Proof [182 marks]

 ${\mathcal{A}}$ - Show that $\left(2n-1\right) ^{2}+\left(2n+1\right) ^{2}=8n^{2}+2$, where $n\in\mathbb{Z}$. [2 marks]

Markscheme attempting to expand the LHS **(M1)** $\mathsf{LHS} = \left(4n^2 - 4n + 1\right) + \left(4n^2 + 4n + 1\right)$ **AI** $= 8n^2 + 2$ (= RHS) **AG [2 marks]**

1b. Hence, or otherwise, prove that the sum of the squares of any two consecutive odd integers is even. [3 marks]

Markscheme

METHOD 1

recognition that $2n-1$ and $2n+1$ represent two consecutive odd integers (for $n \in \mathbb{Z}$) **R1**

A1 $8n^2+2=2(4n^2+1)$

valid reason eg divisible by 2 (2 is a factor) **R1**

so the sum of the squares of any two consecutive odd integers is even **AG**

METHOD 2

recognition, eg that $\frac{n}{n}$ and $n+2$ represent two consecutive odd integers (for) **R1** $n \in \mathbb{Z}$

A1 $n^2 + (n+2)^2 = 2\left(n^2 + 2n + 2\right)$

valid reason eg divisible by 2 (2 is a factor) **R1**

so the sum of the squares of any two consecutive odd integers is even **AG**

[3 marks]

2a. Explain why any integer can be written in the form $4k$ or $4k+1$ or $4k+2$ or $4k+3$, where $k\in\mathbb{Z}$.

[2 marks]

Markscheme Upon division by 4 **M1** any integer leaves a remainder of 0, 1, 2 or 3. **R1** Hence, any integer can be written in the form $4k$ or $4k+1$ or $4k+2$ or $4k+3$, where $k \in \mathbb{Z}$ **AG [2 marks]**

2b. Hence prove that the square of any integer can be written in the form $4t$ [6 marks] or $4t + 1$, where $t \in \mathbb{Z}^+$.

Markscheme

 $(4k)^2 = 16k^2 = 4t$ **M1A1 M1A1** $(4k+2)^2 = 16k^2 + 16k + 4 = 4t$ **Al** $(4k+3)^2 = 16k^2 + 24k + 9 = 4t + 1$ **Al** Hence, the square of any integer can be written in the form $4t$ or $4t+1$, where $t \in \mathbb{Z}^+$. **AG [6 marks]** $\left(4k+1\right) ^{2}=16k^{2}+8k+1=4t+1$

The function
$$
f
$$
 is defined by $f\left(x\right)=\frac{ax+b}{cx+d}$, for $x\in\mathbb{R},\;x\neq-\frac{d}{c}.$

The function g is defined by $g\left(x\right) = \frac{2x - 3}{x - 2}, \,\, x \in \mathbb{R}, \,\, x \neq 2$

3. Express $g(x)$ in the form $A + \frac{B}{x-2}$ where A, B are constants. [2 marks]

Markscheme $g(x) = 2 + \frac{1}{x-2}$ **A1A1 [2 marks]**

4a. Show that
$$
\frac{1}{\sqrt{n}+\sqrt{n+1}} = \sqrt{n+1} - \sqrt{n}
$$
 where $n \ge 0$, $n \in \mathbb{Z}$. [2 marks]

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

$$
\frac{1}{\sqrt{n}+\sqrt{n+1}} = \frac{1}{\sqrt{n}+\sqrt{n+1}} \times \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+1}-\sqrt{n}}
$$
 M1
\n
$$
= \frac{\sqrt{n+1}-\sqrt{n}}{(n+1)-n}
$$
 A1
\n
$$
= \sqrt{n+1} - \sqrt{n}
$$
 AG
\n[2 marks]

 4 b. Hence show that $\sqrt{2}-1<\frac{1}{\sqrt{2}}.$

[2 marks]

Markscheme\n
$$
\sqrt{2}-1=\frac{1}{\sqrt{2}+\sqrt{1}}
$$
\n
$$
< \frac{1}{\sqrt{2}}
$$
\n
$$
< 4G
$$
\n
$$
[2 \text{ marks}]
$$

4c.

Prove, by mathematical induction, that $r=1\frac{1}{\epsilon}>\sqrt{n}$ for $n\geq 2,\; n\in\mathbb{Z}.$ *r*=*n* ∑ $\frac{1}{\sqrt{r}} > \sqrt{n}$ for $n \geq 2, \; n \in \mathbb{Z}$ [9 marks]

consider the case $n=2$: required to prove that $1+\frac{1}{\sqrt{2}}>\sqrt{2}$ **M1** from part (b) $\frac{1}{\sqrt{2}} > \sqrt{2} - 1$ hence $1 + \frac{1}{\sqrt{2}} > \sqrt{2}$ is true for $n=2$ **A1** now assume true for $n=k$: $\overline{r=1} \stackrel{1}{\leftharpoonup} > \sqrt{k}$ **M1** attempt to prove true for $n=k+1: \frac{1}{\sqrt{1}}+\ldots+\frac{\sqrt{1}}{\sqrt{k}}+\frac{1}{\sqrt{k+1}} > \sqrt{k+1}$ (**M1)** from assumption, we have that $\frac{1}{\sqrt{1}} + \ldots + \frac{\sqrt{1}}{\sqrt{k}} + \frac{1}{\sqrt{k+1}} > \sqrt{k} + \frac{1}{\sqrt{k+1}}$ *M1* so attempt to show that $\sqrt{k} + \frac{1}{\sqrt{k+1}} > \sqrt{k+1}$ (*M1) r*=*k* ∑ $\widetilde{r=1} \, \frac{1}{\sqrt{r}} > \sqrt{k}$ $\frac{1}{\sqrt{1}} + \ldots + \frac{\sqrt{1}}{\sqrt{k}} > \sqrt{k}$ $\sqrt{1}$ \sqrt{k} $\sqrt{1}$ \sqrt{k} 1 $\sqrt{k+1}$ $\sqrt{1}$ \sqrt{k} 1 $\sqrt{k+1}$ 1 $\sqrt{k+1}$

EITHER

$$
\frac{1}{\sqrt{k+1}} > \sqrt{k+1} - \sqrt{k} \quad \text{A1}
$$
\n
$$
\frac{1}{\sqrt{k+1}} > \frac{1}{\sqrt{k} + \sqrt{k+1}}, \text{ (from part a), which is true} \quad \text{A1}
$$
\nOR

$$
\sqrt{k} + \frac{1}{\sqrt{k+1}} = \frac{\sqrt{k+1}\sqrt{k}+1}{\sqrt{k+1}} \quad \text{A1}
$$

$$
> \frac{\sqrt{k}\sqrt{k}+1}{\sqrt{k+1}} = \sqrt{k+1} \quad \text{A1}
$$

THEN

so true for $n=2$ and $n=k$ true \Rightarrow $n=k+1$ true. Hence true for all $n\geq 2$ **R1**

Note: Award **R1** only if all previous **M** marks have been awarded.

[9 marks] Total [13 marks] 5. Use mathematical induction to prove that $\frac{d^n}{dx^n}(xe^{px})=p^{n-1}(px+n)e^{px}$ for $n\in\mathbb{Z}^{+},\ p\in\mathbb{Q}.$ [7 marks]

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

 $\text{LHS} = \text{RHS}$ so true for $n = 1$: **A1** $n=1: \text{ LHS} = \frac{\mathrm{d}\left(x\mathrm{e}^{px}\right)}{\mathrm{d}x} = x p \mathrm{e}^{px} + \mathrm{e}^{px} {=} (px+1) \mathrm{e}^{px}, \ \text{RHS} = p^0 (px+1) \mathrm{e}^{px}$

Note: Award AI if $n = 0$ is proved.

assume proposition true for $n=k$, i.e. $\frac{\mathrm{d}^k}{\mathrm{d}x^k}(x\mathrm{e}^{px})=p^{k-1}(px+k)\mathrm{e}^{px}$ *M1* dx^k

Notes: Do not award **M1** if using n instead of k. Assumption of truth must be present. Subsequent marks are not dependent on this **M1** mark.

$$
\frac{d^{k+1}}{dx^{k+1}}(xe^{px}) = \frac{d}{dx}\left(\frac{d^k}{dx^k}(xe^{px})\right)
$$
\n
$$
= \frac{d}{dx}(p^{k-1}(px+k)e^{px})
$$
\n
$$
= p^{k-1}(px+k)e^{px} + e^{px}(p^k)
$$
\n
$$
= p^k(px+k)e^{px} + e^{px}(p^k)
$$
\n
$$
= p^k(px+k)e^{px} + e^{px}(p^k)
$$

Note: Award **A1** for correct derivative.

 $p^k(px+k+1)\mathrm{e}^{px}$ **Al** $= p^{((k+1)-1)}(px+(k+1))e^{px}$

Note: The final **A1** can be awarded for either of the two lines above.

hence true for $n = 1$ and $n = k$ true $\Rightarrow n = k + 1$ true \qquad **R1** therefore true for all $n\in\mathbb{Z}^{+}$

Note: Only award the final **R1** if the three method marks have been awarded.

[7 marks]

 6 $\,$ Consider the function $f\left(x\right)=x\,\mathrm{e}^{2x}$, where $x\in\mathbb{R}.$ The n^th derivative of $\,$ [7 marks] $f\left(x\right)$ is denoted by $f^{\left(n\right)}\left(x\right)$.

Prove, by mathematical induction, that $f^{(n)} \left(x \right) = \left(2^n x + n2^{n-1} \right) \mathrm{e}^{2x}$, $n \in \mathbb{Z}^+.$

Markscheme

A1 $f'(x) = e^{2x} + 2xe^{2x}$

Note: This must be obtained from the candidate differentiating $f(x)$.

$$
=\left(2^1x+1\times 2^{1-1}\right)\mathrm{e}^{2x}\quad \ \ \mathbf{A}\mathbf{1}
$$

(hence true for $n = 1$)

assume true for $n = k$: **M1** $f^{(k)}(x) = (2^kx + k2^{k-1})e^{2x}$

Note: Award MI if truth is assumed. Do not allow "let $n = k$ ". $\mathop{\mathrm{consider}} n = k+1$: attempt to differentiate $f^{(k)}(x)$ *M1* **A1 A1** $f^{(k+1)}\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}\Big(\left(2^{k}x+k2^{k-1}\right)\mathrm{e}^{2x}\Big).$ $f^{(k+1)}(x) = 2^k e^{2x} + 2\left(2^k x + k2^{k-1}\right) e^{2x}$ $f^{(k+1)}(x) = \left(2^{k} + 2^{k+1}x + k2^{k}\right)e^{2x}$ $f^{(k+1)}(x) = \left(2^{k+1}x + (k+1) \, 2^k\right) \mathrm{e}^{2x}$ $=\left(2^{k+1}x+\left(k+1\right)2^{(k+1)-1}\right) \mathrm{e}^{2x}$

True for $n = 1$ and $n = k$ true implies true for $n = k + 1$.

Therefore the statement is true for all $n\left(\in\mathbb{Z}^{+}\right)$ *R1*

Note: Do not award final **R1** if the two previous **M1s** are not awarded. Allow full marks for candidates who use the base case $n=0.$

[7 marks]

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

$$
x < -0.414, \ x > 2.41 \quad \text{A1AI}
$$
\n
$$
\left(x < 1 - \sqrt{2}, \ x > 1 + \sqrt{2}\right)
$$

Note: Award **A1** for −0.414, 2.41 and **A1** for correct inequalities.

[2 marks]

7b. Use mathematical induction to prove that $2^{n+1} > n^2$ for $n \in \mathbb{Z}$, $n \geqslant 3$. *[7 marks]*

Markscheme

check for $n = 3$, $16 > 9$ so true when $n = 3$ **A1** assume true for $n=k$ $2^{k+1} > k^2$ **M1 Note:** Award **MO** for statements such as "let $n = k$ ". **Note:** Subsequent marks after this **M1** are independent of this mark and can be awarded. prove true for $n=k+1$ $> 2k^2$ **M1** $= k^2 + k^2$ (**M1)** $> k^2 + 2k + 1$ (from part (a)) **A1** which is true for $k \geq 3$ **R1** $2^{k+2} = 2 \times 2^{k+1}$

Note: Only award the **A1** or the **R1** if it is clear why. Alternate methods are possible.

 $=\left(K+1\right)^2$

hence if true for $n = k$ true for $n = k + 1$, true for $n = 3$ so true for all $n \geq 3$ **R1**

Note: Only award the final **R1** provided at least three of the previous marks are awarded.

[7 marks]

Use mathematical induction to prove that $r=1$ $r\left(r!\right) = (n+1)\, !-1$, for $n \in \mathbb{Z}^+.$ ∑ $\overline{r=1}\,r\left(r!\right)=\left(n+1\right)!-1$

n

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

 $\mathsf{consider}\ n = 1.\ \ 1\,(1!) = 1$ and $2! - 1 = 1\ \ \mathsf{therefore}\ \ \mathsf{true}\ \mathsf{for}\ n = 1\ \ \ \ \ \ \ \mathsf{R1}$

Note: There must be evidence that $n = 1$ has been substituted into both expressions, or an expression such LHS=RHS=1 is used. "therefore true for $n=1$ " or an equivalent statement must be seen.

$$
\sum_{\text{assume true for } n = k, \text{ (so that } r = 1 \, r(r!) = (k+1)! - 1)}^k
$$

Note: Assumption of truth must be present.

 $\mathop{\mathrm{consider}} n = k+1$

(M1) $= (k+1)! - 1 + (k+1)(k+1)!$ **A1** $= (k+2)(k+1)!-1$ **M1** *k*+1 ∑ $\overline{r=1} \ r\left(r!\right) =$ *k* ∑ $\sqrt{r=1}\,r\left(r!\right)+\left(k+1\right)\left(k+1\right)!$

Note: *M1* is for factorising $(k+1)!$

$$
= (k+2)! - 1
$$

= ((k+1) + 1)! - 1

so if true for $n = k$, then also true for $n = k + 1$, and as true for $n = 1$ then true for all $n\, (\in \mathbb{Z}^+)$ *R1*

Note: Only award final **R1** if all three method marks have been awarded. Award **R0** if the proof is developed from both LHS and RHS.

[6 marks]

9. Use the principle of mathematical induction to prove that

[7 marks]

 $1+2\left(\frac{1}{2}\right)+3\big(\frac{1}{2}\big)^2+4\big(\frac{1}{2}\big)^3+\ldots+n\big(\frac{1}{2}\big)^{n-1}=4-\frac{n+2}{2^{n-1}}$, where $n\in\mathbb{Z}^+.$ 1 2 1 2 1 2 $\frac{n+2}{2^{n-1}}$, where $n\in\mathbb{Z}^+$

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

$$
\quad \text{if } n=1
$$

LHS = 1; RHS =
$$
4 - \frac{3}{2^0} = 4 - 3 = 1
$$
 M1

hence true for $n=1$

assume true for $n = k$ **M1**

Note: Assumption of truth must be present. Following marks are not dependent on the first two **M1** marks.

so
$$
1 + 2(\frac{1}{2}) + 3(\frac{1}{2})^2 + 4(\frac{1}{2})^3 + \dots + k(\frac{1}{2})^{k-1} = 4 - \frac{k+2}{2^{k-1}}
$$

\nif $n = k+1$
\n $1 + 2(\frac{1}{2}) + 3(\frac{1}{2})^2 + 4(\frac{1}{2})^3 + \dots + k(\frac{1}{2})^{k-1} + (k+1)(\frac{1}{2})^k$
\n $= 4 - \frac{k+2}{2^{k-1}} + (k+1)(\frac{1}{2})^k$ **MIAI**
\nfinding a common denominator for the two fractions **MI**

$$
= 4 - \frac{2(k+2)}{2^k} + \frac{k+1}{2^k}
$$

= 4 - \frac{2(k+2) - (k+1)}{2^k} = 4 - \frac{k+3}{2^k} \left(= 4 - \frac{(k+1)+2}{2^{(k+1)-1}} \right) \quad \text{A1}

hence if true for $n = k$ then also true for $n = k + 1$, as true for $n = 1$, so true (for all $n \in \mathbb{Z}^+$) **R1**

Note: Award the final **R1** only if the first four marks have been awarded. **[7 marks]**

10. Use mathematical induction to prove that $(1 - a)^n > 1 - na$ for $\{n\!:\!n\in\mathbb{Z}^+,\,n\geqslant2\}$ where $0 < a < 1$. [7 marks]

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

Let P_n be the statement: $(1-a)^n > 1 - na$ for some $n \in \mathbb{Z}^+, \, n \geqslant 2$ where $0 < a < 1$ consider the case $n=2\colon \left(1 - a \right)^2 = 1 - 2a + a^2$ **M1** $b>1-2a$ because $a^2 < 0$. Therefore \textsf{P}_2 is true \quad **R1** assume P_n is true for some $n = k$ $(1 - a)^k > 1 - ka$ **M1 Note:** Assumption of truth must be present. Following marks are not dependent on this **M1**. **EITHER** $\mathsf{consider}\left(1-a\right)^{k+1} = \left(1-a\right)\left(1-a\right)^{k} \quad \textit{M1}$

 $> 1-(k+1)\,a+ka^2$ **Al** $> 1-(k+1)\,a \Rightarrow {\rm P}_{k+1}$ is true (**as** $ka^2>0$) **R1**

OR

multiply both sides by $(1 - a)$ (which is positive) M1

$$
(1 - a)^{k+1} > (1 - ka) (1 - a)
$$

\n
$$
(1 - a)^{k+1} > 1 - (k+1)a + ka^2
$$
 A1
\n
$$
(1 - a)^{k+1} > 1 - (k+1)a \Rightarrow P_{k+1} \text{ is true (as } ka^2 > 0)
$$
 R1

THEN

 P_2 is true P_k is true $\Rightarrow \mathrm{P}_{k+1}$ is true so P_n true for all $n>2$ (or equivalent) **R1**

Note: Only award the last **R1** if at least four of the previous marks are gained including the **A1**.

[7 marks]

Consider the function $f_n(x) = (\cos 2x)(\cos 4x) \ldots (\cos 2^n x), n \in \mathbb{Z}^+.$

11a. Determine whether f_n is an odd or even function, justifying your $[2 \text{ marks}]$ answer.

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

even function **A1** \sin ce $\cos kx = \cos(-kx)$ and $f_n(x)$ is a product of even functions \quad R1 **OR** even function **A1** $\textsf{since } (\cos 2x)(\cos 4x) \ldots = (\cos (-2x))\left(\cos (-4x)\right) \ldots$ R1 **Note:** Do not award **A0R1**.

[2 marks]

11b. By using mathematical induction, prove that

[8 marks]

 $f_n(x) = \frac{\sin{2^{n+1}x}}{2^n\sin{2x}}, \ x \neq \frac{m\pi}{2}$ where $m \in \mathbb{Z}.$ $\sqrt{2^n \sin 2x}$ $\frac{m\pi}{2}$ where $m\in\mathbb{Z}$

consider the case $n=1$ **M1** hence true for $n=1$ **R1** $\frac{\sin 4x}{2\sin 2x} = \frac{2\sin 2x\cos 2x}{2\sin 2x} = \cos 2x$ $2\sin 2x \cos 2x$ 2 sin2*x*

assume true for $n=k$, *ie*, $(\cos 2x)(\cos 4x)\ldots(\cos 2^kx)=\frac{\sin 2^{k+1}x}{\cos k\sin k}$ **M1** 2^k sin $2x$

Note: Do not award **M1** for "let $n = k$ " or "assume $n = k$ " or equivalent.

consider
$$
n = k + 1
$$
:

\n
$$
f_{k+1}(x) = f_k(x)(\cos 2^{k+1}x)
$$
\n(M1)

\n
$$
= \frac{\sin 2^{k+1}x}{2^k \sin 2x} \cos 2^{k+1}x
$$
\nand

\n
$$
= \frac{2 \sin 2^{k+1}x \cos 2^{k+1}x}{2^{k+1} \sin 2x}
$$
\nand

\n
$$
= \frac{\sin 2^{k+2}x}{2^{k+1} \sin 2x}
$$
\nand

\n
$$
n = 1 \text{ true and } n = k \text{ true } \Rightarrow n = k + 1 \text{ true. Hence true for all } n \in \mathbb{Z}^+
$$
\nand

\n
$$
n = 1 \text{ true and } n = k \text{ true}
$$

Note: To obtain the final **R1**, all the previous **M** marks must have been awarded.

[8 marks]

 $\mathsf{11c}.$ Hence or otherwise, find an expression for the derivative of $f_n(x)$ with $\;$ [3 marks] respect to x .

Note: Award **A1** for correct numerator and **A1** for correct denominator.

[8 marks]

[3 marks]

11d. Show that, for $n > 1$, the equation of the tangent to the curve $y = f_n(x)$ at $x = \frac{\pi}{4}$ is $4x - 2y - \pi = 0$.

Marks the m e
\n
$$
f'_n\left(\frac{\pi}{4}\right) = \frac{(2^n \sin \frac{\pi}{2})(2^{n+1} \cos 2^{n+1}\frac{\pi}{4}) - (\sin 2^{n+1}\frac{\pi}{4})(2^{n+1} \cos \frac{\pi}{2})}{(2^n \sin \frac{\pi}{2})^2}
$$
\n(**M1**)(A1)
\n
$$
f'_n\left(\frac{\pi}{4}\right) = \frac{(2^n)(2^{n+1} \cos 2^{n+1}\frac{\pi}{4})}{(2^n)^2}
$$
\n(**A1**)
\n
$$
= 2 \cos 2^{n+1} \frac{\pi}{4} (= 2 \cos 2^{n-1}\pi)
$$
 A1
\n
$$
f'_n\left(\frac{\pi}{4}\right) = 2
$$
 A1
\n
$$
f_n\left(\frac{\pi}{4}\right) = 0
$$
 A1

Note: This **A** mark is independent from the previous marks.

$$
y = 2\left(x - \frac{\pi}{4}\right) \quad \text{M1A1}
$$

4x - 2y - \pi = 0 \quad \text{AG}
[8 marks]

12. Use the method of mathematical induction to prove that $4^n + 15n - 1$ is [6 marks] divisible by 9 for $n\in\mathbb{Z}^+$.

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

let $P(n)$ be the proposition that $4^n + 15n - 1$ is divisible by 9 showing true for $n=1$ **A1** i efor $n=1,~4^1+15\times 1-1=18$ which is divisible by 9, therefore $\overline{P}(1)$ is true assume $P(k)$ is true so $4^k + 15k - 1 = 9A, \; (A \in \mathbb{Z}^+)$ M1

Note: Only award **M1** if "truth assumed" or equivalent.

 $\,$ consider $4^{k+1} + 15(k+1) - 1$ $= 4(9A - 15k + 1) + 15k + 14$ **M1** $= 4 \times 9A - 45k + 18$ **A1** $\mathbf{R} = 9(4A - 5k + 2)$ which is divisible by 9 \quad **R1** $= 4 \times 4^k + 15k + 14$

Note: Award **R1** for either the expression or the statement above.

since $P(1)$ is true and $P(k)$ true implies $P(k+1)$ is true, therefore (by the principle of mathematical induction) $P(n)$ is true for $n \in \mathbb{Z}^+$ **R1**

Note: Only award the final **R1** if the 2 **M1**s have been awarded.

[6 marks]

13. Prove by mathematical induction that
\n
$$
\binom{2}{2} + \binom{3}{2} + \binom{4}{2} + \ldots + \binom{n-1}{2} = \binom{n}{3}, \text{ where } n \in \mathbb{Z}, n \geq 3
$$
\n
$$
\binom{2}{3} + \binom{4}{3} + \binom{4}{3} + \ldots + \binom{n-1}{3} = \binom{n}{3}, \text{ where } n \in \mathbb{Z}, n \geq 3
$$

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

$$
\binom{2}{2} + \binom{3}{2} + \binom{4}{2} + \dots + \binom{n-1}{2} = \binom{n}{3}
$$
\nShow true for $n = 3$ (MI)

\nLHS = $\binom{2}{2} = 1$ RHS = $\binom{3}{3} = 1$ AI

\nhence true for $n = 3$

\nassume true for $n = k : \binom{2}{2} + \binom{3}{2} + \binom{4}{2} + \dots + \binom{k-1}{2} = \binom{k}{3}$

\nM1

\nconsider for $n = k + 1 : \binom{2}{2} + \binom{3}{2} + \binom{4}{2} + \dots + \binom{k-1}{2} + \binom{k}{2}$

\n(MI)

\n
$$
= \binom{k}{3} + \binom{k}{2} \quad \text{A1}
$$

 $\Big)$

 $\Big)$

 $\alpha=\frac{k!}{(k-3)!3!}+\frac{k!}{(k-2)!2!}\ \left(=\frac{k!}{3!}\left\lfloor\frac{1}{(k-3)!}+\frac{3}{(k-2)!}\right\rfloor\right)$ or any correct expression with a visible common factor **(A1)** *k*! (*k*−2)!2! *k*! 3! 1 (*k*−3)! 3 (*k*−2)!

$$
= \frac{k!}{3!} \left[\frac{k-2+3}{(k-2)!} \right]
$$
 or any correct expression with a common denominator (A1)

$$
= \frac{k!}{3!} \left[\frac{k+1}{(k-2)!} \right]
$$

Note: At least one of the above three lines or equivalent must be seen.

$$
= \frac{(k+1)!}{3!(k-2)!}
$$
 or equivalent **A1**
=
$$
{k+1 \choose 3}
$$

Result is true for $k=3$. If result is true for k it is true for $k+1$. Hence result is true for all $k \geqslant 3$. Hence proved by induction. \quad **R1**

Note: In order to award the **R1** at least **[5 marks]** must have been awarded.

[9 marks]

14a. Find the value of $\sin \frac{\pi}{4} + \sin \frac{3\pi}{4} + \sin \frac{5\pi}{4} + \sin \frac{7\pi}{4} + \sin \frac{9\pi}{4}$. 3*π* 4 5*π* 4 7*π* 4 9*π* 4

[2 marks]

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

(M1)A1 $\sin \frac{\pi}{4} + \sin \frac{3\pi}{4} + \sin \frac{5\pi}{4} + \sin \frac{7\pi}{4} + \sin \frac{9\pi}{4} = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} =$ 3*π* 4 5*π* 4 7*π* 4 9*π* 4 $\sqrt{2}$ 2 $\sqrt{2}$ 2 $\sqrt{2}$ 2 $\sqrt{2}$ 2 $\sqrt{2}$ 2 $\sqrt{2}$ 2

Note: Award **M1** for 5 equal terms with \langle) + \langle) or - signs.

[2 marks]

14b. Show that $\frac{1-\cos 2x}{2\sin x} \equiv \sin x$, $x \neq k\pi$ where $k \in \mathbb{Z}$. **Markscheme** $\frac{-\cos 2x}{2\sin x}\equiv\sin x,\ x\neq k\pi$ where $k\in\mathbb{Z}$ [2 marks]

```
\frac{1-\cos 2x}{2\sin x} \equiv \frac{1-(1-2\sin^2 x)}{2\sin x} M1
\equiv \frac{2\sin^2 x}{2\sin x} A1
\equiv sin x AG
[2 marks]
                      1-(1-2{{\rm sin}}^2x)2 sinx
      2 sinx
```
14c. Use the principle of mathematical induction to prove that $\sin x + \sin 3x + \ldots + \sin (2n-1)x = \frac{1-\cos 2nx}{2\sin x}, \; n \in \mathbb{Z}^+, \; x \neq k\pi$ where $k \in \mathbb{Z}.$ $\frac{\cos 2n x}{2\sin x},\;n\in\mathbb{Z}^{+},\;x\neq k\pi$ where $k\in\mathbb{Z}^{+}$ [9 marks]

let $\mathrm{P}(n): \sin x + \sin 3x + \ldots + \sin (2n-1)x \equiv \frac{1-\cos 2nx}{2\sin x}$ if $n=1$ $P(1): \frac{1-\cos 2x}{2\sin x} \equiv \sin x$ which is true (as proved in part (b)) **R1** assume $\mathrm{P}(k)$ true, $\sin x + \sin 3x + \ldots + \sin(2k-1)x \equiv \frac{1-\cos 2kx}{2\sin x}$ **M1** 2 sin*x*

Notes: Only award **M1** if the words "assume" and "true" appear. Do not award $M1$ for "let $n = k$ " only. Subsequent marks are independent of this $M1$.

consider ${\rm P}(k+1)$: **M1** $\equiv \frac{1-\cos 2kx}{2\sin x} + \sin (2k+1)x$ **A1 M1 M1** $\equiv \frac{1-(\cos 2x\cos 2kx-\sin 2x\sin 2kx)}{2\sin x}$ **A1** $\equiv \frac{1-\cos(2kx+2x)}{2\sin x}$ **A1** so if true for $n=k$, then also true for $n=k+1$ ${\rm P}(k+1): \sin x + \sin 3x + \ldots + \sin (2k-1)x + \sin (2k+1)x \equiv \frac{1-\cos 2(k+1)x}{2\sin x}$ 2 sin*x* $LHS = \sin x + \sin 3x + ... + \sin(2k-1)x + \sin(2k+1)x$ 2 sin*x* $\equiv \frac{1-\cos 2kx+2\sin x\sin(2k+1)x}{2\sin x}$ 2 sin*x* $\equiv \frac{1-\cos 2kx+2\sin x \cos x \sin 2kx+2\sin^2 x \cos 2kx}{2\sin x}$ 2 sin*x* ≡ 1−((1−2sin2 *x*) cos 2*kx*−sin2*x*sin2*kx*) 2 sin*x* 2 sin*x* 2 sin*x* $\equiv \frac{1-\cos 2(k+1)x}{2\sin x}$ 2 sin*x*

as true for $n=1$ then true for all $n\in\mathbb{Z}^{+}$ *R1*

Note: Accept answers using transformation formula for product of sines if steps are shown clearly.

Note: Award **R1** only if candidate is awarded at least 5 marks in the previous steps.

[9 marks]

14d. Hence or otherwise solve the equation $\sin x + \sin 3x = \cos x$ in the interval $0 < x < \pi$.

Markscheme

EITHER

M1 A1 $\Rightarrow 1 - (1 - 2\sin^2 2x) = \sin 2x$ **M1** \Rightarrow sin 2*x*(2 sin 2*x* − 1) = 0 **M1** \Rightarrow $\sin 2x = 0$ or $\sin 2x = \frac{1}{2}$ **Al** $2x = \pi, \ 2x = \frac{\pi}{6}$ and $2x = \frac{5\pi}{6}$ **OR** $\sin x + \sin 3x = \cos x \Rightarrow 2 \sin 2x \cos x = \cos x$ **M1A1** \Rightarrow $(2 \sin 2x - 1) \cos x = 0$, $(\sin x \neq 0)$ **M1A1** \Rightarrow $\sin 2x = \frac{1}{2}$ of $\cos x = 0$ **A1** $2x=\frac{\pi}{6},\ 2x=\frac{5\pi}{6}$ and $\sin x + \sin 3x = \cos x \Rightarrow \frac{1-\cos 4x}{2\sin x} = \cos x$ 2 sin*x* $\Rightarrow 1 - \cos 4x = 2 \sin x \cos x$, $(\sin x \neq 0)$ $\frac{5\pi}{6}$ and $x=\frac{\pi}{2}$

THEN

 $\therefore x = \frac{\pi}{2}, \ x = \frac{\pi}{12}$ and $x = \frac{5\pi}{12}$ **Al** $\frac{\pi}{12}$ and $x=\frac{5\pi}{12}$

Note: Do not award the final **A1** if extra solutions are seen.

[6 marks]

15a. Use de Moivre's theorem to find the value of $\left(\cos\left(\frac{\pi}{3}\right)+\mathrm{i}\sin\left(\frac{\pi}{3}\right)\right)^3$. 3 *π* 3 [2 marks]

[6 marks]

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

 $\left(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right)^3 = \cos\pi + i\sin\pi$ *M1* $=-1$ **A1 [2 marks]** *π* 3

15b. Use mathematical induction to prove that

[6 marks]

 $(\cos \theta - i \sin \theta)^n = \cos n\theta - i \sin n\theta$ for $n \in \mathbb{Z}^+$.

Markscheme

show the expression is true for $n=1$ \blacksquare **R1** a assume true for $n = k, \ (\cos \theta - \mathrm{i} \sin \theta)^k = \cos k\theta - \mathrm{i} \sin k\theta$ **M1 Note:** Do not accept "let $n = k$ " or "assume $n = k$ ", assumption of truth must be present. $= (\cos k\theta - i\sin k\theta)(\cos \theta - i\sin \theta)$ **M1** $=$ cos $k\theta$ cos θ − sin $k\theta$ sin θ − i(cos $k\theta$ sin θ + sin $k\theta$ cos θ) **A1 Note:** Award **A1** for any correct expansion. $= \cos((k+1)\theta) - i\sin((k+1)\theta)$ **A1** therefore if true for $n = k$ true for $n = k + 1$, true for $n = 1$, so true for all $n(\in \mathbb{Z}^+)$ R1 $(\cos \theta - i \sin \theta)^{k+1} = (\cos \theta - i \sin \theta)^k (\cos \theta - i \sin \theta)$

Note: To award the final **R** mark the first 4 marks must be awarded. **[6 marks]**

Let $z = \cos \theta + i \sin \theta$.

15c. Find an expression in terms of θ for $(z)^n + (z^*)^n, \ n \in {\mathbb Z}^+$ where z^* is *[2 marks]* the complex conjugate of z .

Markscheme $= \cos n\theta + i \sin n\theta + \cos n\theta - i \sin n\theta = 2 \cos(n\theta)$ (M1)A1 **[2 marks]** $(z)^n + (z^*)^n = (\cos \theta + i \sin \theta)^n + (\cos \theta - i \sin \theta)^n$

15d. (i) Show that $zz^* = 1$. (ii) Write down the binomial expansion of $(z + z^*)^3$ in terms of z and z^* . (iii) Hence show that $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$. **Markscheme** (i) $zz* = (\cos \theta + i \sin \theta)(\cos \theta - i \sin \theta)$ $=$ cos² θ + sin² θ **A1** $= 1$ **AG Note:** Allow justification starting with $|z|=1$. (ii) $(z + z^*)^3 = z^3 + 3z^2z^* + 3z(z^*)^2 + (z^*)^3 = (z^3 + 3z + 3z^* + (z^*)^3)$ **A1** (iii) $(z + z^*)^3 = (2 \cos \theta)^3$ **A1** $z^3 + 3z + 3z^* + (z^*)^3 = 2\cos 3\theta + 6\cos \theta$ **M1A1** $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$ **AG Note:** *M1* is for using $zz^* = 1$, this might be seen in d(ii). **[5 marks]** [5 marks]

15e. Hence solve $4\cos^3\theta - 2\cos^2\theta - 3\cos\theta + 1 = 0$ for $0 \le \theta < \pi$. [6 marks]

 $\cos(3\theta) = \cos(2\theta)$ **A1A1 Note:** *A1* for $cos(3\theta)$ and *A1* for $cos(2\theta)$. $\theta = 0$ **A1** $\mathsf{d} \mathsf{o} \mathsf{r} \ 3\theta = 2\pi - 2\theta \ (\text{or} \ 3\theta = 4\pi - 2\theta)$ **M1** $\theta = \frac{2\pi}{5}, \frac{4\pi}{5}$ **A1A1** $4\cos^3\theta - 2\cos^2\theta - 3\cos\theta + 1 = 0$ $4\cos^3\theta - 3\cos\theta = 2\cos^2\theta - 1$ 5 4*π* 5

Note: Do not accept solutions via factor theorem or other methods that do not follow "hence".

[6 marks]

16. Use mathematical induction to prove that $n(n^2+5)$ is divisible by 6 for *[8 marks]* $n \in \mathbb{Z}^+.$

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

let $\mathrm{P}(n)$ be the proposition that $n(n^2+5)$ is divisible by 6 for $n\in\mathbb{Z}^+$ consider P(1):

when $n=1,~n(n^2+5)=1\times (1^2+5)=6$ and so P(1) is true \quad **R1** assume $\mathrm{P}(k)$ is true *ie*, $k(k^2+5)=6m$ where $k, \ m \in \mathbb{Z}^+$ **M1 Note:** Do not award **M1** for statements such as "let $n = k$ ". consider ${\rm P}(k+1)$:

$$
(k+1)\left((k+1)^2+5\right) \quad \text{M1}
$$
\n
$$
= (k+1)(k^2+2k+6)
$$
\n
$$
= k^3 + 3k^2 + 8k + 6 \quad \text{(A1)}
$$
\n
$$
= (k^3+5k) + (3k^2+3k+6) \quad \text{A1}
$$
\n
$$
= k(k^2+5) + 3k(k+1) + 6 \quad \text{A1}
$$
\n
$$
k(k+1) \text{ is even hence all three terms are divisible by 6} \quad \text{R1}
$$
\n
$$
P(k+1) \text{ is true whenever } P(k) \text{ is true and } P(1) \text{ is true, so } P(n) \text{ is true for}
$$
\n
$$
n \in \mathbb{Z}^+ \quad \text{R1}
$$

Note: To obtain the final **R1**, four of the previous marks must have been awarded.

[8 marks]

17a. Show that $\sin\left(\theta + \frac{\pi}{2}\right) = \cos\theta$. *[1 mark]*

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

 $\sin\left(\theta + \frac{\pi}{2}\right) = \sin\theta\cos\frac{\pi}{2} + \cos\theta\sin\frac{\pi}{2}$ **M1** $=$ cos θ **AG** *π* 2 *π* 2

Note: Accept a transformation/graphical based approach. **[1 mark]**

17b. Consider $f(x) = \sin(ax)$ where a is a constant. Prove by mathematical [7 marks] induction that $f^{(n)}(x)=a^n\sin\bigl(ax+\frac{n\pi}{2}\bigr)$ where $n\in\mathbb{Z}^+$ and $f^{(n)}(x)$ represents the $\operatorname{n^{th}}$ derivative of $f(x).$

Markscheme

 $\mathsf{consider}\ n = 1,\ f'(x) = a\cos(ax)$ **M1** since $\sin\left(ax + \frac{\pi}{2}\right) = \cos ax$ then the proposition is true for $n=1$ **R1** assume that the proposition is true for $n = k$ so $f^{(k)}(x) = a^k \sin\left(ax + \frac{k\pi}{2}\right)$ **M1**

$$
f^{(k+1)}(x) = \frac{d(f^{(k)}(x))}{dx} \quad \left(= a \left(a^k \cos\left(ax + \frac{k\pi}{2}\right)\right)\right) \quad \text{M1}
$$
\n
$$
= a^{k+1} \sin\left(ax + \frac{k\pi}{2} + \frac{\pi}{2}\right) \text{ (using part (a))} \quad \text{A1}
$$
\n
$$
= a^{k+1} \sin\left(ax + \frac{(k+1)\pi}{2}\right) \quad \text{A1}
$$

given that the proposition is true for $n = k$ then we have shown that the proposition is true for $n = k + 1$. Since we have shown that the proposition is \overline{r} true for $n=1$ then the proposition is true for all $n\in\mathbb{Z}^{+}$ **R1**

Note: Award final **R1** only if all prior **M** and **R** marks have been awarded. **[7 marks] Total [8 marks]**

18a. Find $\frac{dy}{dx}$. d*x*

[2 marks]

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

 $\frac{dy}{dx} = 1 \times e^{3x} + x \times 3e^{3x} = (e^{3x} + 3xe^{3x})$ **M1A1 [2 marks]**

 $^{18\text{b}}$ Prove by induction that $\frac{\text{d}^ny}{\text{d}x^n} = n3^{n-1}\text{e}^{3x} + x3^n\text{e}^{3x}$ for $n\in\mathbb{Z}^+.$ [7 marks]

let $P(n)$ be the statement $\frac{\mathrm{d}^ny}{\mathrm{d}x^n} = n3^{n-1}\mathrm{e}^{3x} + x3^n\mathrm{e}^{3x}$ prove for $n = 1$ *M1* LHS of $P(1)$ is $\frac{\mathrm{d}y}{\mathrm{d}x}$ which is $1 \times \mathrm{e}^{3x} + x \times 3\mathrm{e}^{3x}$ and RHS is $3^0\mathrm{e}^{3x} + x3^1\mathrm{e}^{3x}$ **R1** as $\mathrm{LHS}=\mathrm{RHS}, P(1)$ is true assume $P(k)$ is true and attempt to prove $P(k+1)$ is true $-M1$ assuming $\frac{\mathrm{d}^k y}{\mathrm{d}x^k} = k3^{k-1}\mathrm{e}^{3x} + x3^k\mathrm{e}^{3x}$ $\frac{\mathrm{d}^{k+1}y}{\mathrm{d}x^{k+1}} = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}^k y}{\mathrm{d}x^k} \right)$ (**M1) A1** $=(k+1)3^k\mathrm{e}^{3x}+x3^{k+1}\mathrm{e}^{3x}$ (as required) **A1** dx^{k+1} d d*x* d^ky dx^k $= k3^{k-1} \times 3e^{3x} + 1 \times 3^k e^{3x} + x3^k \times 3e^{3x}$

Note: Can award the **A** marks independent of the **M** marks

since $P(1)$ is true and $P(k)$ is true \Rightarrow $P(k+1)$ is true then (by PMI), $P(n)$ is true $(\forall n \in \mathbb{Z}^+)$ **R1**

Note: To gain last **R1** at least four of the above marks must have been gained.

[7 marks]

18c. Find the coordinates of any local maximum and minimum points on the [5 marks] graph of $y(x).$

Justify whether any such point is a maximum or a minimum.

18d. Find the coordinates of any points of inflexion on the graph of $y(x)$. Justify whether any such point is a point of inflexion. [5 marks]

Markscheme

$$
\frac{d^{2}y}{dx^{2}} = 2 \times 3e^{3x} + x \times 3^{2}e^{3x}
$$
 A1
2 × 3e^{3x} + x × 3²e^{3x} = 0 \Rightarrow 2 + 3x = 0 \Rightarrow x = - $\frac{2}{3}$ **M1A1**
point is $\left(-\frac{2}{3}, -\frac{2}{3e^{2}}\right)$ **A1**

$$
\frac{x}{dx^{2}} \left[\begin{array}{ccc} -\frac{2}{3} & -\frac{2}{3} \\ -\frac{2}{3} & -\frac{2}{3} \end{array}\right]
$$

since the curvature does change (concave down to concave up) it is a point of inflection **R1**

Note: Allow 3^{rd} derivative is not zero at $-\frac{2}{3}$

[5 marks]