off a tree. The falling leaf is
complicated because it is acted upon by several forces: its weight, but also
by air resistance forces that constantly vary as the orientation and speed
of the leat change. In addition, there is wind to consider as well as the fact
that turbulence in air greatly affects the motion of the leaf. So the physics
of the falling leaf'is far away from the physics of motion along a straight
line at constant acceleration. But learning the principles of physics in a

simpler context allows its application in more involved situations.

?  Test yourself
Uniform motion

1 A car must be driven a distance of 120km in
2.5h. During the first 1.5h the average speed was
70kmh™". Calculate the average speed for the
remainder of the journey. s/m

displacement—time graph shown.
a Find the average speed for the trip.
b Find the average velocity for the trip.

2 Draw the position—time graph for an object 40
moving in a straight line with a velocity—time
graph as shown below. The initial position is zero.

You do not have to put any numbers on the axes. 0

v

—40

4 An object moving in a straight line has the

t/s

Two cyclists, A and B, have displacements O km
and 70 km, respectively. At t=0 they begin to cycle
towards each other with velocities 15kmh™" and
20kmh™!, respectively. At the same time, a fly that
was sitting on A starts flying towards B with a
velocity of 30kmh™'. As soon as the fly reaches B
it immediately turns around and flies towards A,
and so on until A and B meet.
a Find the position of the two cyclists and the fly
when all three meet.
b Determine the distance travelled by the fly.

Accelerated motion

5

The initial velocity of a car moving on a straight
road is 2.0ms ™. It becomes 8.0ms ™" after
travelling for 2.0s under constant acceleration.
Find the acceleration.

6 A car accelerates from rest to 28ms ™' in 9.0s. Find

the distance it travels.

7 A particle has an initial velocity of 12ms ' and is

brought to rest over a distance of 45m. Find the
acceleration of the particle.

A particle at the origin has an initial velocity

of —6.0ms™ ! and moves with an acceleration
of 2.0ms 2. Determine when its position will
become 16 m.
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10

11

12

A plane starting from rest takes 15.0s to take

off after speeding over a distance of 450m on
the runway with constant acceleration. Find the
take-oft velocity.

A car is travelling at 40.0ms ™" The driver sees
an emergency ahead and 0.50s later slams on the

brakes. The deceleration of the car is 4.0ms 2.

a Find the distance travelled before the car stops.

b Calculate the stopping distance if the driver
could apply the brakes instantaneously
without a reaction time.

¢ Calculate the difference in your answers to a
and b.

d Assume now that the car was travelling at
30.0ms " instead. Without performing any
calculations, state whether the answer to ¢
would now be less than, equal to or larger
than before. Explain your answer.

Two balls are dropped from rest from the same

height. One of the balls is dropped 1.00s after

the other.

a Find the distance that separates the two balls
2.00s after the second ball is dropped.

b State what happens to the distance separating
the balls as time goes on.

A particle moves in a straight line with an

acceleration that varies with time as shown in

the diagram. Initially the velocity of the object is
2.00ms™".

a Find the maximum velocity reached in the
first 6.00s of this motion.

b Draw a graph of the velocity versus time.

a/ms? 9

t/s

13

The graph shows the variation of velocity with
time of an object. Find the acceleration at 2.0s.

v/ims' 8
6 /.
4 /
2
0
0 1 2 3 4

t/s

14 The graph shows the variation of the position

15

of a moving object with time. Draw the graph
showing the variation of the velocity of the
object with time.

S
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e

4 Al

t/s

The graph shows the variation of the position
of a moving object with time. Draw the graph
showing the variation of the velocity of the
object with time.

S

/
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17

18

The graph shows the variation of the position
of a moving object with time. Draw the graph
showing the variation of the velocity of the
object with time.

S

e

g

/
e

0 0.5 1 1.5 2
t/s

The graph shows the variation of the velocity
of a moving object with time. Draw the graph
showing the variation of the position of the
object with time.

v

0 0.5 1 1.5 2
t/s

The graph shows the variation of the velocity

of a moving object with time. Draw the graph
showing the variation of the position of the object
with time (assuming a zero initial position).

/

v

t/s
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20

21
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The graph shows the variation of the velocity
of a moving object with time. Draw the graph
showing the variation of the acceleration of the
object with time.

v

0 0.5 1 1.5 2
t/s

Your brand new convertible Ferrari is parked
15m from its garage when it begins to rain.You
do not have time to get the keys, so you begin to
push the car towards the garage. The maximum
acceleration you can give the car is 2.0ms > by
pushing and 3.0ms ™2 by pulling back on the car.
Find the least time it takes to put the car in the
garage. (Assume that the car, as well as the garage,
are point objects.)

The graph shows the displacement versus time of
an object moving in a straight line. Four points
on this graph have been selected.

X

D

N

0 t

a [s the velocity between A and B positive, zero
or negative?

b What can you say about the velocity between
Band C?

c Is the acceleration between A and B positive,
Zero or negative?

d Is the acceleration between C and D positive,
Zero or negative?
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Sketch velocity—time sketches (no numbers are

necessary on the axes) for the following motions.

a A ball is dropped from a certain height and
bounces oft a hard floor. The speed just before
each impact with the floor is the same as the
speed just after impact. Assume that the time
of contact with the floor is negligibly small.

b A cart slides with negligible friction along a
horizontal air track. When the cart hits the
ends of the air track it reverses direction with
the same speed it had right before impact.
Assume the time of contact of the cart and the
ends of the air track is negligibly small.

¢ A person jumps from a hovering helicopter.
After a few seconds she opens a parachute.
Eventually she will reach a terminal speed and
will then land.

A stone is thrown vertically up from the edge of

a clift 35.0m from the sea. The initial velocity of

the stone is 8.00ms .

I v=800ms"

350m

24

Determine:

a the maximum height of the stone

b the time when it hits the sea

¢ the velocity just before hitting the sea

d the distance the stone covers

e the average speed and the average velocity for
this motion.

A ball is thrown upward from the edge of a cliff

with velocity 20.0ms . It reaches the bottom of

the cliff 6.0 later.

a Determine the height of the cliff.

b Calculate the speed of the ball as it hits the
ground.

Projectile motion

25

26

27

28

29

30

A ball rolls off a table with a horizontal speed of
2.0ms™". The table is 1.3 m high. Calculate how
far from the table the ball will land.
Two particles are on the same vertical line. They
are thrown horizontally with the same speed,
4.0ms™", from heights of 4.0m and 8.0m.
a Calculate the distance that will separate the
two objects when both land on the ground.
b The particle at the 4.0 m height is now
launched with horizontal speed u such that
it lands at the same place as the particle
launched from 8.0 m. Calculate u.
For an object thrown at an angle of 40° to the
horizontal at a speed of 20ms ™!, draw graphs of:
a horizontal velocity against time
b vertical velocity against time
¢ acceleration against time.
Determine the maximum height reached by an
object thrown with speed 24ms™" at 40° to the
horizontal.
An object is thrown with speed 20.0ms " at an
angle of 50° to the horizontal. Draw graphs to
show the variation with time of:
a the horizontal position
b the vertical position.
A cruel hunter takes aim horizontally at a chimp
that is hanging from the branch of a tree, as shown
in the diagram.The chimp lets go of the branch
as soon as the hunter pulls the trigger. Treating the
chimp and the bullet as point particles, determine
if the bullet will hit the chimp.




31 A ball is launched from the surface of a planet.
Air resistance and other frictional forces are
neglected. The graph shows the position of the
ball every 0.20s.

y/m 10

0 10 20 30 40 50 60
x/m

a Use this graph to determine:
i the components of the initial velocity of
the ball
ii the angle to the horizontal the ball was
launched at
iii the acceleration of free fall on this planet.

2.2 Forces

This section is an introduction to Newton’s laws of motion. Classical
physics is based to a great extent on these laws. It was once thought that
knowledge of the present state of a system and all forces acting on it
would enable the complete prediction of the state of that system in the
future. This classical version of determinism has been modified partly due

to quantum theory and partly due to chaos theory.

Forces and their direction

A force is a vector quantity. It is important that we are able to correctly

32

33

b Make a copy of the graph and draw two

arrows to represent the velocity and the
acceleration vectors of the ball at r=1.0s.

¢ The ball is now launched under identical
conditions from the surface of a different
planet where the acceleration due to gravity is
twice as large. Draw the path of the ball on your
graph.

Lat

A stone is thrown with a speed of 20.0ms~

an angle of 48° to the horizontal from the edge

of a cliff 60.0m above the surface of the sea.

a Calculate the velocity with which the stone
hits the sea.

b Discuss qualitatively the effect of air resistance
on your answer to a.

a State what is meant by terminal speed.

b A ball is dropped from rest. The force of air
resistance in the ball is proportional to the
ball’s speed. Explain why the ball will reach

terminal speed.

Learning objectives

e Treat bodies as point particles.

e Construct and interpret free-
body force diagrams.

e Apply the equilibrium
condition, XF=0.

e Understand and apply Newton’s
three laws of motion.

e Solve problems involving solid
friction.

identify the direction of forces. In this section we will deal with the

following forces.
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Figure 2.24 The weight of an object is
always directed vertically downward.

“L

—

m
mg

Figure 2.26 The tension is directed along
the string.

Weight

This force is the result of the gravitational attraction between the mass m

of a body and the mass of the planet on which the body is placed. The
weight of a body is given by the formula:

W=mg

where m is the mass of the body and ¢ is gravitational field strength of the
planet (Subtopic 6.2). The unit of ¢ is newton per kilogram, Nkg™'. The
gravitational field strength is also known as ‘the acceleration due to gravity’
or the ‘acceleration of free fall’. Therefore the unit of ¢ is also ms ~.

If m is in kg and ¢ in Nkg™! or ms ™2 then W is in newtons, N. On
the surface of the Earth, g=9.81 Nkg ' — a number that we will often
approximate by the more convenient 10 Nkg™'. This force is always
directed vertically downward, as shown in Figure 2.24.

The mass of an object is the same everywhere in the universe, but
its weight depends on the location of the body. For example, a mass of
70kg has a weight of 687 N on the surface of the Earth (¢=9.81 Nkg )
and a weight of 635N at a height of 250km from the Earth’s surface
(where ¢=9.07 N'kg™"). However, on the surface of Venus, where the
gravitational field strength is only 8.9 Nkg ™', the weight is 623 N.

Tension

The force that arises in any body when it is stretched is called tension. A
string that is taut is said to be under tension. The tension force is the result
of electromagnetic interactions between the molecules of the material
making up the string. A tension force in a string is created when two forces
are applied in opposite directions at the ends of the string (Figure 2.25).

T T

— -

Figure 2.25 A tension force in a string.

To say that there is tension in a string means that an arbitrary point on
the string is acted upon by two forces (the tension T) as shown in Figure
2.26. If the string hangs from a ceiling and a mass m is tied at the other
end, tension develops in the string. At the point of support at the ceiling,
the tension force pulls down on the ceiling and at the point where the
mass is tied the tension acts upwards on the mass.

In most cases we will idealise the string by assuming it is massless. This
does not mean that the string really is massless, but rather that its mass
is so small compared with any other masses in the problem that we can
neglect it. In that case, the tension T is the same at all points on the string.
The direction of the tension force is along the string. Further examples of
tension forces in a string are given in Figure 2.27. A string or rope that is

not taut has zero tension in it.

-« B



string over pulley

string is slack, T=0

W,

Figure 2.27 More examples of tension forces.

Forces in springs AVLECEREERRRRERRETERETEA
A spring that is pulled so that its length increases will develop a tension Wm“mm‘m_ natural length

force inside the spring that will tend to bring the length back to its
original value. Similarly, if it is compressed a tension force will again try to
restore the length of the spring, Figure 2.28. Experiments show that for a TR ! )
) ) ] ] ] —— tension due to compression
range of extensions of the spring, the tension force is proportional to the W

extension, T= kx, where k is known as the spring constant. This relation
tension due

to extension

AYLELRVERRERREERREL LN

Normal reaction contact forces V\AMMMAMAMMMW.__

If a body touches another body, there is a force of reaction or contact

between tension and extension is known as Hooke’s law.

force between the two bodies. This force is perpendicular to the surface . ) ) )
Figure 2.28 Tension forces in a spring.

of the body exerting the force. Like tension, the origin of this force is also
electromagnetic. In Figure 2.29 we show the reaction force on several

bodies.

?R
Hi]
Tw 1w

Figure 2.29 Examples of reaction forces, R.
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Figure 2.31 The drag force on a moving car.

upthrust ?
[
floating
A upthrust weight"
p sinking
¥ weight

Figure 2.32 Upthrust.
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We can understand the existence of contact reaction forces in a simple

model in which atoms are connected by springs. The block pushes down
on the atoms of the table, compressing the springs under the block (Figure
2.30).This creates the normal reaction force on the block.

block
o e @ o e © @ o
o o o 0 © ® o0 0 o
Q. @ L
66006 "¢ 60 o OO0
*—0—0—@ table

Figure 2.30 A simple model of contact forces.

Drag forces

Drag forces are forces that oppose the motion of a body through a fluid
(a gas or a liquid). Typical examples are the air resistance force experienced
by a car (Figure 2.31) or plane, or the resistance force experienced by a
steel marble dropped into a jar of honey. Drag forces are directed opposite
to the velocity of the body and in general depend on the speed and shape
of the body. The higher the speed, the higher the drag force.

Upthrust

Any object placed in a fluid experiences an upward force called upthrust
(Figure 2.32). If the upthrust force equals the weight of the body, the body
will float in the fluid. If the upthrust is less than the weight, the body will
sink. Upthrust is caused by the pressure that the fluid exerts on the body.

Frictional forces

Frictional forces generally oppose the motion of a body (Figure 2.33).
These forces are also electromagnetic in origin.

R R
1 motion f
—_—

b b

tendency for
motion down
the plane

C

Figure 2.33 Examples of frictional forces, f. In a there is motion to the right, which is
opposed by a single frictional force that will eventually stop the body. In b the force
accelerating the body is opposed by a frictional force. In ¢ the body does not move;
but it does have a tendency to move down the plane and so a frictional force directed
up the plane opposes this tendency, keeping the body in equilibrium.
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Friction arises whenever one body slides over another. In this case we
have dynamic or kinetic friction. Friction also arises whenever there is
a tendency for motion, not necessarily motion itself. For example a block
that rests on an inclined plane has a tendency to slide down the plane, so
there is a force of friction up the plane. Similarly, if you pull on a block
on a level rough road with a small force the block will not move. This
is because a force of friction develops that is equal and opposite to the
pulling force. In this case we have static friction.

In the simple model of matter consisting of atoms connected by springs,
pushing the block to the right results in springs stretching and compressing.
The net result is a force opposing the motion: friction (Figure 2.34).

A more realistic model involves irregularities (called asperities) in the
surfaces which interlock, opposing sliding, as shown in Figure 2.35.

Frictional forces are still not very well understood and there is no
theory of friction that follows directly from the fundamental laws of
physics. However, a number of simple, empirical ‘laws’ of friction have been
discovered. These are not always applicable and are only approximately true,
but they are useful in describing frictional forces in general terms.

These so-called friction laws may be summarised as follows:

e The area of contact between the two surfaces does not affect
the frictional force.
e The force of dynamic friction is equal to:
Ja=naR
where R is the normal reaction force between the surfaces and
uq is the coefficient of dynamic friction.
e The force of dynamic friction does not depend on the speed of
sliding.
e The maximum force of static friction that can develop
between two surfaces is given by:
Ss=usR
where R is the normal reaction force between the surfaces and
Us is the coefficient of static friction, with g > ug.

Figure 2.36 shows how the frictional force f varies with a pulling force
F.The force F pulls on a body on a horizontal rough surface. Initially the
static frictional force matches the pulling force and we have no motion,
= F.When the pulling force exceeds the maximum possible static
friction force, 45 R, the frictional force drops abruptly to the dynamic
value of g R and stays at that constant value as the object accelerates.
This is a well-known phenomenon of everyday life: it takes a lot of force
to get a heavy piece of furniture to start moving (you must exceed the
maximum value of the static friction force), but once you get it moving,
pushing it along becomes easier (you are now opposed by the smaller
dynamic friction force).

ofFeo—o o
—_—
© o0 0 o0

Figure 2.34 Friction in the simple atoms-
and-springs model of matter.

Figure 2.35 Exaggerated view of how
asperities oppose the sliding of one surface
over the other.

Exam tip

One of the most common
mistakes is to think that u,R

is the formula that gives the
static friction force. This is not
correct. This formula gives
the maximum possible static
friction force that can develop
between two surfaces.

MR |--=-----=-—------

/JdR ————————————————

accelerated
motion

no motion

Figure 2.36 The variation of the frictional
force f between surfaces with the pulling
force F.
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Worked example

2.17 A brick of weight 50N rests on a horizontal surface. The coefficient of static friction between the brick and
the surface is 0.60 and the coefficient of dynamic friction is 0.20. A horizontal force F is applied to the brick,
its magnitude increasing uniformly from zero. Once the brick starts moving the pulling force no longer
increases. Estimate the net force on the moving brick.

The maximum frictional force that can develop between the brick and the surface is:
f=uR

which evaluates to:
0.60x50=30N

So motion takes place when the pulling force is just barely larger than 30 N.

Once motion starts the frictional force will be equal to u4R, i.e.
0.20x50=10N

The net force on the brick in that case will be just larger than 30 —10=20N.

Free-body diagrams

A free-body diagram is a diagram showing the magnitude and direction
of all the forces acting on a chosen body. The body is shown on its own,
free of its surroundings and of any other bodies it may be in contact
with. We treat the body as a point particle, so that all forces act through
the same point. In Figure 2.37 we show three situations in which forces
are acting; below each is the corresponding free-body diagram for the
coloured bodies.

In any mechanics problem, it is important to be able to draw correctly
the free-body diagrams for all the bodies of interest. It is also important
that the length of the arrow representing a given force is proportional to
the magnitude of the force.

: 2 I

T R R
|

lW w w

Figure 2.37 Free-body diagrams for the coloured bodies.
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Newton'’s first law of motion

Suppose you have two identical train carriages. Both are equipped with all

the apparatus you need to do physics experiments. One train carriage is
at rest at the train station. The other moves in a straight line with constant
speed — the ride is perfectly smooth, there are no bumps, there is no noise
and there are no windows to look outside. Every physics experiment
conducted in the train at rest will give identical results to similar
experiments made in the moving train. We have no way of determining
whether a carriage is ‘really at rest’ or ‘really moving’. We find it perfectly
natural to believe, correctly, that no net force is present in the case of
the carriage at rest. Therefore no net force is required in the case of the
carriage moving in a straight line with constant speed.

Newton’s first law (with a big help from Galileo) states that:

When the net force on a body is zero, the body will move with
constant velocity (which may be zero).

In effect, Newton’s first law defines what a force is. A force is what
changes a body’s velocity. A force is not what is required to keep
something moving, as Aristotle thought.

Using the law in reverse allows us to conclude that if a body is not
moving with constant velocity (which may mean not moving in a straight
line, or not moving with constant speed, or both) then a force must be
acting on the body. So, since the Earth revolves around the Sun we know
that a force must be acting on the Earth.

Newton’s first law is also called the law of inertia. Inertia is what keeps
the body in the same state of motion when no forces act on the body.
When a car accelerates forward, the passengers are thrown back into their
seats because their original state of motion was motion with low speed.

If a car brakes abruptly, the passengers are thrown forward (Figure 2.38).
This implies that a mass tends to stay in the state of motion it was in
before the force acted on it. The reaction of a body to a change in its state
of motion (acceleration) is inertia.

Newton’s third law of motion

Newton’s third law states that if body A exerts a force on body B, then
body B will exert an equal and opposite force on body A.These forces
are known as force pairs. Make sure you understand that these equal and
opposite forces act on different bodies. Thus, you cannot use this law to
claim that it is impossible to ever have a net force on a body because for
every force on it there is also an equal and opposite force. Here are a few
examples of this law:

e You stand on roller skates facing a wall. You push on the wall and you
move away from it. This is because you exerted a force on the wall and
in turn the wall exerted an equal and opposite force on you, making
you move away (Figure 2.39).

2 MECHANICS ¥

Figure 2.38 The car was originally travelling
at high speed. When it hits the wall the car
stops but the passenger stays in the original
high speed state of motion. This results in the
crash dummy hitting the steering wheel and
the windshield (which is why it is a good idea
to have safety belts and air bags).

Figure 2.39 The girl pushes on the wall
so the wall pushes on her in the opposite
direction.



Figure 2.40 The familiar bathroom scales
do not measure mass. They measure the
force that you exert on the scales. This force
is equal to the weight only when the scales
are at rest.

Figure 2.41 The upward force on the rotor
is due to the force the rotor exerts on the air

downward.
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Figure 2.43 The net force is found by plain
addition and/or subtraction when the forces
are in the same or opposite direction.
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e You step on the bathroom scales. The scales exert an upward force on
you and so you exert a downward force on the scales. This is the force
shown on the scales (Figure 2.40).

e A helicopter hovers in air (Figure 2.41). Its rotors exert a force
downward on the air. Thus, the air exerts the upward force on the
helicopter that keeps it from falling.

e A book of mass 2kg is allowed to fall feely. The Earth exerts a force on
the book, namely the weight of the book of about 20 N.Thus, the book
exerts an equal and opposite force on the Earth — a force upward equal
to 20N.

You must be careful with situations in which two forces are equal and

opposite; they do not always have to do with the third law. For example,

a block of mass 3 kg resting on a horizontal table has two forces acting on

it — its weight of about 30N and the normal reaction force from the table

that is also 30 N.These two forces are equal and opposite, but they are
acting on the same body and so have nothing to do with Newton’s third
law. (We have seen in the last bullet point above the force that pairs with

the weight of the block.The force that pairs with the reaction force is a

downward force on the table.)

Newton’s third law also applies to cases where there is no contact
between the bodies. Examples are the electric force between two
electrically charged particles or the gravitational force between any two
massive particles. These forces must be equal and opposite (Figure 2.42).

Figure 2.42 The two charges and the two masses are different, but the forces are
equal and opposite.

Equilibrium

Equilibrium of a point particle means that the net force on the particle
is zero. The net force on a particle is the one single force whose effect is
the same as the combined effect of individual forces acting on the particle.
We denote it by XF. Finding the net force is easy when the forces are in
the same or opposite directions (Figure 2.43).

In Figure 2.43a, the net force is (if we take the direction to the right
to be positive) ZF=12+6.0—8.0=10N.This is positive, indicating a
direction to the right.

In Figure 2.43b, the net force 1s (we take the direction upward to be
positive) XF=5.0+6.0—4.0 —8.0=—1.0 N.The negative sign indicates a
direction vertically down.
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Worked example

2.18 Determine the magnitude of the force F in Figure 2.44, given that the block is in equilibrium.

6.0N
15N e
<t —F
—_—
6.0N
Figure 2.44

For equilibrium, ZF=0, and so:
6.0+F+6.0—15=0

This gives F=3.0N.

Solving equilibrium problems

When there are angles between the various forces, solving equilibrium
problems will involve finding components of forces using vector methods.

We choose a set of axes whose origin is the body in question and find the [ = 290N

components of all the forces on the body. Figure 2.45 shows three forces h
acting at the same point. We have equilibrium, which means the net force /
acting at the point is zero. We need to find the unknown magnitude and T8

direction of force Fj.This situation could represent three people pulling

on three ropes that are tied at a point.

Finding components along the horizontal (x) and vertical (y) directions

for the known forces F, and F3, we have:

¥ F2=220N
F,=0
F>,==22.0N (add minus sign to show the
direction) Fy
F3,=—29.0c0s37°=-23.16 N (add minus sign to show the
direction) F2
F3,=29.0sins37°=17.45N [

Equilibrium demands that 2F,=0 and ZF,=0.
YF,=0 implies:
F,+0-23.16=0 = F;,=23.16 N
XF,=0 implies:
Fi,—22.0+17.45=0 = F;,=4.55N

Therefore, F; =+23.162+4.552=23.6 N
4.55

By 6=can‘1(—)=11 1°
Fi. 23.16 :

The angle is found from tan 9=

Figure 2.45 Force diagram of three forces in
equilibrium pulling a common point. Notice

that the three vectors representing the three
forces form a triangle.

Exam tip

If we know the x- and
y-components of a force we
can find the magnitude of the

force from F=+F>+ F),Z.
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Worked example

2.19 A body of weight 98.0N hangs from two strings that are attached to the ceiling as shown in Figure 2.46.
Determine the tension in each string.

Figure 2.46

The three forces acting on the body are as shown, with T and S being the tensions in the two strings and W its
weight. Taking components about horizontal and vertical axes through the body we find:

T,=—Tcos30° (add minus sign to show the direction) S, = Scos50° W,=0
T,= Tsin30° S, = Ssin50° W,=-98.0N
Equilibrium thus demands XF,=0 and XF,=0.
2F,=0 implies:
—Tcos30°+ Scos50°=0
2ZF,=0 implies:
T'sin30° + Ssin50°—98.0=0

From the first equation we find that:

cos 30°
cos 50°

S=T =1.3473XT

Substituting this in the second equation gives:
T(sin30° +1.34735in50°) =98

which solves to give:
T=63.96=64.0N

Hence S=1.3473%63.96=86.17=86.2N.




2.20 A mass of 125g is attached to a spring of spring constant k=58 N'm ™" that is hanging vertically.
a Find the extension of the spring.
b If the mass and the spring are placed on the Moon, will there be any change in the extension of the
spring?

a The forces on the hanging mass are its weight and the tension in the spring. By Hooke’s law, the tension in the
spring is kx, where x is the extension and k the spring constant. Since we have equilibrium, the two forces are
equal in magnitude. Therefore:

kx = mg
g
YTk

125%1 _
x=$ (taking ¢=10Nkg ™
x=0.022m

The extension is 2.2 cm.

b The extension will be less, since the acceleration of gravity is less.

Newton’s second law of motion

Newton’s second law states that:

The net force on a body of constant mass is proportional to that
body’s acceleration and is in the same direction as the acceleration.

Mathematically:
F=ma

where the constant of proportionality, m, is the mass of the body.
Figure 2.47 shows the net force on a freely falling body, which happens
to be its weight, I=mg. By Newton’s second law, the net force equals the

mass times the acceleration, and so:

mg = ma
w

a=g

That is, the acceleration of the freely falling body is exactly g. Experiments

going back to Galileo show that indeed all bodies fall with the same
Figure 2.47 A mass falling to the ground

acceleration in a vacuum (the acceleration of free fall) irrespective of :
acted upon by gravity.

their density, their mass, their shape and the material from which they

are made. Look for David Scott’s demonstration dropping a hammer and
feather on the Moon in Apollo 15% mission in 1971.You can do the same
demonstration without going to the Moon by placing a hammer and a

2 MECHANICS WY



feather on a book and dropping the book. If the heavy and

Exam tip

‘ '
E
4
(

the light object fell with different accelerations the one

To solve an ‘F= ma’ problem: with the smaller acceleration would lift off the book — but
e Make a diagram. it doesn’t.
o Identify the forces on the body of interest. The equation F= ma defines the unit of force, the

o Find the net force on each body, taking the newton (N). One newton is the force required to accelerate

direction of acceleration to be the positive a mass of 1kg by 1ms 2 in the direction of the force.

direction. It is important to realise that the force in the second law

Apply Fyee=ma to each body. is the net force XF on the body.

Worked examples

2.21 A man of mass m=70kg stands on the floor of an elevator. Find the force of reaction he experiences from
the elevator floor when the elevator:
a 1s standing still

b moves up at constant speed 3.0ms !

¢ moves up with acceleration 4.0ms™>

d moves down with acceleration 4.0ms >

e moves down, slowing down with deceleration 4.0ms 2.

Take ¢=10ms 2.

Two forces act on the man: his weight mg vertically down and the reaction force R from the floor vertically up.
a There is no acceleration and so by Newton’s second law the net force on the man must be zero. Hence:

R=mg
R=7.0x10°N

b There is no acceleration and so again:

R=1mg
R=7.0x10°N

c There is acceleration upwards. The net force in the direction of the acceleration is given by:

YXF=R—mg
So: ma=R—mg
= R=mg+ma
R=700N+280N
R=9.8%x10°N

d We again have acceleration, but this time in the downward direction. We need to find the net force in the
direction of the acceleration:

YXF=mg—R
So: ma=mg—R
= R=mg—ma
R=700N—-280N
R=42x10°N

e The deceleration is equivalent to an upward acceleration, so this case is identical to part c.

« B



2.22 A man of mass 70kg is standing in an elevator. The elevator is moving upward at a speed of 3.0ms ™. The
elevator comes to rest in a time of 2.0s. Determine the reaction force on the man from the elevator floor

during the period of deceleration.

i : .
Use a=v—"t0 find the acceleration experienced by the man:

3.0 5

a=—m——l.5ms_

The minus sign shows that this acceleration is directed in the downward direction. So we must find the net force
in the down direction, which is XF=mg— R. (We then use the magnitude of the accelerations, as the form of the

equation takes care of the direction.)
ma=mg—R

= R=mg—ma
R=700—-105
R=595~6.0x10°N

If, instead, the man was moving downward and then decelerated to rest, the acceleration is directed upward and
XF=R—mg.

So: ma=R—mg

= R=mg+ma
R=700+105
R=805~8.0x10°N

Both cases are easily experienced in daily life. When the elevator goes up and then stops we feel ‘lighter’ during
the deceleration period. When going down and about to stop, we feel ‘heavier’ during the deceleration period.
The feeling of ‘lightness’ or ‘heaviness’ has to do with the reaction force we feel from the floor.
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2.23 a Two blocks of mass 4.0kg and 6.0kg are joined by a string and rest on a frictionless horizontal table
(Figure 2.48). A force of 100N is applied horizontally on one of the blocks. Find the acceleration of each
block and the tension in the string.

b The 4.0kg block is now placed on top of the other block. The coefficient of static friction between the
two blocks is 0.45.The bottom block is pulled with a horizontal force F. Calculate the magnitude of the
maximum force F that will result in both blocks moving together without slipping.

4.0 kg 6.0 kg
T T 100N
= = —_—
Ry free-body diagrams R,
T T 100N
— - —

|
-

Figure 2.48

This can be done in two ways.

Method 1
Let the acceleration of the system be a. The net horizontal force on the 6.0kg mass is 100 — T"and the net
horizontal force on the 4.0kg mass is just T.Thus, applying Newton’s second law separately on each mass:

100—T'=6.0a
T=4.0a
Solving for a (by adding the two equations) gives:
100=10a
= a=10ms>
The tension in the string is therefore:
T=4.0%10
T=40N

Note: The free-body diagram makes it clear that the 100N force acts only on the body to the right. It is a
common mistake to say that the body to the left is also acted upon by the 100N force.

‘ a
!\
4
(




Method 2
We may consider the two bodies as one of mass 10kg. The net force on the body is 100 N. Note that the
tensions are irrelevant now since they cancel out. (They did not in Method 1, as they acted on different bodies.
Now they act on the same body. They are now internal forces and these are irrelevant.)

Applying Newton’s second law on the single body we have:

100=10a

= a=10ms >

But to find the tension we must break up the combined body into the original two bodies. Newton’s second
law on the 4.0kg body gives:

T=4a=40N
(the tension on this block is the net force on the block). If we used the other block, we would see that the net
force on it is 100 — T and so:

100—=T=6x10=60N
This gives T=40N, as before.

b If the blocks move together they must have the same acceleration. Treating the two blocks as one (of mass 10kg),

18
the acceleration will be a =10 (Figure 2.49a).

free-body diagrams

440N

combined mass = 10 kg |
40N *

L BN

100N

— <
I F
||

a 40NV$60N

b

Figure 2.49 a Treating the blocks as one. b The free-body diagram for each block.

The forces on each block are shown in Figure 2.49b.The force pushing the smaller block forward is the
frictional force f that develops between the blocks. The maximum value f can take is:

f=psR=0.45X%X40=18N
So the acceleration of the small block is:

18

a=m=4.5ms_2
F
But aZE, SO
F _
E=4.5ms 2
= F=45N
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2.24 Two masses of m=4.0kg and M= 6.0kg are joined together by a string that passes over a pulley (this
arrangement is known as Atwood’s machine). The masses are held stationary and suddenly released.
Determine the acceleration of each mass.

Intuition tells us that the larger mass will start moving downward and the small mass will go up. So if we say that
the larger mass’s acceleration is a, then the other mass’s acceleration will also be a in magnitude but, of course, in
the opposite direction. The two accelerations are the same because the string cannot be extended.

Method 1
The forces on each mass are weight mg and tension T
on m and weight Mg and tension T on M (Figure 2.50). 1

Newton’s second law applied to each mass gives:
T—mg=ma (1)
Mg—T=Ma (2)

Note these equations carefully. Each says that the net force AT T T
on the mass in question is equal to that mass times that mass’s

acceleration. In the first equation, we find the net force in the

upward direction, because that is the direction of acceleration.
In the second, we find the net force in downward direction,
since that is the direction of acceleration in that case. We want Mg Mg
to find the acceleration, so we simply add these two equations Figure 2.50

to find:

Mg—mg= (m+ M)a
Hence:

_M—-m
M+ md

a

(Note that if M >>m the acceleration tends to g. Can you think why this is?) This shows clearly that if the two
masses are equal, then there is no acceleration. This is a convenient method for measuring ¢g. Atwood’s machine
effectively ‘slows down’ g so the falling mass has a much smaller acceleration from which g can then be determined.

Putting in the numbers for our example we find a=2.0ms 2.,

Having found the acceleration we may, it we wish, also find the tension in the string, T". Putting the value for a in
formula (1) we find:

_ (M—m
T—mM+mg+mg

([ Mm
= 2(M+ mJg

(If M > m the tension tends to 2mg. Can you see why?)




Method 2
We treat the two masses as one body and apply Newton’s second law on this body

___________

(but this is trickier than in the previous example) — see Figure 2.51.

In this case the net force is Mg— mg and, since this force acts on a body of mass
M+ m, the acceleration is found as before from F=mass X acceleration. Note that
the tension T does not appear, as it is now an internal force.

Mg

Figure 2.51

2.25 In Figure 2.52, a block of mass M is connected to a smaller mass m through a string that goes over a pulley.
Ignoring friction, find the acceleration of each mass and the tension in the string.

4 i
ST I
I ©) I
‘ Mg T * Mg T
T m
mg mg
Figure 2.52
Method 1

The forces are shown in Figure 2.52.The acceleration must be the same magnitude for both masses, but the larger
mass accelerates horizontally and the smaller mass accelerates vertically downwards. The free-body diagrams on the
right show the forces on the individual masses. Taking each mass separately:

mg— T=ma (small mass accelerating downwards)
T=Ma (large mass accelerating horizontally to the right)

Adding the two equations, we get:

mg=ma-+ Ma
—_me
= T M+m

(If M > m the acceleration tends to zero. Why?)
From the expression for 7T for the larger mass, we have:

_ _Mmg
M+m

T= Ma
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Method 2
Treating the two bodies as one results in the situation shown in Figure 2.53.

Figure 2.53

The net horizontal force on the combined mass M+ m is mg. Hence:

mg= (M+m)a
= =M
T M+m

The tension can then be found as before.

2.26 A block of mass 2.5kg is held on a rough inclined plane,
as shown in Figure 2.54.When released, the block stays
in place. The angle of the incline is slowly increased
and when the angle becomes slightly larger than 38°
the block begins to slip down the plane.

6

Figure 2.54

a Calculate the coeflicient of static friction between the block and the inclined plane.

b The angle of the incline is increased to 49°. The coefficient of dynamic friction between the block and the
incline is 0.26. Calculate the force that must be applied to the block along the plane so it moves up the
plane with an acceleration of 1.2ms 2.

a The forces on the block just before slipping are shown in Figure 2.55.
The frictional force is f and the normal reaction is R.The components
of the weight are mgsin @ down the plane and mgcos 8 at right angles
to the plane.

Figure 2.55

Because the block is about to slip, the frictional force is the maximum possible static frictional force and so
f=usR. Equilibrium demands that:

mgsin@=f

mgcos=R

» N




Divide the first equation by the second to get:

L

tan0=R

Now use the fact that f= R to find:

R
tanf= ,uR
tan 0= u;

Hence u=tan =tan 38°=0.78

b Let F be the required force up the plane. The net force up the plane is F —mgsin49° — fy, since the force of
friction now opposes F.

We have that: Exam tip
Notice that for a block on
= SR = S 490 . . . .
Ja=u SHEERE a frictionless inclined plane
Therefore: the net force down the
. lane i in @, leading t
F—mgsin49° — ugmg cos 49° = ma plane 15 mgs‘ln “ 'mg ©
an acceleration of gsin 6,

F=ma+ mgsin 49° + ugng cos 49° independent of the mass.
Substituting values:

F=25X%X12+25X9.8Xsin49°+0.26 X 2.5 X 9.8 cos49°

F=25.67=26N

Nature of science

Physics and mathematics

In formulating his laws of motion, published in 1687 in Philosophice
Naturalis Principia Mathematica, Newton used mathematics to show how
the work of earlier scientists could be applied to forces and motion in the
real world. Newton’s second law (for particle of constant mass) is written
as F=ma. In this form, this equation does not seem particularly powerful.
However, using calculus, Newton showed that acceleration is given by:

dv d%x
a=—=—" ~
dr dr § Newton used a flash
The second law then becomes: of inspiration, triggered

&Ex F by observing an apple
a2 E= falling from a tree, to relate the
motion of planets to that of

This is a differential equation that can be solved to give the actual path the apple, leading to his law of

that the particle will move on under the action of thle force. Newton gravitation (which you will meet
showed that if the force depends on position as F <2 then the motion in Topic 6).

has to be along a conic section (ellipse, circle, etc.).
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? | Test yourself

Equilibrium

34 A block rests on a rough table and 1s connected
by a string that goes over a pulley to a second

hanging block, as shown in the diagram. Draw
the forces on each body.

35 A bead rolls on the surface of a sphere, having
started from the top, as shown in the diagram.
On a copy of the diagram, draw the forces on
the bead:
a at the top
b at the point where it is about to leave the
surface of the sphere.

[ ]
@

36 Look at the diagram. State in which case the
tension in the string is largest.

wall

50.0N

500N 500N

37 A spring is compressed by a certain distance and
a mass 1s attached to its right end, as shown in
the diagram.The mass rests on a rough table. On
a copy of the diagram, draw the forces acting on
the mass.

BV ILVELLR

VUMMM

- I

38 A mass hangs attached to three strings, as shown
in the diagram. On a copy of the diagram, draw
the forces on:

a the hanging mass
b the point where the strings join.

39 Find the net force on each of the bodies shown
in the diagrams. The only forces acting are the
ones shown. Indicate direction by ‘right’, ‘left’,

TSN
12N

‘up’and ‘down’.

—
T
—
18N O
A lsN
B
12N 4N 5N _1(2\1
- - -
10N
C D

b Jox Fon
F

E

40 Find the magnitude and direction of the net
force in the diagram.

20N 20N

45° 45°




41 Explain why is it impossible for a mass to hang
attached to two horizontal strings as shown in
the diagram.

]

42 A mass is hanging from a string that is attached
to the ceiling. A second piece of string (identical
to the first) hangs from the lower end of the
mass (see diagram).

\

State and explain which string will break if:
a the bottom string is slowly pulled with ever

increasing force

b the bottom string is very abruptly pulled down.

43 A mass of 2.00kg rests on a rough horizontal
table. The coefficient of static friction between
the block and the table is 0.60. The block is
attached to a hanging mass by a string that goes
over a smooth pulley, as shown in the diagram.
Determine the largest mass that can hang in this
way without forcing the block to slide.

©

44 A girl tries to lift a suitcase of weight 220N by
pulling upwards on it with a force of 140N.The
suitcase does not move. Calculate the reaction
force from the floor on the suitcase.

45 A block of mass 15.0kg rests on a horizontal
table. A force of 50.0N is applied vertically
downward on the block. Calculate the force that
the block exerts on the table.

46 A block of mass M is connected with a string

to a smaller block of mass m.The big block is
resting on a smooth inclined plane as shown in
the diagram. Determine the angle of the plane in
terms of M and m in order to have equilibrium.

6)

Accelerated motion

47 Describe under what circumstances a constant
force would result in a an increasing and b a
decreasing acceleration on a body.

48 A car of mass 1400kg is on a muddy road. If the
force from the engine pushing the car forward
exceeds 600N, the wheels slip (i.e. they rotate
without rolling). Estimate the car’s maximum
acceleration on this road.

49 A man of mass m stands in an elevator.

a Find the reaction force from the elevator floor
on the man when:
i the elevator is standing still
ii the elevator moves up at constant speed v
iii the elevator accelerates down with
acceleration a
iv the elevator accelerates down with
acceleration a=g.
b What happens when a > ¢?

50 Get in an elevator and stretch out your arm
holding your heavy physics book. Press the
button to go up. Describe and explain what is
happening to your stretched arm. Repeat as the
elevator comes to a stop at the top floor. What
happens when you press the button to go down
and what happens when the elevator again stops?
Explain your observations carefully using the
second law of motion.
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51 The diagram shows a person in an elevator pulling
on a rope that goes over a pulley and is attached

52 A massless string has the same tension
throughout its length. Suggest why.

to the top of the elevator. The mass of the elevator 53 a Calculate the tension in the string joining the

is 30.0kg and that of the person is 70kg.
a On a copy of the diagram, draw the forces on

two masses in the diagram.
b If the position of the masses is interchanged,

the person. will the tension change?

b Draw the forces on the elevator.

¢ The elevator accelerates upwards at 0.50ms 2. 30.0 kg | F=S00N
Find the reaction force on the person from
the elevator floor.

d The force the person exerts on the elevator 54 A mass of 3.0kg is acted upon by three forces

floor is 300 N. Find the acceleration of the
elevator (¢=10ms2).

®

Learning objectives

AxN

—

Understand the concepts of
kinetic, gravitational potential
and elastic potential energy.
Understand work done as
energy transferred.

Understand power as the rate of
energy transfer.

Understand and apply the

principle of energy conservation.

Calculate the efficiency in
energy transfers.

of 4.0N, 6.0N and 9.0N and is in equilibrium.
Convince yourself that these forces can indeed
be in equilibrium. The 9.0N force is suddenly
removed. Determine the acceleration of the mass.

2.3 Work, energy and power

This section deals with energy, one of the most basic concepts in physics.
We introduce the principle of energy conservation and learn how to
apply it to various situations. We define kinetic and potential energy, work
done and power developed.

Energy

Energy is a concept that we all have an intuitive understanding of.
Chemical energy derived from food keeps us alive. Chemical energy from
gasoline powers our cars. Electrical energy keeps our computers going.
Nuclear fusion energy produces light and heat in the Sun that sustains life
on Earth. And so on.Very many experiments, from the subatomic to the
cosmic scale, appear to be consistent with the principle of conservation
of energy that states that energy is not created or destroyed but is only
transformed from one form into another. This means that any change in
the energy of a system must be accompanied by a change in the energy of
the surroundings of the system such that:

AEsystem + AEsurroundings =0
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In other words, if the system’s energy increases, the energy of the
surroundings must decrease by the same amount and vice-versa.

The energy of the system may change as a result of interactions
with its surroundings (Figure 2.56). These interactions mainly involve
work done W by the surroundings and/or the transfer of thermal
energy (heat) Q, to or from the surroundings. But there are many other
interactions between a system and its surroundings. For example, waves
of many kinds may transfer energy to the system (the Sun heats the
Earth); gasoline, a chemical fuel, may be added to the system, increasing its
energy; wind incident on the blades of a windmill will generate electrical
energy as a generator is made to turn, etc. So:

AEsystem =W+ Q + other transfers

But in this section we will deal with Q=0 and no other transfers so we
must understand and use the relation:

AE=W

(we dropped the subscript in Ejyem)- To do so, we need to define what we
mean by work done and what exactly we mean by E, the total energy of
the system.

Work done by a force

We first consider the definition of work done by a constant force

for motion in a straight line. By constant force we mean a force that is
constant in magnitude as well as in direction. Figure 2.57 shows a block
that is displaced along a straight line. The distance travelled by the body
is s. The force makes an angle 0 with the displacement.

Figure 2.57 A force moving its point of application performs work.

The force acts on the body all the time as it moves. The work done by
the force is defined as:

W=Fscosf
But Fcosé is the component of the force in the direction of the

displacement and so:

The work done by a force is the product of the force in the
direction of the displacement times the distance travelled.

(Equivalently, since scos8 is the distance travelled in the direction of the
force, work may also be defined as the product of the force time, the
distance travelled in the direction of the force.)

| 2 MECHANICS (@23

heat supplied

work done

surroundings

Figure 2.56 The total energy of a system
may change as a result of interactions with its
surroundings.



The cosine here can be positive, negative or zero; thus work can be
positive, negative or zero. We will see what that means shortly.

The unit of work is the joule. One joule is the work done by a force of
1N when it moves a body a distance of 1m in the direction of the force.
1J=1Nm.

Worked examples

2.27 A mass is being pulled along a level road by a rope attached to it in such a way that the rope makes an angle
of 34° with the horizontal. The force in the rope is 24 N. Calculate the work done by this force in moving
the mass a distance of 8.0m along the level road.

We just have to apply the formula for work done:
W= Fscosf

Substituting the values from the question:
W=24X8.0 X cos 34°
W=160]

2.28 A car with its engine off moves on a horizontal level road. A constant force of 620 N opposes the motion of
the car. The car comes to rest after 84m. Calculate the work done on the car by the opposing force.

We again apply the formula for work done, but now we have to realise that 6= 180°. So:
W=620 %84 X cos 180°
W=-52k]

2.29 You stand on roller skates facing a wall. You push against the wall and you move away. Discuss whether the
force exerted by the wall on you performed any work.

No work was done because there is no displacement. You moved but the point where the force is applied never moved.

Varying force and curved path

You will meet situations where the force is not constant in magnitude
or direction and the path is not a straight line. To find the work done we
must break up the curved path into very many small straight segments
in a way that approximates the curved path (Figure 2.58). Think of these
segments as the dashes that make up the curve when it is drawn as a
dashed line. The large arrowed segments at the bottom of Figure 2.58
show this more clearly. The total work done is the sum of the work done
on each segment of the path.
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We assume that along each segment the force is constant. The work
done on the kth segment is just Fps,cos 8. So the work done on all the
segments is found by adding up the work done on individual segments, i.e.

W= 2 Fjs,cos 6,
k=1

Do not be too worried about this formula.You will not be asked to use .
it, but it can help you to understand one very special and important case: .
the work done in circular motion. We will learn in Topic 6 that in circular ’ ~--
motion there must be a force directed towards the centre of the circle. ’
This is called the centripetal force. ’ 1

Figure 2.59 shows the forces pointing towards the centre of the circular Fe
path. When we break the circular path into straight segments the angle 1 L( 4
between the force and the segment is always a right angle. This means that p % 4
work done along each segment is zero because cos90°=0. So for circular

motion the total work done by the centripetal force is zero.

g Sa Figure 2.58 The curved path followed by a
particle is shown as a dashed line, and then
as larger segments, s¢. The green arrows show
the varying size and direction of the force

- - <§ET acting on the particle as it moves.

forces point towards the centre forces are perpendicular to each segment

Figure 2.59 The work done by the centripetal force is zero.

In practice, when the force varies in magnitude but is constant in
direction, we will be given a graph of how the force varies with distance
travelled. The work done can be found from the area under the graph. For
the motion shown in Figure 2.60, the work done in moving a distance of
4.0m is given by the area of the shaded trapezoid:

2.0+ 10
Ww=""5—

S X4.0=24]

F/N 12

10

8

a+b
area=——xh

: o|

0 1 2 3 4 5 h
d/m

Figure 2.60 The work done is the area under the graph. The area of a trapezoid is half the sum
of the parallel sides multiplied by the perpendicular distance between them.
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area = FAs

width As S

Figure 2.61 The area under the graph is the
sum of all the rectangles FAs .
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The work done by a force is the area under the graph that shows

the variation of the magnitude of the force with distance travelled.

How do we know that the area is the work done? For a varying force,
consider a very small distance As (Figure 2.61). Because As is so small we
may assume that the force does not vary during this distance. The work
done is then FAs and is the area of the rectangle shown. For the total
work we have to add the area of many rectangles under the curve. The
sum is the area under the curve.

Work done by a force on a particle

Imagine a net force F that acts on a particle of mass m.The force produces
an acceleration a given by:

a=—
m

Let the initial speed of the particle be u. Because we have acceleration, the
speed will change. Let the speed be v after travelling a distance s. We know
from kinematics that:

V? = 1>+ 2as
Substituting for the acceleration, this becomes:
F
=P +2—
m
‘We can rewrite this as:

Fs= %m ’— %muz
We interpret this as follows: Fs is the work done on the particle by the
. 1 . .
net force. The quantity 5 X mass X speed” is the energy the particle has due
to its motion, called kinetic energy. For speed v, kinetic energy Ex is

defined as:

1
I Eg = 5mv”

In our example, the initial kinetic energy of the particle is %sz and the

kinetic energy after travelling distance s is %va.The result says that the

work done has gone into the change in the kinetic energy of the particle.
We can write this as:

Wnet = AEK

where W, 1s the net work done and AEk is the change in kinetic energy.
This is known as the work—kinetic energy relation.

We can think of the work done as energy transferred. In this example,
the work done has transferred energy to the particle by increasing its
kinetic energy.

-



Worked example

2.30 A block of mass 2.5kg slides on a rough horizontal surface. The initial speed of the block is 8.6ms™". It is
brought to rest after travelling a distance of 16 m. Determine the magnitude of the frictional force.

We will use the work—kinetic energy relation, ;.. = AEk.

The only force doing work is the frictional force, f, which acts in the opposite direction to the motion.

W =f X 16 X (—1) The angle between the force and the direction of motion is 180°,

so we need to multiply by cos 180°, which is —1.
The change in kinetic energy is:

AEg = 2m1/2 2mu =-92.45]
So: —16f=-92.45
f=5.8N

The magnitude of the frictional force is 5.8 N.

Work done in stretching a spring

Consider a horizontal spring whose left end is attached to a vertical wall. :
If we apply a force F to the other end we will stretch the spring by some “““"“"""Ii
amount, x. Experiments show that the force F and the extension x are w |
1
i
1
1
1

directly proportional to each other, i.e. F= kx (this is known as Hooke’s

law). How much work does the stretching force F do in stretching the

I

I

I

I

1

I

1

I

1

I

1

I

1

I

X1 i
I
I
I
I

spring from its natural length (i.e. from zero extension) to a length where "
1j I
the extension is xy, as shown in Figure 2.62. BEEIRRREERALEETAR Fy = kx;
. . . . ! “
Since the force F and the extension x are directly proportional, the V\MMMMMM .
graph of force versus extension is a straight line through the origin and ! i i
work done is the area under the curve (Figure 2.63). i Lo
X2
|—|—>|

F I
/ EUCEVEEEEEEELL RN D ke
- —

1

) —— \MMMMMMMNE

Figure 2.62 Stretching a spring requires

——1— workdone work to be done.

0 X1 Extension F

Figure 2.63 The force F stretches the spring. Notice that as the extension increases the
force increases as well.
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Exam tip

In discussing work done it

is always important to keep

a clear picture of the force
whose work we are calculating.

Worked example

To find the work done in extending the spring from its natural length
(x=0) to extension x1, we need to calculate the area of the triangle of
base x1 and height kx. Thus:

1
area =zkxy X x;
1
area = 3kx;

The work to extend a spring from its natural length by an amount x; is
thus:

w= %kmz

It follows that the work done when extending a spring from an extension
X1 to an extension xj (so xp > xq) 1is:

W= %k(X22 - x12)

The work done by the force extending the spring goes into elastic
potential energy stored in the spring. The elastic potential energy of a
spring whose extension is x is Ed:%lexz.

2.31 A mass of 8.4kg rests on top of a vertical spring whose base is attached to the floor. The spring compresses

by 5.2 cm.

a Calculate the spring constant of the spring.

b Determine the energy stored in the spring.

a The mass is at equilibrium so mg= kx. So:

_84x98
5.2% 1072

k=1583=~1600Nm"’

b The stored energy E, is:
Ed:%kxz
Eq=%x1583% (52X 1072)?

Ee1=2~1J




Work done by gravity

We will now concentrate on the work done by a very special force,
namely the weight of a body. Remember that weight is mass times
acceleration of free fall and is directed vertically down. Thus, if a body is
displaced horizontally, the work done by myg is zero. In this case the angle
between the force and the direction of motion is 90° (Figure 2.64), so:

W= mgscos90°=0

displacement S

S

Figure 2.64 The force of gravity is normal to this horizontal displacement, so no work
is being done.

We are not implying that it is the weight that is forcing the body to
move along the table. We are calculating the work done by a particular
force (the weight) if the body (somehow) moves in a particular way.

If the body falls a vertical distance h, then the work done by the weight
is +mgh. The force of gravity is parallel to the displacement, as in Figure
2.65a.

If the body moves vertically upwards to a height /i from the launch
point, then the work done by the weight is —mgh since now the angle
between direction of force (vertically down) and displacement (vertically
up) is 180°. The force of gravity is parallel to the displacement but
opposite in direction, as in Figure 2.65b.

Suppose now that instead of just letting the body fall or throwing it
upwards, we use a rope to either lower it or raise it, at constant speed,
by a height I (Figure 2.66). The work done by the weight is the same as
before, so nothing changes. But we now ask about the work done by the
force F that lowers or raises the body. Since F is equal and opposite to the
weight, the work done by F is —mgh as the body is lowered and +mgh as it
is being raised.

F moving i moving
down I ] up
mg
h h
F
mg
a b

Figure 2.66 Lowering and raising an object at constant speed using a rope.
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Exam tip

When a body is displaced
such that its final position is

at the same vertical height as
the original position, the work
done by the weight is zero.

object falling object thrown upwards

displacement

Figure 2.65 The force of gravity (green
arrows) is parallel to the displacement in a
and opposite in b.

You should be able to see how
this is similar to the work done
by the stretching and tension
forces in a spring.




Figure 2.67 The work done by gravity is
independent of the path followed.

Exam tip

Potential energy is the energy
of a system due to its position
or shape and represents the
work done by an external
agent in bringing the system to
that position or shape.

Exam tip
Notice that in the data booklet
the formula uses Ax in place of

our Xx.

“L
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Consider now the case where a body moves along some arbitrary path,
as shown by the red line in Figure 2.67.The work done by the weight
of the body as the body descends along the curve is still mgh.You can
prove this amazing result easily by approximating the curved path with a
‘staircase’ of vertical and horizontal steps. Along the horizontal steps the
work done is zero, cos 90° = 0. Along the vertical steps the work is mgAh,
where Ah is the step height. Adding up all the vertical steps gives mgh. This
means that:

The work done by gravity is independent of the path followed
and depends only on the vertical distance separating the initial and
final positions.

The independence of the work done on the path followed is a property
of a class of forces (of which weight is a prominent member) called
conservative forces.

Mechanical energy

In the previous two sections we discussed the work done when a body is
moved when attached to a spring and in a gravitational field. We derived
two main results.

In the case of the spring, we showed that the work done by the
stretching force in extending the spring a distance x away from the natural
length of the spring is W= %xz.

In the case of motion within a gravitational field the work done by the
force moving the body, is W= mgh to raise the body a height h from its
initial position.

We use these results to define two different kinds of potential energy,
Ep.

For the mass—spring system we define the elastic potential energy
to be the work done by the pulling force in stretching the spring by an
amount x, that is:

1

For the Earth-mass system we define the gravitational potential
energy to be the work done by the moving force in placing a body a
height h above its 1nitial position, that is:

EP: ngl’l

Notice that potential energy is the property of a system, not of an
individual particle.

So we are now in a position to go back to the first part of Subtopic 2.3
and answer some of the questions posed there. We said that:

AE=TW+Q

«



If the system is in contact with surroundings at a different
temperature there will be a transfer of heat, Q. If there is no
contact and no temperature difference, then Q=0.

If no work is done on the system from outside, then W=0.When

Q+ W=0, the system is called isolated and in that case AE=0.The total
energy of the system does not change. We have consetrvation of the
total energy of the system.

What does the total energy E consist of? It includes chemical energy,
internal energy (due to the translational, rotational energy and
vibrational energy of the molecules of the substance), nuclear energy,
kinetic energy, elastic potential energy, gravitational potential energy and
any other form of potential energy such as electrical potential energy.

But in this section, dealing with mechanics, the total energy E will
be just the sum of the kinetic, the elastic and the gravitational potential
energies.

So for a single particle of mass m, the energy is:

E= %mvz + mgh+ %kxz

This is also called the total mechanical energy of the system consisting
of the particle, the spring and the Earth. W/ stands for work done by forces

outside the system. So this does not include work due to spring tension
forces or the weight since the work of these forces is already included as
potential energy in E.

Worked examples

Exam tip

You must make sure that

you do not confuse the
work—kinetic energy relation
Whee=AEg with AE= V.

The work—kinetic energy
relation relates the net work
on a system to the change in
the system’s kinetic energy. The
other relates the work done by
outside forces to the change of
the total energy.

2.32 You hold a ball of mass 0.25kg in your hand and throw it so that it leaves your hand with a speed of 12ms L.

Calculate the work done by your hand on the ball.

The question asks for work done but here we do not know the forces that acted on the ball nor the distance by

which we moved it before releasing it. But using AE= I/, we find:
W= %mvz
W=1x0.25%12>=36]

Notice that here we have no springs and we may take = 0.

2.33 Suppose that in the previous example your hand moved a distance of 0.90m in throwing the ball. Estimate

the average net force that acted on the ball.

The work done was 36] and so Fs=36] with s=0.90m.This gives F=40N.
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2.34 A body of mass 4.2kg with initial speed 5.6ms ' begins to move up an incline, as shown in Figure 2.68.

56ms”
—_—

Figure 2.68

The body will be momentarily brought to rest after colliding with a spring of spring constant 220 Nm . The
body stops a vertical distance 0.85m above its initial position. Determine the amount by which the spring has
been compressed. There are no frictional forces.

There are no external forces doing work and so W/=0.The system is isolated and we have conservation of total energy.
Initially we have just kinetic energy, so:
Einitia = 3mv” + mgh+ kx> =3X 42%5.62+0+0=65.856]
When the body stops we have:
Einitial = 5mv” + mgh + kx> =0+ 4.2X 9.8 X 0.85 +% X 220 X x> =34.99 + 110x°
Thus, equating Ejyia to Efing we find:

34.99+110x%=65.856
110x>=30.866
x%=0.2806

x=0.53m

2.35 We repeat the previous example question but now there 1s constant frictional force opposing the motion
along the uphill part of the path.The length of this path is 1.2m and the frictional force is 15 N.

We have AE= W.The work done is:
Fscos§=15X%X1.2X%X(=1)=-18]
As in the previous example, we have:

Einitial = 65856J
Egpa=34.99 + 110x°

leading to:

110x>=12.866

, 12.866
* 77110
x=0.34m

The ‘work done by friction’ of —18] is energy that is dissipated as thermal energy inside the body and its
surroundings. It is in general very difficult to estimate how much of this thermal energy stays within the body and
how much goes into the surroundings.
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2.36 A mass of 5.00kg moving with an initial velocity of 2.0ms" is acted upon by a force 55N in the direction
of the velocity. The motion is opposed by a frictional force. After travelling a distance of 12m the velocity of
the body becomes 15ms ', Determine the magnitude of the frictional force.

Here Q=0 so that AE= V.

The change in total energy AE is the change in kinetic energy (we have no springs and no change of height):
AE=3%5.00%152=1x5.00%2.0°=552.5]

Let the frictional force be f. The work done on the mass is (55— /) X 12, and so:

(55—f) X 12=552.5

55— F=46.0
F=9.0N

The ‘work done by friction’ of —9.0 X 12=—108] is energy that is dissipated as thermal energy inside the body and
its surroundings.

2.37 A mass m hangs from two strings attached to the ceiling such that they make the same angle with the vertical
(as shown in Figure 2.69).The strings are shortened very slowly so that the mass is raised a distance Ah above
its original position. Determine the work done by the tension in each string as the mass is raised.

: vertical

Figure 2.69

The net work done is zero since the net force on the mass is zero. The work done by gravity is —mgAh and thus the

A
work done by the two equal tension forces is +mgAh. The work done by each is thus %h
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2.38 A pendulum of length 1.0m is released from rest with the string at an angle of 10° to the vertical. Find the
speed of the mass on the end of the pendulum when it passes through its lowest position.

Let us take as the reference level the lowest point of the pendulum (Figure 2.70). The total energy at that point is
just kinetic, Ex Z%mvz, where v is the unknown speed.

10

1.0m 1.0 cos 10°

potential energy
—————————————————————— ~=-—- only

Ah

kinetic energy only

Figure 2.70

At the initial point, the total energy is just potential, Ep = mgAh, where Ah is the vertical difference in height
between the two positions. From the diagram:

Ah=1.00—1.00cos10°
Ah=0.015m
Equating the expressions for the total energy at the lowest point and at the start:
%mvz =mgAh
v=2¢Ah
v=0.55ms""

Note how the mass has dropped out of the problem. (At positions other than the two shown, the mass has both
kinetic and potential energy.)

2.39 Determine the minimum speed of the mass in Figure 2.71 at the initial point such that the mass makes it
over the barrier of height h.

v=2?

o—

Figure 2.71

— ‘m_
1
1
I
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To make it over the barrier the mass must be able to reach the highest point. Any speed it has at the top will mean
it can carry on to the other side. Therefore, at the very least, we must be able to get the ball to the highest point
with zero speed.

o B



With zero speed at the top, the total energy at the top of the barrier is E= mgh.
The total energy at the starting position is %mvz‘
Equating the initial and final energy:
%mv2 = mgh
= v= @
Thus, the initial speed must be bigger than v= \2¢h.

Note that if the initial speed u of the mass is larger than v= V2g¢h, then when the mass makes it to the original level
on the other side of the barrier, its speed will be the same as the starting speed u.

2.40 A Dball rolls oft a 1.0m high table with a speed of ® . _4;(’_'I‘f_1
4.0ms ", as shown in Figure 2.72. Calculate the T
speed as the ball strikes the floor. Lom .

Figure 2.72

The total energy of the mass is conserved. As it leaves the table with speed u it has total energy given by
Einitial=1§mu2 + mgh and as it lands with speed v the total energy is Efp, = %mvz (v 1s the speed we are looking for).

Equating the two energies gives:

1 1
smv> =5mu’ + mgh

= =u+2gh

¥=16+20=236

= v=6.0ms |

2.41 Two identical balls are launched from a table with the same speed u
(Figure 2.73). One ball is thrown vertically up and the other vertically
down. The height of the table from the floor is /. Predict which of
the two balls will hit the floor with the greater speed.

Figure 2.73

At launch both balls have the same kinetic energy and the same potential energy. When they hit the floor their
energy will be only kinetic. Hence the speeds will be identical and equal to v, where:

%va = %mu2 + mgh
= T u+2gh

= v=+u’+2gh
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2.42 A body of mass 2.0kg (initially at rest) slides down a curved path of total length 22m, as shown in
Figure 2.74.The body starts from a vertical height of 5.0m from the bottom. When it reaches the bottom,
its speed is measured and found to equal 6.0ms™".
a Show that there is a force resisting the motion.

b Assuming the force to have constant magnitude, determine the magnitude of the force.

50m

Figure 2.74

a The only external force that could do work is a frictional force.

At the top: Eunitial = 5mv” + mgh=0+2.0 X 9.8 X5.0=98]

At the bottom:  Ef,= %mvz + mgh =% X2.0%6.0°+0=236]

The total energy has reduced, which shows the presence of a frictional force resisting the motion.
b From AE= W we deduce that W= —62].This is the work done by the frictional force, magnitude f.

The force acts in the opposite direction to the motion, so:

fx(~1)=-62]
62
:>sz
f=2.8N

Power

When a machine performs work, it is important to know not only how
much work 1s being done but also how much work is performed within
a given time interval. A cyclist will perform a lot of work in a lifetime of
cycling, but the same work can be performed by a powerful car engine in
a much shorter time. Power is the rate at which work 1s being performed
or the rate at which energy is being transferred.

When a quantity of work AWV is performed within a time interval
At the power developed is given by the ratio:

AW
P = At

is called the power developed. Its unit is joule per second and this
is given the name watt (W): 1 W =1]s".



Consider a constant force F, which acts on a body of mass m.The force
does an amount of work FAx in moving the body a small distance Ax
along its direction. If this work is performed in time Af, then:

AW
P="5
Ax
P—FE
P=Fv

where v is the instantaneous speed of the body. This is the power
produced in making the body move at speed v. As the speed increases, the
power necessarily increases as well.

Consider an aeroplane moving at constant speed on a straight-line path.
If the power produced by its engines is P, and the force pushing it forward
is F, then P, F and v are related by the equation above. But since the plane
moves with no acceleration, the total force of air resistance must equal F.
Hence the force of air resistance can be found simply from the power of
the plane’s engines and the constant speed with which it coasts.

Worked example

2.43 Estimate the minimum power required to lift a mass of 50.0kg up a vertical distance of 12m in 5.0s.

The work done in lifting the mass is mgh:
W=mgh=50.0X10x 12
W=6.0x10%]

The power is therefore:

W
At
_6.0x10°
5.0

P

=1200 W

This is the minimum power required. In practice, the mass has to be accelerated from rest, which will require
additional work and hence more power. There will also be frictional forces to overcome.

Efficiency

If a machine, such as an electric motor, is used to raise a load, electrical
energy must be provided to the motor. This is the input energy to the
motor. The motor uses some of this energy to do the useful work of raising
the load. But some of the input energy is used to overcome frictional

forces and therefore gets converted to thermal energy. So the ratio:

useful energy out useful power out
B or -
actual energy in actual power in

is less than one. We call this ratio the efficiency of the machine.
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Figure 2.75 Forces on a body on an inclined
plane: pulling force F, frictional force f,
reaction R and weight mg.

Worked example

Suppose that a body is being pulled up along a rough inclined plane
with constant speed. The mass is 15 kg and the angle of the incline is 45°.
There is a constant frictional force of 42N opposing the motion.

The forces on the body are shown in Figure 2.75. Since the body has

no acceleration, we know that:
R=mgcos6=106.1N
F=mgsin0+f=106.1+42=148. 1 N=150N

Let the force raise the mass a distance of 20 m along the plane. The work
done by the force F is:

W=148.1x20
W=2960]=3.0%10°]

The force eftectively raised the 15kg a vertical height of 14.1m and so
increased the potential energy of the mass by mgh=2121].The efficiency
with which the force raised the mass is thus:

. 2121
efficiency ~3960

efficiency =0.72

2.44 A 0.50kg battery-operated toy train moves with constant velocity 0.30ms ' along a level track. The power

of the motor in the train is 2.0 W and the total force opposing the motion of the train is 5.0 N.

a Determine the efficiency of the train’s motor.

b Assuming the efficiency and the opposing force stay the same, calculate the speed of the train as it climbs

an incline of 10.0° to the horizontal.

a The power delivered by the motor is 2.0 W. Since the speed is constant, the force developed by the motor is

also 5.0N.

The power used in moving the train is Fv=5.0X0.30=1.5W.

Hence the efficiency is:

total power out _ 1.5 W
total powerin 2.0 W

total power out
ot power out _ 0.75
total power in

The efficiency of the train’s motor is 0.75 (or 75%).




b The component of the train’s weight acting down the plane is mgsin 8 and the force opposing motion is 5.0 N.
Since there is no acceleration (constant velocity), the net force F pushing the train up the incline is:

F=mgsin6+5.0
F=0.50%10Xsin10°+5.0
F=589N=59N

Thus:

.89 X
efficiency = %

But from part a the efficiency is 0.75, so:

 5.89Xp
0.75=>"0—
_2.0%0.75
Y= 589
v=0.26ms !
Nature of science

The origin of conservation principles

Understanding of what energy is has evolved over time, with Einstein
showing that there is a direct relationship between mass and energy in his
famous equation E=mc. In this section we have seen how the principle
of conservation of energy can be applied to different situations to predict
and explain what will happen. Scientists have been able to use the theory
to predict the outcome of previously unknown interactions in particle
physics.

The principle of conservation of energy is perhaps the best known
example of a conservation principle. But where does it come from? It
turns out that all conservation principles are consequences of symmetry.
In the case of energy, the symmetry is that of ‘time translation invariance’.
This means that when describing motion (or anything else) it does not
matter when you started the stopwatch. So a block of mass 1kg on a table
1m above the floor will have a potential energy of 10] according to both
an observer who starts his stopwatch ‘now’ and another who started it
10 seconds ago.The principle of conservation of momentum, which is
discussed in Subtopic 2.4, is also the result of a symmetry. The symmetry
this time is ‘space translation invariance’, which means that in measuring
the position of events it does not matter where you place the origin of
your ruler.
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55 A horizontal force of 24N pulls a body a
distance of 5.0 m along its direction. Calculate
the work done by the force.

56 A block slides along a rough table and is brought
to rest after travelling a distance of 2.4m. A force
of 3.2N opposes the motion. Calculate the work
done by the opposing force.

57 A block is pulled as shown in the diagram by a
force making an angle of 20° to the horizontal.
Find the work done by the pulling force when
its point of application has moved 15 m.

F=25N

15m

58 A block of mass 2.0kg and an initial speed of
5.4ms ! slides on a rough horizontal surface
and is eventually brought to rest after travelling
a distance of 4.0m. Calculate the frictional force
between the block and the surface.

59 A spring of spring constant k=200Nm"" is
slowly extended from an extension of 3.0 cm to
an extension of 5.0 cm. Calculate the work done
by the extending force.

60 Look at the diagram.

a 1 Calculate the minimum speed v the ball
must have in order to make it to position B.
ii What speed will the mass have at B?
b Given that v=12.0ms" ', calculate the speed at
A and B.

40m -x--

“L

—

61 The speed of the 8.0kg mass in position A in

the diagram is 6.0ms™". By the time it gets to B

the speed is measured to be 12.0ms™".

A®

h=120m

Estimate the frictional force opposing the motion.
(The frictional force is acting along the plane.)

62 A force F acts on a body of mass m=2.0kg
initially at rest. The graph shows how the force
varies with distance travelled (along a straight line).

F/N 10
8

6 \
4

i \

0

0 5 10 15 20
s/m

a Find the work done by this force.

b Calculate the final speed of the body.

63 A body of mass 12kg is dropped vertically from
rest from a height of 80m.

a Ignoring any resistance forces during the
motion of this body, draw graphs to represent
the variation with distance fallen of:

i the potential energy
ii the kinetic energy.

b For the same motion draw graphs to represent

the variation with time of:
i the potential energy
ii the kinetic energy.

¢ Describe qualitatively the effect of a constant
resistance force on each of the four graphs you
drew.

64 The engine of a car is developing a power of
90kW when it is moving on a horizontal road at
a constant speed of 100kmh™". Estimate the total
horizontal force opposing the motion of the car.




65 The motor of an elevator develops power at a
rate of 2500 W.

a Calculate the speed that a 1200kg load is
being raised at.

b In practice it is found that the load is lifted
more slowly than indicated by your answer to
a. Suggest reasons why this is so.

66 A load of 50kg is raised a vertical distance of
15m in 1255 by a motor.

a Estimate the power necessary for this.

b The power supplied by the motor is in fact
80 W. Calculate the efficiency of the motor.

¢ The same motor is now used to raise a load
of 100kg the same distance. The efficiency
remains the same. Estimate how long this
would take.

67 The top speed of a car whose engine is
delivering 250kW of power is 240kmh ™.
Calculate the value of the resistance force on the
car when it is travelling at its top speed on a level
road.

68 An elevator starts on the ground floor and stops
on the 10th floor of a high-rise building. The
elevator reaches a constant speed by the time
it reaches the 1st floor and decelerates to rest
between the 9th and 10th floors. Describe the
energy transformations taking place between the
1st and 9th floors.

69 A mass m of 4.0kg slides down a frictionless
incline of #=30° to the horizontal. The mass
starts from rest from a height of 20 m.

a Sketch a graph of the kinetic and potential
energies of the mass as a function of time.

b Sketch a graph of the kinetic and potential
energies of the mass as a function of distance
travelled along the incline.

¢ On each graph, sketch the sum of the
potential and kinetic energies.

70

71

A mass m is being pulled up an inclined plane of

angle 6 by a rope along the plane.

a Find is the tension in the rope if the mass
moves up at constant speed v.

b Calculate is the work done by the tension
when the mass moves up a distance of dm
along the plane.

c Find is the work done by the weight of the
mass.

d Find is the work done by the normal reaction
force on the mass.

e What is the net work done on the mass?

A Dbattery toy car of mass 0.250kg is made

to move up an inclined plane that makes an

angle of 30° with the horizontal. The car starts

from rest and its motor provides a constant
acceleration of 4.0ms 2 for 5.0s. The motor is
then turned off.

a Find the distance travelled in the first 5s.

b Find the furthest the car gets on the inclined
plane.

c Calculate when the car returns to its starting
position.

d Sketch a graph of the velocity as a function of
time.

e On the same axes, sketch a graph of the
kinetic energy and potential energy of the car
as a function of the distance travelled.

f State the periods in the car’s motion in which
its mechanical energy is conserved.

g Estimate the average power developed by the
car’s motor.

h Determine the maximum power developed by
the motor.
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Learning objectives

e Be able to re-formulate
Newton’s second law when the
mass is variable.

e Understand the concept of
impulse and be able to analyse
force—time graphs.

e Be able to derive and apply
the law of conservation of
momentum.

e Analyse elastic and inelastic
collisions and explosions.
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2.4 Momentum and impulse

This section introduces the concept of linear momentum, which is a very

useful and powerful concept in physics. Newton’s second law is expressed
in terms of momentum. The law of conservation of linear momentum
makes it possible to predict the outcomes in very many physical situations.

Newton'’s second law in terms of momentum

We saw earlier that Newton’s second law was expressed as Fpe = ma. In
fact, this equation is only valid when the mass of the system remains
constant. But there are plenty of situations where the mass does nof remain
constant. In cases where the mass changes, a different version of the
second law must be used. Examples include:
e the motion of a rocket, where the mass decreases due to burnt fuel
ejected away from the rocket
e sand falling on a conveyor belt so the mass increases
e a droplet of water falling through mist and increasing in mass as more
water condenses.
We define a new concept, linear momentum, p, to be the product of
the mass of a body times its velocity:

I p=my

Momentum is a vector and has the direction of the velocity. Its unit is
kgms~' or the equivalent Ns.

In terms of momentum, Newton’s second law is:

Ap

Fnet= At

The average net force on a system is equal to the rate of change
of the momentum of the system.

It is easy to see that if the mass stays constant, then this version reduces to
the usual ma:

£ = AP _ Pfinal ~ Pinitial
. -

AL At
— MVfingl — MVinital
At
=m (Vﬁnal — Vinitial)
At
_ mAv
At
Foet= ma

- B



Worked examples

2.45 A cart moves in a horizontal line with constant
speed v. Rain starts to fall and the cart fills with
water at a rate of okgs™'. (This means that in one

Exam tip

Worked example 2.45 should alert you
second, akg have fallen on the cart.) The cart right away that you must be careful when

2 5 mass changes. Zero acceleration does not
must keep moving at constant speed. Determine g

the force that must be applied on the cart. imply zero net force in this case.

Notice right away that if F, .. =ma (we drop the bold italic of the vector notation) were valid, the force would have
to be zero since the car is not accelerating. But we do need a force to act on the cart because the momentum of
the cart is increasing (because the mass is increasing). This force is:

F _Ap_ A(mv) _vAm
AL At At

=vo

Putting some real values in, if 5=0.20kgs ™' and v=3.5ms"" the force would have to be 0.70N.

2.46 Gravel falls vertically on a conveyor belt at a rate

of okgs™, as shown in Figure 2.76.
belt gravel
This very popular exam question is

similar to Worked example 2.45, but :":

is worth doing again.

Figure 2.76

a Determine:
i the force that must be applied on the belt to keep it moving at constant speed v
ii the power that must be supplied by the motor turning the belt
iii the rate at which the kinetic energy of the gravel is changing.
b Explain why the answers to a ii and a iii are different.

a 1 The force is:

F _Ap _A(mv) _vAm
net At At At

=vo
ii The power is found from P= Fv. Substituting for F:
P= (vo)v=0v"
iii In 1 second the mass on the belt increases by okg. The kinetic energy of this mass is:
Ex= %01/2
This is the increase in kinetic energy in a time of 1s, so the rate of kinetic energy increase is %01/2.

b The rate of increase in kinetic energy is less than the power supplied. This is because the power supplied by the
motor goes to increase the kinetic energy of the gravel and also to provide the energy needed to accelerate the
gravel from O to speed v in the short interval of time when the gravel slides on the belt before achieving the
constant final speed v.
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2.47 A 0.50kg ball is dropped from rest above a hard floor. When it reaches the floor it has a velocity of 4.0ms™".
The ball then bounces vertically upwards. Figure 2.77 is the graph of velocity against time for the ball. The
positive direction for velocity is upwards.

a Find the magnitude of the momentum change of the ball during the bounce.
b The ball stayed in contact with the floor for 0.15s. What average force did the floor exert on the ball?

v/ms™

A0 Jhecccaac
reaction force R

0 t
\/ weight mg
-2.0

Figure 2.77

a The momentum when the ball hits the floor is: 0.50%4.0=2.0Ns
The momentum when the ball rebounds from the floor is: 0.50 X (=2.0)=—1.0N's
The magnitude of the momentum change is therefore 3.0 N's.

b The forces on the ball are its weight and the reaction from the floor, R.
Foee=R—mg
This is also the force that produces the change in momentum:

Ap

Fnet= At

Substituting in this equation:

_ 3.0 _
Fnet——o.1 5 =20N
We need to find R, so: .
Exam tip
R=20+5.0=25N. This is a very tricky problem with lots of

. possibilities for error. A lot of people forget

The average force exerted on the ball by the floor is 25 N. . . L
to include the minus sign in the rebound

velocity and also forget the weight, so they

answer incorrectly that R=20N.



Impulse and force-time graphs

We may rearrange the equation:

A
Free= IZZ
to get:
Ap= Fpe At

The quantity F,. At is called the impulse of the force, and is usually
denoted by J. It is the product of the average force times the time

for which the force acts. The impulse is also equal to the change in
momentum. Notice that impulse is a vector whose direction is the same as
that of the force (or the change in momentum).

When you jump from a height of] say, 1 m, you will land on the
ground with a speed of about 4.5ms . Assuming your mass is 60 kg, your
momentum just before landing will be 270N's and will become zero after
you land. From Fne::_A% this can be achieved with a small force acting for
a long time or large force acting for a short time. You will experience the
large force if you do not bend your knees upon landing —keeping your
knees stiff means that you will come to rest in a short time. This means Af
will be very small and the force large (which may damage your knees).

The three graphs of Figure 2.78 show three different force—time
graphs. Figure 2.78a shows a (non-constant) force that increases from
zero, reaches a maximum value and then drops to zero again. The force
acted for a time interval of about 2ms. The impulse is the area under
the curve. Without calculus we can only estimate this area by tediously
counting squares: each small square has area 0.1msX0.2N=2%10""Nss.
There are about 160 full squares under the curve and so the impulse is
3% 107> Ns. (In this case it is not a bad approximation to consider the
shape under the curve to be a triangle but with a base of 1.3 ms so that
the area is then $X 1.3 X 10> X 4=3x 107> Ns.)

In the second graph, the force is constant (Figure 2.78b). The impulse
of the force is 6.0 X (8.0 —2.0) =36 N's. Suppose this force acts on a body
of mass 12kg, initially at rest. Then the speed v of the body after the force
stops acting can be found from:

Ap=36Ns

mr—0=36Ns

36

1/=E=3.0ms_1
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Figure 2.78 Three different force-time
graphs: a non-constant force, b constant
force; ¢ force that varies linearly with time.



Worked examples

2.48 Consider the graph of Figure 2.78c.The force acts on a body of mass 3.0kg initially at rest. Calculate:
a the initial acceleration of the body
b the speed at 4.0s
c the speed at 6.0s.

a The initial acceleration a is at t=0, when F=12N.

_F_12 2
—m—3'0—4.0ms

a
b The impulse from Os to 4.0s is the area under this part of the graph:
1X4.0%x12=24Ns
This is equal to the change in momentum.
Let v be the speed at 4.0s. As the body is initially at rest, the momentum change is:
my—0=24

24 24 _
So 1/=W=m=8.0ms !

¢ The impulse from Os to 6.05s is the area under the graph, which includes part above the axis and part below the
axis. The part under the axis is negative, as the force is negative here, so the impulse is:

I1x4.0x12-1x2.0x6.0=18Ns

Hence the speed at 6.0s is V:%: 6.0ms™".

2.49 A ball of mass 0.20kg moving at 3.6ms ' on a horizontal floor collides with a vertical wall. The ball
rebounds with a speed of 3.2ms™". The ball was in contact with the wall for 12 ms. Determine the maximum
force exerted on the ball, assuming that the force depends on time according to Figure 2.79.

F

0 t

Figure 2.79




Let the initial velocity be positive. The rebound velocity is then negative.

Initial momentum: 0.20X3.6=0.72N's
Final momentum:  0.20 X (=3.2) =—0.64 Ns
The change in momentum of the ball is:

—0.64—-0.72=—-1.36 Ns

The magnitude of the change in momentum is equal to the area under the force—time graph.

The area is %X 12X 102X F,p,x and so:
$X 12X 107X Fypo=1.36 N's

= F..=0.227x10°=2.3x10°N

Conservation of momentum

Consider a system with momentum p.The net force on the system is:

Ap

Fnct:It

and so if Fye =0 it follows that Ap =0.There is no change in momentum.
This is expressed as the law of conservation of momentum:

When the net force on a system is zero the momentum does not

change, i.e. it stays the same. We say it is conserved.

Notice that ‘system’ may refer to a single body or a collection of many
different bodies.

Let us consider the blue block of mass 4.0kg moving at speed 6.0ms™'
to the right shown in Figure 2.80.The blue block collides with the red
block of mass 8.0kg that is initially at rest. After the collision the two
blocks move off together.

As the blocks collide, each will exert a force on the other. By Newton’s
third law, the magnitude of the force on each block is the same. There
are no forces that come from outside the system, i.e. no external forces.
You might say that the weights of the blocks are forces that come from
the outside. That is correct, but the weights are cancelled by the normal
reaction forces from the table. So the net external force on the system is
zero. Hence we expect that the total momentum will stay the same.

The total momentum before the collision is:

4.0%x6.0+8.0x0=24Ns
The total momentum after the collision is:
(4.0+8.0) xv=12v

where v is the common speed of the two blocks.

| 2 MECHANICS (€DE

Figure 2.80 In a collision with no external
forces acting, the total momentum of the
system stays the same.



8.0 kg

e ] e
20ms™ v

Figure 2.81 An outcome of the collision in
which total kinetic energy stays the same.

Equating the momentum after the collision and the momentum before
the collision:

12v=24

= v=20ms"!

The kinetic energy before the collision is:
1
3X4.0%6.0°=72]
After the collision the kinetic energy is:
1 -
3X12X2.0°=24]

It appears that 48] has been ‘lost’ (into other forms of energy, e.g. thermal
energy in the blocks themselves and the surrounding air or energy to
deform the bodies during the collision and some to sound generated in
the collision).

But consider now the outcome of the collision of these two blocks in
which the blue block rebounds with speed 2.0ms™!, as shown in Figure
2.81.The red block moves off in the original direction with speed v.

What is the speed of the red block? As before, the total momentum
before the collision is 24 N's. The total momentum after the collision is
(watch the minus sign):

(4.0X—=2.0)+(8.0%xv)
blue block red block

Equating the total momentum before and after the collision we find:
—8.0+8.0xv=24

This gives v=4.0ms .
The total kinetic energy after the collision is then:

I%4.0%(=2.0)2+3%8.0% 4.02=72]
blue block red block

This is the same as the initial kinetic energy.
So,1n a collision the momentum is always conserved but kinetic energy
may or may not be conserved.You will find out more about this in the

next section.

? Predicting outcomes

Physics is supposed to be able to predict outcomes. So why
is there more than one outcome in the collision of Figure 2.80?
Physics does predict what happens, but more information about the
nature of the colliding bodies is needed. We need to know if they
are soft or hard, deformable or not, sticky or breakable, etc. If this
information is given physics will uniquely predict what will happen.



Kinetic energy and momentum {

We have seen that, in a collision or explosion where no external forces are

present, the total momentum of the system is conserved.You can easily
convince yourself that in the three collisions illustrated in Figure 2.82
momentum is conserved. The incoming body has mass 8.0kg and the
other a mass of 12kg.

before

after

Figure 2.82 Momentum is conserved in these three collisions.

Let us examine these collisions from the point of view of energy.
In all cases the total kinetic energy before the collision is:

Ex=2x8.0%10>=400]
The total kinetic energy after the collision in each case is:
case 1: Ex=3X20x4>=160]
case 2: Ex=1x8.0x12+3x12x62=220]
case 3: Ex=3x8.0x22+1x12x8>=400]

We thus observe that whereas momentum is conserved in all cases,
kinetic energy is not. When kinetic energy is conserved (case 3), the
collision is said to be elastic. When it is not (cases 1 and 2), the collision
is inelastic. In an inelastic collision, kinetic energy is lost. When the bodies
stick together after a collision (case 1), the collision is said to be totally
inelastic (or plastic), and in this case the maximum possible kinetic
energy is lost.

The lost kinetic energy is transformed into other forms of energy, such
as thermal energy, deformation energy (if the bodies are permanently
deformed as a result of the collision) and sound energy.

Notice that using momentum, we can obtain a useful additional
formula for kinetic energy:

1 _ m*v*
EK—2mV =5
2
r
k= 2m
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Worked examples

2.50 A moving body of mass m collides with a stationary body of double the mass and sticks to it. Calculate the
fraction of the original kinetic energy that is lost.

The original kinetic energy is %mvz where v 1s the speed of the incoming mass. After the collision the two bodies

move as one with speed u that can be found from momentum conservation:

mv= (m~+2m)u

I/l=§

The total kinetic energy after the collision is therefore:

Lomx[2) =7

and so the lost kinetic energy is

m’ v’

2 6 3

The fraction of the original energy that is lost is thus

mv’/3 2

m2/2 3

2.51 A body at rest of mass M explodes into two pieces of masses M/4 and 3M/4. Calculate the ratio of the
kinetic energies of the two fragments.

2
Here it pays to use the formula for kinetic energy in terms of momentum: Ex =L The total momentum before
the explosion is zero, so it is zero after as well. Thus, the two fragments must have equal and opposite momenta.
Hence:

Eight _ P>/ (2Mhiigny)

Eheavy (_P)Z / (2Mheavy)

Eli ht Mlea
—hght _ - heavy
Eheavy ]\/Ilight

Eiiahe _3M/4

Epeayy M/ 4
Elighe _ 3
Eheavy



It all depends on the system!
Consider a ball that you drop from rest from a certain height. As the ball
falls, its speed and hence its momentum increases so momentum does not

stay the same (Figure 2.83).

7z
7 \\ // \\
1 1 3 N
\\ L // \\
S~ _1__- - 7/ A\
1 \
external ! internal \

1 \
force I forces \
1 ]
1 1
1 1

Figure 2.83 As the ball falls, an external force acts on it (its weight), increasing its
momentum.

This is to be expected — there is an external force on the ball, namely
its weight. So the momentum of the system that consists of just the falling
ball is not conserved. If we include the Earth as part of the system then
there are no external forces and the total momentum will be conserved.
This means that the Earth moves up a bit as the ball falls!

The rocket equation

The best example of motion with varying mass is, of course, the rocket
(Figure 2.84).

This is quite a complex topic and is included here only as
supplementary material. The rocket moves with speed v. The engine is
turned on and gases leave the rocket with speed u relative to the rocket.
The initial mass of the rocket including the fuel is M. After a short time 8¢
the rocket has ejected fuel of mass dm.The mass of the rocket is therefore
reduced to M—&m and its speed increased to v+ dv (Figure 2.85).

<
|
om

M-3dm

Figure 2.85 Diagram for deriving the rocket equation. The velocities are relative to an
observer ‘at rest on the ground-.

Figure 2.84 Exhaust gases from the booster
rockets propel this space shuttle during its
launch.
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Applying the law of conservation of momentum gives (in the equation

below terms shaded the same colour cancel out):

My=(M—206m)(v+dv) —om (u—v—=5v)
N

speed relative to ground

My = My + Modv— vdm — dmdv — udm + vdm + dmdv

Mdv=udm
_om
dv= Mu

This gives the change in speed of the rocket as a result of gases leaving
with speed u relative to the rocket. At time ¢ the mass of the rocket is M.
Dividing by 6t and taking the limit as 8¢ goes to zero gives the rocket
differential equation:

dv
e

where u is the rate at which mass is being ejected.

Nature of science

General principles such as the conservation of momentum allow for
simple and quick solutions to problems that may otherwise look complex.
Consider, for example, a man of mass m who stands on a plank also of
mass m. There is no friction between the floor and the plank. A man starts
walking on the plank until he get gets to the other end, at which point he
stops. What happens to the plank?

The centre of mass must remain in the same place since there is no
external force. So the final position of the plank will be as shown in
Figure 2.86: the plank moves half its length to the left and stops.

—_—

A

N

Figure 2.86 Conservation of momentum.

The same principles can be extended to analyse and predict the
outcomes of a wide range of physical interactions, from large-scale motion
to microscopic collisions.
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? | Test yourself

The momentum of a ball increased by 12.0N's as
a result of a force that acted on the ball for 2.00s.
Find the average force on the ball.

A 0.150kg ball moving horizontally at 3.00ms"

collides normally with a vertical wall and

bounces back with the same speed.

a Calculate the impulse delivered to the ball.

b The ball was in contact with the wall for
0.125s. Find the average force exerted by the
ball on the wall.

The bodies in the diagram suffer a head-on

collision and stick to each other afterwards. Find

their common velocity.

@

A ball of mass 250 g rolling on a horizontal floor

with a speed 4.00ms™ ! hits a wall and bounces
with the same speed, as shown in the diagram.

Ay
“f----->
7

a What is the magnitude and direction of the
momentum change of the ball?

b Is momentum conserved here? Why or why
not?

Two masses moving in a straight line towards

each other collide as shown in the diagram. Find

the velocity (magnitude and direction) of the

heavier mass after the collision.

before after
12.0 kg
4.0kg . .
240ms™  20ms™ 3.0ms™ v=1?

77

78

79
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A time-varying force varies with time as shown in

the graph.The force acts on a body of mass 4.0kg.

a Find the impulse of the force from =0 to
t=15s.

b Find the speed of the mass at 155, assuming the
initial velocity was zero.

c State the initial velocity of the body such it is
brought to rest at 15s.

F/N 10
8

6 \
4

i \

0

0 5 10 15 20
t/s

A boy rides on a scooter pushing on the road

with one foot with a horizontal force that

depends on time, as shown in the graph. While

the scooter rolls, a constant force of 25N opposes

the motion. The combined mass of the boy and

scooter is 25kg.

a Find the speed of the boy after 4.0s, assuming
he started from rest.

b Draw a graph to represent the variation of the
boy’s speed with time.

F/N 150
100
50
0
0 05 10 15 20 25 30 35 40
t/s

A ball of mass m is dropped from a height of hy
and rebounds to a height of /. The ball is in
contact with the floor for a time interval of t.
a Show that the average net force on the ball is
given by:
_ Noghy +\2ghy
IR= m— 5
b If /1 =8.0m, hh=6.0m,t=0.125s and
m=0.250kg, calculate the average force
exerted by the ball on the floor.



80 A ball of mass m moving vertically, hits a

horizontal floor normally with speed v, and
rebounds with speed v,. The ball was in contact
with the floor for a time .

a Show that the average force F on the ball

from the floor during the collision is given by:

F= m(1/1t+ 1/2)

b Find an expression for the average net force
on the ball.
81 The diagram shows the variation with time of
the force exerted on a ball as the ball came into
contact with a spring.

. [\
. EE=SS
. e

0

0 0.5 1 1.5 2
t/s

a For how long was the spring in contact with
the ball?

b Estimate the magnitude of the change in
momentum of the ball.

¢ What was the average force that was exerted
on the ball?

Exam-style questions

1 Four cars race along a given race track starting at the same time. The car that will reach the finishing line first is the

one with the largest

“L

A  maximum speed
‘ B acceleration

C power

D

average speed

82 Two masses of 2.0kg and 4.0 kg are held in place,
compressing a spring between them. When they
are released, the 2.0 kg moves away with a speed
of 3.0ms ' What was the energy stored in the
spring?

83 A rocket in space where gravity is negligible has
a mass (including fuel) of 5000kg. It is desired
to give the rocket an average acceleration of
15.0ms > during the first second of firing the
engine. The gases leave the rocket at a speed of
1500ms™" (relative to the rocket). Estimate how
much fuel must be burnt in that second.



A body that started from rest moves with constant acceleration in a straight line. After travelling a distance d the E

speed of the car is v. What is the distance travelled when the speed of the car was %?
d d d d

A — B— C— D—

2 V2 4 2

A sphere falls trough a liquid and eventually reaches terminal speed. Which graph shows the variation with time of
the distance travelled by the sphere?

[} o o [}
v (v} v o
c c c c
© T © T
- o - -
1%} k% 1%} a
a a a a
Time Time Time Time
A B C D

A steel ball of mass m is thrown vertically downwards with initial speed u near the Earth’s surface. The rate of

change of the momentum of the ball as it falls is:

A 0 B mu C m(u+ gt) D mg

A lunar module is descending vertically above the lunar surface. The speed of the module is decreasing. Which is a

free-body diagram of the forces on the landing module?

AN

6 A person of mass m stands on weighing scales in an elevator. The elevator is accelerating upwards with acceleration
a.The reaction force from the scales on the person is R.What is the reading on the scales?

A mg B R+ma C R—ma DR

7 A body of mass 3M at rest explodes into two pieces of mass M and 2M. What is the ratio of the kinetic energy of
M to that of 2M?

Cc4 D2

=

A B
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8 The power delivered by a car engine is constant. A car starts from rest. Resistance forces are negligible. Which
graph shows the variation with time of the speed of the car?

e
(7]
(]
Q.

(%]

Speed
Speed
Speed

Time Time Time Time
A B C D
9 The diagram shows two identical containers, X andY, that are connected by a thin tube of negligible volume.
Initially container X is filled with water of mass m up to a height /i andY is empty.

X Y

(@))

The valve is then opened and both containers contain equal quantities of water. The loss of gravitational potential
energy of the water is:

10 A person of mass m stands on roller skates facing a wall. After pushing against the wall with a constant force F he
moves away, reaching speed v after a distance d. What is the work done by F?

A zero B m’ C %mvz D Fd

11 In a factory blocks of ice slide down a smooth curved path AB and then on to a rough horizontal path starting at B.

C
The length of the curved path AB is s; the block of ice takes time ¢ to move from A to B.
a Explain why, for the motion of the block from A to B:
i the formula s:% ¢ does not apply. [1]
ii the formula v= \2g¢h does apply. [1]



b A block of ice of mass 25kg slides from A to B. The speed of the block at B is vy=4.8ms .

Calculate the height 5. [3]

c i The coefficient of dynamic friction between the block of ice and the rough surface BC is 0.45.
Show that the distance BC at which the block of ice is brought to rest is 2.7 m. 2]
ii Calculate the time it takes the block of ice to cover the distance BC. 2]

d The factory also produces blocks of ice of mass 50 kg that slide down the same path starting at A.
Predict, for this heavier block of ice, the speed at B and the stopping distance BC. (The coefficient
of friction stays the same.) 3]

12 A stone of mass 0.20kg is thrown with speed 22ms™" from the edge of a cliff that is 32m above the sea.
The initial velocity of the stone makes an angle of 35° with the horizontal. Air resistance is neglected.

22ms™

a 1 Determine the horizontal and vertical components of the initial velocity. 2]
ii Sketch graphs showing the variation with time of the horizontal and vertical components of velocity.  [2]
b i Calculate the maximum height above the cliff reached by the stone. [31
ii State the net force on the stone at the highest point in its path. [1]
c i Using conservation of energy, determine the speed of the stone as it hits the sea. [2]
ii Hence or otherwise, determine the time it took the stone to reach the surface of the sea. [2]

The graph shows the path followed by this stone, until just before hitting the sea, in the absence of

alr resistance.

y

d i On a copy of the axes above, draw the path of the stone in the presence of an air resistance force
opposite to the velocity and proportional to the speed. [3]
ii State and explain one difference between your graph and the graph above. 2]
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13 A toy helicopter has mass m =0.30kg and blade rotors of radius R=0.25m. It may be assumed that as the blades
turn, the air exactly under the blades is pushed downwards with speed v. The density of air is p=1.2kgm .

a i Show that the force that the rotor blades exert on the air is pTER2V2. [3]
ii Hence estimate the speed v when the helicopter just hovers. [2]
b Determine the power generated by the helicopter’s motor when it just hovers as in a. [2]

¢ The rotor blades now move faster pushing air downwards at a speed double that found in a.The helicopter is

raised vertically a distance of 12m.

Estimate:

i the time needed to raise the helicopter. 2]
ii the speed of the helicopter after it is raised 12m. [2]
iii the work done by the rotor in raising the helicopter. [1]

14 It is proposed to launch projectiles of mass 8.0kg from satellites in space in order to destroy incoming ballistic
missiles. The launcher exerts a force on the projectile that varies with time according to the graph.
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The impulse delivered to the projectile is 2.0 X 10’ N's. The projectile leaves the launcher in 0.20s.

a Estimate:

i the area under the curve 1]
ii the average acceleration of the projectile [3]
iii the average speed of the projectile [2]
iv the length of the launcher. 2]
b Calculate, for the projectile as it leaves the launcher:
i the speed 2]
ii the kinetic energy. 2]
¢ Estimate the power delivered to the projectile by the launcher. [2]

15 A car of weight 1.4 X 10* N is moving up an incline at a constant speed of 6.2ms™'. The incline makes an angle
of 5.0° to the horizontal. A frictional force of 600 N acts on the car in a direction opposite to the velocity.

a i State the net force on the car. 1]
ii Calculate the force F pushing the car up the incline. [3]
b The power supplied by the car is 15kW. Determine the efficiency of the car engine in pushing the
car uphill. [3]




c The car is now allowed to roll down the incline from rest with the engine off. The only resistance force ;

on the car is assumed to be proportional to speed. On a copy of the axes below, draw sketch graphs to
show the variation with time of:

i the speed of the car 2]
ii the acceleration of the car. 2]
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16 A bullet of mass 0.090kg is shot at a wooden block of mass 1.20kg that is hanging vertically at the end of a
string.

__>i T

The bullet enters the block with speed 130ms™" and leaves it with speed 90ms~!. The mass of the block does not
change appreciably as a result of the hole made by the bullet.

a i Calculate the change in the momentum of the bullet. [2]
ii Show that the initial velocity of the block is 3.0ms . [1]
iii Estimate the loss of kinetic energy in the bullet—block system. [2]

As a result of the impact, the block 1s displaced. The maximum angle that the string makes with the
vertical is 6. The length of the string is 0.80 m.

b Show that =65°. 3]
c i State and explain whether the block in b is in equilibrium. [2]
ii Calculate the tension in the string in b. [3]
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