MAA HL

Test on Mathematical Induction

by Christos Nikolaidis Date: 28 January 2020

without GDC

Marks:	/40

Na	me of student:
1.	[Maximum mark: 6]
	Prove by mathematical induction that $3^{2n} + 7$ is divisible by 8 for any $n \in \mathbb{Z}^+$.

Turn over

$1 \cdot 2^1 + 2 \cdot 2^2 + 3 \cdot 2^3 + \dots + n \cdot 2^n = (n-1)2^{n+1} + 2 \qquad \text{for any } n \in \mathbb{Z}^+.$ b) Confirm that the statement is true for $n=3$.			
b) Confirm that the statement is true for $n = 3$.			
	$1 \cdot 2^1 + 2 \cdot 2^2 + 3 \cdot 2^3 + \dots + n \cdot 2^n$	$= (n-1)2^{n+1} + 2$	for any $n \in Z^+$.
	Confirm that the statement is tr	rue for $n=3$.	
			•••••

	2 n 2 n	
	$3^n > n^2 + 2n$	for any integer $n \ge 2$.
•••••		

Turn over

	$u_1 = 5$		
	$u_{n+1} = 2u_n + 5$		
a) Write down	the first four terms of the se	quence.	
	athematical induction that		
	$u_n = 5 \cdot 2^n - 5$	for any $n = 1, 2, 3,$	
			••••

4.

.....

[Max	ximum mark: 10]	
(a)	Prove by mathematical induction that	
	$n \times [2 \times 6 \times 10 \times 14 \times \cdots \times (4n-2)] = (2n)!$ for any $n \in \mathbb{Z}^+$.	
(b)	Express $(2 \times 6 \times 10 \times 14 \times \cdots \times 78)$ in the form $\frac{a!}{b!}$.	