Proof [182 marks]

1a. Show that
$$\left(2n-1
ight)^2+\left(2n+1
ight)^2=8n^2+2$$
, where $n\in\mathbb{Z}$. [2 marks]

Markscheme attempting to expand the LHS (M1) LHS = $(4n^2 - 4n + 1) + (4n^2 + 4n + 1)$ A1 = $8n^2 + 2$ (= RHS) AG [2 marks]

1b. Hence, or otherwise, prove that the sum of the squares of any two [3 marks] consecutive odd integers is even.

Markscheme

METHOD 1

recognition that 2n-1 and 2n+1 represent two consecutive odd integers (for $n\in\mathbb{Z}$) **R1**

 $8n^2+2=2\left(4n^2+1
ight)$ A1

valid reason *eg* divisible by 2 (2 is a factor) **R1**

so the sum of the squares of any two consecutive odd integers is even **AG**

METHOD 2

 $n^2 + \left(n+2
ight)^2 = 2\left(n^2 + 2n + 2
ight)$ A1

valid reason *eg* divisible by 2 (2 is a factor) **R1**

so the sum of the squares of any two consecutive odd integers is even **AG**

[3 marks]

2a. Explain why any integer can be written in the form 4k or 4k + 1 or [2 marks] 4k + 2 or 4k + 3, where $k \in \mathbb{Z}$.

Markscheme Upon division by 4 *M1* any integer leaves a remainder of 0, 1, 2 or 3. *R1* Hence, any integer can be written in the form 4k or 4k + 1 or 4k + 2 or 4k + 3, where $k \in \mathbb{Z}$ *AG* [2 marks]

2b. Hence prove that the square of any integer can be written in the form 4t [6 marks] or 4t + 1, where $t \in \mathbb{Z}^+$.

Markscheme

 $(4k)^2 = 16k^2 = 4t$ **M1A1** $(4k+1)^2 = 16k^2 + 8k + 1 = 4t + 1$ **M1A1** $(4k+2)^2 = 16k^2 + 16k + 4 = 4t$ **A1** $(4k+3)^2 = 16k^2 + 24k + 9 = 4t + 1$ **A1** Hence, the square of any integer can be written in the form 4t or 4t + 1, where $t \in \mathbb{Z}^+$. **AG [6 marks]**

The function
$$f$$
 is defined by $f(x)=rac{ax+b}{cx+d}$, for $x\in\mathbb{R},\;x
eq-rac{d}{c}.$

The function g is defined by $g\left(x
ight)=rac{2x-3}{x-2},\,\,x\in\mathbb{R},\,\,x
eq 2$

3. Express g(x) in the form $A + \frac{B}{x-2}$ where A, B are constants. [2 marks]

Markscheme

$$g(x) = 2 + \frac{1}{x-2} \quad AIAI$$
[2 marks]
4a. Show that $\frac{1}{\sqrt{n}+\sqrt{n+1}} = \sqrt{n+1} - \sqrt{n}$ where $n \ge 0, n \in \mathbb{Z}$. *[2 marks]*
Markscheme
* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

$$\frac{1}{\sqrt{n}+\sqrt{n+1}} = \frac{1}{\sqrt{n}+\sqrt{n+1}} \times \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+1}-\sqrt{n}} \quad MI$$

$$= \frac{\sqrt{n+1}-\sqrt{n}}{(n+1)-n} \quad AI$$

$$= \sqrt{n+1} - \sqrt{n} \quad AG$$
[2 marks]

4b. Hence show that $\sqrt{2}-1 < rac{1}{\sqrt{2}}.$

[2 marks]

Markscheme

$$\sqrt{2} - 1 = \frac{1}{\sqrt{2} + \sqrt{1}}$$
 A2
 $< \frac{1}{\sqrt{2}}$ AG
[2 marks]

4c. [9 marks] Prove, by mathematical induction, that r=1 $rac{1}{\sqrt{r}} > \sqrt{n}$ for $n \geq 2, \; n \in \mathbb{Z}.$

consider the case n = 2: required to prove that $1 + \frac{1}{\sqrt{2}} > \sqrt{2}$ **M1** from part (b) $\frac{1}{\sqrt{2}} > \sqrt{2} - 1$ hence $1 + \frac{1}{\sqrt{2}} > \sqrt{2}$ is true for n = 2 **A1** now assume true for $n = k : \frac{\sum_{r=1}^{r=k} \frac{1}{\sqrt{r}}}{\sqrt{r}} > \sqrt{k}$ **M1** $\frac{1}{\sqrt{1}} + \ldots + \frac{\sqrt{1}}{\sqrt{k}} > \sqrt{k}$ attempt to prove true for $n = k + 1 : \frac{1}{\sqrt{1}} + \ldots + \frac{\sqrt{1}}{\sqrt{k}} + \frac{1}{\sqrt{k+1}} > \sqrt{k+1}$ (*M1*) from assumption, we have that $\frac{1}{\sqrt{1}} + \ldots + \frac{\sqrt{1}}{\sqrt{k}} + \frac{1}{\sqrt{k+1}} > \sqrt{k} + \frac{1}{\sqrt{k+1}}$ **M1** so attempt to show that $\sqrt{k} + \frac{1}{\sqrt{k+1}} > \sqrt{k+1}$ (*M1*) **EITHER**

$rac{1}{\sqrt{k+1}}>\sqrt{k+1}-\sqrt{k}$ **A1** $rac{1}{\sqrt{k+1}}>rac{1}{\sqrt{k}+\sqrt{k+1}}$, (from part a), which is true

OR

$$egin{aligned} \sqrt{k}+rac{1}{\sqrt{k+1}}&=rac{\sqrt{k+1}\sqrt{k}+1}{\sqrt{k+1}} & extsf{A1}\ &>rac{\sqrt{k}\sqrt{k}+1}{\sqrt{k+1}}&=\sqrt{k+1} & extsf{A1} \end{aligned}$$

THEN

so true for n=2 and n=k true $\Rightarrow n=k+1$ true. Hence true for all $n\geq 2$ <code>R1</code>

A1

Note: Award *R1* only if all previous *M* marks have been awarded.
[9 marks]
Total [13 marks]

5. Use mathematical induction to prove that $rac{\mathrm{d}^n}{\mathrm{d}x^n}(x\mathrm{e}^{px})=p^{n-1}(px+n)\mathrm{e}^{px}$ [7 marks] for $n\in\mathbb{Z}^+,\ p\in\mathbb{Q}.$

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

n = 1: LHS = $\frac{d(xe^{px})}{dx} = xpe^{px} + e^{px} = (px+1)e^{px}$, RHS = $p^0(px+1)e^{px}$ LHS = RHS so true for n = 1: **A1**

Note: Award **A1** if n = 0 is proved.

assume proposition true for n=k, i.e. $rac{\mathrm{d}^k}{\mathrm{d}x^k}(x\mathrm{e}^{px})=p^{k-1}(px+k)\mathrm{e}^{px}$ \qquad M1

Notes: Do not award **M1** if using n instead of k. Assumption of truth must be present. Subsequent marks are not dependent on this **M1** mark.

Note: Award **A1** for correct derivative.

 $egin{aligned} &= p^k (px+k+1) \mathrm{e}^{px} & \mathcal{AI} \ &= p^{(\,(k+1)\,-1\,)} (px+(k+1)) \mathrm{e}^{px} \end{aligned}$

Note: The final **A1** can be awarded for either of the two lines above.

hence true for n=1 and n=k true $\Rightarrow n=k+1$ true \qquad **R1** therefore true for all $n\in\mathbb{Z}^+$

Note: Only award the final *R1* if the three method marks have been awarded.

6. Consider the function $f(x) = x e^{2x}$, where $x \in \mathbb{R}$. The n^{th} derivative of [7 marks] f(x) is denoted by $f^{(n)}(x)$.

Prove, by mathematical induction, that $f^{(n)}\left(x
ight)=\left(2^nx+n2^{n-1}
ight){
m e}^{2x}$, $n\in\mathbb{Z}^+.$

Markscheme $f'(x) = e^{2x} + 2xe^{2x}$ **A1 Note:** This must be obtained from the candidate differentiating f(x). $= \left(2^1 x + 1 imes 2^{1-1}
ight) {
m e}^{2x}$ **A1** (hence true for n = 1) assume true for n = k: M1 $f^{\left(k
ight)}\left(x
ight)=\left(2^{k}x+k2^{k-1}
ight)\mathrm{e}^{2x}$ **Note:** Award *M1* if truth is assumed. Do not allow "let n = k". consider n = k + 1: $f^{(k+1)}(x) = rac{\mathrm{d}}{\mathrm{d}x} \left(\left(2^k x + k 2^{k-1}
ight) \mathrm{e}^{2x}
ight)$ attempt to differentiate $f^{\left(k
ight)}\left(x
ight)$ M1 $f^{(k+1)}\left(x
ight)=2^{k}\mathrm{e}^{2x}+2\left(2^{k}x+k2^{k-1}
ight)\mathrm{e}^{2x}$ A1 $f^{(k+1)}\left(x
ight) = \left(2^{k}+2^{k+1}x+k2^{k}
ight){
m e}^{2x}$ $f^{\left(k+1
ight)}\left(x
ight)=\left(2^{k+1}x+\left(k+1
ight)2^{k}
ight)\mathrm{e}^{2x}$ A1 $=\left(2^{k+1}x+(k+1)\,2^{(k+1)-1}
ight){
m e}^{2x}$ True for n = 1 and n = k true implies true for n = k + 1.

Note: Do not award final *R1* if the two previous *M1s* are not awarded. Allow full marks for candidates who use the base case n = 0.

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

$$x < -0.414, \; x > 2.41$$
 AIA $\left(x < 1-\sqrt{2}, \; x > 1+\sqrt{2}
ight)$

Note: Award **A1** for -0.414, 2.41 and **A1** for correct inequalities.

1

[2 marks]

7b. Use mathematical induction to prove that $2^{n+1}>n^2$ for $n\in\mathbb{Z}$, $n\geqslant 3$. *[7 marks]*

Markscheme

check for n = 3, 16 > 9 so true when n = 3 **A1** assume true for n = k $2^{k+1} > k^2$ **M1 Note:** Award **M0** for statements such as "let n = k". **Note:** Subsequent marks after this **M1** are independent of this mark and can be awarded. prove true for n = k + 1 $2^{k+2} = 2 \times 2^{k+1}$ $> 2k^2$ **M1** $= k^2 + k^2$ (**M1**) $> k^2 + 2k + 1$ (from part (a)) **A1** which is true for $k \ge 3$ **R1**

Note: Only award the **A1** or the **R1** if it is clear why. Alternate methods are possible.

 $=(K+1)^{2}$

hence if true for n = k true for n = k + 1, true for n = 3 so true for all $n \ge 3$ **R1**

Note: Only award the final *R1* provided at least three of the previous marks are awarded.

[6 marks]

Use mathematical induction to prove that $\sum\limits_{r=1}^{n}r\left(r!
ight)=(n+1)\,!-1$, for $n\in\mathbb{Z}^{+}.$

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

consider n = 1. 1(1!) = 1 and 2! - 1 = 1 therefore true for n = 1 **R1**

Note: There must be evidence that n = 1 has been substituted into both expressions, or an expression such LHS=RHS=1 is used. "therefore true for n = 1" or an equivalent statement must be seen.

assume true for
$$n=k$$
, (so that $\sum\limits_{r=1}^{k}r\left(r!
ight)=(k+1)\,!-1$) **M1**

Note: Assumption of truth must be present.

consider n = k + 1

$$\begin{split} &\sum_{r=1}^{k+1} \sum_{r=1}^{k} \sum_{r=1}^{k} r(r!) = r=1 r(r!) + (k+1)(k+1)! \quad \text{(M1)} \\ &= (k+1)! - 1 + (k+1)(k+1)! \quad \text{A1} \\ &= (k+2)(k+1)! - 1 \quad \text{M1} \end{split}$$

Note: *M1* is for factorising (k+1)!

so if true for n=k, then also true for n=k+1, and as true for n=1 then true for all $n\,(\in\mathbb{Z}^+)$ **R1**

Note: Only award final *R1* if all three method marks have been awarded. Award *R0* if the proof is developed from both LHS and RHS.

[6 marks]

8.

9. Use the principle of mathematical induction to prove that [7 marks] $1+2\left(\frac{1}{2}\right)+3\left(\frac{1}{2}\right)^2+4\left(\frac{1}{2}\right)^3+\ldots+n\left(\frac{1}{2}\right)^{n-1}=4-\frac{n+2}{2^{n-1}}$, where $n\in\mathbb{Z}^+$.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

if
$$n=1$$

LHS = 1; RHS = $4 - \frac{3}{2^0} = 4 - 3 = 1$ **M1**

hence true for n=1

assume true for n=k **M1**

Note: Assumption of truth must be present. Following marks are not dependent on the first two **M1** marks.

so $1 + 2\left(\frac{1}{2}\right) + 3\left(\frac{1}{2}\right)^2 + 4\left(\frac{1}{2}\right)^3 + \dots + k\left(\frac{1}{2}\right)^{k-1} = 4 - \frac{k+2}{2^{k-1}}$ if n = k + 1 $1 + 2\left(\frac{1}{2}\right) + 3\left(\frac{1}{2}\right)^2 + 4\left(\frac{1}{2}\right)^3 + \dots + k\left(\frac{1}{2}\right)^{k-1} + (k+1)\left(\frac{1}{2}\right)^k$ $= 4 - \frac{k+2}{2^{k-1}} + (k+1)\left(\frac{1}{2}\right)^k$ **M1A1** finding a common denominator for the two fractions **M1** $= 4 - \frac{2(k+2)}{2^k} + \frac{k+1}{2^k}$ $= 4 - \frac{2(k+2)-(k+1)}{2^k} = 4 - \frac{k+3}{2^k} \left(= 4 - \frac{(k+1)+2}{2^{(k+1)-1}} \right)$ **A1**

hence if true for n=k then also true for n=k+1, as true for n=1, so true (for all $n\in\mathbb{Z}^+$) **R1**

Note: Award the final *R1* only if the first four marks have been awarded. [7 marks]

10. Use mathematical induction to prove that $(1-a)^n > 1-na$ for [7 marks] $\{n:n\in\mathbb{Z}^+,\,n\geqslant 2\}$ where 0< a< 1.

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

Let P_n be the statement: $(1-a)^n > 1 - na$ for some $n \in \mathbb{Z}^+$, $n \ge 2$ where 0 < a < 1 consider the case n=2: $\left(1-a
ight)^2 = 1-2a+a^2$ $oldsymbol{M1}$ > 1-2a because $a^2 < 0$. Therefore P_2 is true **R1** assume P_n is true for some n=k $(1-a)^k > 1-ka$ **M1** Note: Assumption of truth must be present. Following marks are not dependent on this **M1**. **EITHER** consider $(1-a)^{k+1} = (1-a)(1-a)^k$ **M1** $> 1 - (k+1) a + ka^2$ A1 $> 1 - (k+1) \, a \Rightarrow \mathrm{P}_{k+1}$ is true (**as** $ka^2 > 0$) **R1** OR multiply both sides by (1 - a) (which is positive) **M1** $(1-a)^{k+1} > (1-ka) (1-a)$ $(1-a)^{k+1} > 1 - (k+1)a + ka^2$ A1 $\left(1-a
ight)^{k+1}>1-\left(k+1
ight)a\Rightarrow\mathrm{P}_{k+1}$ is true (**as** $ka^2>0$) **R1**

THEN

 P_2 is true P_k is true $\Rightarrow P_{k+1}$ is true so P_n true for all n>2 (or equivalent) $\it R1$

Note: Only award the last *R1* if at least four of the previous marks are gained including the *A1*.

[7 marks]

Consider the function $f_n(x) = (\cos 2x)(\cos 4x)\dots(\cos 2^n x), n\in\mathbb{Z}^+.$

11a. Determine whether f_n is an odd or even function, justifying your [2 marks] answer.

Markscheme * This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure. even function **A1** since $\cos kx = \cos(-kx)$ and $f_n(x)$ is a product of even functions **R1 OR** even function **A1** since $(\cos 2x)(\cos 4x) \dots = (\cos(-2x))(\cos(-4x)) \dots$ **R1 Note:** Do not award **AOR1**.

[2 marks]

11b. By using mathematical induction, prove that

[8 marks]

 $f_n(x)=rac{\sin 2^{n+1}x}{2^n\sin 2x}, \ x
eq rac{m\pi}{2}$ where $m\in\mathbb{Z}.$

consider the case n=1 $\frac{\sin 4x}{2\sin 2x}=\frac{2\sin 2x\cos 2x}{2\sin 2x}=\cos 2x$ **M1** hence true for n=1 **R1**

assume true for n=k, *ie*, $(\cos 2x)(\cos 4x)\dots(\cos 2^kx)=rac{\sin 2^{k+1}x}{2^k\sin 2x}$ — *M1*

Note: Do not award **M1** for "let n = k" or "assume n = k" or equivalent.

consider n = k + 1: $f_{k+1}(x) = f_k(x)(\cos 2^{k+1}x) \quad (M1)$ $= \frac{\sin 2^{k+1}x}{2^k \sin 2x} \cos 2^{k+1}x \quad A1$ $= \frac{2\sin 2^{k+1}x \cos 2^{k+1}x}{2^{k+1} \sin 2x} \quad A1$ $= \frac{\sin 2^{k+2}x}{2^{k+1} \sin 2x} \quad A1$ so n = 1 true and n = k true $\Rightarrow n = k + 1$ true. Hence true for all $n \in \mathbb{Z}^+$ R1

Note: To obtain the final *R1*, all the previous *M* marks must have been awarded.

[8 marks]

11c. Hence or otherwise, find an expression for the derivative of $f_n(x)$ with [3 marks] respect to x.

11d. Show that, for
$$n>1$$
, the equation of the tangent to the curve $y=f_n(x)$ at $x=rac{\pi}{4}$ is $4x-2y-\pi=0.$

Markscheme

$$f'_{n}\left(\frac{\pi}{4}\right) = \frac{(2^{n}\sin\frac{\pi}{2})(2^{n+1}\cos 2^{n+1}\frac{\pi}{4}) - (\sin 2^{n+1}\frac{\pi}{4})(2^{n+1}\cos\frac{\pi}{2})}{(2^{n}\sin\frac{\pi}{2})^{2}} \quad (M1)(A1)$$

$$f'_{n}\left(\frac{\pi}{4}\right) = \frac{(2^{n})(2^{n+1}\cos 2^{n+1}\frac{\pi}{4})}{(2^{n})^{2}} \quad (A1)$$

$$= 2\cos 2^{n+1}\frac{\pi}{4} (= 2\cos 2^{n-1}\pi) \quad A1$$

$$f'_{n}\left(\frac{\pi}{4}\right) = 2 \quad A1$$

$$f'_{n}\left(\frac{\pi}{4}\right) = 2 \quad A1$$
Note: This *A* mark is independent from the previous marks.

$$y = 2\left(x - \frac{\pi}{4}\right) \quad M1A1$$

$$4x - 2y - \pi = 0$$
 AG
[8 marks]

12. Use the method of mathematical induction to prove that $4^n + 15n - 1$ is [6 marks] divisible by 9 for $n \in \mathbb{Z}^+$.

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

let P(n) be the proposition that $4^n + 15n - 1$ is divisible by 9 showing true for n = 1 **A1** *ie*for $n = 1, 4^1 + 15 \times 1 - 1 = 18$ which is divisible by 9, therefore P(1) is true assume P(k) is true so $4^k + 15k - 1 = 9A$, $(A \in \mathbb{Z}^+)$ **M1**

Note: Only award **M1** if "truth assumed" or equivalent.

consider $4^{k+1} + 15(k+1) - 1$ = $4 \times 4^k + 15k + 14$ = 4(9A - 15k + 1) + 15k + 14 *M1* = $4 \times 9A - 45k + 18$ *A1* = 9(4A - 5k + 2) which is divisible by 9 *R1*

Note: Award *R1* for either the expression or the statement above.

since P(1) is true and P(k) true implies P(k+1) is true, therefore (by the principle of mathematical induction) P(n) is true for $n \in \mathbb{Z}^+$ **R1**

Note: Only award the final *R1* if the 2 *M1* s have been awarded.

[6 marks]

13. Prove by mathematical induction that [9 marks]
$$\binom{2}{2} + \binom{3}{2} + \binom{4}{2} + \ldots + \binom{n-1}{2} = \binom{n}{3}$$
, where $n \in \mathbb{Z}, n \ge 3$

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

$$\begin{pmatrix} 2\\2 \end{pmatrix} + \begin{pmatrix} 3\\2 \end{pmatrix} + \begin{pmatrix} 4\\2 \end{pmatrix} + \dots + \begin{pmatrix} n-1\\2 \end{pmatrix} = \begin{pmatrix} n\\3 \end{pmatrix}$$
show true for $n = 3$ (M1)
LHS = $\begin{pmatrix} 2\\2 \end{pmatrix} = 1$ RHS = $\begin{pmatrix} 3\\3 \end{pmatrix} = 1$ A1
hence true for $n = 3$
assume true for $n = k: \begin{pmatrix} 2\\2 \end{pmatrix} + \begin{pmatrix} 3\\2 \end{pmatrix} + \begin{pmatrix} 4\\2 \end{pmatrix} + \dots + \begin{pmatrix} k-1\\2 \end{pmatrix} = \begin{pmatrix} k\\3 \end{pmatrix}$
M1
consider for $n = k + 1: \begin{pmatrix} 2\\2 \end{pmatrix} + \begin{pmatrix} 3\\2 \end{pmatrix} + \begin{pmatrix} 4\\2 \end{pmatrix} + \dots + \begin{pmatrix} k-1\\2 \end{pmatrix} + \begin{pmatrix} k\\2 \end{pmatrix}$
(M1)
= $\begin{pmatrix} k\\3 \end{pmatrix} + \begin{pmatrix} k\\2 \end{pmatrix}$ A1
= $\frac{k!}{(k-3)!3!} + \frac{k!}{(k-2)!2!} \left(= \frac{k!}{3!} \left[\frac{1}{(k-3)!} + \frac{3}{(k-2)!} \right] \right)$ or any correct expression with a visible common factor (A1)

$$= \frac{k!}{3!} \left[\frac{k-2+3}{(k-2)!} \right]$$
 or any correct expression with a common denominator **(A1)**
$$= \frac{k!}{3!} \left[\frac{k+1}{(k-2)!} \right]$$

Note: At least one of the above three lines or equivalent must be seen.

$$=rac{(k+1)!}{3!(k-2)!}$$
 or equivalent $egin{array}{c} {oldsymbol{\mathcal{A1}}}\ = egin{pmatrix} k+1\ 3 \end{pmatrix}$

Result is true for k = 3. If result is true for k it is true for k+1. Hence result is true for all $k \ge 3$. Hence proved by induction. **R1**

Note: In order to award the *R1* at least **[5 marks]** must have been awarded.

[9 marks]

14a. Find the value of $\sin \frac{\pi}{4} + \sin \frac{3\pi}{4} + \sin \frac{5\pi}{4} + \sin \frac{7\pi}{4} + \sin \frac{9\pi}{4}$. [2 marks] Markscheme * This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure. $\sin\frac{\pi}{4} + \sin\frac{3\pi}{4} + \sin\frac{5\pi}{4} + \sin\frac{7\pi}{4} + \sin\frac{9\pi}{4} = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2}$ (M1)A1 **Note:** Award **M1** for 5 equal terms with) +) or - signs.[2 marks] 14b. Show that $rac{1-\cos 2x}{2\sin x}\equiv \sin x,\ x
eq k\pi$ where $k\in\mathbb{Z}.$ [2 marks] Markscheme $\frac{1-\cos 2x}{2\sin x} \equiv \frac{1-(1-2\sin^2 x)}{2\sin x} \quad \mathbf{M1}$ $\equiv \frac{2\sin^2 x}{2\sin x}$ **A1** $\equiv \sin x \quad AG$ [2 marks]

14c. Use the principle of mathematical induction to prove that [9 marks] $\sin x + \sin 3x + \ldots + \sin(2n-1)x = \frac{1-\cos 2nx}{2\sin x}, \ n \in \mathbb{Z}^+, \ x \neq k\pi$ where $k \in \mathbb{Z}$.

let $P(n) : \sin x + \sin 3x + \ldots + \sin(2n-1)x \equiv \frac{1-\cos 2nx}{2\sin x}$ if n = 1 $P(1) : \frac{1-\cos 2x}{2\sin x} \equiv \sin x$ which is true (as proved in part (b)) **R1** assume P(k) true, $\sin x + \sin 3x + \ldots + \sin(2k-1)x \equiv \frac{1-\cos 2kx}{2\sin x}$ **M1**

Notes: Only award **M1** if the words "assume" and "true" appear. Do not award **M1** for "let n = k" only. Subsequent marks are independent of this **M1**.

consider P(k + 1): $P(k + 1) : \sin x + \sin 3x + ... + \sin(2k - 1)x + \sin(2k + 1)x \equiv \frac{1 - \cos 2(k + 1)x}{2 \sin x}$ $LHS = \sin x + \sin 3x + ... + \sin(2k - 1)x + \sin(2k + 1)x$ **M1** $\equiv \frac{1 - \cos 2kx}{2 \sin x} + \sin(2k + 1)x$ **A1** $\equiv \frac{1 - \cos 2kx + 2 \sin x \sin(2k + 1)x}{2 \sin x}$ **M1** $\equiv \frac{1 - \cos 2kx + 2 \sin x \cos x \sin 2kx + 2 \sin^2 x \cos 2kx}{2 \sin x}$ **M1** $\equiv \frac{1 - ((1 - 2 \sin^2 x) \cos 2kx - \sin 2x \sin 2kx))}{2 \sin x}$ **M1** $\equiv \frac{1 - (\cos 2x \cos 2kx - \sin 2x \sin 2kx)}{2 \sin x}$ **A1** $\equiv \frac{1 - \cos(2kx + 2x)}{2 \sin x}$ **A1** $\equiv \frac{1 - \cos(2kx + 2x)}{2 \sin x}$ **A1** $\equiv \frac{1 - \cos 2(k + 1)x}{2 \sin x}$ **A1** $\equiv \frac{1 - \cos 2(k + 1)x}{2 \sin x}$ **A1** $\equiv \frac{1 - \cos 2(k + 1)x}{2 \sin x}$ **A1**

Note: Accept answers using transformation formula for product of sines if steps are shown clearly.

Note: Award *R1* only if candidate is awarded at least 5 marks in the previous steps.

[9 marks]

14d. Hence or otherwise solve the equation $\sin x + \sin 3x = \cos x$ in the interval $0 < x < \pi$.

Markscheme

EITHER

 $\sin x + \sin 3x = \cos x \Rightarrow \frac{1 - \cos 4x}{2 \sin x} = \cos x$ M1 $\Rightarrow 1 - \cos 4x = 2 \sin x \cos x, \ (\sin x \neq 0)$ **A1** $\Rightarrow 1 - (1 - 2\sin^2 2x) = \sin 2x$ M1 $\Rightarrow \sin 2x(2\sin 2x-1) = 0$ M1 $\Rightarrow \sin 2x = 0$ or $\sin 2x = rac{1}{2}$ **A1** $2x=\pi,\ 2x=rac{\pi}{6}$ and $2x=rac{5\pi}{6}$ OR $\sin x + \sin 3x = \cos x \Rightarrow 2\sin 2x \cos x = \cos x$ MIA1 $\Rightarrow (2\sin 2x - 1)\cos x = 0, \ (\sin x
eq 0)$ M1A1 $\Rightarrow \sin 2x = rac{1}{2}$ of $\cos x = 0$ **A1** $2x=rac{\pi}{6},\ 2x=rac{5\pi}{6}$ and $x=rac{\pi}{2}$ THEN $\therefore x = \frac{\pi}{2}, \ x = \frac{\pi}{12}$ and $x = \frac{5\pi}{12}$ **A1 Note:** Do not award the final **A1** if extra solutions are seen.

[6 marks]

^{15a.} Use de Moivre's theorem to find the value of $\left(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right)^3$. [2 marks]

[6 marks]

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

 $\left(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right)^3 = \cos \pi + i\sin \pi$ M1 = -1 A1 [2 marks]

15b. Use mathematical induction to prove that

[6 marks]

 $(\cos heta - {
m i} \sin heta)^n = \cos n heta - {
m i} \sin n heta$ for $n \in \mathbb{Z}^+.$

Markscheme

show the expression is true for n=1 **R1** assume true for n = k, $(\cos \theta - i \sin \theta)^k = \cos k\theta - i \sin k\theta$ M1 Do not accept "let n = k" or "assume n = k", assumption of truth Note: must be present. $(\cos\theta - i\sin\theta)^{k+1} = (\cos\theta - i\sin\theta)^k (\cos\theta - i\sin\theta)^k$ $= (\cos k\theta - i \sin k\theta)(\cos \theta - i \sin \theta) \quad \mathbf{M1}$ $= \cos k\theta \cos \theta - \sin k\theta \sin \theta - i(\cos k\theta \sin \theta + \sin k\theta \cos \theta) \quad \mathbf{A1}$ Note: Award **A1** for any correct expansion. $= \cos((k+1)\theta) - i\sin((k+1)\theta)$ A1 therefore if true for n = k true for n = k + 1, true for n = 1, so true for all $n(\in\mathbb{Z}^+)$ R1 Note: To award the final **R** mark the first 4 marks must be awarded.

[6 marks]

Let $z = \cos \theta + i \sin \theta$.

15c. Find an expression in terms of θ for $(z)^n + (z^*)^n$, $n \in \mathbb{Z}^+$ where z^* is [2 marks] the complex conjugate of z.

Markscheme $(z)^n + (z^*)^n = (\cos \theta + i \sin \theta)^n + (\cos \theta - i \sin \theta)^n$ $= \cos n\theta + i \sin n\theta + \cos n\theta - i \sin n\theta = 2\cos(n\theta)$ (M1)A1 [2 marks]

```
15d. (i) Show that zz^* = 1.
                                                                                     [5 marks]
    (ii) Write down the binomial expansion of (z + z^*)^3 in terms of z and z^*.
    (iii) Hence show that \cos 3\theta = 4\cos^3 \theta - 3\cos \theta.
      Markscheme
      (i) zz = (\cos \theta + i \sin \theta)(\cos \theta - i \sin \theta)
      =\cos^2	heta+\sin^2	heta A1
      = 1 AG
                Allow justification starting with |z| = 1.
      Note:
      (ii) (z+z^*)^3 = z^3 + 3z^2z^* + 3z(z^*)^2 + (z^*)3\left(=z^3 + 3z + 3z^* + (z^*)^3\right)
       A1
      (iii) (z+z^*)^3 = (2\cos\theta)^3 A1
      z^3 + 3z + 3z^* + (z^*)^3 = 2\cos 3\theta + 6\cos \theta M1A1
      \cos 3\theta = 4\cos^3 \theta - 3\cos \theta AG
      Note: M1 is for using zz^* = 1, this might be seen in d(ii).
      [5 marks]
```

15e. Hence solve $4\cos^3\theta - 2\cos^2\theta - 3\cos\theta + 1 = 0$ for $0 \le \theta < \pi$. [6 marks]

 $4\cos^{3}\theta - 2\cos^{2}\theta - 3\cos\theta + 1 = 0$ $4\cos^{3}\theta - 3\cos\theta = 2\cos^{2}\theta - 1$ $\cos(3\theta) = \cos(2\theta) \quad \textbf{A1A1}$ **Note:** A1 for $\cos(3\theta)$ and A1 for $\cos(2\theta)$. $\theta = 0 \quad \textbf{A1}$ or $3\theta = 2\pi - 2\theta$ (or $3\theta = 4\pi - 2\theta$) M1 $\theta = \frac{2\pi}{5}, \frac{4\pi}{5} \quad \textbf{A1A1}$ **Note:** Do not accept solutions via factor theorem or other methods that do not follow "hence".

[6 marks]

16. Use mathematical induction to prove that $n(n^2+5)$ is divisible by 6 for *[8 marks]* $n \in \mathbb{Z}^+$.

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

let P(n) be the proposition that $n(n^2+5)$ is divisible by 6 for $n \in \mathbb{Z}^+$ consider P(1):

when n = 1, $n(n^2 + 5) = 1 \times (1^2 + 5) = 6$ and so P(1) is true **R1** assume P(k) is true *ie*, $k(k^2 + 5) = 6m$ where $k, m \in \mathbb{Z}^+$ **M1 Note:** Do not award **M1** for statements such as "let n = k". consider P(k + 1):

$$\begin{array}{l} (k+1)\left((k+1)^2+5\right) \quad \textit{M1} \\ = (k+1)(k^2+2k+6) \\ = k^3+3k^2+8k+6 \quad \textit{(A1)} \\ = (k^3+5k)+(3k^2+3k+6) \quad \textit{A1} \\ = k(k^2+5)+3k(k+1)+6 \quad \textit{A1} \\ k(k+1) \text{ is even hence all three terms are divisible by 6} \quad \textit{R1} \\ P(k+1) \text{ is true whenever } P(k) \text{ is true and } P(1) \text{ is true, so } P(n) \text{ is true for } \\ n \in \mathbb{Z}^+ \quad \textit{R1} \end{array}$$

Note: To obtain the final *R1*, four of the previous marks must have been awarded.

[8 marks]

17a. Show that $\sin\left(\theta + \frac{\pi}{2}\right) = \cos\theta$.

[1 mark]

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

 $\sin\left(\theta + \frac{\pi}{2}\right) = \sin\theta\cos\frac{\pi}{2} + \cos\theta\sin\frac{\pi}{2} \quad \mathbf{M1}$ $= \cos\theta \quad \mathbf{AG}$

Note: Accept a transformation/graphical based approach. *[1 mark]*

17b. Consider $f(x) = \sin(ax)$ where a is a constant. Prove by mathematical [7 marks] induction that $f^{(n)}(x) = a^n \sin\left(ax + \frac{n\pi}{2}\right)$ where $n \in \mathbb{Z}^+$ and $f^{(n)}(x)$ represents the nth derivative of f(x).

Markscheme

consider n = 1, $f'(x) = a \cos(ax)$ **M1** since $\sin\left(ax + \frac{\pi}{2}\right) = \cos ax$ then the proposition is true for n = 1 **R1** assume that the proposition is true for n = k so $f^{(k)}(x) = a^k \sin\left(ax + \frac{k\pi}{2}\right)$ **M1** $d(f^{(k)}(x))$

$$egin{aligned} f^{(k+1)}(x) &= rac{\mathrm{d}(f^{(k)}(x))}{\mathrm{d}x} & \left(= a \left(a^k \cos\left(ax + rac{k\pi}{2}
ight)
ight)
ight) & \mathbf{M1} \ &= a^{k+1} \sin\left(ax + rac{k\pi}{2} + rac{\pi}{2}
ight) & (\mathrm{using part (a)}) & \mathbf{A1} \ &= a^{k+1} \sin\left(ax + rac{(k+1)\pi}{2}
ight) & \mathbf{A1} \end{aligned}$$

given that the proposition is true for n = k then we have shown that the proposition is true for n = k + 1. Since we have shown that the proposition is true for n = 1 then the proposition is true for all $n \in \mathbb{Z}^+$ **R1**

Note: Award final *R1* only if all prior *M* and *R* marks have been awarded.
[7 marks]
Total [8 marks]

18a. Find $\frac{\mathrm{d}y}{\mathrm{d}x}$.

[2 marks]

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

 $rac{\mathrm{d}y}{\mathrm{d}x}=1 imes\mathrm{e}^{3x}+x imes3\mathrm{e}^{3x}=(\mathrm{e}^{3x}+3x\mathrm{e}^{3x})$ M1A1 [2 marks]

^{18b.} Prove by induction that $rac{\mathrm{d}^n y}{\mathrm{d} x^n}=n3^{n-1}\mathrm{e}^{3x}+x3^n\mathrm{e}^{3x}$ for $n\in\mathbb{Z}^+.$

let P(n) be the statement $\frac{d^n y}{dx^n} = n3^{n-1}e^{3x} + x3^n e^{3x}$ prove for n = 1 **M1** LHS of P(1) is $\frac{dy}{dx}$ which is $1 \times e^{3x} + x \times 3e^{3x}$ and RHS is $3^0e^{3x} + x3^1e^{3x}$ **R1** as LHS = RHS, P(1) is true assume P(k) is true and attempt to prove P(k+1) is true **M1** assuming $\frac{d^k y}{dx^k} = k3^{k-1}e^{3x} + x3^ke^{3x}$ $\frac{d^{k+1}y}{dx^{k+1}} = \frac{d}{dx}\left(\frac{d^k y}{dx^k}\right)$ (**M1**) $= k3^{k-1} \times 3e^{3x} + 1 \times 3^ke^{3x} + x3^k \times 3e^{3x}$ **A1** $= (k+1)3^ke^{3x} + x3^{k+1}e^{3x}$ (as required) **A1**

Note: Can award the **A** marks independent of the **M** marks

since P(1) is true and P(k) is true \Rightarrow P(k+1) is true then (by PMI), P(n) is true ($orall n \in \mathbb{Z}^+$) **R1**

Note: To gain last *R1* at least four of the above marks must have been gained.

[7 marks]

18c. Find the coordinates of any local maximum and minimum points on the [5 marks] graph of y(x).

Justify whether any such point is a maximum or a minimum.

18d. Find the coordinates of any points of inflexion on the graph of y(x). [5 marks] Justify whether any such point is a point of inflexion.

Markscheme

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2 \times 3\mathrm{e}^{3x} + x \times 3^2 \mathrm{e}^{3x} \quad \mathbf{A1}$$

$$2 \times 3\mathrm{e}^{3x} + x \times 3^2 \mathrm{e}^{3x} = 0 \Rightarrow 2 + 3x = 0 \Rightarrow x = -\frac{2}{3} \quad \mathbf{M1A1}$$
point is $\left(-\frac{2}{3}, -\frac{2}{3\mathrm{e}^2}\right) \quad \mathbf{A1}$

$$\boxed{\begin{array}{c|c}x & -\frac{2}{3}\\ \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} & -\mathrm{ve} & 0 & +\mathrm{ve}\end{array}}$$

since the curvature does change (concave down to concave up) it is a point of inflection R1

Note: Allow 3^{rd} derivative is not zero at $-\frac{2}{3}$

[5 marks]