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The Variational Principle

3.1: Fermat’s Principle

Fermat’s principles of least time: light travels between two points alone the path that requires the least time, as compared to other nearby 
paths. 

Snell’s Law:

The refraction index of a medium   is defined as  , where   is the speed of light  in vacuum and   is the speed of light in the 
new medium. Then, speed of light in a medium is equal to  , where   can be a continuous function. The 
time required to travel a distance   at speed   is given by:

The total time required to travel from   to   is given by:

Fermat’s principles of least time: light travels between two points alone the path that requires the least time, as compared to 
other nearby paths. 

One question raises from Fermat’s principle of least time is: how do light rays know which path is closest ?  The equation is answered by a 
method called the variation of calculus. 

3.2: The Calculus of Variation

From the above section, we know that the time required to travel from points   to   is given by:

In the integral,   can be expressed in terms of   and  , giving us  . The refraction index   because 
we are integrating alone that   coordinate. Then, the integral becomes:
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In this case, the integrand depends both on   and  , so the integral is rewritten as:

where

Example: Light Path Between Two Points in Glass
Consider first a very simple special case. Suppose the index of refraction n is constant throughout a sheet of glass, and that the endpoint of a 
light ray at  ,   is directly across the sheet from the beginning point at  ,  . Then the time to penetrate the sheet is 
what?

3.21: Euler’s Method Derivation Part 1
More generally, Euler and Lagrange considered some arbitrary integrals in the form:

and wanted to solve paths   that maximum and minimized. In other words, they wanted to find the stationary points where  . 

Suppose we have a function   of independent variables  , and we are asked to find the 
stationary points. At stationary points,  , so   must be a constant. (This might sounds confusing at the first point. Consider 
functions   , their derivatives     must be a constant. Thus,   
must be a constant for  ). We represent a horizontal shift in   as  . When reaching a stationary point, the 
function is a constant, so  , where  . Using Taylor expansion,   is equal to:

In order to the constant for  , all other terms need to be 0. This is only possible if  . Thus, when   
reaches a stationary point,

3.22: Euler’s Equation Derivation Part 2

The picture explains the integral  , the distance from   to   alone  , where   coordinates varies from   to  . Because we are integrating alone   
coordinates (we use   coordinates to define/constrain the path),  
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In order to find such paths, we introduce some new functions   and  . Suppose   is a path for stationary points and   is a path 
nearby. The path   can be expressed using   plus a small difference.

At stationary points,  . Applying chain rule for multivariable functions, we integrate   with respect to  , giving us:

Because  , the expression becomes:

Integrating   and   with respect to  , we get:

Then, the integral becomes:

Using integrating by parts, we get:

Because  , the equation is equal to:

Then, the integral becomes:

giving us

The integrand is known us the Euler’s equation.

This might be nuance, but we are getting used to  . Note that in Euler’s equation,  .
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Minimize the equation

Solution

In the problem  . Because the integrand is independent of  ,  . The Euler’s equation becomes:

Then

The shortest distance on a plane between two points is a straight line (!),

3.3: Geodesics
One application of the calculus of variation is to find geodesics, which are the stationary (usually shortest) paths between two points on a 
given surface. Before diving into details, we will talk about cylindrical and spherical coordinates in Cartesian and polar forms.

3.31: Coordinates 

Cylindrical Coordinates

In polar form

Spherical coordinates
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By pythagorean theorem, the length of the red line is given by:

where:

For spherical coordinates, we divide a sphere into infinitesimal number of cubes. 

Example: Geodesics on a Sphere
Consider the problem of finding the shortest distance between two points on the surface of a sphere. The sphere has a radius of  . Find the 
geodesics on a sphere

Solution

There are two methods for representing the coordinates on the surface of a sphere. Both approaches give rise to the correct/same 
integral. The first approach is to use spherical coordinates, giving us:

Because we want to find  , we differentiate   and   to find  , and   using the chain rule for multivariable functions. 

Then,   is equal to:

Then,   is equal to:

From the equation, we can see that  . Using Euler’s equation, we know that:
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Because   is independent of  ,  , giving us

Then,  . Differentiating   with respect to  , we get:

Solving for  

Using separable integration,   is equal to:

3.4: Brachistochrone

3.41: A Cycloid 
The section is not included in the textbook, but it will be beneficial to know some math on cycloids for our understanding of the 
brachistochrone problem.

Cycloids

Cups:

In polar forms, a cycloid has equations of:

3.4.2: Time and Paths Taken for a Brachistochrone
The problem is to find the shape of a track between two given points, such that a small ball starting at rest at the upper point-and sliding 
without friction alone the track under the influence of gravity-arrives at the lower point in the shortest time. 
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Brachistochrone: The path between two points   and   which minimizes the time taking by a particle falling from   to   under the 
influence of gravity.

Let point   be the origin of the coordinate system we define. Because the particle is dropped, it has an initial velocity and kinetic energy of 
zero. As the point is zero, gravitational potential energy is also zero. Thus, the initial, which is equal to the total, energy is zero. By energy 
conservation, we get:

The distance   is given by:

Then, time   is equal to:

Using Euler’s equation,   and  . Then,

Because  is independent of  ,  , giving us:

Solving for  , we get:

We choose the plus square root. Integrating over  , we get:

Note that we integrate with respect to   because   is a function of  , where   is the dependent variable. The integral is evaluated 
using substitution. Let  , the integral is equal to:
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Differentiating   with respect to  , we get

Expressing   in term of  , we get:

Using separable integration,   is equal to:

Notice that both   and   represent equations for a cycloid, the curve traced by a point on a circle as it rolls alone a straight line without 
slipping. The quantity   and final angle   can be determined from coordinates   of the final position. 

Substitute   or   into (6), the time   required to fall to the final position is:

Notice that if  , time   is equal to:

Example: Path Traveled by Lights in Atmosphere
We return to where we began the chapter, with Fermat’s principle of stationary time, illustrated in Figure 3.9(a). Bringing to bear the 
calculus of variations, we can now find the path of a light ray in a medium like earth’s atmosphere, where the index of refraction n is a 
continuous function of position. If a ray of light from a star descends through the atmosphere, it encounters an increasing density and an 
increasing index of refraction. We might therefore expect the ray to bend continuously, entering the atmosphere at some angle   and 
reaching the ground at a steeper angle   . For simplicity, take the earth to be essentially flat over the horizontal range of the ray and assume 
the index of refraction   only, where   is the vertical direction. The light travel time is then equal to what?
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A graph of a cycloid. Note that top points of a cycloid represents a half of a complete revolution, where  . In order to see this, imaging a point on ground 

initially, when the points is at top, the circle has completed one half of a revolution, so  . 
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Recall that refraction index of a medium  . Then, velocity of light in air is equal to   and the infinitesimal 
distance  . Time   is equal to:

In order to minimized the integral, we use Euler’s equation, where  . Because   is independent 
of  , we get:

The expression can be simplified using trigonometry. We know that  , and  .(Note that 
 . This is obtained when calculating  , where we divide the expression under the square root by   

to get  ) Then,   is equal to:

Doesn’t this looks similar? We have derived Snell’s law!

3.5 Several Dependent Variables

Example: Geodesics in Three Dimension
Using Euler’s equation for several dependent variable, find geodesics in three dimensions.

Solution

Distance   is equal to:

Let  . We choose   to be the independent variable and   and   as dependent variables. Using Euler’s equation, 
we get:

Because   is independent of   and  , equations are reduced to:
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where   and   are constants. The equation can be coupled by taking the sum of the squares of the two equations to show that the 
denominator of each equation or constant, or equivalently  , where   is a constnat.

Then, 

The minimum path has a constant and positive slope in both and  and   planets, showing a stright line. 

3.6: Mechanics From a Variation Principle

Recall from relativity that proper time (the reading in the frame moving with the clock) is equal to  , where   is the reading in 
another frame (For instance, earth’s frame). 

We want to find a general formulation of mechanics that is based entirely on a variational principle. Consider a relativistic particle, the 
proper time in the particle’s frame is , and the reading in earth’s frame is  . 

Using space-time four dimensional coordinates  , we know that 

Using variation of calculus for several calculus we derived in section 3.6, we get:

Because the   is independent of   and  , expression becomes:

Will come back later after finishing chapter 2

3.7:  Motion in a Uniform Field

3.7.1: Doppler Effect
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Dropper effect: the change in frequency of a wave when a source and an observer are moving relativity to each other. Frequency increases 
when the observer and the source approach each other and decreases when moving away. 

Relativistic Dropper Shift

For a source directly approaching or moving away from an observer, the doppler effect gives:

Redshift: As an object moves away from us, the sound or light waves emitted the source are stretched out, making them have a lower pitch 
and move towards the red end of the electromagnetic spectrum (which has a longer wavelength and a smaller frequency). The lights from the 
object is known as redshift.

Blueshift: As an object moves toward from us, the sound or light waves emitted the source shrink out, making them have a higher pitch and 
move towards the blue end of the electromagnetic spectrum (which has a shorted wavelength and a larger frequency). The lights from the 
object is known as blueshift.

3.7.2: Principle of Equivalence
Consider two spaceships. One accelerating uniformly at   in gravity-free empty space and one standing at rest in a uniform gravity field. Let 
acceleration   of the first ship is adjusted to be equal, but opposite in direction, to the gravitational field   on the second ship. 

An observer in the bow of the accelerating ship shies a laser beam at another observer in the stern of the ship. The ship is initially at rest and 
the laser emits monochromatic light of frequency   in the laser’s rest frame.  We assume that the distance traveled by the ship is very 
small while the bean is traveling (the assumption can be understood by considering the ship’s and the laser’s speed. The last has a speed of 
light  , which we assume, is largely greater than the ship’s speed. Thus, the distance traveled by the ship is negligible compare to the 
distance traveled by the laser). 

Let the length of the ship be  . The time it takes for beam to reach the stern is  .  During the time, the stern attains a velocity 
 . 

Let  . Because  , the equation becomes:

f  =ob  f  , f  =
v ± v  em

v
em ob f   em 1 ±  

v  wave

v  em

1

f  =ob f   em  

1 − v/c
1 + v/c

a

a g
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C

h t = h/c v =
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v
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c2
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c2

gh



The Variational Principle 12

We can gain several insights from the equation. First, the frequency at the bottom (stern) is increased by a factor of . In a time of 
 , the bow emits   wavelengths of light. However, because  , observers at the bottom must collect 

theses waves in  less than 1 second according to their own clocks (number of wavelengths of light remains unchanged for observers at the 
bottom and at the top, frequency  , so time decreases).

Becase  , it is natural for observers at the top to conclude that bottom clocks run slower than top clocks (as their 
clocks have a smaller reading). The must be true for all clocks at the top and bottom. Rearranging the equation, we get 

The equation shows the time difference for two clocks at rest, but at different altitudes in a uniform gravitational field. 

Recall that the proper time for time dilation is:

where   is the velocity of the moving object relative to the outside observer. Because clock   moves with a non-zero speed, by time 
dilation, we know that the reading of   is different from the reading of  . In an infinitesimal time   according to the top clock, clock   
advances by the proper time:

3.7.3: The Hafele–Keating Experiments

gh/c2
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tf  =em n, n = number of wavelengths
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2
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 Δt  = Δt  (1 + gy/c )high low
2

Clock   travels with a nonzero speed by an arbitrary path between stationary ground ground clocks   and  . All clocks are synchronized initially. Clock   reads 
  when   arrives, and the reading of clock   depends on the path it takes in moving from   to  . 

C A B B

t  f C C A B

τ = Δt  1 −  
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v2

v C

C B dt C

dτ = dt(1 + gy/c )  ≈2 1 − v /c2 2 dt(1 + gy/c −2 v /2c )2 2

 τ  =  dt(1 + gy/c − v /2c )f ∫
0

t  f

2 2 2
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Explanation

The opposite sign of the two results suggests that the rate at which time flows depends on the motion of the observer. The eastward clock is 
moving in the same direction as earth’s rotation, so its velocity relative to earth is greater than the westward clock. Thus, a greater time 
dilation effect. The westward clock is moving in the opposite direction as the earth’s rotation, so it has a smaller relative velocity and time 
dilation effect. 

Previously we have derived that clock   advances by the proper time

We can rewrite the integral in the form of energy, giving us:

We know that   is kinetic energy and   is potential energy. Then, the integral becomes:

In order to find a path that extremeizes (We use the term “extremeize” because it is uncertain if the proper time   is maximized or 
minimized. Euler’s equation only provides a path (a function) that maximizes or minimizes a function) the proper time  , we apply Euler’s 
equation to the integral  , giving us:

Let   be the integrand, we get:

Since   is independent of   and  , we get:

Time for eastward clock Westward clock

C

τ  =f  dt(1 +∫
0

t  f

gy/c −2 v /2c )2 2

  

τ  f =  dt + (gy/c − v /2c )dt∫
0

t  f ∫ 2 2 2

= t  + (−v /2c + gy/c )dtf ∫ 2 2 2

= t  −  (  mv − mgy)dtf
mc2

1 ∫
2
1 2

1/2mv =2 K mgy = U

 τ  = t  −  (K − U)dtf f ∫
0

t  f

(8)

τ

τ

I

I =  (K −∫
0

t  f

U)dt

F = F( ,x,  ,y, , z)ẋ ẏ ż

F = F( ,x,  ,y, , z) =ẋ ẏ ż  m( +
2
1

ẋ2
 +ẏ2 ) −ż2 mgy

F x z

d ∂F d ∂F d ∂F
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giving us:

Then, 

When  , we recognize these differential equations as results of Newton’s equation of motion   in a uniform gravitational 
field. 

Our goal in identifying a variational principle for the motion of a particle in a uniform gravitational field is successful. Without every using 
Newton’s law, we found the correct equations of motion. In the next section, we will derive   using variational calculus. 

3.8: Arbitrary Potential Energy

Let   be the integrand, we get:

Using Euler’s equation, we get:

Summary:

0 =   , 0 =
dt

d

∂x′

∂F
mg −   , 0 =

dt

d

∂y′

∂F
  

dt

d

∂z′

∂F

0 = , 0 =ẋẍ g −   , 0 =ẏÿ żz̈

0 = ,  =ẍ ẏ g, 0 = z̈

, =ẍ z̈ 0 F = ma

x = v  t, y =x  gt , z =
2
1 2 0

F = −∇U

I =  (K −∫
0

t  f

U)dt

F

F( ,x,  ,y, , z) =ẋ ẏ ż  m( +
2
1

ẋ2
 ) −ẏ+ ż2 U(x,y, z)

0 =   , 0 =
dt

d

∂x′

∂F
mg −   , 0 =

dt

d

∂y′

∂F
  

dt

d

∂z′

∂F

Spherical: ds =2 r +2 r dθ +2 2 r sin θϕ2 2 2

Cylinderical: ds =  r dθ + z2 2 2

t = dt =∫ t  =∫
C/n(r)

d
  

C

1 ∫
n(r)
ds

0 =  −
∂y(x)

∂F
  

dx

d (
∂y (x)′

∂F )

 −
∂y  (x)i

∂F
  =

dx

d (
∂y  (x)i

′
∂F ) 0

Δt  =high Δt  (1 +low gy/c )2

dτ = dt(1 +  −
c2

gy
 )

2c2

v2

t


