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5.2 Heating eff ect of electric currents
This section will introduce the main ideas behind electric circuits. We 
begin by discussing how the movement of electrons inside conductors (i.e. 
electric current) results in heating of the conductor.

Collisions of electrons with lattice atoms
The e! ect of an electric " eld within a conductor, for example in a metal 
wire, is to accelerate the free electrons. The electrons therefore gain kinetic 
energy as they move through the metal. The electrons su! er inelastic 
collisions with the metal atoms, which means they lose energy to the 
atoms of the wire. The electric " eld will again accelerate the electrons until 
the next collision, and this process repeats. In this way, the electrons keep 
providing energy to the atoms of the wire. The atoms in the wire vibrate 
about their equilibrium positions with increased kinetic energy. This shows 
up macroscopically as an increase in the temperature of the wire. 

Electric resistance
In Subtopic 5.1 we stressed that whenever there is a potential di! erence 
there must also be an electric " eld. So when a potential di! erence is 
established at the ends of a conductor, an electric " eld is established 
within the conductor that forces electrons to move, i.e. creating an electric 
current (Figure 5.13a). Now, when the same potential di! erence is 
established at the ends of di! erent conductors, the size of the current is 
di! erent in the di! erent conductors. What determines how much current 
will # ow for a given potential di! erence is a property of the conductor 
called its electric resistance.

The electric resistance R of a conductor is de! ned as the potential 
di" erence V across its ends divided by the current I passing 
through it:

R = 
V
I

The unit of electric resistance is the volt per ampere. This is 
de! ned to be the ohm, symbol Ω. 

The electric resistance of conducting wires is very small so it is a good 
approximation to ignore this resistance. Conducting wires are represented 
by thin line segments in diagrams. Conductors whose resistance cannot be 
neglected are denoted by boxes; they are called resistors (Figure 5.13b).

In 1826, the German scientist Georg Ohm (1789–1854) discovered 
that, when the temperature of most metallic conductors is kept constant, 
the current through the conductor is proportional to the potential 
di! erence across it:

I ∝ V

This statement is known as Ohm’s law. 

Learning objectives

• Understand how current in a 
circuit component generates 
thermal energy.

• Find current, potential di! erence 
and power dissipated in circuit 
components.

• De" ne and understand electric 
resistance.

• Describe Ohm’s law.
• Investigate factors that a! ect 

resistance.
• Apply Kirchho! ’s laws to more 

complicated circuits.
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Figure 5.13 a The potential diff erence V 
across the ends of the conductor creates an 
electric fi eld within the conductor that forces 
a current I through the conductor. b How we 
represent a resistor and connecting wires in a 
circuit diagram.

Learning objectivesLearning objectives
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Materials that obey Ohm’s law have a constant resistance at constant 
temperature. For these ohmic materials, a graph of I versus V gives a 
straight line through the origin (Figure 5.14a).

A " lament light bulb will obey Ohm’s law as long as the current 
through it is small. As the current is increased, the temperature of the 
" lament increases and so does the resistance. Other devices, such as the 
diode or a thermistor, also deviate from Ohm’s law. Graphs of current 
versus potential di! erence for these devices are shown in Figure 5.14.
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Figure 5.14 Graph a shows the current–potential diff erence graph for a material that obeys Ohm’s law. The graphs for b a lamp fi lament, 
c a diode and d a thermistor show that these devices do not obey this law. (Notice that for the thermistor we plot voltage versus current.)

In the " rst graph for the ohmic material, no matter which point on the 
graph we choose (say the one with voltage 1.2 V and current 1.6 mA), the 
resistance is always the same:

R = 
1.2

1.6 × 10−3 = 750 Ω

However, looking at the graph in Figure 5.14b (the lamp " lament), we 
see that at a voltage of 0.2 V the current is 0.8 mA and so the resistance is:

R = 
0.2

0.8 × 10−3 = 250 Ω
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At a voltage of 0.3 V the current is 1.0 mA and the resistance is:

R = 
0.3

1.0 × 10−3 = 300 Ω

We see that as the current in the " lament increases the resistance increases, 
so Ohm’s law is not obeyed. This is a non-ohmic device.

Experiments show that three factors a! ect the resistance of a wire kept 
at constant temperature. They are:
• the nature of the material
• the length of the wire
• the cross-sectional area of the wire. 
For most metallic materials, an increase in the temperature results in an 
increase in the resistance.

It is found from experiment that the electric resistance R of a wire 
(at ! xed temperature) is proportional to its length L and inversely 
proportional to the cross-sectional area A:

R = ρ 
L
A

The constant ρ is called resistivity and depends on the material of 
the conductor and the temperature. The unit of resistivity is Ω m.

The formula for resistance shows that if we double the cross-sectional 
area of the conductor the resistance halves; and if we double the length, 
the resistance doubles. How do we understand these results? Figure 5.15 
shows that if we double the cross-sectional area A of a wire, the current in 
the metal for the same potential di! erence will double as well (recall 

that I = nAvq). Since R = 
V
I , the resistance R halves. What if we double 

the length L of the wire? The work done to move a charge q can be 
calculated two ways: one is through W = qV.  The other is through  
W = FL = qEL. So, if L doubles the potential di! erence must also double. 
The current stays the same and so the resistance R doubles.

For most metallic conductors, increasing the temperature increases 
the resistance. With an increased temperature the atoms of the conductor 
vibrate more and this increases the number of collisions per second. This 
in turn means that the average distance travelled by the electrons between 
collisions is reduced, i.e. the drift speed is reduced. This means the current 
is reduced and so resistance increases.

IA

length 2L

potential di!erence = 2V

2I2A

potential di!erence = V

IA

length L

Figure 5.15 The eff ect of change in length 
L and cross-sectional area A on the current 
fl owing in a wire.
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Worked example
5.10 The resistivity of copper is 1.68 × 10−8 Ω m. Calculate the length of a copper wire of diameter 4.00 mm that 

has a resistance of 5.00 Ω.

We use R = ρ 
L
A to get L = 

RA
ρ  and so:

 L = 
5.00 × π × (2.00 × 10−3)2

1.68 × 10−8

 L = 3739 m 

The length of copper wire is about 3.74 km.

Voltage
The de" ning equation for resistance, R = 

V
I , can be rearranged in terms of 

the potential di! erence V:

V = IR

This says that if there is a current through a conductor that has resistance, 
i.e. a resistor, then there must be a potential di! erence across the ends 
of that resistor. The term voltage is commonly used for the potential 
di! erence at the ends of a resistor. 

Figure 5.16 shows part of a circuit. The current is 5.0 A and 
the resistance is 15 Ω. The voltage across the resistor is given by 
V = IR = 5.0 × 15 = 75 V. The resistance between B and C is zero, so the 
voltage across B and C is zero.

Electric power
We saw earlier that whenever an electric charge q is moved from one 
point to another when there is a potential di! erence V between these 
points, work is done. This work is given by W = qV. 

Consider a resistor with a potential di! erence V across its ends. Since 
power is the rate of doing work, the power P dissipated in the resistor in 
moving a charge q across it in time t is:

P = 
work done
time taken

P = 
qV
t

But 
q
t  is the current I in the resistor, so the power is given by:

P = IV

R = 15 Ω

I = 5.0 AA B C

Figure 5.16 There is a voltage across points 
A and B and zero voltage across B and C.

Exam tip
Do not confuse diameter with radius.
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Worked examples
5.11 A resistor of resistance 12 Ω has a current of 2.0 A # owing through it. How much energy is generated in the 

resistor in one minute?

The power generated in the resistor is:

P = RI2

P = 12 × 4 = 48 W

Thus, in one minute (60 s) the energy E generated is:

E = 48 × 60 J = 2.9 × 103 J

Electrical devices are usually rated according to the power they use. A light bulb rated as 60 W at 220 V means 
that it will dissipate 60 W when a potential di! erence of 220 V is applied across its ends. If the potential di! erence 
across its ends is anything other than 220 V, the power dissipated will be di! erent from 60 W.

5.12 A light bulb rated as 60 W at 220 V has a 
potential di! erence of 110 V across its ends. 
Find the power dissipated in this light bulb.

Let R be the resistance of the light bulb and P the power we want to " nd. Assuming R stays constant (so that it is 
the same when 220 V and 110 V are applied to its ends), we have:

P = 
1102

R  and 60 = 
2202

R

Dividing the " rst equation by the second, we " nd:

P
60

 = 
1102

2202

This gives:

P = 15 W

Figure 5.17 The metal fi lament in a light 
bulb glows as the current passes through it. 
It is also very hot. This shows that electrical 
energy is converted into both thermal energy 
and light.

This power manifests itself in thermal energy and/or work performed by 

an electrical device (Figure 5.17). We can use R = 
V
I  to rewrite the 

formula for power in equivalent ways:

P = IV = RI2 = 
V2

R

Exam tip
The power of the light bulb is 60 W only 
when the voltage across it is 220 V. If we 
change the voltage we will change the power.
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Electromotive force (emf)
The concept of emf will be discussed in detail in Subtopic 5.3. Here we 
need a " rst look at emf in order to start discussing circuits. Charges need 
to be pushed in order to drift in the same direction inside a conductor. To 
do this we need an electric " eld. To have an electric " eld requires a source 
of potential di! erence. Cells use the energy from chemical reactions to 
provide potential di! erence. Figure 5.18 shows a simple circuit in which 
the potential di! erence is supplied by a battery – a battery is a collection 
of cells. The symbols for cells and batteries are shown in Table 5.1.

external resistor

internal resistor

battery

+–

Figure 5.18 A simple circuit consisting of a battery, connecting wires and a resistor. 
Note that the battery has internal resistavnce. The current enters the circuit from the 
positive pole of the battery. 

Symbol Component name

connection lead

cell

battery of cells

resistor

dc power supply

ac power supply

junction of conductors

crossing conductors 
(no connection)

lamp

voltmeter

ammeter

switch

galvanometer

potentiometer

variable resistor

heating element

Table 5.1 Names of electrical components 
and their circuit symbols.

+ –

V

A

Exam tip
You must understand the ideas 
that keep coming up in this 
topic: to make charges move 
in the same direction we need 
an electric " eld to exert forces 
on the charges. To have an 
electric " eld means there must 
be a potential di! erence. So 
something must provide that 
potential di! erence.

We de" ne emf as the work done per unit charge in moving charge 
across the battery terminals. As we will see in Subtopic 5.3, emf is the 
potential di! erence across the battery terminals when the battery has 
no internal resistance. Emf is measured in volts. Emf is also the power 
provided by the battery per unit current:

ε = emf = 
W
q  = 

P
I

This de" nition is very useful when discussing circuits.

Simple circuits
We have so far de" ned emf, voltage, resistance, current and power 
dissipated in a resistor. This means that we are now ready to put all these 
ideas together to start discussing the main topic of this chapter, electric 
circuits. The circuits we will study at Standard Level will include cells and 
batteries, connecting wires, ammeters (to measure current) and voltmeters 
(to measure voltage). The symbols used for these circuit components are 
shown in Table 5.1. In Topic 11 we will extend things so as to include 
another type of circuit element, the capacitor.
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ԑ = 12 V
I

R = 24 Ω
Figure 5.19 A simple one-loop circuit with 
one cell with negligible internal resistance 
and one resistor.

We start with the simplest type of circuit – a single-loop circuit, as 
shown in Figure 5.19. The current enters the circuit from the positive 
terminal of the cell. The direction of the current is shown by the blue 
arrow. The terminals of the cell are directly connected to the ends of the 
resistor (there is no intervening internal resistor). Therefore the potential 
di! erence at the ends of the resistor is 12 V. Using the de" nition of 

resistance we write R = 
V
I , i.e. 24 = 

12
I , giving the current in the circuit to 

be I = 0.5 A.

Resistors in series
Figure 5.20 shows part of a simple circuit, but now there are three 
resistors connected in series. Connecting resistors in series means that 
there are no junctions in the wire connecting any two resistors and so the 
current through all of them is the same. Let I be the common current in 
the three resistors.

I R1 R2 R3

The potential di! erence across each of the resistors is:

V1 = IR1, V2 = IR2 and V3 = IR3

The sum of the potential di! erences is thus:

V = IR1 + IR2 + IR3 = I(R1 + R2 + R3)

If we were to replace the three resistors by a single resistor of value 
R1 + R2 + R3 (in other words, if we were to replace the contents of the dotted 
box in Figure 5.20 with a single resistor, as in the circuit shown in Figure 
5.21), we would not be able to tell the di! erence. The same current comes 
into the dotted box and the same potential di! erence exists across its ends. 

We thus de" ne the equivalent or total resistance of the three resistors of 
Figure 5.21 by:

Rtotal = R1 + R2 + R3

If more than three were present, we would simply add all of them. Adding 
resistors in series increases the total resistance.

In a circuit, a combination of resistors like those in Figure 5.21 is 
equivalent to the single total or equivalent resistor. Suppose we now 
connect the three resistors to a battery of negligible internal resistance 
and emf equal to 24 V. Suppose that R1 = 2.0 Ω, R2 = 6.0 Ω and 
R3 = 4.0 Ω. We replace the three resistors by the equivalent resistor of 
Rtotal = 2.0 + 6.0 + 4.0 = 12 Ω. We now observe that the potential di! erence 

Figure 5.20 Three resistors in series.

R1 R2 R3

A

I

B

24 V

Rtotal

A

I

B

24 V

Figure 5.21 The top circuit is replaced by 
the equivalent circuit containing just one 
resistor.
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across the equivalent resistor is known. It is simply 24 V and hence the 
current through the equivalent resistor is found as follows:

 R = 
V
I

⇒ I = 
V
R = 

24
12 = 2.0 A

This current, therefore, is also the current that enters the dotted box: that is, 
it is the current in each of the three resistors of the original circuit. We may 
thus deduce that the potential di! erences across the three resistors are:

V1 = IR1 = 4.0 V

V2 = IR2 = 12 V

V3 = IR3 = 8.0 V

Resistors in parallel
Consider now part of another circuit, in which the current splits into 
three other currents that # ow in three resistors, as shown in Figure 5.22. 
The current that enters the junction at A must equal the current that 
leaves the junction at B, by the law of conservation of charge. The left 
ends of the three resistors are connected at the same point and the same 
is true for the right ends. This means that three resistors have the same 
potential di! erence across them. This is called a parallel connection.

We must then have that:

I = I1 + I2 + I3

This is a consequence of charge conservation. The current entering 
the junction is I and the currents leaving the junction are I1, I2 and I3 
Whatever charge enters the junction must exit the junction and so the 
sum of the currents into a junction equals the sum of the currents leaving 
the junction. This is known as Kirchho! ’s current law.

Kirchho" ’s current law (Kirchho" ’s ! rst law) states that:

ΣIin = ΣIout

Let V be the common potential di! erence across the resistors. Then:

I1 = 
V
R1

, I2 = 
V
R2

  and I3 = 
V
R3

and so:

I = 
V
R1

 + 
V
R2

 + 
V
R3

I = V(
1
R1

 + 
1
R2

 + 
1
R3

)

R1

R2

R3

I1

I2

I3

I
A B

Figure 5.22 Three resistors connected in 
parallel.
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If we replace the three resistors in the dotted box with a single resistor, 
the potential di! erence across it would be V and the current through it 
would be I. Thus:

I = 
V

Rtotal

Comparing with the last equation, we " nd:

1
Rtotal

 = 
1
R1

 + 
1
R2

 + 
1
R3

The formula shows that the total resistance is smaller than any of the 
individual resistances being added.

We have thus learned how to replace resistors that are connected in 
series or parallel by a single resistor in each case, thus greatly simplifying 
the circuit.

More complex circuits
A typical circuit will contain both parallel and series connections.
 In Figure 5.23, the two top resistors are in series. They are equivalent to a 
single resistor of 8.0 Ω. This resistor and the 24 Ω resistor are in parallel, so 
together they are equivalent to a single resistor of:

 
1

Rtotal
 = 

1
8.0 + 

1
24 = 

1
6

⇒ Rtotal = 6.0 Ω

3.0 Ω 5.0 Ω

8.0 Ω
6.0 Ω

24 Ω

24 Ω

4 Ω 9 Ω

13 Ω

6 Ω 6 Ω 12 Ω

12 Ω 24 Ω6 Ω

A B

12 Ω

6 Ω 36 Ω

12 Ω

Figure 5.23 Part of a circuit with both series and parallel connections.

Figure 5.24 A complicated part of a 
circuit containing many parallel and series 
connections.

Exam tip
Adding resistors in series 
increases the total resistance of 
a circuit (and so decreases the 
current leaving the battery).
Adding resistors in parallel 
decreases the total resistance of 
the circuit (and so increases the 
current leaving the battery).

Consider now Figure 5.24. The two top 6.0 Ω resistors are in series, so 
they are equivalent to a 12 Ω resistor. This, in turn, is in parallel with the 
other 6.0 Ω resistor, so the left block is equivalent to:

 
1

Rtotal
 = 

1
12 + 

1
6.0  = 

1
4

⇒ Rtotal = 4.0 Ω

Let us go to the right block. The 12 Ω and the 24 Ω resistors are in series, 
so they are equivalent to 36 Ω. This is in parallel with the top 12 Ω, so the 
equivalent resistor of the right block is:

 
1

Rtotal
 = 

1
36 + 

1
12 = 

1
9

⇒ Rtotal = 9.0 Ω
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Worked examples
5.13 a Determine the total resistance of the circuit shown in Figure 5.25. 
 b Hence calculate the current and power dissipated in each of the resistors.

Figure 5.25

a The resistors of 2.0 Ω and 3.0 Ω are connected in parallel and are equivalent to a single resistor of resistance R 
that may be found from:

  
1
R = 

1
2 + 

1
3 = 

5
6

 ⇒ R = 
6
5 = 1.2 Ω

 In turn, this is in series with the resistance of 1.8 Ω, so the total equivalent circuit resistance is 1.8 + 1.2 = 3.0 Ω. 

b The current that leaves the battery is thus:

I = 
6.0
3.0 = 2.0 A

 The potential di! erence across the 1.8 Ω resistor is V = 1.8 × 2.0 = 3.6 V, leading to a potential di! erence across 
the two parallel resistors of V = 6.0 − 3.6 = 2.4 V. Thus the current in the 2 Ω resistor is:

I = 
2.4
2.0 = 1.2 A

The overall resistance is thus:

4.0 + 9.0 = 13 Ω

Suppose now that this part of the circuit is connected to a source of 
emf 156 V (and negligible internal resistance). The current that leaves the 

source is I = 
156
13  = 12 A. When it arrives at point A, it will split into two 

parts. Let the current in the top part be I1 and that in the bottom part 
I2. We have I1 + I2 = 12 A. We also have that 12I1 = 6I2, since the top and 
bottom resistors of the block beginning at point A are in parallel and 
so have the same potential di! erence across them. Thus, I1 = 4.0 A and 
I2 = 8.0 A. Similarly, in the block beginning at point B the top current is 
9.0 A and the bottom current is 3.0 A.

2.0 Ω

3.0 Ω

1.8 Ω

6.0 V
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 This leads to power dissipated of:

  P = RI2 = 2.0 × 1.22 = 2.9 W

 or P = 
V2

R  = 
2.42

2.0  = 2.9 W

 or P = VI = 2.4 × 1.2 = 2.9 W

 For the 3 Ω resistor:

I = 
2.4
3.0 = 0.80 A

 which leads to power dissipated of P = RI2 = 3.0 × 0.802 = 1.9 W

 The power in the 1.8 Ω resistor is P = RI2 = 1.8 × 2.02 = 7.2 W

5.14 In the circuit of Figure 5.26 the three lamps are identical and may be assumed to have a 
constant resistance. Discuss what happens to the brightness of lamp A and lamp B when the 
switch is closed. (The cell is ideal, i.e. it has negligible internal resistance.)

Method 1
A mathematical answer. Let the emf of the cell be ε and the resistance of each lamp be R: before the switch is 

closed A and B take equal current 
ε

(2R) and so are equally bright (the total resistance is 2R). When the switch is 

closed, the total resistance of the circuit changes and so the current changes as well. The new total resistance is 
3R
2  (lamps B and C in parallel and the result in series with A) so the total current is now 

2ε
(3R), larger than before. 

The current in A is thus greater and so the power, i.e. the brightness, is greater than before. The current of 
2ε

(3R) is 

divided equally between B and C. So B now takes a current 
ε

(3R), which is smaller than before. So B is dimmer.

Method 2
The potential di! erence across A and B before the switch is closed is 

ε
2 and so A and B are equally bright. When 

the switch is closed the potential di! erence across A is double that across B since the resistance of A is double the 

parallel combination of resistance of B and C. This means that the potential di! erence across A is 2
ε
3 and across B it 

is 
ε
3. Hence A increases in brightness and B gets dimmer.

A

B C

Figure 5.26
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5.15 Look at Figure 5.27. Determine the current in the 2.0 Ω resistor 
and the potential di! erence across the two marked points, A and 
B, when the switch is a open and b closed.

a When the switch is open, the total resistance is 4.0 Ω and thus the total current is 3.0 A. 

 The potential di! erence across the 2.0 Ω resistor is 2.0 × 3.0 = 6.0 V.

 The potential di! erence across points A and B is thus 6.0 V.

b When the switch is closed, no current # ows through the 2.0 Ω resistor, since all the current takes the path 
through the switch, which o! ers no resistance. (The 2.0 Ω resistor has been shorted out.) 

 The resistance of the circuit is then 2.0 Ω and the current leaving the battery is 6.0 A. 

 The potential di! erence across points A and B is now zero. (There is current # owing from A to B, but the 
resistance from A to B is zero, hence the potential di! erence is 6.0 × 0 = 0 V.)

5.16 Four lamps each of constant resistance 60 Ω are connected as shown in Figure 5.28. 
 a Determine the power in each lamp. 
 b  Lamp A burns out. Calculate the power in each lamp and the potential di! erence across the 

burnt-out lamp.

a We know the resistance of each lamp, so to " nd the power we need to " nd the current in each lamp.

 Lamps A and B are connected in series so they are equivalent to one resistor of value RAB = 60 + 60 = 120 Ω. 
This is connected in parallel to C, giving a total resistance of:

  
1

RABC
 = 

1
120 + 

1
60

  
1

RABC
 = 

1
40

 ⇒ RABC = 40 Ω

Figure 5.28

A B

D

30 V
C

60 Ω

60 Ω

60 Ω

60 Ω

2.0 Ω

A S B

12.0 V

4.0 Ω

4.0 Ω

Figure 5.27
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 Finally, this is in series with D, giving a total circuit resistance of:

  Rtotal = 40 + 60 = 100 Ω

 The current leaving the battery is thus:

I = 
30
100 = 0.30 A

 The current through A and B is 0.10 A and that through C is 0.20 A. The current through D is 0.30 A. 
Hence the power in each lamp is:

 PA = PB

 PA = 60 × (0.10)2 = 0.6 W

 PC = 60 × (0.20)2 = 2.4 W

 PD = 60 × (0.30)2 = 5.4 W

b With lamp A burnt out, the circuit is as shown in Figure 5.29.

Figure 5.29

 Lamp B gets no current, so we are left with only C and D connected in series, giving a total resistance of:

Rtotal = 60 + 60 = 120 Ω

 The current is thus I = 
30
120 = 0.25 A. The power in C and D is thus:

PC = PD = 60 × (0.25)2 = 3.8 W

 We see that D becomes dimmer and C brighter. The potential di! erence across lamp C is:

V = IR

V = 0.25 × 60

V = 15 V

Lamp B takes no current, so the potential di! erence across it is zero. The potential di! erence across points X and 
Y is the same as that across lamp C, i.e. 15 V.

A B

D

30 V
C

X Y

60 Ω

60 Ω

60 Ω
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Multi-loop circuits
In the circuit shown earlier in Figure 5.19, we found the current in the 
circuit quite easily. Let us " nd the current again using a di! erent approach 
(Figure 5.30). This approach will use Kirchho! ’s loop law, which will 
be stated shortly. This method is best used for complicated multi-loop 
circuits, but once you master it, you can easily apply it in simple circuits as 
well, such as the circuit of Figure 5.30.

voltage positive voltage negative

voltage negative voltage positive

Figure 5.31 The rules for signs of voltages 
in Kirchhoff ’s loop law. The blue arrow shows 
the direction of the current through the 
resistor.

ԑ = 12 V
I

R = 24 Ω

S

ԑ
I

R = 24 Ω

Figure 5.30 Solving a circuit using loops.

Draw a loop through the circuit and put an arrow on it (red loop). 
This indicates the direction in which we will go around the circuit. In 
the left-hand diagram we have chosen a clockwise direction. Now follow 
the loop starting anywhere; we will choose to start at point S. As we travel 
along the circuit we calculate the quantity ΣV, i.e. the sum of the voltages 
across each resistor or cell that the loop takes us through, according to the 
rules in Figure 5.31.

Follow the clockwise loop. First we go through the cell whose emf 
is ε = 12 V. The loop takes us through the cell from the negative to the 
positive terminal and so we count the voltage as +ε, i.e. as + 12 V. 

Next we go through a resistor. The loop direction is the same as the 
direction of the current so we take the voltage across the resistor as 
negative, i.e. −RI, which gives−24I. 

So the quantity ΣV is 12 − 24I.

Kirchho" ’s loop law (Kirchho" ’s second law) states that:
ΣV = 0

The loop law is a consequence of energy conservation: the power delivered 
into the circuit by the cell is εI. The power dissipated in the resistor is RI2. 
Therefore εI = RI2. Cancelling one power of the current, this implies ε = RI 
or ε – RI = 0 which is simply the Kirchho!  loop law for this circuit. So 
12 − 24I = 0, which allows us to solve for the current as 0.50 A. 

Had we chosen a counter-clockwise loop (right-hand diagram in Figure 
5.30) we would " nd ΣV = −12 + 24I = 0, giving the same answer for the 
current. (This is because we go through the cell from positive to negative so 
we count the voltage as negative, and we go through resistors in a direction 
opposite to that of the current so we count the voltage as positive.)
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Consider now the circuit with two cells, shown in Figure 5.32. Again, 
choose a loop along which to travel through the circuit. We choose a 
clockwise loop. Draw the arrow for the current. With two cells it is not 
obvious what the correct direction for the current is. But it does not 
matter, as we will see. Let’s calculate ΣV. The cells give +12 − 9.0 since 
we go through the lower cell from positive to negative. The resistors give 
−4.0I − 2.0I and so 12 − 9.0 − 4.0I − 2.0I = 0 which gives I = 0.50 A. The 
current has come out with a positive sign, so our original guess about 
its direction is correct. Had the current come out negative, the actual 
direction would be opposite to what we assumed.

Figure 5.33 is another example of a circuit with two sources of emf. 
Each of the four resistors in the circuit of Figure 5.33 is 2.0 Ω. Let’s 
determine the currents in the circuit. 

First we assign directions to the currents. Again it does not matter 
which directions we choose. Call the currents I1, I2 and I3. The loop law 
states that:

top loop:  ΣV = + 6.0 – 2I1 – 2I2 – 2I1 = 0

bottom loop:  ΣV = + 6.0 – 2I2 – 2I3 = 0

6.0 V

6.0 V

J

I1

I1

I2

I1

I3
I3

Figure 5.33 A circuit with more than one loop.
J

I1

I3

I2

Figure 5.34 Currents at junction J.

Exam tip
Using the current law we 
eliminate one of the currents 
(I2), making the algebra easier.

4.0 Ω2.0 Ω

9.0 V

12 V
 I

Figure 5.32 A single-loop circuit with two 
cells.

From Kirchho! ’s current law at junction J (Figure 5.34):

 I1 + I3 = I2   
 current in  current out

So the " rst loop equation becomes:

 +6.0 − 2I1 − 2(I1 + I3) − 2I1 = 0

⇒ 6I1 + 2I3 = 6.0

⇒ 3I1 + I3 = 3.0

and the second loop equation becomes:

 6.0 − 2(I1 + I3) − 2I3 = 0

⇒ 2I1 − 4I3 = 6.0
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So we need to solve the system of equations: 

 3I1 + I3 = 3.0

 I1 − 2I3 = 3.0

Figure 5.35 Currents entering and leaving a 
junction.

I1 I4

I3I2

R1

R2 R3

A1

A2

A3

Figure 5.36 An ammeter measures the current in the resistor connected in series to it.

Exam tip
1 For each loop in the circuit, give a name to each current in each 

resistor in the loop and show its direction.
2 Indicate the direction in which the loop will be travelled.
3 Calculate ΣV for every cell or battery and every resistor: 
 •  For a cell or battery V is counted positive if the cell or battery 

is travelled from the negative to the positive terminal; negative 
otherwise.

 •  For resistors the value of V is negative (−RI) if the resistor is 
travelled in the direction of the current; positive otherwise.

4 Set ΣV = 0.
5 Repeat for other loops.
6 Use Kirchho! ’s current law to reduce the number of currents that 

need to be found.

Solving, I1 = 0.60A. Substituting this into the equations gives I3 = 1.2 A 
and I2 = 1.8

The IB data booklet writes the Kirchho!  current law as ΣI = 0. This is 
completely equivalent to the version ΣIin = ΣIout used here. In using the 
booklet’s formula you must include a plus sign for a current entering a 
junction and minus sign for currents leaving. So consider Figure 5.35.

We would write I1 + I2 + I4 = I3. The booklet formula would write this 
as I1 + I2 + I4 − I3= 0, two identical results.

Ammeters and voltmeters
The current through a resistor is measured by an instrument called an 
ammeter, which is connected in series to the resistor as shown in 
Figure 5.36.

The ammeter itself has a small electric resistance. An ideal ammeter 

R1 R2

V V

Figure 5.37 A voltmeter is connected in 
parallel to the device we want to measure the 
potential diff erence across.

has zero resistance. The potential di! erence across a device is measured 
with a voltmeter connected in parallel to the device (Figure 5.37). 

An ideal voltmeter has in" nite resistance, which means that it takes 
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Worked example
5.17 In the circuit in Figure 5.39, the emf of the cell is 9.00 V 

and the internal resistance is assumed negligible. A non-ideal 
voltmeter whose resistance is 500 kΩ is connected in parallel to 
a resistor of 500 kΩ. 

a Determine the reading of the (ideal) ammeter.

b A student is shown the circuit and assumes, incorrectly, that 
the voltmeter is ideal. Estimate the resistance the student 
would calculate if he were to use the current found in a.

a Since the two 500 kΩ resistances are in parallel, the total resistance of the circuit is found from:

  
1
R = 

1
500 + 

1
500 = 

1
250

 ⇒ R = 250 kΩ

 Using I = 
V
R, the current that leaves the battery is:

I = 
9.0

250 000 = 3.6 × 10−5 A

I = 36 μA

 This is the reading of the ammeter in the circuit.

b The reading of the voltmeter is 9.0 V. If the student assumes the voltmeter is ideal, he would conclude that the 
current in the resistor is 36 μA. He would then calculate that:

R = 
V
I  = 

9.0 V
36 μA = 250 kΩ  and would get the wrong answer for the resistance.

variable
resistorA

V

R

Figure 5.38 The correct arrangement for 
measuring the current through and potential 
diff erence across a resistor. The variable 
resistor allows the current in the resistor R 
to be varied so as to collect lots of data for 
current and voltage.

no current when it is connected to a resistor. Real voltmeters have very 
high resistance. Unless otherwise stated, ammeters and voltmeters will be 
assumed to be ideal.

Thus, to measure the potential di! erence across and current through a 
resistor, the arrangement shown in Figure 5.38 is used.

Voltmeters and ammeters are both based on a current sensor called a 
galvanometer. An ammeter has a small resistance connected in parallel to 
the galvanometer and a voltmeter is a galvanometer connected to a large 
resistance in series.

A

V

R
 

Figure 5.39
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The potential divider
The circuit in Figure 5.40a shows a potential divider. It can be used to 
investigate, for example, the current–voltage characteristic of some device 
denoted by resistance R. This complicated-looking circuit is simply 
equivalent to the circuit in Figure 5.40b. In this circuit, the resistance R1 
is the resistance of the resistor XY from end X to the slider S, and R2 is 
the resistance of the resistor from S to end Y. The current that leaves the 
cell splits at point M. Part of the current goes from M to N, and the rest 
goes into the device with resistance R. The right end of the resistance R 
can be connected to a point S on the resistor XY.

X

R R

M N M
S

N
S

Y

I

I I

A
I1 I1

I2

R1 R2

I2

I

V

A

V

a b

Figure 5.40 a This circuit uses a potential divider. The voltage and current in the device with resistance 
R can be varied by varying the point where the slider S is attached to the variable resistor. b The potential 
divider circuit is equivalent to this simpler-looking circuit.

By varying where the slider S connects to XY, di! erent potential 
di! erences and currents are obtained for the device R. The resistor XY could 
also be just a wire of uniform diameter. One advantage of the potential 
divider over the conventional circuit arrangement (Figure 5.38) is that now 
the potential di! erence across the resistor can be varied from a minimum of 
zero volts, when the slider S is placed at X, to a maximum of ε, the emf of 
the battery (assuming zero internal resistance), by connecting the slider S to 
point Y. In the conventional arrangement of Figure 5.38, the voltage can be 
varied from zero volts up to some maximum value less than the emf.

Worked example
5.18 In the circuit in Figure 5.41, the battery has emf ε and negligible 

internal resistance. Derive an expression for the voltage V1 across 
resistor R1 and the voltage V2 across resistor R2.

Since I = 
ε

R1 + R2
 and V = IR, we have that:

V1 = (
R1

R1 + R2
)ε and V2 =   

R2
R1 + R2

ε

Figure 5.41

R1 R2

ԑ
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Nature of science
In 1825 in England Peter Barlow proposed a law explaining how wires 
conducted electricity. His careful experiments using a constant voltage 
showed good agreement, and his theory was accepted. At about the 
same time in Germany, Georg Ohm proposed a di! erent law backed up 
by experimental evidence using a range of voltages. The experimental 
approach to science was not popular in Germany, and Ohm’s " ndings 
were rejected. It was not until 1841 that the value of his work was 
recognised, " rst in England and later in Germany. In modern science, 
before research " ndings are published they are reviewed by other scientists 
working in the same area (peer review). This would have shown the errors 
in Barlow’s work and given Ohm recognition sooner.

21 The diagram shows two resistors with a current 
of 2.0 A # owing in the wire.

 a  Calculate the potential di! erence across each 
resistor.

 b State the potential between points B and C.

22 The " lament of a lamp rated as 120 W at 220 V 
has resistivity 2.0 × 10−6 Ω m.

 a  Calculate the resistance of the lamp when it is 
connected to a source of 220 V.

 b  The radius of the " lament is 0.030 mm. 
Determine its length.

23 Determine the total resistance for each of the 
circuit parts in the diagram.

A B C D

4.0 Ω 6.0 Ω

I = 2A

a b

c

4.0 Ω 4.0 Ω

2.0 Ω 2.0 Ω

6.0 Ω

4.0 Ω
8.0 Ω2.0 Ω

3.0 Ω
3.0 Ω
3.0 Ω

? Test yourself
15 Outline the mechanism by which electric current 

heats up the material through which it # ows.
16 Explain why doubling the length of a wire, at 

constant temperature, will double its resistance.
17 The graphs show the current as a function of 

voltage across the same piece of metal wire 
which is kept at two di! erent temperatures.

 a Discuss whether the wire obey Ohm’s law.
 b  Suggest which of the two lines on the graph 

corresponds to the higher temperature.

18 The current in a device obeying Ohm’s law is 
1.5 A when connected to a source of potential 
di! erence 6.0 V. What will the potential 
di! erence across the same device be when a 
current of 3.5 A # ows in it?

19 A resistor obeying Ohm’s law is measured to 
have a resistance of 12 Ω when a current of 3.0 A 
# ows in it. Determine the resistance when the 
current is 4.0 A.

20 The heating element of an electric kettle has 
a current of 15 A when connected to a source 
of potential di! erence 220 V. Calculate the 
resistance of the heating element.

A B

I

V
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24 In the potentiometer in the diagram, wire AB 
is uniform and has a length of 1.00 m. When 
contact is made at C with BC = 54.0 cm, the 
galvanometer G shows zero current. Determine 
the emf of the second cell.

25 In the circuit shown the top cell has emf 3.0 V 
and the lower cell has emf 2.0 V. Both cells have 
negligible internal resistance.

 Calculate:
 a the readings of the two ammeters 
 b  the potential di! erence across each resistor.

26 Calculate the current in each resistor in the 
circuit shown in the diagram.

27 In the circuit in the diagram the ammeter reads 
7.0 A. Determine the unknown emf ε.

28 Two resistors, X and Y, have I–V characteristics 
given by the graph.

 a  Circuit A shows the resistors X and Y 
connected in parallel to a cell of emf 1.5 V 
and negligible internal resistance. Calculate 
the total current leaving the cell.

 b  In circuit B the resistors X and Y are 
connected in series to the same cell. Estimate 
the total current leaving the cell in this circuit.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

X

Y

0.0 0.5 1.0 1.5 2.0
V / V

I /A

X

X YY

Circuit A Circuit B

12.0 V

A

C
B

G

ԑ

30 Ω

3.0 V

2.0 V

A1

A2

10 Ω

20 Ω

R3 = 3.0 Ω

9.0 V

3.0 V

R2 = 2.0 Ω

R1 = 4.0 Ω

R2 = 3.0 Ω

R3 = 5.0 Ω

9.0 V ε

A

R1 = 2.0 Ω
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29 The top cell in the circuit in the diagram has 
emf 6.0 V. The emf of the cell in the lower part 
of the circuit is 2.0 V. Both cells have negligible 
internal resistance. AB is a uniform wire of 
length 1.0 m and resistance 4.0 Ω. 

 When the variable resistor is set at 3.2 Ω the 
galvanometer shows zero current. Determine the 
length AC.

5.3 Electric cells
Batteries are now used to power watches, laptops, cars and entire 
submarines. Substantial advances in battery technology have resulted 
in batteries that store more energy, recharge faster and pose smaller 
environmental dangers.

Emf
We have already discussed that electric charges will not drift in the same 
direction inside a conductor unless a potential di! erence is established 
at the ends of the conductor. In a circuit we therefore need a source of 
potential di! erence. The most common is the connection of a battery 
in the circuit. (Others include a generator, a thermocouple or a solar 
cell.) What these sources do is to convert various forms of energy into 
electrical energy.

To understand the function of the battery, we can compare a battery 
to a pump that forces water through pipes up to a certain height and 
down again (Figure 5.42). The pump provides the gravitational potential 
energy mgh of the water that is raised. The water, descending, converts 
its gravitational potential energy into thermal energy (frictional losses) 
and mechanical work. Once the water reaches the pump, its gravitational 
potential energy has been exhausted and the pump must again perform 
work to raise the water so that the cycle repeats. 

In an electric circuit a battery performs a role similar to the pump’s. A 
battery connected to an outside circuit will force current in the circuit. 
Thus, the chemical energy of the battery is eventually converted into 
thermal energy (the current heats up the wires), into mechanical work 
(the circuit may contain a motor that may be used to raise a load) and 
into chemical energy again if it is used to charge another battery in the 
external circuit. Within the battery itself, negative ions are pushed from 
the negative to the positive terminal and positive ions in the opposite 
direction. This requires work that must be done on the ions (Figure 5.43). 
This work is provided by the chemical energy stored in the battery and 
is released by chemical reactions taking place inside the battery. 

Learning objectives

• Distinguish between primary 
and secondary cells.

• Understand the presence of an 
internal resistance.

• Distinguish between emf and 
terminal potential di! erence.

pump

h
paddle
wheel 

flow of water 

electrons

positive ions

electrons

negative ions

negative
terminal

positive
terminal

Figure 5.42 In the absence of the pump, the 
water fl ow would stop. The work done by the 
pump equals the work done to overcome 
frictional forces plus work done to operate 
devices, such as, for example, a paddle wheel.

Figure 5.43 Inside the battery, negative 
ions move from the negative to the positive 
terminal of the battery. Positive ions move in 
the opposite direction. In the external circuit, 
electrons leave the negative battery terminal, 
travel through the circuit and return to the 
battery at the positive terminal.

6.0 V

2.0 V

A C B

R


