Proof [182 marks]

1a. show that (2n — 1)2 + (2n + 1)2 — 8n2 4+ 2, wheren € Z. [2 marks]

Markscheme

attempting to expand the LHS (M1)

LHS = (4n* —4n +1) + (4n* +4n+1) A1
= 8n? +2(=RHS) AG

[2 marks]

1b. Hence, or otherwise, prove that the sum of the squares of any two [3 marks]
consecutive odd integers is even.

Markscheme

METHOD 1

recognition that 2n — 1 and 2n + 1 represent two consecutive odd integers
(form€7Z) R1

8n*+2=2(4n*+1) A1
valid reason eg divisible by 2 (2 is a factor) R1

so the sum of the squares of any two consecutive odd integers is even AG
METHOD 2

recognition, eg that ,, and n + 2 represent two consecutive odd integers (for
n € 7.) R1

n?+(n+2)°=2m>+2n+2) A1

valid reason eg divisible by 2 (2 is a factor) R1

so the sum of the squares of any two consecutive odd integers is even AG
[3 marks]



2a. Explain why any integer can be written in the form 4k or 4k + 1 or [2 marks]
4k + 2 or 4k + 3, where k € Z.

Markscheme

Upon division by 4 M1
any integer leaves a remainder of 0, 1,2 or 3. RI1

Hence, any integer can be written in the form 4k or4k+ 1 or4k + 2 or 4k + 3
,whereke Z AG

[2 marks]

2b. Hence prove that the square of any integer can be written in the form 4t /6 marks]
ordt+ 1, wheret € Z*.

Markscheme

(4k)® = 16k2 = 4t  M1A1
(4k+1)° =16k +8k+1=4t+1  MIAL
(4k+2)° = 16k2 + 16k +4 =4t A1

(4k+3)° = 16k> + 24k +9 =4t +1 A1

Hence, the square of any integer can be written in the form 4t or 4t + 1,
wheret € Z*. AG

[6 marks]

The function f is defined by f(z) = Zﬂz forz € R, x # —%.

The function g is defined by g (z) = %, xER, ©#2

3. Express g (z) in the form A + % where A, B are constants. [2 marks]



4a. Show that 1

Markscheme
g(z)=2+ ﬁ AlA1
[2 marks]

Vn+v/n+l

Markscheme

- =+/n+1—/nwheren >0, neZ [2 marks]

* This question is from an exam for a previous syllabus, and may contain

minor differences in marking or structure.

1 Vntl-y/n

1 _
ey e Yy e G < Y

_ Vntl—y/n Al

(n+1)—n

=yn+1—-,/n AG

[2 marks]

4b. Hence show that /2 — 1 < -,

V2

Markscheme
V2-1= 2

< % AG

[2 marks]

[2 marks]

[9 marks]

Prove, by mathematical induction, that r=1 ir >, /nforn>2, necZ.

<,



Markscheme

consider the case n = 2: required to prove that1 + -1 > /2 M1

/2
1 E—
from part (b) 7 >4/2-1
hence 1 + % > 4/2istrueforn =2 Al
r=k
now assume true forn = k : r=1 % >k M1
1 V1
:E—%.“+—;i>>v%
attempt to prove true forn = k+1: = + i k+1
\/— \/—

(M1)
from assumption, we have that L4+ X Vi M1

\/_ VE \/_
so attempt to show that Vk k+1 (M1)
EITHER

k+1-—

(from part a), which is true A1

1 1
> ;
VE+1 VE+VEFL

OR

VE+1V/E+1
vr+—¢ﬁr — Al
> “;ﬁfl VEF1 Al
THEN

so true forn = 2 and n = k true = n = k + 1 true. Hence true for all n > 2
R1

Note: Award R1 only if all previous M marks have been awarded.
[9 marks]
Total [13 marks]



5. Use mathematical induction to prove that dd—;(:vep‘”): p"L(px + n)err [7 marks]
forneZ", p e Q.

Markscheme

* This question is from an exam for a previous syllabus, and may contain
minor differences in marking or structure.
n=1: LHS = d(je;x) = xpeP? + eP*=(pzr + 1)eP*, RHS = p'(pz + 1)eP”

LHS = RHS sotrueforn=1: Al

Note: Award A1 if n = 0 is proved.

k
assume proposition true for n = k, i.e. dd—ﬁ(xepw)z pFYpz + k)eP* M1

Notes: Do not award M1 if using n instead of k.
Assumption of truth must be present.
Subsequent marks are not dependent on this M1 mark.

& o)=L (L (o)) My
— d% (pk_l(pa: + k)em’) M1

= p(pz + k)peP® + P2 (p*)
= pF(pz + k)er® +er*(p*) A1

Note: Award A1 for correct derivative.

=pF(pz + k+1)eP* Al

Note: The final A1 can be awarded for either of the two lines above.

hence true forn =1and n = ktrue = n = k -+ 1 true R1

therefore true for all n € Z*
Note: Only award the final R1 if the three method marks have been awarded.

[7 marks]



6. Consider the function f (z) = ze?*, where = € R. The n'® derivative of [7 marks]
f () is denoted by £ (z).

Prove, by mathematical induction, that f(? (z) = (2"z + n2" ') **, n € Z*.

Markscheme

f'(z) = e*® + 2ze** A1

Note: This must be obtained from the candidate differentiating f ().
= (2'z+1x2'")e* A1

(hence true forn = 1)

assume true for n = k: M1
&) (z) = (2’%13 + k2k_1> e’z

Note: Award M1 if truth is assumed. Do not allow “letn = k”.
considern = k + 1:

£ (2) = & (2o + k2t 1) )

attempt to differentiate f*) (z) M1

FE () = 2¥e + 2 (2a + k2 L) e Az
FED (z) = (2k + okt 4 k2"’> e%®

D) () = (2k+1;c +(k+1) 2k) e Al

_ (2k+1$Jr (k+1) 2(k+1)—1) 20

True forn = 1 and n = k true implies true forn = k + 1.
Therefore the statement is true for alln (€ Z*)  R1

Note: Do not award final R1 if the two previous M1s are not awarded. Allow
full marks for candidates who use the base case n = 0.

[7 marks]

7a. Solve the inequality 22 > 2z + 1. [2 marks]



Markscheme

* This question is from an exam for a previous syllabus, and may contain
minor differences in marking or structure.

r< —0.414, £ > 241 AlAl1

<x<1— 2, x> 1+ﬁ)

Note: Award A1 for —0.414, 2.41 and A1 for correct inequalities.
[2 marks]

7b. Use mathematical induction to prove that 2" > n2 forn € Z, n > 3. [7 marks]

Markscheme

check forn = 3,

16 > 9 so true whenn =3 Al

assume true forn = k

28l > 2 M1

Note: Award MO for statements such as “letn = k”.

Note: Subsequent marks after this M1 are independent of this mark and can
be awarded.

prove trueforn =k+1
ok+2 _ o o 9k+1
> 2k? M1
=k+k  (mM1)
> k? 4+ 2k + 1 (from part (a)) Al
which is true for k = 3 R1

Note: Only award the A1 or the R1 if it is clear why. Alternate methods are
possible.

= (K+1)°

hence if true forn = k true forn = k+ 1, true forn = 3 so true foralln = 3
R1

Note: Only award the final R1 provided at least three of the previous marks
are awarded.

[7 marks]



n [6 marks]
2.

Use mathematical induction to prove that =17 (7!) = (n +1)! — 1, for
neZzt.

Markscheme

* This question is from an exam for a previous syllabus, and may contain
minor differences in marking or structure.

considern =1. 1(1!) =1and 2! — 1 =1 therefore trueforn=1 R1

Note: There must be evidence that n = 1 has been substituted into both
expressions, or an expression such LHS=RHS=1 is used. “therefore true for
n = 1” or an equivalent statement must be seen.

k

assume true forn =k, (so thatr=17(r!) = (k+1)! —1) M1

Note: Assumption of truth must be present.

considern =k+1
k+1 k

2. 2.

r=lr(r))=r=1r(r) +(k+1)(k+1)! (MI1)
=(k+1)!'—-1+(k+1)(k+1)! Az

= (k+2)(k+1)!'—-1 M1

Note: M1 is for factorising (k+ 1) !

— (k+2)!-1
— (k+1)+1)!—1

so if true for n = k, then also true forn = k+ 1, and as true forn = 1 then
true foralln (€ Z*) R1

Note: Only award final R1 if all three method marks have been awarded.
Award RO if the proof is developed from both LHS and RHS.

[6 marks]



9. Use the principle of mathematical induction to prove that [7 marks]

1+2(2) +3(3) +4(3) + ... +n(d)" =4- 22 wheren € Z*

Markscheme

* This question is from an exam for a previous syllabus, and may contain
minor differences in marking or structure.

ifn=1
LHS:1;RHS:4—%:4—3:1 M1
hence true forn =1

assumetrueforn =%k M1

Note: Assumption of truth must be present. Following marks are not
dependent on the first two M1 marks.

01+2(3)+3(3) +4(3)°+ ... +k(3) T =4 E2
ifn=k+1

1+2(3) +3(3)° +4(2)° + ... + k(D) T+ (k+1) (3)
—4— 22 (k1) (1) m1a1

2k—1

k

finding a common denominator for the two fractions M1

_ 2(k+2) | K+l
— 4 - 2k %_ 2k

g 204D -(AD) 4 ki3(: 4_ (k+1)+2) o

2k 2k 2(k+1)71

hence if true for n = k then also true forn = k+ 1, as true forn = 1, so true
(forallm € Z") R1
Note: Award the final RI only if the first four marks have been awarded.

[7 marks]

10. Use mathematical induction to prove that (1 — a)” > 1 — na for [7 marks]
{n:ne€Z*, n>2}wherel<a<1.



Markscheme

* This question is from an exam for a previous syllabus, and may contain
minor differences in marking or structure.

Let P, be the statement: (1 — a)” > 1 — na for some n € Z*, n > 2 where
0<a<1considerthecasen=2: (1—a)’=1—2a+a®> M1

> 1 — 2a because a? < 0. Therefore P5 is true  RI
assume P,, is true for some n = k
(1—a)">1—ka M1

Note: Assumption of truth must be present. Following marks are not
dependent on this M1.

EITHER

consider (1 —a)"' = (1—a)(1—a)" M1
>1—(k+1)a+ka® A1

>1—(k+1)a= Py, istrue (as ka®> > 0) R1

OR

multiply both sides by (1 — a) (which is positive) M1
(1—a)*' > (1 —ka)(1—a)
1-—a)">1—(k+1)a+ka® A1

(1—a)*"'>1— (k+1)a= Py, is true (as ka> > 0) RI

THEN

P, is true Py, is true = Py is true so P,, true for all n > 2 (or equivalent)
R1

Note: Only award the last R1 if at least four of the previous marks are gained
including the A1.

[7 marks]

Consider the function f,,(z) = (cos2x)(cos4z)...(cos2"x),n € Z™.

11a. Determine whether f,, is an odd or even function, justifying your [2 marks]
answer.



Markscheme

* This question is from an exam for a previous syllabus, and may contain
minor differences in marking or structure.

even function Al
since cos kxz = cos(—kx) and f,(x) is a product of even functions R1

OR
even function Al
since (cos2x)(cos4zx)...= (cos(—2z)) (cos(—4z))... RI1

Note: Do not award AOR1.

[2 marks]

11b. By using mathematical induction, prove that [8 marks]

sontl
folz) = 5213521—112;’, r # BT where m € Z.



Markscheme

considerthecasen =1

Sl¥14:p — 2s1n2.mcos2x — cos 2x M1
2sin 2y 2sin 2y

hencetrueforn =1 R1

assume true for n = k, je, (cos 2x)(cos4zx) . .. (cos 2Fz) = Sif:?_kﬂx M1
2%sin 2

Note: Do not award M1 for “let n = k” or “assume n = k" or equivalent.

considern = k -+ 1:
fr1(z) = fr(z)(cos 2" 'z)  (M1)

g 2k+1

= 2 _Teog2htly Az
2¥sin 22
2sin 2814 cos 281y

- Al

2k lgin 24

_ sin2F?g
_ 2k+1

Al

sin 233

son = 1true and n = ktrue = n = k+ 1 true. Hence true forall n € Z+
R1

Note: To obtain the final R1, all the previous M marks must have been
awarded.

[8 marks]

11c. Hence or otherwise, find an expression for the derivative of f,,(z) with /3 marks]
respect to x.



Markscheme

! !/
VU —Uuv

attempt to use f’ = (or correct product rule) M1
’U2
f/ (ZU) o (2"sin 2z) (2" cos 27T z) — (sin 21 ) (27 cos 22 AIAT
nATs (2" sin 2z)°

Note: Award AI for correct numerator and A1 for correct denominator.

[3 marks]

11d. Show that, for n > 1, the equation of the tangent to the curve [8 marks]
y= fo(z)atz= T isdr -2y — 7 =0.

Markscheme

Mgin & 2n+1 2n+11 (s 2n+11 2n+1 T
flr/l (%) _ ( 51112)( COS 4) (Sln 4)( COS 2) (M1)(A1)

. \2
(2”sm 5)

on)(2ntl gog 2ntln
fi(5) = il o D (az)

= 2cos 2"“% (=2cos2™ ') A1

fl (g) =2 Al
ful5) =0 a1

Note: This A mark is independent from the previous marks.

y=2(x—2) M1A1
de —2y—nm=0 AG

[8 marks]

12. Use the method of mathematical induction to prove that4” + 15n — 1 is [6 marks]
divisible by 9 forn € Z™.



Markscheme

* This question is from an exam for a previous syllabus, and may contain
minor differences in marking or structure.

let P(n) be the proposition that 4” + 15n — 1 is divisible by 9
showing trueforn =1 Al
jeforn=1,4'+15x1—1=18

which is divisible by 9, therefore P(1) is true

assume P(k) istrue so 4* + 156k — 1 =94, (A€ Z*) M1

Note: Only award M1 if “truth assumed” or equivalent.

consider 4¥™1 + 15(k+ 1) — 1

=4 x 4% + 15k + 14

=4(9A — 15k + 1) + 15k + 14 M1

—4x9A — 45k + 18 A1

= 9(4A — 5k + 2) which is divisible by 9  RI

Note: Award RI1 for either the expression or the statement above.

since P(1) is true and P(k) true implies P(k + 1) is true, therefore (by the
principle of mathematical induction) P(n) is true forn € Z* R1

Note: Only award the final R1 if the 2 M1s have been awarded.

[6 marks]

13. Prove by mathematical induction that [9 marks]

G000 - () memncnss

Markscheme



* This question is from an exam for a previous syllabus, and may contain
minor differences in marking or structure.

() ()~ (3)-()

show true form =3 (M1)

tis = (5) —1rus—(3) =1 az
2 3

hence true forn = 3

assumetrueforn—k'(2)+(3)+(4>+ _|_<k_1>_(k>
— O 2 2 2 e o 2 = 3

M1

considerforn—k—l—l'(2)+(3)—|—(4)+ +(k_1)_|_(k>
B T\ 2 2 2) 2 2

(M1)

(0)-() -

_ k! k! _ 1 3 . .
= aE + 2)] (— 3l [(k_g)! + (k—2)!D or any correct expression with a
visible common factor (A1)

R [k—2+3
3| (k—2)!

- ]?f_: [(:jzl)!]

Note: At least one of the above three lines or equivalent must be seen.

} or any correct expression with a common denominator (A1)

(k1)
o 3(k—2)!

(%)

Result is true for k = 3. If result is true for k it is true for k + 1. Hence result is
true for all kK > 3. Hence proved by induction. RI

or equivalent A1

Note: In order to award the R1 at least [5 marks] must have been
awarded.

[9 marks]



14a. Find the value of sin 7 T 4 sin ﬁ + sin ﬁ + gin 1= 7+ sin 9I [2 marks]

Markscheme

* This question is from an exam for a previous syllabus, and may contain
minor differences in marking or structure.

or_VE L VR VB VB BB
2

sm T4 sm + sm + sm + sin 1
(M1)A1

Note: Award M1 for 5 equal terms with \) +\) or — signs.

[2 marks]

14b. show that 1= Consj”” = sinz, = # km where k € Z. [2 marks]

Markscheme

1—COS 2$ . 1_(1—2Sin2$) M1

2sing 2sing
— Zins 4
2sing
=sinx AG
[2 marks]
14c. Use the principle of mathematical induction to prove that [9 marks]

sinz 4 sin3z + ... +sin(2n — 1)z = =582 n ¢ 7+, ¢ +# kr where k € Z.

2sing



Markscheme

let P(n) :sinz+sin3z+ ... +sin(2n — 1)z = Pfﬂ
sin
ifn=1
P(1): % = sin z which is true (as proved in part (b)) RI
assume P(k) true, sinz +sin3z + ... +sin(2k — 1)z = I_;Oﬂ M1
sinx

Notes: Only award M1 if the words “assume” and “true” appear. Do not
award M1 for “let n = k”only. Subsequent marks are independent of this M1.

consider P(k + 1):

P(k+1):sinz+sin3z+...+sin(2k— 1)z +sin(2k+ 1)z = w
LHS =sinz+sin3x+ ... +sin(2k — 1)z +sin(2k+ 1)z M1
= locosZhe | gin(2k+ 1)z Al

2sing

_ 1—cos2kz+2singsin(2k+1)z

2sing

_ 1—cos2kz+2sing cos x sin 2ka:—|—2sin2a: cos 2kx
= . M1
2sing
1— ((1—2sin’z) cos 2kx —sin 2z sin 2kz)
= M1

2sing

__ 1—(cos 2z cos 2kx—sin 2z sin 2kz) Al

2sing

_ 1-—cos(2kz+2z)

Al

2sing
_ 1—cos2(k+1)z

2sing

so iftrueforn =k, thenalsotrueforn=%k-+ 1

as true forn = 1thentrueforalln € Z™ R1

Note: Accept answers using transformation formula for product of sines if
steps are shown clearly.

Note: Award R1 only if candidate is awarded at least 5 marks in the previous
steps.

[9 marks]



14d. Hence or otherwise solve the equation sin ¢ + sin 3x = cos x in the [6 marks]
interval 0 < x < .

Markscheme

EITHER

1—cos4y

: =cosx M1
2sing

sinz + sin 3z = cos ¢ =
= 1 — cosdx = 2sinzcosz, (sinz #0) Al
= 1— (1 —2sin*2z) =sin2z M1

= sin 2z(2sin2z —1) =0 M1
ésin2m:Oorsin2w:% Al

2¢ =7, 22 = T and 2z = X

6 6
OR
sinx + sin3x = cosx = 2sin2xcosx = cosx MI1A1
= (2sin2zx — 1)cosz =0, (sinz #0) MIAI

= sin 2x = % ofcost =0 A1

S — 5m I
2x = 5 2 = s and T = 5
THEN
o _ T _m _ o7
S T=5,T=gandr =15 Al

Note: Do not award the final A1 if extra solutions are seen.

[6 marks]

.. 3
15a. Use de Moivre’s theorem to find the value of (cos(%) + 13111(%)) ) [2 marks]



Markscheme

* This question is from an exam for a previous syllabus, and may contain
minor differences in marking or structure.

(cos(%) + isin(%))g —cosm+isinmt M1
=—-1 Al

[2 marks]

15b. Use mathematical induction to prove that [6 marks]

(cos@ —isinf)" = cosnf —isinnb forn € Z™.

Markscheme

show the expression is true forn =1 R1
assume true forn = k, (cosf —isin6)* = coskf — isinkf M1

Note: Do not accept “let n = k” or “assume n = k”, assumption of truth
must be present.

(cos @ — isin 0)F! = (cos @ — isin 6)*(cos f — isin 6)

= (cos kf — isin kf)(cos @ — isinf) M1

= cos kO cos 0 — sin kfsin 0 — i(cos kfsin 0 + sin kfcos ) A1
Note: Award A1 for any correct expansion.

= cos((k+1)0) —isin((k+1)0) A1

therefore if true for n = k true forn = k+ 1, true for n = 1, so true for all
n(€Zt) R1

Note: To award the final R mark the first 4 marks must be awarded.
[6 marks]

Let 2z = cos @ + 2sin 6.

15c. Find an expression in terms of 6 for (2)" + (2*)*, n € Z" where z*is [2 marks]
the complex conjugate of z.



Markscheme

(2)" + (2%)" = (cos @+ isin )" + (cos 6 — isin 0)"

= cosnf + isinnf + cosnb — isinnf = 2cos(nh) (M1)A1
[2 marks]

15d. (i) Show that zz* = 1. [5 marks]

(i)  Write down the binomial expansion of (z + 2*)3 in terms of z and z*.

(iii)  Hence show that cos 30 = 4 cos® 6 — 3 cos 6.

Markscheme

(i) 2zzk = (cosf+ isinf)(cosf — isinb)

= cos?0+sin’0 A1

=1 AG

Note:  Allow justification starting with |z| = 1.

(i) (z+ 2%)3 = 23 4 3222* + 32(2*)2 + (2*)3 (: 23+ 32+ 32% + (z*)3)
Al

(i) (z+2%)% = (2cos6)® A1

22+ 32+ 32%+ (2%)3 = 2cos30 + 6cos MI1A1

cos 30 = 4cos® 0 — 3cosf AG

Note: M1 is for using zz* = 1, this might be seen in d(ii).

[5 marks]

15e. Hence solve 4cos®> 0 — 2cos20 —3cosf+1=0for0 < 0 < . [6 marks]



Markscheme

4cos®0 —2cos?’0 —3cosf+1=0
4cos®0 — 3cosf =2cosf—1

cos(30) = cos(20) Al1A1

Note: A1 for cos(36) and A1 for cos(26).
0=0 A1

or 3¢ = 27 — 26 (or 30 = 4w — 20) M1
0=, T AlAl

Note: Do not accept solutions via factor theorem or other methods that do
not follow “hence”.

[6 marks]

16. Use mathematical induction to prove that n(n? + 5) is divisible by 6 for [8 marks]
nezr.



Markscheme

* This question is from an exam for a previous syllabus, and may contain
minor differences in marking or structure.

let P(n) be the proposition that n(n? + 5) is divisible by 6 for n € Z*
consider P(1):

whenn =1, n(n?+5) =1 x (12 +5) = 6 and so P(1) is true ~ R1
assume P (k) is true /e, k(k* + 5) = 6m where k, m € Z* M1
Note: Do not award M1 for statements such as “let n = k".
consider P(k+ 1):

(k+1) ((k:+ 1)2+5) M1

= (k+1)(k* + 2k + 6)

=k +3k*+8k+6 (A1)

= (k* + 5k) + (3k> + 3k +6) A1
=k(k*+5)+3k(k+1)+6 A1

k(k+ 1) is even hence all three terms are divisible by 6 ~ R1

P(k+ 1) is true whenever P (k) is true and P(1) is true, so P(n) is true for
nc€Z" R1

Note: To obtain the final R1, four of the previous marks must have been
awarded.

[8 marks]

17a.Show that sin(0+ %) = cosé. [1 mark]



Markscheme

* This question is from an exam for a previous syllabus, and may contain
minor differences in marking or structure.

sin(H—I— %) = sin 6 cos % + cos@sin% M1

=cosf AG

Note: Accept a transformation/graphical based approach.
[1 mark]

17b. Consider f(z) = sin(ax) where a is a constant. Prove by mathematical /7 marks]
induction that f(”(z) = a”sin(az + ) where n € Z* and f"(z) represents
the n'® derivative of f(z).

Markscheme

considern =1, f'(z) = acos(ax) M1

since sin (aa: == %) = cos ax then the proposition is true form =1 R1

assume that the proposition is true forn = k so f*)(z) = a*sin (az + k—;)
M1
d(F® (g -
fe (@) = WD (= g (ot cos(az+ 1)) M2
= a*!sin(az + k—; + 7) (using part (a)) AI

— akt1lsin (aw + (kgl)ﬂ) Al

given that the proposition is true for n = k then we have shown that the
proposition is true for n = k + 1. Since we have shown that the proposition is

true for n = 1 then the proposition is true foralln € Z* R1

Note: Award final R1 only if all prior M and R marks have been awarded.
[7 marks]
Total [8 marks]



Let y(z) = ze3*,z € R.

18a. Find :il_i' [2 marks]

Markscheme

* This question is from an exam for a previous syllabus, and may contain
minor differences in marking or structure.

j—i =1x e + x x 3e3 = (e’ 4 3ze3*) M1A1

[2 marks]

18- proye by induction that % = n3" le3 + x3"e forn € Z*. [7 marks]



Markscheme

let P(n) be the statement % = n3" e + z3neds

proveforn=1 M1

LHSof P(1) is j—z which is 1 x €% 4 x x 3e3* and RHS is 3%e?* + z3'e’”
R1

as LHS = RHS, P(1) is true

assume P(k) is true and attempt to prove P(k+ 1) is true M1

. d* _
assuming — = k3k 1e3z 4 p3kede

dzk
&y — d dy (M1)
dwk+1 dz dzk

= k3% x 3e37 + 1 x 3kedr + 23 x 3e’r A1
= (k+1)3ke3* + £3%e3 (asrequired) AI

Note: Can award the 4 marks independent of the M marks

since P(1) is true and P(k) is true = P(k+ 1) is true
then (by PMI), P(n) is true (Yn € Z") R1

Note: To gain last RI at least four of the above marks must have been
gained.

[7 marks]

18c. Find the coordinates of any local maximum and minimum points on the [5 marks]
graph of y(z).
Justify whether any such point is a maximum or a minimum.



Markscheme

e3“'—|-:13><3e3m:0:>1—|—3x:0:>a::—% MI1A1
P 1 1
point is (—3, — g) Al
EITHER
d2
=¥ — 2 x 3e% 4z x 3%
dz
d2
when x = —%, d—y2 > 0 therefore the point is a minimum M1A1
xZr
OR
1
. _1
3
ﬂ —ve 0 +ve
dx
nature table shows point is a minimum  MI1IA1
[5 marks]
18d. Find the coordinates of any points of inflexion on the graph ofy(a:). [5 marks]

Justify whether any such point is a point of inflexion.

Markscheme

d2
d—;:2><3e3$—|—a:><32e3$ Al
2><3e3f"+a:><32639”:():>2+3m:0:>m:—% M1A1
S 2 2
point is (—g, —@) Al
X _2
3
ji':’ —ve 0 +ve

since the curvature does change (concave down to concave up) it is a point of
inflection R1

Note: Allow 3¢ derivative is not zero at —%

[5 marks]
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