Lagrangian Mechanics

4.1: Non-Conservative Forces

4.2 Forces of Constraints and Generalized Coordinates
Suppose that a particle is free to move in all directions. Three coordinates are needed to specitfy its location.
* Cartesian: (z, 9, 2)
* Cylinderical: (p, %, 2)
« Spherical: (7,6, ¢)

The presence of constrains mean that some coordinates might be less than three positions. A constraint that reduces the number
of position of a particle is called a holonomic constraint. The minimal set of required independent coordinates are called
generalized coordinates, denoted by gy.

4.3: Hamilton’s Mechanics

The Lagrangian is defined as
L=T-U (1)

where T is kinetic energy and U is potential energy. Having chosen a set of generalized coordinates, the Lagrangian can be

written as:

L:T—U:L(t,thh"" ?q.bq.%"')

We define its action S [qk (t)} as the functional of the time integrand over the Lagrange L, from a starting time ¢, to an ending
time tp.

tb tb
S[qk(t)] _/ dtL(t7q17q17' o 7q.17q.27"') :/ dtL(tan7Qk)
t t

a a
When S is stationary, 8.5 (the change in position) is zero, giving us

ty
=4 dtL(tvqk7(jk)
tq

Using knowledge from the previous chapter, the Lagrange is equal to (The integral represents the area under curve, where the
curve/function is defined by the integrand. In this case, the integrand is I.. When S is stationary, it has reached a minimum or a

maximum. As we derived in chapter, when the value of a function is extremeized, by Euler’s equation 0 = 6L/8qk —

(d/dt)(OL/Ogy)):
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4.32: Newton’s Law and Hamilton Mechanics

_ d oL

Fema= 292
M= 0 ode

Hamilton Mechanics is consistent of Newton’s law. The second term of the Lagrange equation essentially represents:

while the first term sums of force components. This can be seen clearly from below examples.

Example 4.1: A Simple Pendulum

An inertial observer sees that a small plumb bob of mass m is free to swing back and forth in a vertical x—z plane at the end of a
string of length R. The position of the bob can be specified uniquely by its angle € measured up from its equilibrium position at
the bottom, so we choose 8 as the generalized coordinate, as illustrated in Figure 4.2. Find the equation of motion and the

second order differential equation.

¥ solution

The origin of the system is defined at the bottom. Kinetic energy is K = 1 / 2mv2, where velocity v requires three
coordinates to specify its direction. By cylindrical coordinates, we know that (:L‘, Y,z ) = (T’, r6, z). Speed v is equal to:

v=22 4 + 2% =1 +r20? + 3*

Kinetic energy is equal to:
1 2 1 2 202 22

Kzimv :§m(r +7°0° + 2%)

Given the constraint that the string length R is fixed, 7* = 0 and initial speed 2 = 0, the equation becomes:
1 1 .
K = -mv® = ~m(R*¢°

The simple pendulum, with # as the generalized coordinate.

L=T-U= %m(RQéQ) — mgR(1 — cos6)

The Euler’s equation for L = L(t, 6, 9) is equal to:

OL d oL d 1 ...
== —-——==- inf — — (-mR*2600
20 i o0 mgRsin o ( 5 mR )
Simplifying the expression, we get
0:é+%mm

The second order differential equation shows the pendulum is in simple harmonic motion with an angular frequency of

w = 4/g/R. Torque is equal to T = Iw = mR*g/R = mgR.
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Example 4.2: A Bead Sliding on a Vertical Helix

A bead of mass m is slipped onto a frictionless wire wound in the shape of a helix of radius R, whose symmetry axis is oriented
vertically in a uniform gravitational field, as shown in Figure 4.3. As always, we assume the description is from an inertial
frame’s perspective (unless explicitly stated otherwise). Using cylindrical coordinates to find equations of motion.

A
VA

Example 4.3: Block on an Inclined Plane

A bead of mass m is slipped onto a frictionless wire wound in the shape of a helix of radius R, whose symmetry axis is oriented

vertically in a uniform gravitational field, as shown in Figure 4.3

V¥ solution

The Lagrange L is equal to:
1, . 1 ., )
L=T-U-= Emv —mgXsina = imX — mgX sin «

Using Euler’s equation, we let L = L(t, X , X)), giving us:

dl1 . d .
0=—-mgsina— ——m(2X) = —mgsina — —mX
g 2™ g dt
The equation is consistent with Newton’s law, where ma = —mg sin « in the horizontal (inclined) direction.

Summary for finding L and equations of motion

1. Use cartesian/polar/spherical/cylindrical coordinate to find positions of any arbitrary position 8.
2. Differentiate position § to find velocity v
3. Find the Lagrange L =T — U

a. Find the expression for kinetic energy T’
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b. Find the expression for potential energy U

4. Use Euler’s equation to find equations of motion

4.4: Generalized Momenta and Cyclic Coordinates

In the last section, we has shown that Lagrange equation is consistent with Newton’s second law. The first term represents force
components, and the second term is na. Because F' = dp / dt, the term OL / O can be seen as a component of momentum.

Thus, it is natural to define the generalized momenta using generalized coordinates gy,

The generalized momenta is defined as:

OL
Py = o
Ogi
By Newton’s second law, dp / dt = ma. In terms of Py, the Lagrange equation becomes:
dpk . oL
dt  Ogq
Lagrange is expressed in the form of L = L(t, gk, qk) Sometimes, the coordinate gy, is missing while g, is presents. A

missing coordinate is said to be a cyclic coordinate. For such coordinate, the Lagrange equation tells us that the time derivative

of corresponding generalized momentum is zero, so that the particular momentum is conserved.

dpk_aL_O
dt _6qk_

One of the first thing to notice about a Lagrangian is whether there is a cyclic coordinate, because such coordinate

=

leads to a conservation law that is also a first integral of motion. This means that the equation of motion is a first-

order differential equation rather than the second-order differential equation for a noncyclic coordinate.

Explanation:

The explanation seems confusing. All it is trying to say is that: if there is a cyclic coordinate, there must be a conserved

quantity. This is better explained by the below example. Consider the Lagrange L = L(t, gk, qk), where @, is missing. Using
Euler’s equation, we get:

)
~ Ogr,  dt Ogj,
Because @y, is missing, the equation is independent of g, and L / Oq, = 0. Then,
_daL
~ dt g,

so OL /gy, = k is a constant. Thus, 0L / ¢y, is a conserved quantity.
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Example: Particle on a Tabletop
Particle moving on a tabletop. There is a central for F’ (1‘) = kr# directed towards the origin. Derive the Lagrange equation
and expressions for effective potential, and time.

V¥ solution

1. Lagrange and Euler’s Equations:

For a particle moving in a plane (two dimensions) and subject to a central force, it is better to use polar coordinates (7‘, 9)

about the origin. The kinetic energy is given by:

1 1 .
T = E'I’TL’U2 = 57’71(7'2 + (7’9)2)

The Lagrange L = T' — U is equal to:
1 )
L=T-U(r)= Em(f2 + (r6)*) = U(r)

The generalized coordinates are 7 and 6. Notice that 8 is the cyclic coordinate since it is missing and only  is present.

Thus, there must be a conserved quantity. Using Euler’s equation, we know that:

0 290L
~dt 96

such that 0L / 06 = kis equal to a constant. Using chain rule for multivaraible functions, the conserved is:

OL .
pg = — = mrf
00
We recognize this as the angular momentum (The makes sense inutitively and theoretically. As shown in the previous
section, the second term in Lagrange equation is equal to d/dt(aL/ag) =maand F' = dp/dt, so it is natural that

5L/aé is some form of momentum).

The Lagrange equations are (Notice that there are two independent variables/generalized coordinates, so we use variational

calculus for several variables in chapter three The Variational Principle):

oL _doL oL _doL
dr dtdor 00  dt 9o

which becomes:

. ou(r) d, . d .
2y _a _a 2
m(ro°) o p mr), 0 prL 0
_8U(r) =mr — mréz, po = mr26
or

This is equal to:
F(r) = ma, = m(# —r6?), Fy=m(rf + 2/0)

2. Newton’s Law and Lagrange Equations: 2nd Order DE Derivations

Notice this is consistent with Newton’s second law, where the acceleration for an object in circular motion is equal to @ =
a, + ag = (# — r0)F + (r + 6 + 270)6. Because py = mr6? is a conserved quantity, we can solved for 6, giving

us:
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https://www.notion.so/The-Variational-Principle-52a478a3d14e45858257589e0da7dd9b?pvs=21

A Do
6— P
mr?

Substituting the expression for 9 into the Lagrange equation for —OU (7') / Or, we get:

oU(r .. 6
_ou(r) _ mi — mr(p_2)2
or mr
where the central force F(’I’) = 3U(’I’)/37‘ = —kr (This is shown in example 1.6 in chapter one gz Newtonian
Mechanics). Then, the expression becomes:
2
.. m
—kr = mv — 21793
mir
Rearranging the equation, we get:
2
0=mi— L0 fp
mr3
2 k
0=7— I;(’ s+ —r
m°r m
2
0=7%— I;O s+ w?r
mr

3. Effective Potential/Energy Conservation Derivation

Rearranging the second order differential equation, mf is equal to:

where F' (’r‘) = m¥ is the central force directed towards the origin. Recall that effective potential U, ff is defined as (Note
that effective potential is NOT same as potential energy. It is defined to simplifies two dimensional motion into one
dimension. For more details, please refer to the :

Uesr = —/F(r)dr

Integrate F'(7) alone the path for 7, U, ¢ is equal to:

2 2
Py k Py 1.
Ui =— [ (2L —m—r)dr = “kr? 4+ C
ff /(mr3 mm’f‘)dT 2mr2 + 5 "+

where C is a constant. Then, the second first integral of motion is given by energy conservation in this one-dimensional
system.

1 p§ 1 5
E:K+Ueff(r):5mr +W+§kr

Note that K Vi T in the Lagrange equation. The kinetic energy K includes the radial component only. This is because

Kinetic energy in tangential component in 6 direction is a part of the effective potential U, ff» so that the motion is
simplified from two dimensional into one dimensional.
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Uet (1)

Y

4. Time

Rearranging the equation for energy F, the expression becomes:

1
E = E’I’I’LT"2 + Ueff(T)

Solving for *, we get:

Expressing 7 as a differential, we get:

Using separable integration, time ¢ is equal to:

2E
t:/dt:/ o~ Ueyg(r)dr

Example 4.5: Spherical Pendulum

A ball of mass m swings on the end of an unstretchable string of length R in the presence of a uniform gravitational field g. This
is often called the “spherical pendulum,” because the ball moves as though it were sliding on the frictionless surface of a
spherical bowl. We aim to find its equations of motion.

V¥ solution

Before solving the problem, we recognize the constraint that the pendulum has a fixed radius of R. Then, the ball has two
degrees of freedom:

1. Tt can move horizontally around a vertical axis, corresponding to the azimuthal angle ¢.

2. It can also move in the polar direction, described by the angle 6.
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When finding equations of motion, we follow the below steps:
1. Specify the position of an arbitrary point using Cartesian/Spherical/Cylindrical coordinates.
2. Differentiate position S to find velocity .
3. Find kinetic energy 1" and potential energy U to get the Lagrange L =T — U.
4. Apply Euler’s equation to L to find equations of motion.

5. First integrals of motion.

STEP 1 Find §:

Using spherical coordinates, the position of a point is specified by:
§=(r,r0,r sin 6¢)
Given that radius 7 = R, the expression becomes:
§ = (R, RO, Rsin 6¢)

STEP 2: Velocity

Differentiating § with respect to time, velocity ¥ is equal to:
% = (0, R, Rsin 0¢)
where R = 0 since R is fixed (a constant).

STEP 3: Lagrangian

Using ¥, kinetic energy 1" is equal to:

1 1 . .
T= §mv2 = §mR2 (6% + sin” 6¢°)
Potential energy U is equal to:
U = mgRcos6

The Lagrange L = T' — U is equal to:
1 ) )
L=T-U= 5777,}22(02 + sin? ¢?) = mgRcosf

STEP 4: Euler’s equation to find equations of motion

Using Euler’s equation, we get:

OL doOL OL d oL

96 dtos | 96 diod

STEP 5: First Integral of motion

Because ¢ is cyclic, we know that D¢, the angular momentum, is conserved. Note that the expression for angular

momentum Py is a first integral of motion..

Dy = mR? sin® 0¢ = constant
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Rearranging the Lagrange equation for 6, we get:

6 — sin 0 cos 0¢* + }%sinﬁ =0

Solving for 45 using Py, the expression becomes:

6 — (75;2)2sin90059+ I%sino =0

The second first integral of motion is the expression for conservation of energy, where E =T + U.

4.5: Systems of Particles

The last section considers the motion for a single particle only. The section studies the motion of a system of particles

Recall that the action for the system is defined as:

ty 123
S[qk(t)] :/t dtL(t7Q17Q1a"' ,4176127"') _/t dtL(tv(ka(jk)

Consider a system of two particles confined in the horizontal direction and is moving alone a frictionless rail.

q2

o
-
'
'

® O =

m mo

A

A

]

q1

The Lagrange of the system is equal to:

1 1
L=T-U-= §m1x'%—|—§m2m'g—U(a:2—a:1)

where U(mz - xl) is the potential energy between masses, describing the interaction between two particles. The action of the

system is equal to:
1 .2 1 .92
S = dt(§m1m1 + §m2m2 — U(wz - ﬂUl))

Notice that there are two generalized coordinates, 1 and X2, for the system. Using Euler’s equation, Lagrange equations are:

oL _daL
8:13‘1 dt&nl_
oL 4oL _
(91132 dt8x2_

Using chain rule for multivariable functions, we get:
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oU(z2 — . oU (z .
—% — (mlxl) = —%1) — (mlxl) = 0
giving us:
mi, = O_U
1T1 = oz,
The expression for ms2 is:
OU(xzy — . ou .
_% _ (m2$2) = _ (m2;1;2) =0
T Oxs
giving us:
Moy = ou
2L2 = 9z,

According to Newton’s third law, the force exerted by 7721 on 1 is equal to the magnitude of the force exerted by 7715 on 7.

In multi-particle systems, we consider the total kinetic energy 7" minus the total potential energy U. Sometimes.

ax=

particles give action-reaction pairs O / Ox, =0 / Oz, come out free.

Because the total momentum of the system is conserved, the change in momentum Ap = dp / dt = 0, giving us:

a(mlil + mzi'g) =0

In a multiple-particle system, the total momentum must be conserved.

ax

The new coordinates are center of mass, giving by:

M1 + Moo o USESN + Moo
mi + mo M

Central Force, Reduced Mass, Energy

Let x = T3 — 1. The Lagrange of the system is:

1 . 1
L= 5MX2 + 5“5”2 —U(z) (2)
where 1t is the reduced mass
mimy
= 3
R=E 37 (3)

The corresponding momentum P is equal to:
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P oL M=mia1 + mad
= — = M=mid1 + mad
ax 121 2&2

and is conserved.

Example: Pulley

A contraption of pulleys. We want to find the accelerations of all three weights. We assume that the three pulleys have negligible

mass so they have negligible kinetic and potential energies.

M

5

e = =

-
Sy

~

B et
5

-

¥ solution

1. Lagrangian

In order to write the Lagrange, we need to know the system’s kinetic and potential energies. Kinetic energy of the system is

equal to:

1 1 . 1. .
T = §m1y% + §m2y§ + §MY2

2. Length Constraint

Because there is only two degrees of freedom, we need to eliminate one variable in ¥, ¥2 and Y. When solving problems
involving pulley, one common technique is to use length constraint to relate length with acceleration to eliminate a variable.
Because the total length of the string is fixed, we know that:

(H—y1)+2(H-Y)+ (H —y:) =4H — 2Y — y» — y; = constant = L
Differentiating the equation with respect to time £, the expression is equal to:
—2Y — g~ =0
giving us:
Y= —%(1'/1 + 1)
3. Substitution

Substituting the expression for Y into T, we get:

Lagrangian Mechanics
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1 . 1 . 1 -1,. .
T= §m1y% + §m2y§ + §M(§(y1 + 92))2

Knowing the kinetic energy, we need to find potential energy U, giving us:

U =myigy: + magys, + MgY

U =migy +magys — J\/-"g(—y1 ;Lw) + constant
4. Euler’s equation
The Lagrange is equal to:
1 . 1 1.1 . . +
L=T-U-= 5mlyf + §m2y§ + §M(§(y1 + 12))2 — migyr — magys + Mg(y1 5 yQ) + constant
Using Euler’s equation, we get:
_BL_daL _BL_dBL
S Oyy dtd’ Oy dtoip

Using chain rule, we get:

LM Mg
miY + Z(?ﬁ + i) = —mig + BN
. M, Mg
malYs + Z(?h + i) = —mag + 5

5. Solving the system of equations

Solving the system of equations, we get:

—4mag

o= —qg 4+
o g my + m4m1m2/M

—4m,g

D — g+t
b2 9 my + mymyms/ M

o 2(mi+ma)g
my + m4m1m2/M

Y=g

Example: A block on a Inclined Plane

Let us return to the classic problem of a block sliding down a frictionless inclined plane, as in Example 4.2, except that we will
make things a bit more interesting: now the inclined plane itself is allowed to move. Figure 4.11(a) shows the system. A block of
mass 1 rests on an inclined plane of mass M : both the block and the inclined plane are free to move without friction. The
plane’s angle is denoted by . The problem is to find the acceleration of the block

Lagrangian Mechanics
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V¥ solution

This is a classic problem. In the approach of Newton’s law, we would draw force diagrams and use the constraint of a fixed
angle to solve the system of equations to find acceleration. In Hamilton’s mechanics, we will find the Lagrange L = T —
U first.

The first observation we need to make is that the plane is not fixed. As the block slides down, it exerts a force on the plane,
causing the object to move leftward (the ground is frictionless or the force exerted by the block exceeds stative friction).

Kinetic energy of the system the includes two components: the block and the plane.

Define the coordinate system: Another thing we need to do before solving the problem is to define the coordinate system.
Let X be the horizontal distance slided by the plane, and & and ¥ be the horizontal and vertical distances slide by block.

The origin is shown in the figure.

Kinetic energy of the system is:

1.y o 1
T = 5M(X2 +Y%) + Em(:i:2 +77)

Because Y is fixed, Y =0. Then, T" us equal to (This makes sense and can be seen esaily as the plane moves in the

horizontal only. The problem uses v? = X? + Y2 to show a more comprehensive approach):

1

o, 1
T = 2MX2 - Em(a'c2 + %)

Potential energy is equal to:
U= Uplane — mgy

where Uplane is the plane’s gravitational potential energy, and the quantity remains unchanged.
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There are three variables X , & and ¢ in T". Because the degree of freedom is two (The degree of freedom of two refer to
X and Y. We start with four coordinates, X, Y, &, and . After identifying two constraints: Y is fixed and & and 9/ can be
represented using ) and c, the degree of freedom is 2), we need to replace one of the variables. Using trigonometry

=X+ Dcosa, y=—Dsina
Differentiating expressions with respect to £, we get
=X+ Dcosa, y=-Dsinc

Substituting, we get:

1 . 1 . . .
T= §MX‘" +om((X + Dcosa)® + (—Dsina)?)
1 s 1 ., .. 1 . 1 -9 .
T:§MX +§mX +mXDcosa + imD cos” o + EmD sin® o
1 oo 1 .. 1 .,
T:EMX +§mX +mXDcosa + §mD

The Lagrangian is equal to:

1

. 1 . L. 1 .
L=T-U= 2MX2 + §mX2 +mXD cosa + 5mD2 — Uplane + mgDsina

Using Euler’s equation, we get:

_ 0L _doL oL dJdL

0=3x “@ox’ "~ oD oD

Using Chain Rule, we get

0= %(MX +mX+chosa) = MX +mX +mD cosa

d ) ) . .
0 = mgsina — —(mX cosa + mD) = mgsina — mX cosa + mD

dt

This gives us a system of equations
0= (M+m)X +mDcosa
mgsina = mX cosa +mD

Solving the system of equations, we get:

—mg cos o sin

X = —
M + msin® o

= (M +m)gsina
D=-——"""5—
M + msin” o

Then, & and § are equal to:

. —mgcosasina (M +m)gsina
I = — —— COSQ
M + msin” o M + msin” o
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. Mgcosasina
W eiinl Ao iubuad

M + msin® a

(M +m)gsina
————————sina
M + msin” «

ij=—Dcosa =

(M +m)gsin® a

M + msin® a

4.6: Hamiltonian

Let the Lagrange be L = L(t, gk, qk) Using chain rule to multi-variable functions, we differentiate L with respect to time,

giving us:

dL _ 0L  0OLdg, OLdg OL OL. . OL.
dt 0t ' Oq, dt @ 0g dt 0t  og T B

dL _oL oL oL,
dt ot Oqy, @ Oqy, &

Using product rule for multi-variable functions, we recognize that:

490y 0L . d L
at *ag,” ~ ®ag, Tt g,
‘We notice that:

oL d . OL

o at ¥y =0

The Hamiltonian H of a particle is defined as:

. OL .
HE‘Ika_qk_L:(Ikpk_L (4)

where pr, = 0L / 0. From the equation, we can see that:

oL __d
ot dt

The result is interesting if L is not an explicit function of time. For example, if 0L / Ot = 0, H is equal to a constant and thus

H is conserved.

If L is not an explicit function of time, O.L / Ot = 0, so the Hamiltonian H is conserved, giving us a first integral of

ax=

motion.

Lagrangian Mechanics
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Though the Hamiltonian seems to be an abstract quantity, it is closely related to energy. Suppose that a particle is free to move in
three dimensions in a potential U (w, Y, z) without constraints, and that we are using Cartesian coordinates. Momentums are
Pz = M, p, = my, and p, = mz. Then, ) . ¢xpy = m(&? + * + 22). The Hamiltonian is equal to:

4.6.1: Interpretation of the Hamiltonian
1
H = gipy — L=m(@’ +§* + 2*) — om(@” +§° + 2°) + U
This is equal to:

1
H:5m(i~2+,@2+22)+U:E

where F is the total energy of the system. In this example, the Hamiltonian H represents the conserved quantity of £ = T' +
U. However, be aware that there are cases in which H Vi E, although often it is equal to E. In the next section, we will explain
the precise conditions for which H 7 E.

Is H always equal to © = T' 4 U? The answer is no, although very often it is. The precise conditions for which
H = E are worked out in Section 4.7.

=

Example: Bead on a Rotating Parabolic Wire

Suppose we bend a wire into the shape of a vertically oriented parabola defined in cylindrical coordinates by z = ap2 ,as
illustrated in Figure 4.12: here Zz is the vertical coordinate, and p is the distance of a point on the wire from the vertical axis of
symmetry. Using a synchronous motor, we can force the wire to spin at constant angular velocity w about its symmetry axis.
Then we slip a bead of mass m onto the wire and we want to determine its equation of motion — assuming that it slides without

friction along the wire.

V¥ solution

Given that we are using cylindrical coordinates, we know that positions are described by:

position = s = (p, pp, 2)
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Differentiating each components with respect to t, v?is equal to:
v = 0 + p* + (2app)’
Because the wire spins at a constant angular velocity w, angle ¢ is equal to:
p=wt, and Pp=w

Then, kinetic energy T is equal to:

1 1 1
T = gmv* = om(p” + p'w’ + (2app)’) = 5m(p*(1 +4a%p®) + p’w?)

The gravitational potential energy of the bead is equal to
U = mgz = mgap®

The Lagrange L = T' — U is equal to:
1
L=T-U-= im(p2(1 + 40?p?) + p*w?) — mgap®

From the above expression, we can see that L = L(t, Dy p). Using Euler’s equation, the Lagrange equation is equal to:

0L dOL 1 .., p .
- — = _ B _a 1
dp dt dp 5P (807 p) + 2pw) — 2mgap — — (m(1 + 4a”p%)p)

Rearranging the equation, we get:

0 = (1+4a®p?)p + 40’ pp® + (290 — *)p

4.7: When is H =€

In the example from 4.6, the Hamiltonian H is conserved and F is not. The question becomes why are they different and why
was H conserved while F/ was not?
Recall that the Hamiltonian is defined as
H = gwpr — L
where L is the Lagrange and is equal to L. = T' — U The expression becomes:
H=g¢p. —T+U

Letr (qk, t) be the position vector is the particle from some arbitrary origin fixed in an inertial frame, represented using

generalized coordinates gy, and time. The velocity of the partcile is:

r(q,t) Or = Or |

dt ot Og?

The kinetic energy of the particle is:
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The dot product of v - v is equal to:

dr Or B or

H-E-mZ . _g_,. &
™t ot P 5t

(5)

where p is the momentum of the particle in the chosen inertial frame. From the equation, we can see that the Hamiltonian is
equal to energy H = F if Or / Ot = 0. This occurs when there are no constraints of when any constraints are fixed in place

(the particle is not moving/stationary). When constraints are moving, they generally depend on time, causing H Va E.

4.9 Small Oscillations about Equilibrium

In general, many if not most mechanical systems can be accorded an energy of the form

constant x ¢; + U.s7(qr) = E

Using Taylor expansion, the effective potential is equal to:

du, du?
Uess(q) = Ueff(q) + dqff oo (g — q0) + dq§f1qo(q—qo)2+~"

At the equilibrium point, dU, 7 /dq = 0, and the third term is in the form of 1/2k. s7(q — o )?. We define the second

derivative of the effective potential the effective spring constant.

L 5= dUgff T
off = — =
dq2 eff

Angular frequency w is equal to:
W= ke ff — "
\/ m V “eff

In Example 4.4 we considered a particle moving on a frictionless tabletop subject to a central Hooke’s-law spring force. There is

Example:

an equilibrium radius for given energy and angular momentum for which the particle orbits in a circle of some radius r0. We
now want to find the oscillation frequency  for the mass about the equilibrium radius if it were perturbed slightly from this
circular orbit.
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