■ worked solutions attached

1. Use the method of mathematical induction to prove that $\sum_{r=1}^{n} \frac{1}{r(r+1)}=\frac{n}{n+1}, n \in \mathbb{Z}^{+}$. [8 marks]
2. Prove by mathematical induction that $4^{n}+2$ is a multiple of 3 for all positive integers. [8 marks]
worked solutions
3. Use the method of mathematical induction to prove that $\sum_{r=1}^{n} \frac{1}{r(r+1)}=\frac{n}{n+1}, n \in \mathbb{Z}^{+}$. [8 marks]

Solution:

$\sum_{r=1}^{n} \frac{1}{r(r+1)}=\frac{n}{n+1}, n \in \mathbb{Z}^{+}$
Show statement is true for $n=1$:
RHS $=\sum_{r=1}^{1} \frac{1}{r(r+1)}=\frac{1}{1(1+1)}=\frac{1}{2} ; \quad$ LHS $=\frac{1}{1+1}=\frac{1}{2}$; thus, statement is true for $n=1$
Assume the statement is true for k, a specific value of n. That is, assume that $\sum_{r=1}^{k} \frac{1}{r(r+1)}=\frac{k}{k+1}$.
Show it must follow that the statement is true foe $n=k+1$. That is, show that
$\sum_{r=1}^{k+1} \frac{1}{r(r+1)}=\frac{k+1}{k+1+1}=\frac{k+1}{k+2}$
$\sum_{r=1}^{k} \frac{1}{r(r+1)}+\frac{1}{(k+1)(k+1+1)}=$ RHS
$\frac{k}{k+1}+\frac{1}{(k+1)(k+2)}=$ RHS
$\frac{k(k+2)}{(k+1)(k+2)}+\frac{1}{(k+1)(k+2)}=$ RHS
$\frac{k^{2}+2 k+1}{(k+1)(k+2)}=$ RHS
$\frac{(k+1)(k+1)}{(k+1)(k+2)}=$ RHS
$\frac{k+1}{k+2}=\frac{k+1}{k+2} \quad$ Q.E.D.
Hence, by the principle of mathematical induction, the statement $\sum_{r=1}^{n} \frac{1}{r(r+1)}=\frac{n}{n+1}$ is true for all positive integer values of n.
2. Prove by mathematical induction that $4^{n}+2$ is a multiple of 3 for all positive integers. [8 marks]

Solution:

Show statement is true for $n=1$:
$4^{1}+2=6=2(3)$; thus, statement is true for $n=1$
Assume that the statement is true for a specific value of n, call it k. That is, assume $4^{k}+2=3 M$ where M is a positive integer
Show that it must follow that the statement is true for $n=k+1$. That is, show that $4^{k+1}+2$ must be a multiple of 3 .
$4^{k+1}+2=4 \cdot 4^{k}+2$
From the assumption, it follows that $4^{k}=3 M-2$. Substituting this, gives

$$
\begin{aligned}
4^{k+1}+2 & =4(3 M-2)+2 \\
& =12 M-6 \\
& =3(4 M-2)
\end{aligned}
$$

Since M is a positive integer then $4 M-2$ must be a positive integer. And, since it was shown that $4^{k+1}+2=3(4 M-2)$ then $4^{k+1}+2$ is a multiple of 3 .
Hence, by the principle of mathematical induction, the expression $4^{n}+2$ must be a multiple of 3 for all positive integer values of n.

