Q1	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
	Begins the proof by assuming the opposite is true. 'Assumption: given a rational number a and an irrational number b, assume that $a-b$ is rational.'	B1	3.1	7th Complete proofs using proof by contradiction.
	Sets up the proof by defining the different rational and irrational numbers. The choice of variables does not matter. Let $a=\frac{m}{n}$ As we are assuming $a-b$ is rational, let $a \quad b=\frac{p}{q}$ So $a \quad b=\frac{p}{q} \quad \frac{m}{n} \quad b=\frac{p}{q}$	M1	2.2a	
	Solves $\frac{m}{n} \quad b=\frac{p}{q}$ to make b the subject and rewrites the resulting expression as a single fraction: $\frac{m}{n} \quad b=\frac{p}{q} \quad b=\frac{m}{n} \quad \frac{p}{q}=\frac{m q \quad p n}{n q}$	M1	1.1b	
	Makes a valid conclusion. $b=\frac{m q \quad p n}{n q}$, which is rational, contradicts the assumption b is an irrational number. Therefore the difference of a rational number and an irrational number is irrational.	B1	2.4	
				(4 marks)

Q2	Scheme	Marks	AOsPearson Progression Step and Progress descriptor	
	Begins the proof by assuming the opposite is true. 'Assumption: there exists a product of two odd numbers that is even.'	B1	3.1	7th Complete proofs using proof by contradiction.
	Defines two odd numbers. Can choose any two different variables. 'Let $2 m+1$ and $2 n+1$ be our two odd numbers.'	B1	2.2 an	
Successfully multiplies the two odd numbers together: $(2 m+1)(2 n+1)$ $4 m n+2 m+2 n+1$	M1	1.1 b		
Factors the expression and concludes that this number must be odd. $4 m n+2 m+2 n+1$ $2(2 m n+m+n)$ is even, so $2(2 m n+m+n)+1$	M1	1.1 b		
	Makes a valid conclusion. This contradicts the assumption that the product of two odd numbers is even, therefore the product of two odd numbers is odd.	B1	2.4	

Q3	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
	Begins the proof by assuming the opposite is true. 'Assumption: there exists a number n such that n is odd and $n^{3}+1$ is also odd.'	B1	3.1	7th Complete proofs using proof by contradiction.
	Defines an odd number. 'Let $2 k+1$ be an odd number.'	B1	2.2a	
	Successfully calculates $(2 k+1)^{3}+1$ $(2 k+1)^{3}+1 \quad\left(8 k^{3}+12 k^{2}+6 k+1\right)+1 \quad 8 k^{3}+12 k^{2}+6 k+2$	M1	1.1b	
	Factors the expression and concludes that this number must be even. $8 k^{3}+12 k^{2}+6 k+2 \quad 2\left(4 k^{3}+6 k^{2}+3 k+1\right)$ $2\left(4 k^{3}+6 k^{2}+3 k+1\right)$ is even.	M1	1.1b	
	Makes a valid conclusion. This contradicts the assumption that there exists a number n such that n is odd and $n^{3}+1$ is also odd, so if n is odd, then $n^{3}+1$ is even.	B1	2.4	
(5 marks)				
Notes				
Alternative method				
Assume the opposite is true: there exists a number n such that n is odd and $n^{3}+1$ is also odd. (B1)				
So 2 is a factor of n^{3}. (M1)				
This implies 2 is a factor of n. (M1)				
This contradicts the statement n is odd. (B1)				

Q4	Scheme	Marks	AOs	
(a)	Begins the proof by assuming the opposite is true. 'Assumption: there exists a number n such that n^{2} is even and n is odd.'	B1	3.1	7th Complete proofs using proof by contradiction.
	Defines an odd number (choice of variable is not important) and successfully calculates n^{2} Let $2 k+1$ be an odd number. $n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1$	M1	2.2a	
	Factors the expression and concludes that this number must be odd. $4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$, so n^{2} is odd.	M1	1.1b	
	Makes a valid conclusion. This contradicts the assumption n^{2} is even. Therefore if n^{2} is even, n must be even.	B1	2.4	
		(4)		
(b)	Begins the proof by assuming the opposite is true. 'Assumption: $\sqrt{2}$ is a rational number.'	B1	3.1	7th Complete proofs using proof by contradiction.
	Defines the rational number: $\sqrt{2}=\frac{a}{b}$ for some integers a and b, where a and b have no common factors.	M1	2.2a	
	Squares both sides and concludes that a is even: $\sqrt{2}=\frac{a}{b} \quad 2=\frac{a^{2}}{b^{2}} \quad a^{2}=2 b^{2}$ From part a: a^{2} is even implies that a is even.	M1	1.1b	
	Further states that if a is even, then $a=2 c$. Choice of variable is not important.	M1	1.1b	
	Makes a substitution and works through to find $b^{2}=2 c^{2}$, concluding that b is also even. $a^{2}=2 b^{2} \quad(2 c)^{2}=2 b^{2} \quad 4 c^{2}=2 b^{2} \quad b^{2}=2 c^{2}$ From part $\mathbf{a}: b^{2}$ is even implies that b is even.	M1	1.1b	
	Makes a valid conclusion.	B1	2.4	

ALevelMathsRevision.com

	If a and b are even, then they have a common factor of 2 , which contradicts the statement that a and b have no common factors. Therefore $\sqrt{2}$ is an irrational number.			
		(6)		
(10 marks)				
Q5	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
	Begins the proof by assuming the opposite is true. 'Assumption: there exists a rational number $\frac{a}{b}$ such that $\frac{a}{b}$ is the greatest positive rational number.'	B1	3.1	7th Complete proofs using proof by contradiction.
	Makes an attempt to consider a number that is clearly greater than $\frac{a}{b}$: ‘Consider the number $\frac{a}{b}+1$, which must be greater than $\frac{a}{b}$,	M1	2.2a	
	Simplifies $\frac{a}{b}+1$ and concludes that this is a rational number. $\frac{a}{b}+1 \equiv \frac{a}{b}+\frac{b}{b} \equiv \frac{a+b}{b}$ By definition, $\frac{a+b}{b}$ is a rational number.	M1	1.1b	
	Makes a valid conclusion. This contradicts the assumption that there exists a greatest positive rational number, so we can conclude that there is not a greatest positive rational number.	B1	2.4	
				(4 marks)

Q6	Scheme	Marks	AOsPearson Progression Step and Progress descriptor	
	Begins the proof by assuming the opposite is true. 'Assumption: there do exist integers a and b such that $25 a+15 b=1$ '	B1	3.1	7 th Complete proofs using proof by contradiction.
	Understands that $25 a+15 b=1 \quad 5 a+3 b=\frac{1}{5}$ 'As both 25 and 15 are multiples of 5, divide both sides by 5 to leave $5 a+3 b=\frac{1}{5}$,	M1	2.2 a	
Understands that if a and b are integers, then $5 a$ is an integer, $3 b$ is an integer and $5 a+3 b$ is also an integer.	M1	1.1 b		
	Recognises that this contradicts the statement that $5 a+3 b=\frac{1}{5}$, as $\frac{1}{5}$ is not an integer. Therefore there do not exist integers a and b such that $25 a+15 b=1$	B1	2.4	

