MAA HL

Test on Mathematical Induction

by Christos Nikolaidis Date: 29 January 2020

without GDC

Marks:	/40
Marks:	/40

Name of student:				
1.	[Maximum mark: 6]			
	Prove by mathematical induction that $3^{2n} + 5^n + 2$ is divisible by 4 for $n = 0,1,2,3,$			

Turn over

2.	[Maximum mark: 9]				
	(a)	Prove by mathematical induction that	[7]		
		$\sum_{r=2}^{n} r \cdot 2^{r} = (n-1)2^{n+1} \text{for any integer } n \ge 2.$			
	(b)	Confirm that the statement is true for $n = 3$.	[2]		

-	ematical induction that $(n+1)! > 2^n n$	for any integer $x > 2$
	$(n+1)! \ge 2^n n$	for any integer $n \ge 3$.

Turn over

A SE	equence is defined recursively as follows
	$u_1 = 1$
	$u_{n+1} = 3u_n + 1$
(a)	Write down the first four terms of the sequence.
(b)	Prove by mathematical induction that
	$u_n = \frac{3^n - 1}{2}$ for any $n = 1, 2, 3, \dots$

.....

.....

.....

.....

.....

livia	ximum mark: 10j			
(a)	Expand $(\sqrt{2} + \sqrt{5})^2$.	[1]		
(b)	Prove by mathematical induction that $(\sqrt{2} + \sqrt{5})^{2n}$ has the form			
	$a+b\sqrt{10}$, where a is an odd integer and b is an even integer. for any $n\in Z^+$.			
(c)	Hence , show that $(\sqrt{2} + \sqrt{5})^{2n+1}$ has the form			
	$c\sqrt{2}+d\sqrt{5}$, where $c,d\in Z$ for any $n\in Z^+$			
	without using mathematical induction.	[2]		

5.

Turn over

