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IB Maths-Analysis              Proof by Mathematical Induction 

 

 

■  worked solutions attached  ■ 

 

 

 

1.    Use the method of mathematical induction to prove that 
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2.    Prove by mathematical induction that 4 2n +  is a multiple of 3 for all positive integers.   [8 marks] 
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worked solutions 
 
 

1.    Use the method of mathematical induction to prove that 
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Solution: 
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Show statement is true for 1n = :    
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Assume the statement is true for k, a specific value of n.  That is, assume that 
( )1

1

1 1

k

r

k

r r k=

=
+ +

 . 

Show it must follow that the statement is true foe 1n k= + .  That is, show that 
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      Q.E.D. 

Hence, by the principle of mathematical induction, the statement 
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  is true for all 

positive integer values of n. 
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2.    Prove by mathematical induction that 4 2n +  is a multiple of 3 for all positive integers.   [8 marks] 
 

Solution: 
 

Show statement is true for 1n = : 

( )14 2 6 2 3+ = = ;  thus, statement is true for 1n =  

Assume that the statement is true for a specific value of n, call it k.  That is, assume 

4 2 3k M+ =  where M is a positive integer 

Show that it must follow that the statement is true for 1n k= + .  That is, show that 
14 2k+ +  must be a 

multiple of 3. 

14 2 4 4 2k k+ + =  +  

From the assumption, it follows that 4 3 2k M= − .  Substituting this, gives 

( )14 2 4 3 2 2k M+ + = − +  

 12 6M= −  

 ( )3 4 2M= −  

Since M is a positive integer then 4 2M −  must be a positive integer.  And, since it was shown that 

( )14 2 3 4 2k M+ + = −  then 
14 2k+ +  is a multiple of 3. 

Hence, by the principle of mathematical induction, the expression 4 2n +  must be a multiple of 3 for 

all positive integer values of n. 

 

 


