Circular Motion and Gravitation Revision Guide

Centripetal force and acceleration

• Centripetal acceleration is equal to the equation below

$$a_c = \frac{v^2}{r}$$

• Centrípetal force is always provided by some other force, such as friction and tension, and it is equivalent to a system's net force.

$$F_c = ma_c$$

$$F_c = m \frac{v^2}{r}$$

$$a_c = \frac{v^2}{r}$$

$$a_c = \text{Centripetal acceleration}$$

Basic properties of circular motion

- The direction of centripetal force always points to the center of its circular path
- The direction and linear (tangible) velocity is perpendicular to its radius. The is the same as saying that the direction of velocity is perpendicular to its centripetal force

Properties for uniform circular motion

- The direction of centripetal force always points to its center
- The direction and linear (tangible) velocity is perpendicular to its radius (Velocity is perpendicular to its centripetal force).
- Constant speed (the magnitude of tangible velocity is constant), meaning that there is no acceleration for tangible velocity
- Work done by centripetal force is zero. There are two ways for deriving this: workenergy theorem or basic trigonometry

https://scienceknowledge.webador.com/physics-content/ib-physics/circular-motion-andgravitation/revision-and-test-12

Derivation of Work-Energy Theorem and Basic trigonometry $\Delta W = \Delta K$ Work done is equal to change in kinetic energy $F \cdot d \cos \theta = \frac{1}{2}m(v_f^2 - v_i^2)$ $F_c \cdot d \cos \theta = \frac{1}{2}m(v_f^2 - v_i^2)$ Since velocity is constant, centripetal force is also constant, so work done by centripetal force is also zero Since the direction of centripetal force is perpendicular to its velocity, $\cos \theta = \cos 90 = 0$, so work done is equal to zero

Some other important concepts

Angular dísplacement

• Angular displacement refers to arch length an object travels in radians

 $L=r\theta$

(L=angular displacement, R=radius, θ = angle in radian)

<u>Angular velocíty</u>

Angular velocity refers to the rate of change in angular displacement. It is a vector quantity with a unit of radian per second, calculated by the equation below.

$$\omega = \frac{\theta}{\Delta t}$$

 $(\theta = angular displacement, \theta = change in time, \omega = angular velocity)$

We can express speed in terms of angular velocity, as shown below

$$v = \frac{L}{t} = \frac{r\theta}{t}$$

Using the formular of angular velocity, we get

$$v = r\omega$$

Períod

• Period is the time for one revolution, and it has a unit of 1/s (1 over second)

$$T = \frac{2\pi r}{v} = \frac{2\pi}{\omega} = 2\pi f$$

Frequency

- Frequency is defined as the rate of rotation, or the number of rotations in 1 unit second. It has a unit of second, also known as Hertz, Hz
- Frequency and period are reciprocal to each other as shown by the equation below

$$T = \frac{1}{f}$$

<u>Note:</u> speed means the magnitude of tangible velocity here.

Connecting all formula together

Circular motion maintains many formulas, so it is important to summarize and build connections. Some most frequently equations are listed below.

Centrípetal force	$F_c = m \frac{v^2}{r}$		
Angular dísplacement	$L=r\theta$		
Angular velocíty	$\omega = \frac{\theta}{\Delta t}$		
Períod	$T = \frac{2\pi r}{\nu} = \frac{2\pi}{\omega}$		
Tangible velocity	$v = r\omega$		

Some further derivations are listed below

Centripetal force	$F_c = m \frac{(r\omega)^2}{r} = mr\omega^2$
	$F_c = m \frac{(2\pi r/T)^2}{r} = \frac{4m\pi^2 r}{T^2}$
Períod	$T = \frac{2\pi r}{\nu}$
	$T = \frac{2\pi}{\omega}$
	$T = 2\pi f$

Some frequent testing points

Assume that you are rolling a ball in a vertical circular path. At which position is the magnitude of tension the greatest. (See problem 2). Write the equation of tension in term of centripetal force in different positions.

Posítíon	Force Analysís	Magnítude of Tensíon	
For object on the top	$F_c = mg + T$	$T = F_c - mg$	
For object on the bottom	$F_c = T - mg$	$T = F_c + mg$	
For object half-way up	$F_c = T$	$F_c = T$	
Tension on the bottom is always the greatest			

Roller Coaster Analysis (Minimum Velocity at the topic)

For a roller coaster, its minimum velocity required is equal to \sqrt{gR} , where \mathbf{R} is radius and \mathbf{g} is gravitational acceleration.

$$F_c = N - mg$$

To get the minimum value of centripetal force, we set the normal force N equal to zero, so centripetal force is equal to gravitational force mg.

Plug in the formular of centripetal force

$$m\frac{v^2}{r} = mg$$

 $F_c = mg$

We get the result that

 $v = \sqrt{gR}$

Newton's Law of Universal Gravitation

Newton's law of universal gravitation states that every point mass in the universe attract every other point mass with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers.

$$F_g = G \frac{Mm}{r^2}$$

(F_g = force of gravitation, M = mass of object 1, m = mass of object 2, r = distance between 2

objects)
$$F_g \propto \frac{1}{r^2}$$

Gravitational Field Strength

• Gravitational field is the force experienced by a unit mass, calculated by the equation below.

$$g = \frac{GM}{r^2}$$

G=universal gravitation constant

$$g = \frac{F}{m} = \frac{GMm/r^2}{m}$$

M= mass produced force

- Gravitational field is used to explain the influences that a massive body produced into the space into itself
- It is a vector quantity with a unit of Newton per kilogram, N/kg

Circular Motion and Gravitation Connection (Orbital Motion)

Orbital Speed

To calculate minimum velocity at the topic, always set normal force N=0 https://scienceknowledge.webador.com/physics-content/ib-physics/circular-motion-andgravitation/revision-and-test-12

Orbital velocity is the speed required to achieve orbit around a celestial body, such as a planet or a star, calculated by the below equation

$$v = \sqrt{\frac{GM}{r^2}}$$

This is because for a planet orbiting around another object in space, its centripetal force is equal to the gravitational attraction it received, given us the below equation

$$m\frac{v^2}{r} = \frac{GMm}{r^2}$$

Solving for velocity v, we obtain the above equation.

Gravitational Potential Energy

• When an object is near the surface of a planet, its gravitational potential energy is approximately equal to $U_g = mgh$. However, for objects in space, a more accurate equation is needed, shown by the equation below.

Conservation of Energy

The total energy in a system is conserved if there is no external force acting on it

$KE_i + PE_i = KE_f + PE_f$			
When object is near the surface of a planet	When object is in space		
$\frac{1}{2}mv_i^2 + mgr_i = \frac{1}{2}mv_f^2 + mgr_f$	$\frac{GMm}{2r_i} - \frac{GMm}{r_i} = \frac{GMm}{2r_f} - \frac{GMm}{r_f}$		
$\frac{1}{2}m(v_f^2 - v_i^2) = mg(r_i - r_f)$	$\frac{GMm}{2} \left(\frac{1}{r_i} - \frac{1}{r_f} \right) = GMm \left(\frac{1}{r_i} - \frac{1}{r_f} \right)$		

One Classical Types of Problem

Calculating Period

Calculating period of the satellite given the mass of earth, radius between two objects. For this kind of problem, use the below equation

Т

This is because

This is an important formular that's frequently tested.

$$T = \sqrt{\frac{4\pi^2 r^3}{M}}$$

$$G \frac{Mm}{r^2} = m \frac{v^2}{r}$$

$$F_c = \frac{(2\pi r/T)^2}{r} = m \frac{4\pi^2 r}{T^2}$$

$$G \frac{Mm}{r^2} = m \frac{4\pi^2 r}{T^2}$$