Practice questions for Fluids and Waves - Answers

1	Question	Answer	Mark
	Number		
	17(a) (i)	Show that the resultant upward force at the moment it is released is about 200 N	
		Use of density x volume (1) Use of mass $x \in (1)$	
		Correct answer [215 (N) to at least 2 sf] (1) [no ue]	(3)
		Example of calculation	
		Mass of displaced air = density x volume $1.2 h = 10^{-3} = 2020 m^3 = 2200 h$	
		$= 1.2 \text{ kg m}^{-1} \times 2830 \text{ m}^{-1} = 3396 \text{ kg}$ upthrust = weight of displaced air = 3396 kg x 9.81 N kg ⁻¹ = 33 315 N resultant force = 33 315 N - 33 100 N = 215 N	
		[If candidate starts from difference in densities, apply mark scheme in the same way.]	
	17(a) (ii)	Find the initial upward acceleration	
		Use of $F = ma$ (1)	
		Correct answer $[0.06 \text{ m s}^{-2}]$ (1)	
		Example of calculation	
		F = ma a = 215 N / 3370 kg	(2)
		$= 0.064 \text{ m s}^{-2}$	
		[Use of 200 N gives 0.059 m s ⁻²]	
	17(a) (iii)	Justify that effect of air resistance is negligible	
		Use of Stokes' law equation, $F = 6\pi\eta rv$ (1)	
		Find viscous drag $(6.0 \times 10^{-1} (N))$ (1) (no ue) Relevant comment a g very small in comparison to other forces (not	
		just "small")/ much smaller than other forces (not just smaller) (1)	
		Example of calculation	(3)
		$F = 6 \pi \eta r v$ $F = 6 \pi \pi v + 1.8 \times 10^{-5} kg m^{-1} s^{-1} \times 8.8 m x + 2 m s^{-1}$	
		$= 6.0 \times 10^{-3} \text{ N}$	
		This is very much less than upthrust and so is negligible	
	17(b)	Add labelled arrows	
		Correctly show weight (W, mg), upthrust (U), and viscous drag /drag/friction/air resistance (V, F, D)	
		3 correct = 2, 2 correct = 1 [4 lobels may 1 for 2 correct forces for 2 correct forces 5 lobels or $\frac{1}{2}$	max (2)
		more = zero]	
		[Forces do not need to be co-linear. Accept two correct labels on the same arrow. Accept buoyancy force for upthrust]	

	Total for question	12
	upwards acceleration (1)	
	Net upward force would decrease / no resultant upward force / no more	
		(2)
	density greater than surrounding air] (1)	
	air in balloon eventually equals density of surrounding air [accept	
	Mass/weight of displaced air decreases / upthrust decreases / density of	
	will lise.	
	will rise	
17(c)	Explain why this density change limits the height to which the balloon	
	[Do not accept 'gravity']	

2 A

3 D 4 B

5 C

6 A

7 D

8 A

9 A

10 (a) density = mass / volume

- (b) density of liquids and solids same order as spacing similar / to about 2× density of gases much less as spacing much more or density of gases much lower hence spacing much more
- (c) (i) density = $68 / [50 \times 600 \times 900 \times 10^{-9}]$ = 2520 (allow 2500) kg m⁻³
 - (ii) P = F / A= 68 × 9.81 / [50 × 600 × 10⁻⁶] = 2.2 × 10⁴ Pa

12	(a)	Show that the upthrust is about $8 \times 10^{-4} N$	
		Use of mass = density x volume	(1)
		Correct answer for upthrust (= 8.3×10^{-4} (N))	(1)
		Example of calculation mass of liquid displaced = density x volume = 1300 kg m ⁻³ x 6.5 x 10 ⁻⁸ m ³ = 8.45 x 10 ⁻⁵ kg upthrust = 8.45 x 10 ⁻⁵ kg x 9.81 m s ⁻² = 8.3 x 10 ⁻⁴ N	
	(b)	Show that the viscosity of the liquid is about 2 kg m ⁻¹ s ⁻¹	
		Correct summary of forces, e.g. V = W - U Use of $F = 6\pi\eta rv$ Correct answer for viscosity (1.8 (kg m ⁻¹ s ⁻¹))	(1) (1) (1)
		Example of calculation Viscous drag = W - U = 4.8×10^{-3} N - 8.3×10^{-4} N = 3.97×10^{-3} N $F = 6\pi\eta rv$ $\eta = 3.97 \times 10^{-3}$ N / ($6 \times \pi \times 4.6 \times 10^{-2}$ m s ⁻¹ x 2.5 x 10 ⁻³ m) = 1.8 kg m ⁻¹ s ⁻¹	
		[Watch out for out of clip answers]	
	(c)	State a relevant variable to control	
		Temperature	(1)
		Total for question 14	6

(a)(i)	3 correct labelled arrows:		
	Upthrust, U	(1)	
	weight, <i>W</i> , <i>mg</i>	(1)	
	(viscous) drag, water resistance, viscous force, V, F, D [upwards]	(1)	3
	('resistance' not sufficient)		
	Each incorrect force decreases the maximum possible mark by on	e	
	U and D can share an arrow.		
	Arrows need not touch particle. Ignore unlabelled arrows.		
(a)(ii)	upthrust + drag = weight or with unambiguous symbols (allow ecf	from	
	diagram)	(1)	
	forces in equilibrium / balanced forces / no resultant force / no		2
	acceleration / constant velocity	(1)	
(b) (i)	Down and along	(1)	1
	(shape of trajectory not important)		

15 ^{'(a)(i)}	Upthrust/U Weight/W/mg/gravitational force/force due to gravity (Viscous) drag/fluid resistance/friction/F/D/V		2
	(3 correct = 2 marks, 2 correct = 1 mark. All arrows must touch the dot and straight, vertical lines required, no curving around dot, arrows can be of any length)		
	_ Upthrust Upthrust		
	Prag Uptimist UAAF		
	Weight Weight weight		
	2 marks 0 marks 2 marks 2 marks 1 mark		
'(a)(ii)*	(QWC - Work must be clear and organised in a logical manner using technical wording where appropriate)Initially viscous drag = 0 OP viscous drag is very small		
	OR resultant force is downwards OR $W > U$ OR $W > U + D$	(1)	
	OK resultant force is downwards OK $H \ge 0$ OK $H \ge 0$	(')	
	Viscous drag increases	(1)	
	(Until) forces balanced OR resultant/net force zero OR forces in equilibrium	(1)	
	(Therefore) no <u>acceleration</u>	(1)	4
	(To gain all 4 marks, any letters used to indicate forces must be defined in either parts (a)(i) or (a)(ii)).		
'(a)(iii)	W = U + D (allow ecf from diagram in part (a)(i))	(1)	1

15 ^{(b)(i)}	Use of mass = density \times volume	(1)	
	Upthrust = 2.1×10^{-5} (N)	(1)	2
	Example of calculation $\frac{1}{2}$ \frac		
	$Mass = 1.0 \times 10^{5} \text{ kg m}^{2} \times 2.1 \times 10^{5} \text{ m}^{2}$		
	$= 2.1 \times 10^{-6} \text{ kg}$		
	$-2.1 \times 10^{-5} \text{ N}$		
(b)(ii)	$\frac{-2.1 \times 10^{-10}}{10}$	(1)	
(0)(11)	$(F = 3.6 \times 10^{-5} \text{ N})$	(1)	
	$(1^{-} - 3.0^{-} 10^{-} 10^{-} 10^{-})$		
	Use of $F = 6\pi\eta rv$	(1)	
	Sneed = 2.0 m s ⁻¹ (acf from (b)(i))		
	$Speed = 2.0 \text{ m/s} \qquad (\text{cer nom} (0)(1))$	(1)	3
	Example of calculation		5
	$F = 5.7 \times 10^{-5} \text{ N} - 2.1 \times 10^{-5} \text{ N} = 3.6 \times 10^{-5} \text{ N}$		
	$3.6 \times 10^{-5} N$		
	$V = \frac{1}{6\pi\eta r}$		
	$=\frac{3.6 \times 10^{-5} \text{ N}}{10^{-5} \text{ N}}$		
	$6 \times \pi \times 1.2 \times 10^{-8}$ Pas $\times 8 \times 10^{-4}$ m		
	$= 2.0 \text{ m s}^{-1}$		
(c)	larger particles have higher terminal/maximum/average velocity		
	OR smaller particles reach terminal velocity quicker	(1)	
	MAX 2		
	Viscous drag varies in proportion to radius (or area in proportion to radius		
	squared)	(1)	
	but weight varies in proportion to radius cubed	(1)	•
	(terminal) velocity proportional to radius squared	(1)	3
	Total for question 17		15

16 We have a cork attached to a free metallic chain in a measuring cylinder (see picture). The cork is stable at a height of 16cm from the basis. Data: (density of water) $\rho_{water}=1$ g/cm³, (Volume of the cork) V=8.41cm³, (mass of the cork) M=7.55g, (lineal density of the chain) d_{chain}=0.365g/cm.

a) (3p)Draw and name the forces acting on the cork.

Upthrust , weight of the cork, pull down from the chain.

b) (3p)Compute the upthrust over the cork.

$$U_{cork} = \rho g V = 0.001 \frac{Kg}{cm^3} \cdot 9.81 \frac{N}{Kg} \cdot 8.41 \text{cm}^3 = 0.0825 \text{N}$$

c) (4p)Compute the weight of the cork and of the 16cm of chain.

$$W_{cork} = Mg = 0.00755 \text{Kg} \cdot 10 \frac{N}{Kg} = 0.0755 \text{N}$$

Massofchain = $d_{chain} \cdot length = 0.365 \frac{g}{cm} \cdot 16 \text{cm} = 5.84\text{g}$
 $W_{chain} = 0.00584 \text{Kg} 10 \frac{N}{Kg} = 0.0584 \text{N}$

d) (4p)With the previous results, find out the upthrust upon the 16cm of chain. **It is balanced, so the net force is cero.**

 $U_{total} = W_{total} \rightarrow U_{cork} + U_{chain} = W_{cork} + W_{chain}$ 0.0825N + $U_{chain} = 0.0755N + 0.0584N = 0.1339N$ $U_{chain} = 0.1339N - 0.0825N = 0.0514N$