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Course book definition
The IB Diploma Programme course books are 
resource materials designed to support students 
throughout their two-year Diploma Programme 
course of study in a particular subject. They will 
help students gain an understanding of what 
is expected from the study of an IB Diploma 
Programme subject while presenting content in a 
way that illustrates the purpose and aims of the IB. 
They reflect the philosophy and approach of the 
IB and encourage a deep understanding of each 
subject by making connections to wider issues and 
providing opportunities for critical thinking.

The books mirror the IB philosophy of viewing the 
curriculum in terms of a whole-course approach; 
the use of a wide range of resources, international 
mindedness, the IB learner profile and the IB 
Diploma Programme core requirements, theory 
of knowledge, the extended essay, and creativity, 
action, service (CAS).

Each book can be used in conjunction with other 
materials and indeed, students of the IB are 
required and encouraged to draw conclusions from 
a variety of resources. Suggestions for additional 
and further reading are given in each book 
and suggestions for how to extend research are 
provided.

In addition, the course books provide advice 
and guidance on the specific course assessment 
requirements and on academic honesty protocol. 
They are distinctive and authoritative without 
being prescriptive.

IB mission statement
The International Baccalaureate aims to develop 
inquiring, knowledgeable and caring young people 
who help to create a better and more peaceful 
world through intercultural understanding and 
respect.

To this end the organization works with schools, 
governments and international organizations to 
develop challenging programmes of international 
education and rigorous assessment.

These programmes encourage students across the 
world to become active, compassionate and lifelong 
learners who understand that other people, with 
their differences, can also be right.

The IB Learner Profile
The aim of all IB programmes to develop 
internationally minded people who work to create 
a better and more peaceful world. The aim of the 
programme is to develop this person through ten 
learner attributes, as described below.

Inquirers: They develop their natural curiosity. 
They acquire the skills necessary to conduct 
inquiry and research and snow independence in 
learning. They actively enjoy learning and this love 
of learning will be sustained throughout their lives.

Knowledgeable: They explore concepts, ideas, 
and issues that have local and global significance. 
In so doing, they acquire in-depth knowledge and 
develop understanding across a broad and balanced 
range of disciplines.

Thinkers: They exercise initiative in applying 
thinking skills critically and creatively to recognize 
and approach complex problems, and make 
reasoned, ethical decisions.

Communicators: They understand and express 
ideas and information confidently and creatively in 
more than one language and in a variety of modes 
of communication. They work effectively and 
willingly in collaboration with others.

Principled: They act with integrity and honesty, 
with a strong sense of fairness, justice and respect 
for the dignity of the individual, groups and 
communities. They take responsibility for their 
own action and the consequences that accompany 
them.

Open-minded: They understand and appreciate 
their own cultures and personal histories, and are 
open to the perspectives, values and traditions 
of other individuals and communities. They are 
accustomed to seeking and evaluating a range of 
points of view, and are willing to grow from the 
experience.

Caring: They show empathy, compassion and 
respect towards the needs and feelings of others. 
They have a personal commitment to service, and 
to act to make a positive difference to the lives of 
others and to the environment.

Risk-takers: They approach unfamiliar situations 
and uncertainty with courage and forethought, 
and have the independence of spirit to explore 
new roles, ideas, and strategies. They are brave and 
articulate in defending their beliefs.
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Balanced: They understand the importance of 
intellectual, physical and emotional balance to 
achieve personal well-being for themselves and 
others.

Reflective: They give thoughtful consideration 
to their own learning and experience. They are 
able to assess and understand their strengths and 
limitations in order to support their learning and 
personal development.

A note on academic honesty
It is of vital importance to acknowledge and 
appropriately credit the owners of information 
when that information is used in your work. 
After all, owners of ideas (intellectual property) 
have property rights. To have an authentic piece 
of work, it must be based on your individual 
and original ideas with the work of others fully 
acknowledged. Therefore, all assignments, written 
or oral, completed for assessment must use your 
own language and expression. Where sources are 
used or referred to, whether in the form of direct 
quotation or paraphrase, such sources must be 
appropriately acknowledged.

How do I acknowledge the work of others?
The way that you acknowledge that you have used 
the ideas of other people is through the use of 
footnotes and bibliographies. 

Footnotes (placed at the bottom of a page) or 
endnotes (placed at the end of a document) are 
to be provided when you quote or paraphrase 
from another document, or closely summarize the 
information provided in another document.  You 
do not need to provide a footnote for information 
that is part of a ‘body of knowledge’. That is, 
definitions do not need to be footnoted as they are 
part of the assumed knowledge.

Bibliographies should include a formal list of the 
resources that you used in your work.  ‘Formal’ 
means that you should use one of the several 
accepted forms of presentation. This usually 
involves separating the resources that you use 
into different categories (e.g. books, magazines, 
newspaper articles, internet-based resources, CDs 
and works of art) and providing full information 
as to how a reader or viewer of your work can 
find the same information. A bibliography is 
compulsory in the Extended Essay.

What constitutes malpractice?
Malpractice is behaviour that results in, or may 
result in, you or any student gaining an unfair 
advantage in one or more assessment component. 
Malpractice includes plagiarism and collusion.

Plagiarism is defined as the representation of the 
ideas or work of another person as your own. The 
following are some of the ways to avoid plagiarism:

● words and ideas of another person to support 
one’s arguments must be acknowledged 

● passages that are quoted verbatim must 
be enclosed within quotation marks and 
acknowledged

● CD-Roms, email messages, web sites on the 
Internet and any other electronic media must 
be treated in the same way as books and 
journals

● the sources of all photographs, maps, 
illustrations, computer programs, data, graphs, 
audio-visual and similar material must be 
acknowledged if they are not your own work

● works of art, whether music, film dance, 
theatre arts or visual arts  and where the 
creative use of a part of a work takes place, the 
original artist must be acknowledged.

Collusion is defined as supporting malpractice by 
another student. This includes:

● allowing your work to be copied or submitted 
for assessment by another student

● duplicating work for different assessment 
components and/or diploma requirements.

Other forms of malpractice include any action 
that gives you an unfair advantage or affects the 
results of another student. Examples include, 
taking unauthorized material into an examination 
room, misconduct during an examination and 
falsifying a CAS record.
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Using your IB Physics     
Online Resources
What is Kerboodle?
Kerboodle is an online learning platform. If your school has a 
subscription to IB Physics Kerboodle Online Resources you will be able 
to access a huge bank of resources, assessments, and presentations to 
guide you through this course.

What is in your Kerboodle Online Resources?
There are three main areas for students on the IB Physics Kerboodle: 
planning, resources, and assessment.

Resources
There a hundreds of extra resources available on the IB Physics 
Kerboodle Online. You can use these at home or in the classroom to 
develop your skills and knowledge as you progress through the course. 

 Watch videos and animations of experiments, difficult concepts, and 
science in action.

 Hundreds of worksheets – read articles, perform experiments and 
simulations, practice your skills, or use your knowledge to answer 
questions.

 Look at galleries of images from the book and see their details close up.

 Find out more by looking at recommended sites on the Internet, 
answer questions, or do more research.

Planning
Be prepared for the practical work and your internal assessment with 
extra resources on the IB Physics Kerboodle online.

 Learn about the different skills that you need to perform an investigation.

 Plan and prepare experiments of your own.

 Learn how to analyse data and draw conclusions successfully  
and accurately.

One of hundreds of worksheets. Practical skills presentation.
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Assessment
Click on the assessment tab to check your knowledge or revise for your 
examinations. Here you will find lots of interactive quizzes and exam-
style practice questions.

 Formative tests: use these to check your comprehension, there’s one 
auto-marked quiz for every sub-topic. Evaluate how confident you 
feel about a sub-topic, then complete the test. You will have two 
attempts at each question and get feedback after every question. The 
marks are automatically reported in the markbook, so you can see 
how you progress throughout the year.

 Summative tests: use these to practice for your exams or as revision, 
there’s one auto-marked quiz for every topic. Work through the test 
as if it were an examination – go back and change any questions you 
aren’t sure about until you are happy, then submit the test for a final 
mark. The marks are automatically reported in the markbook, so you 
can see where you may need more practice.

 Assessment practice: use these to practice answering the longer 
written questions you will come across when you are examined. 
These worksheets can be printed out and performed as a timed test.  

Don't forget!
You can also find extra  resources on our free website  

www.oxfordsecondary.co.uk/ib-physics
Here you can find all of the answers  
and even more practice questions.
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Introduction
Physics is one of the earliest academic disciplines 
known – if you include observational astronomy, 
possibly the oldest. In physics we analyse the natural 
world to develop the best understanding we can of 
how the universe and its constituent parts interrelate. 
Our aim as physicists is to develop models that 
correspond to what is observed in the laboratory and 
beyond. These models come in many forms: some 
may be quantitative and based on mathematics; 
some may be qualitative and give a verbal description 
of the world around us. But, whatever form the 
models take, physicists must all agree on their validity 
before they can be accepted as part of our physical 
description of the universe.

Models used by physicists are linked by a coherent 
set of principles known as concepts. These are over-
arching ideas that link the development of the 
subject not only within a particular physical topic 
(for example, forces in mechanics) but also between 
topics (for example, the common mathematics that 
links radioactive decay and capacitor discharge). 
In studying physics, take every opportunity to 
understand a new concept when you meet it. When 
the concept occurs elsewhere your prior knowledge 
will make the later learning easier. 

This book is designed to support your learning 
of physics within group 4 of the IB Diploma 
Programme. Like all the disciplines represented in this 
subject group it has a thorough basis in the facts and 
concepts of science, but it also draws out the nature 
of science. This is to give you a better understanding 
of what it means to be a scientist, so that you can, 
for example, identify shortcomings in scientific topics 
presented to you in the media or elsewhere. Not 
everyone taking IB Physics will want to go on to be 
a physicist or engineer, but all citizens need to have 
an awareness of the importance of science in modern 
society.

The structure of this book needs an explanation; all 
of the topics include the following elements: 

Understanding 
The specifics of the content requirements for 
each sub-topic are covered in detail. Concepts are 
presented in ways that will promote enduring 
understanding.

 Investigate!
These sections describe practical work you 
can undertake. You may need to modify these 

experiments slightly to suit the apparatus in your 
school. These are a valuable opportunity to build 
the skills that are assessed in IA (see page 687). 

 Nature of science
These sections help you to develop your 
understanding by studying a specific illustrative 
example or learning about a significant experiment 
in the history of physics.

Here you can explore the methods of science and 
some of the knowledge issues that are associated 
with scientific endeavour. This is done using 
carefully selected examples, including research that 
led to paradigm shifts in our understanding of the 
natural world.

Theory of Knowledge
These short sections have articles on scientific questions 
that arise from Theory of knowledge. We encourage you 
draw on these examples of knowledge issues in your TOK 
essays. Of course, much of the material elsewhere in the 
book, particularly in the nature of science sections, can be 
used to prompt TOK discussions.

Worked example
These are step-by-step examples of how to answer 
questions or how to complete calculations. You should 
review them carefully, preferably after attempting the 
question yourself.

End -of-Topic Questions
At the end of each topic you will find a range of 
questions, including both past IB Physics exam 
questions and new questions. Answers can be 
found at www.oxfordsecondary.co.uk/ib-physics

Authors do not write in isolation. In particular, 
our ways of describing and explaining physics 
have been honed by the students we have 
been privileged to teach over the years, and by 
colleagues who have challenged our ways of 
thinking about the subject. Our thanks go to them 
all. More specifically, we thank Jean Godin for 
much sound advice during the preparation of this 
text. Any errors are, of course, our responsibility.

Last but in no sense least, we thank our wives, 
Adele and Brenda, for their full support during 
the preparation of this book. We could not have 
completed it without their understanding and 
enormous patience. 

M Bowen-Jones 
D Homer
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Introduction
This topic is different from other topics in the 
course book. The content discussed here will be 
used in most aspects of your studies in physics. 
You will come across many aspects of this work 

in the context of other subject matter. Although 
you may wish to do so, you would not be 
expected to read this topic in one go, rather you 
would return to it as and when it is relevant. 

1  MEASUREMENTS AND UNCERTAINTIES

1.1 Measurements in physics

  Nature of science
In physics you will deal with the qualitative and the 
quantitative, that is, descriptions of phenomena 
using words and descriptions using numbers. When 
we use words we need to interpret the meaning and 
one person's interpretation will not necessarily be 
the same as another's. When we deal with numbers 
(or equations), providing we have learned the rules, 
there is no mistaking someone else's meaning. It is 
likely that some readers will be more comfortable 

with words than symbols and vice-versa. It is 
impossible to avoid either methodology on the IB 
Diploma course and you must learn to be careful with 
both your numbers and your words. In examinations 
you are likely to be penalized by writing contradictory 
statements or mathematically incorrect ones. At the 
outset of the course you should make sure that you 
understand the mathematical skills that will make 
you into a good physicist.

Understanding
 ➔ Fundamental and derived SI units
 ➔ Scientific notation and metric multipliers
 ➔ Significant figures
 ➔ Orders of magnitude
 ➔ Estimation

  Applications and skills
 ➔ Using SI units in the correct format for all 

required measurements, final answers to 
calculations and presentation of raw and 
processed data

 ➔ Using scientific notation and metric multipliers
 ➔ Quoting and comparing ratios, values, and 

approximations to the nearest order of 
magnitude

 ➔ Estimating quantities to an appropriate number 
of significant figures

1



Fundamental quantities are those quantities that are considered to be 
so basic that all other quantities need to be expressed in terms of them. 
In the density equation ρ =   m __ V   only mass is chosen to be fundamental 
(volume being the product of three lengths), density and volume are 
said to be derived quantities. 

It is essential that all measurements made by one person are understood 
by others. To achieve this we use units that are understood to have 
unambiguous meaning. The worldwide standard for units is known as 
SI – Système international d’unités. This system has been developed from 
the metric system of units and means that, when values of scientific 
quantities are communicated between people, there should never be 
any confusion. The SI defines both units and prefixes – letters used 
to form decimal multiples or sub-multiples of the units. The units 
themselves are classified as being either fundamental (or base), derived, 
and supplementary.

There are only two supplementary units in SI and you will meet only 
one of these during the Diploma course, so we might as well mention 
them first. The two supplementary units are the radian (rad) – the 
unit of angular measurement and the steradian (sr) – the unit of “solid 
angle”. The radian is a useful alternative to the degree and is defined as 
the angle subtended by an arc of a circle having the same length as the radius, 

Quantities and units
Physicists deal with physical quantities, which are those things  
that are measureable such as mass, length, time, electrical current,  
etc. Quantities are related to one another by equations such as  
ρ =   m __ V   which is the symbolic form of saying that density is the ratio 
of the mass of an object to its volume. Note that the symbols in the 
equation are all written in italic (sloping) fonts – this is how we 
can be sure that the symbols represent quantities. Units are always 
written in Roman (upright) font because they sometimes share the 
same symbol with a quantity. So “m” represents the quantity “mass” 
but “m” represents the unit “metre”. We will use this convention 
throughout the course book, and it is also the convention used by 
the IB.

  Nature of science
The use of symbols
The use of Greek letters such as rho (ρ) is very 
common in physics. There are so many quantities 
that, even using the 52 Arabic letters (lower case 
and capitals), we soon run out of unique symbols. 
Sometimes symbols such as d and x have multiple 
uses, meaning that Greek letters have become just 
one way of trying to tie a symbol to a quantity 
uniquely. Of course, we must consider what 
happens when we run out of Greek letters too – we 
then use Russian ones from the Cyrillic alphabet.

α
β
γ
δ
ε
ζ
η
θ
ι
κ
λ
-

alpha

Greek Russian

beta
gamma
delta
epsilon
zeta
eta
theta
iota
kappa
lambda
mu

ν
ξ
ο
π
ρ
σ
τ
υ
φ
χ
ψ
ω

nu
ksi
omicron
pi
rho
sigma
tau
upsilon
phi
chi
psi
omega
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as shown in figure 1. We will look at the radian in more detail in 
Sub-topic 6.1. The steradian is the three-dimensional equivalent of 
the radian and uses the idea of mapping a circle on to the surface of 
a sphere.

Fundamental and derived units
In SI there are seven fundamental units and you will use six of these 
on the Diploma course (the seventh, the candela, is included here for 
completeness). The fundamental quantities are length, mass, time, 
electric current, thermodynamic temperature, amount of substance, and 
luminous intensity. The units for these quantities have exact definitions 
and are precisely reproducible, given the right equipment. This means 
that any quantity can, in theory, be compared with the fundamental 
measurement to ensure that a measurement of that quantity is accurate. 
In practice, most measurements are made against more easily achieved 
standards so, for example, length will usually be compared with a 
standard metre rather than the distance travelled by light in a vacuum. 
You will not be expected to know the definitions of the fundamental 
quantities, but they are provided here to allow you to see just how 
precise they are.

metre (m): the length of the path travelled by light in a vacuum during 
a time interval of   1

 _________ 299 792 458   of a second.

kilogram (kg): mass equal to the mass of the international prototype 
of the kilogram kept at the Bureau International des Poids et Mesures at 
Sèvres, near Paris. 

second (s): the duration of 9 192 631 770 periods of the radiation 
corresponding to the transition between the two hyperfine levels of the 
ground state of the caesium-133 atom. 

ampere (A): that constant current which, if maintained in two 
straight parallel conductors of infinite length, negligible circular  
cross-section, and placed 1 m apart in vacuum, would produce between 
these conductors a force equal to 2 × 10–7 newtons per metre of length. 

kelvin (K): the fraction   1
 _____ 273.16   of the thermodynamic temperature of the 

triple point of water.

mole (mol): the amount of substance of a system that contains as many 
elementary entities as there are atoms in 0.012 kg of carbon–12. When 
the mole is used, the elementary entities must be specified and may be 
atoms, molecules, ions, electrons, other particles, or specified groups of 
such particles.

candela (cd): the luminous intensity, in a given direction, of a source 
that emits monochromatic radiation of frequency 540 × 1012 hertz and 
that has a radiant intensity in that direction of   1

 ___ 683   watt per steradian.

All quantities that are not fundamental are known as derived and these 
can always be expressed in terms of the fundamental quantities through a 
relevant equation. For example, speed is the rate of change of distance with 
respect to time or in equation form v =   :s

 ___ :t
   (where :s means the change in 

distance and :t means the change in time). As both distance (and length) 
and time are fundamental quantities, speed is a derived quantity.

▲  Figure 2 The international prototype kilogram.

▲ Figure 1 Definition of the radian.

r
1 rad

r

r

TOK

Deciding on what is 
fundamental

Who has made the decision 
that the fundamental 
quantities are those of 
mass, length, time, electrical 
current, temperature, 
luminous intensity, and 
amount of substance? In an 
alternative universe it may 
be that the fundamental 
quantities are based on force, 
volume, frequency, potential 
difference, specific heat 
capacity, and brightness. 
Would that be a drawback 
or would it have meant that 
“humanity” would have 
progressed at a faster rate?
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The units used for fundamental quantities are unsurprisingly known as 
fundamental units and those for derived quantities are known as derived 
units. It is a straightforward approach to be able to express the unit of 
any quantity in terms of its fundamental units, provided you know the 
equation relating the quantities. Nineteen fundamental quantities have 
their own unit but it is also valid, if cumbersome, to express this in terms 
of fundamental units. For example, the SI unit of pressure is the pascal 
(Pa), which is expressed in fundamental units as m−1 kg s−2.

  Nature of science
Capitals or lower case?
Notice that when we write the unit newton in full, we use a lower case 
n but we use a capital N for the symbol for the unit – unfortunately 
some word processors have default setting to correct this so take care! 
All units written in full should start with a lower case letter, but those 
that have been derived in honour of a scientist will have a symbol that 
is a capital letter. In this way there is no confusion between the scientist 
and the unit: “Newton” refers to Sir Isaac Newton but “newton” means 
the unit. Sometimes units are abbreviations of the scientist’s surname, 
so amp (which is a shortened form of ampère anyway) is named after 
Ampère, the volt after Volta, the farad, Faraday, etc.

▲  Figure 3 Choosing fundamental units in 
an alternative universe.

Example of how to relate fundamental and derived units
The unit of force is the newton (N). This is a derived unit and can 
be expressed in terms of fundamental units as kg m s−2. The reason 
for this is that force can be defined as being the product of mass and 
acceleration or F = ma. Mass is a fundamental quantity but acceleration 
is not. Acceleration is the rate of change of velocity or a =   :v

 ___ :t
   where :v 

represents the change in velocity and :t the change in time. Although 
time is a fundamental quantity, velocity is not so we need to take 
another step in defining velocity in fundamental quantities. Velocity is 
the rate of change of displacement (a quantity that we will discuss later 
in the topic but, for now, it simply means distance in a given direction). 
So the equation for velocity is v =   :s

 ___ :t
   with :s being the change in 

displacement and :t again being the change in time. Displacement (a 
length) and time are both fundamental, so we are now in a position to 
put N into fundamental units. The unit of velocity is m s−1 and these are 
already fundamental – there is no shortened form of this. The units of 
acceleration will therefore be those of velocity divided by time and so 
will be   m  s  –1 

 ____ s   which is written as m s−2. So the unit of force will be the unit 
of mass multiplied by the unit of acceleration and, therefore, be kg m s−2. 
This is such a common unit that it has its own name, the newton, 
(N ≡ kg m s−2 – a mathematical way of expressing that the two units are 
identical). So if you are in an examination and forget the unit of force 
you could always write kg m s−2 (if you have time to work it out!).

Significant figures
Calculators usually give you many digits in an answer. How do you 
decide how many digits to write down for the final answer? 

Note 
If you are reading this at the 
start of the course, it may seem 
that there are so many things 
that you might not know; but, 
take heart, “Rome was not 
built in a day” and soon much 
will come as second nature. 
When we write units as m s−1 
and m s−2 it is a more effective 
and preferable way to writing 
what you may have written in 
the past as m/s and m/s2; both 
forms are still read as “metres 
per second” and “metres per 
second squared.”
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Scientists use a method of rounding to a certain number of significant 
figures (often abbreviated to s.f.). “Significant” here means meaningful.

Consider the number 84 072, the 8 is the most significant digit, because 
it tells us that the number is eighty thousand and something. The 4 is 
the next most significant telling us that there are also four thousand and 
something. Even though it is a zero, the next digit, the 0, is the third 
most significant digit here. 

When we face a decimal number such as 0.00245, the 2 is the most 
significant digit because it tells us that the number is two thousandth 
and something. The 4 is the next most significant, showing that there are 
four ten thousandths and something.

If we wish to express this number to two significant figures we need to 
round the number from three to two digits. If the last number had been 
0.00244 we would have rounded down to 0.0024 and if it had been 
0.00246 we would have rounded up to 0.0025. However, it is a 5 so what 
do we do? In this case there is equal justification for rounding up and 
down, so all you really need to be is consistent with your choice for a set of 
figures – you can choose to round up or down. Often you will have further 
digits to help you, so if the number had been 0.002451 and you wanted it 
rounded to two significant figures it would be rounded up to 0.0025.

Some rules for using significant figures
 ● A digit that is not a zero will always be significant – 345 is three 

significant figures (3 s.f.).

 ● Zeros that occur sandwiched between non-zero digits are always 
significant – 3405 (4 s.f.); 10.3405 (6 s.f.).

 ●  Non-sandwiched zeros that occur to the left of a non-zero digit are 
not significant – 0.345 (3 s.f); 0.034 (2 s.f.).

 ● Zeros that occur to the right of the decimal point are significant, 
provided that they are to the right of a non-zero digit – 1.034 (4 s.f.); 
1.00 (3 s.f.); 0.34500 (5 s.f.); 0.003 (1 s.f.).

 ● When there is no decimal point, trailing zeros are not significant 
(to make them significant there needs to be a decimal point)  
– 400 (1 s.f.); 400. (3 s.f.) – but this is rarely written.

Scientific notation
One of the fascinations for physicists is dealing with the very large 
(e.g. the universe) and the very small (e.g. electrons). Many physical 
constants (quantities that do not change) are also very large or very 
small. This presents a problem: how can writing many digits be avoided? 
The answer is to use scientific notation.

The speed of light has a value of 299 792 458 m s−1. This can be rounded to 
three significant figures as 300 000 000 m s−1. There are a lot of zeros in this 
and it would be easy to miss one out or add another. In scientific notation 
this number is written as 3.00 × 108 m s−1 (to three significant figures).

Let us analyse writing another large number in scientific notation. The 
mass of the Sun to four significant figures is 1 989 000 000 000 000 000 
000 000 000 000 kg (that is 1989 and twenty-seven zeros). To convert 
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this into scientific notation we write it as 1.989 and then we imagine 
moving the decimal point 30 places to the left (remember we can write 
as many trailing zeros as we like to a decimal number without changing 
it). This brings our number back to the original number and so it gives 
the mass of the Sun as 1.989 × 1030 kg.

A similar idea is applied to very small numbers such as the charge on 
the electron, which has an accepted value of approximately 0.000 000 
000 000 000 000 1602 coulombs. Again we write the coefficient as 1.602 
and we must move the decimal point 19 places to the right in order to 
bring 0.000 000 000 000 000 000 1602 into this form. The base is always 
10 and moving our decimal point to the right means the exponent is 
negative. We can write this number as 1.602 × 10−19 C.

Apart from avoiding making mistakes, there is a second reason why 
scientific notation is preferable to writing numbers in longhand. This is 
when we are dealing with several numbers in an equation. In writing 
the value of the speed of light as 3.00 × 108 m s−1, 3.00 is called the 
“coefficient” of the number and it will always be a number between 1 
and 10. The 10 is called the “base” and the 8 is the “exponent”.

There are some simple rules to apply:

 ● When adding or subtracting numbers the exponent must be the 
same or made to be the same.

 ● When multiplying numbers we add the exponents. 

 ● When dividing numbers we subtract one exponent from the other.

 ● When raising a number to a power we raise the coefficient to the 
power and multiply the exponent by the power.

Worked examples
In these examples we are going to evaluate each 
of the calculations.

1 1.40 × 106 + 3.5 × 105

Solution
These must be written as 1.40 × 106 + 0.35 × 106 
so that both numbers have the same exponents.

They can now be added directly to give 1.75 × 106

2 3.7 × 105 × 2.1 × 108

Solution
The coefficients are multiplied and the exponents 
are added, so we have: 3.7 × 2.1 = 7.77 (which we 
round to 7.8 to be in line with the data – something 
we will discuss later in this topic) and: 5 + 8 = 13

So we write this product as: 7.8 × 1013

3 3.7 × 105 × 2.1 × 10−8

Solution
Again the coefficients are multiplied and the 
exponents are added, so we have: 3.7 × 2.1 = 7.8 

Here the exponents are subtracted (since the 8 is 
negative) to give: 5 − 8 = −3 

So we write this product as: 7.8 × 10−3

4   4.8 × 105
 _ 

3.1 × 102
  

Solution
The coefficients are divided and the exponents are 
subtracted so we have: 4.8 ÷ 3.1 = 1.548 (which 
we round to 1.5)

And 5 − 2 = 3

This makes the result of the division 1.5 × 103

5 (3.6 × 107)3

Solution
We cube 3.6 and 3.63 = 46.7 

And multiply 7 by 3 to give 21

This gives 46.7 × 1021, which should become  
4.7 × 1022 in scientific notation.

6

M E A S U R E M E N TS  A N D  U N C E R TA I N T I E S1



Metric multipliers (prefixes)
Scientists have a second way of abbreviating units: by using metric 
multipliers (usually called “prefixes”). An SI prefix is a name or 
associated symbol that is written before a unit to indicate the 
appropriate power of 10. So instead of writing 2.5 × 1012 J we could 
alternatively write this as 2.5 TJ (terajoule). Figure 4 gives the 20 SI 
prefixes – these are provided for you as part of the data booklet used 
in examinations. 

Orders of magnitude
An important skill for physicists is to understand whether or not the 
physics being considered is sensible. When performing a calculation in 
which someone’s mass was calculated to be 5000 kg, this should ring 
alarm bells. Since average adult masses (“weights”) will usually be 
60–90 kg, a value of 5000 kg is an impossibility. 

A number rounded to the nearest power of 10 is called an order of 
magnitude. For example, when considering the average adult human 
mass: 60–80 kg is closer to 100 kg than 10 kg, making the order of 
magnitude 102 and not 101. Of course, we are not saying that all adult 
humans have a mass of 100 kg, simply that their average mass is closer 
to 100 than 10. In a similar way, the mass of a sheet of A4 paper may be 
3.8 g which, expressed in kg, will be 3.8 × 10−3 kg. Since 3.8 is closer to 
1 than to 10, this makes the order of magnitude of its mass 10−3 kg. This 
suggests that the ratio of adult mass to the mass of a piece of paper (should 
you wish to make this comparison)=   102

 ____ 
10−3   = 102 − (−3) = 105 = 100 000. In 

other words, an adult human is 5 orders of magnitude (5 powers of 10) 
heavier than a sheet of A4 paper. 

Estimation
Estimation is a skill that is used by scientists and others in order to 
produce a value that is a useable approximation to a true value. 
Estimation is closely related to finding an order of magnitude, but may 
result in a value that is more precise than the nearest power of 10. 

Whenever you measure a length with a ruler calibrated in millimetres 
you can usually see the whole number of millimetres but will need to 
estimate to the next   1 __ 10   mm – you may need a magnifying glass to help 
you to do this. The same thing is true with most non-digital measuring 
instruments. 

Similarly, when you need to find the area under a non-regular curve, 
you cannot truly work out the actual area so you will need to find the 
area of a rectangle and estimate how many rectangles there are. Figure 5 
shows a graph of how the force applied to an object varies with time. 
The area under the graph gives the impulse (as you will see in Topic 2). 
There are 26 complete or nearly complete yellow squares under the 
curve and there are further partial squares totalling about four full 
squares in all. This gives about 30 full squares under the curve. Each 
curve has an area equivalent to 2 N × 1 s = 2 N s. This gives an estimate 
of about 60 N s for the total impulse. 

Factor Name Symbol
Υ
Ζ
Ε
Ρ
Τ

Μ

d
c

n
p
f
a
z
y

m

1024

1021

1018

1015

1012

109

106

103

102

101

10-1

10-2

10-9

10-12

10-15

10-18

10-21

10-24

10-3

10-6 -

yotta
zetta
exa
peta
tera
giga
mega

deci
centi

nano
pico
femto
atto
zepto
yocto

milli
micro

kilo
hecto
deka

▲ Figure 4 SI metric multipliers.
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In an examination, estimation questions will always have a  
tolerance given with the accepted answer, so in this case it might be  
(60 ± 2) N s.

0
0

2

4

6

8

10

12

1 2 3 4 5 6 7 8

time/s

fo
rc

e/
N

These two partial 
squares may be 
combined to approximate 
to a whole square, etc.

▲ Figure 5

1.2 Uncertainties and errors

  Nature of science
In Sub-topic 1.1 we looked at the how we define 
the fundamental physical quantities. Each of these 
is measured on a scale by comparing the quantity 
with something that is “precisely reproducible”. By 
precisely reproducible do we mean “exact”? The 
answer to this is no. If we think about the definition 
of the ampere, we will measure a force of 2 × 107 N. 
If we measure it to be 2.1 × 107 it doesn’t invalidate 
the measurement since the definition is given to just 
one significant figure. All measurements have their 
limitations or uncertainties and it is important that 
both the measurer and the person working with the 
measurement understand what the limitations are. 
This is why we must always consider the uncertainty 
in any measurement of a physical quantity.

Understanding
 ➔ Random and systematic errors
 ➔ Absolute, fractional, and percentage uncertainties
 ➔ Error bars
 ➔ Uncertainty of gradient and intercepts

  Applications and skills
 ➔ Explaining how random and systematic errors 

can be identified and reduced
 ➔ Collecting data that include absolute and/or 

fractional uncertainties and stating these as an 
uncertainty range (using ±)

 ➔ Propagating uncertainties through calculations 
involving addition, subtraction, multiplication, 
division, and raising to a power

 ➔ Using error bars to calculate the uncertainty in 
gradients and intercepts

Equations
Propagation of uncertainties:
If: y = a ± b
then: :y = :a + :b
If: y =   ab _____ c  

then:   :y
 ______ y   =   :a ______ a   +   :b ______ b   +   :c ______ c  

If: y = an

then:   :y 
 _______ y   =  ⎜n   :a ______ a  ⎟ 
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Uncertainties in measurement
Introduction
No experimental quantity can be absolutely accurate when measured – 
it is always subject to some degree of uncertainty. We will look at the 
reasons for this in this section. 

There are two types of error that contribute to our uncertainty about a 
reading – systematic and random.

Systematic errors
As the name suggests, these types of errors are due to the system being 
used to make the measurement. This may be due to faulty apparatus. For 
example, a scale may be incorrectly calibrated either during manufacture 
of the equipment, or because it has changed over a period of time. 
Rulers warp and, as a result, the divisions are no longer symmetrical. 

A timer can run slowly if its quartz crystal becomes damaged (not 
because the battery voltage has fallen – when the timer simply stops). 

When measuring distances from sealed radioactive sources or light-
dependent resistors (LDRs), it is hard to know where the source is 
actually positioned or where the active surface of the LDR is. 

The zero setting on apparatus can drift, due to usage, so that it no longer 
reads zero when it should – this is called a zero error.

Figure 1 shows a digital calliper with the jaws closed. This should read 
0.000 mm but there is a zero error and it reads 0.01 mm. This means that 
all readings will be 0.01 mm bigger than they should be. The calliper can 
be reset to zero or 0.01 mm could be subtracted from any readings made.

Often it is not possible to spot a systematic error and experimenters have 
to accept the reading on their instruments, or else spend significant effort 
in making sure that they are re-calibrated by checking the scale against a 
standard scale. Repeating a reading never removes the systematic error. 
The real problem with systematic errors is that it is only possible to check 
them by performing the same task with another apparatus. If the two 
sets give the same results, the likelihood is that they are both performing 
well; however, if there is disagreement in the results a third set may be 
needed to resolve any difference. 

In general we deal with zero errors as well as we can and then move 
on with our experimentation. When systematic errors are small, a 
measurement is said to be accurate.

▲  Figure 1 Zero error on digital calliper.
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  Nature of science
Systematic errors
Uncertainty when using a 300 mm ruler may be 
quoted to ±0.5 mm or ±1 mm depending on your 
view of how precisely you can gauge the reading. 
To be on the safe side you might wish to use the 
larger uncertainty and then you will be sure that 
the reading lies within your bounds. 

▲ Figure 2 Millimeter (mm) scale on ruler.

You should make sure you observe the scale from 
directly above and at right angles to the plane of 
the ruler in order to avoid parallax errors.

12345678910

▲ Figure 3 Parallax error.

The meter in figure 4 shows an analogue ammeter 
with a fairly large scale – there is justification in 
giving this reading as being (40 ± 5) A.

▲ Figure5 Digital scale.▲ Figure 4 Analogue scale.

The digital ammeter in figure 5 gives a value  
of 0.27 A which should be recorded as  
(0.27 ± 0.01) A. 

In each of these examples the uncertainty is 
quoted to the same precision (number of 
decimal places) as the reading – it is essential 
to do this as the number of decimal places is 
always indicative of precision. When we write an 
energy value as being 8 J we are implying that it 
is (8 ± 1) J and if we write it as 8.0 J it implies a 
precision of ±0.1 J.

Random errors
Random errors can occur in any measurement, but crop up most 
frequently when the experimenter has to estimate the last significant 
figure when reading a scale. If an instrument is insensitive then it may 
be difficult to judge whether a reading would have changed in different 
circumstances. For a single reading the uncertainty could well be better 
than the smallest scale division available. But, since you are determining 
the maximum possible range of values, it is a sensible precaution to 
use this larger precision. Dealing with digital scales is a problem – the 
likelihood is that you have really no idea how precisely the scales are 
calibrated. Choosing the least significant digit on the scale may severely 
underestimate the uncertainty but, unless you know the manufacturer’s 
data regarding calibration, it is probably the best you can do.

When measuring a time manually it is inappropriate to use the precision 
of the timer as the uncertainty in a reading, since your reaction time 
is likely to be far greater than this. For example, if you timed twenty 
oscillations of a pendulum to take 16.27 s this should be recorded as 
being (16.3 ± 0.1) s. This is because your reaction time dominates the 
precision of the timer. If you know that your reaction time is greater 
than 0.1 s then you should quote that value instead of 0.1 s.
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The best way of handling random errors is to take a series of repeat 
readings and find the average of each set of data. Half the range of the 
values will give a value that is a good approximation to the statistical 
value that more advanced error analysis provides. The range is the 
largest value minus the smallest value.

Readings with small random errors are said to be precise (this 
does not mean they are accurate, however).

Worked examples
1 In measuring the angle of refraction at an air-

glass interface for a constant angle of incidence 
the following results were obtained (using a 
protractor with a precision of ± 1o):

 45°, 47°, 46°, 45°, 44°
How should we express the angle of 
refraction?

Solution 
The mean of these values is 45.4° and the range is 
(47° − 44°) = 3°.

Half the range is 1.5°.
How then do we record our overall value for 
the angle of refraction?

Since the precision of the protractor is ±1°, 
we should quote our mean to a whole number 
(integral) value and it will round down to 
45°. We should not minimize our uncertainty 
unrealistically and so we should round this up 
to 2°. This means that the angle of refraction 
should be recorded as 45 ± 2°.

2 The diagram below shows the position of the 
meniscus of the mercury in a mercury-in-glass 
thermometer.

0T/°C 1 2 3 4 5 6 7 8 9 10

Express the temperature and its uncertainty to 
an appropriate number of significant figures.

Solution 
The scale is calibrated in degrees but they are 
quite clear here, so it is reasonable to expect 
a precision of ±0.5 °C. The meniscus is closer 
to 6 than to 6.5 (although that is a judgement 
decision) so the values should be recorded as 
(6.0 ± 0.5) °C. Remember the measurement and 
the uncertainty should be to the same number of 
decimal places.

3 A student takes a series of measurements 
of a certain quantity. He then averages his 
measurements. What aspects of systematic 
and random uncertainties is he addressing by 
taking repeats and averages?

Solution 
Systematic errors are not dealt with by means of 
repeat readings, but taking repeat readings and 
averaging them should cause the average value 
to be closer to the true value than a randomly 
chosen individual measurement. 

Absolute and fractional uncertainties 
The values of uncertainties that we have been looking at are 
called absolute uncertainties. These values have the same units 
as the quantity and should be written to the same number of 
decimal places.

Dividing the uncertainty by the value itself leaves a dimensionless quantity 
(one with no units) and gives us the fractional uncertainty. Percentaging 
the fractional uncertainty gives the percentage uncertainty.
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Worked example
Calculate the absolute, fractional, and percentage 
uncertainties for the following measurements of a 
force, F:

2.5 N, 2.8 N, 2.6 N

Solution
mean value =   2.5 N + 2.8 N + 2.6 N

  ________________ 3   = 2.63 N, this is 
rounded down to 2.6 N

range = (2.8 − 2.5) N = 0.3 N, giving an  
absolute uncertainty of 0.15 N that rounds  
up to 0.2 N

We would write our value for F as (2.6 ± 0.2) N

the fractional uncertainty is   0.2
 ___ 2.6   = 0.077 and the 

percentage uncertainty will be 0.077 × 100% = 
7.7%

Propagation of uncertainties
Often we measure quantities and then use our measurements to 
calculate other quantities with an equation. The uncertainty in 
the calculated value will be determined from a combination of the 
uncertainties in the quantities that we have used to calculate the value 
from. This is known as propagation of uncertainties.

There are some simple rules that we can apply when we are propagating 
uncertainties. In more advanced treatment of this topic we would 
demonstrate how these rules are developed, but we are going to focus 
on your application of these rules here (since you will never be asked to 
prove them and you can look them up in a text book or on the Internet 
if you want further information). 

In the uncertainty equations discussed next, a, b, c, etc. are the quantities 
and :a, :b, :c, etc. are the absolute uncertainties in these quantities.

Addition and subtraction
This is the easiest of the rules because when we add or subtract 
quantities we always add their absolute uncertainties.

When a = b + c  or a = b − c  then :a = :b + :c 

In order to use these relationships don’t forget that the quantities being 
added or subtracted must have the same units. 

So if we are combining two masses m1 and m2 then the total mass m will 
be the sum of the other two masses. 

m1 = (200 ± 10) g and m2 = (100 ± 10) g so m = 300 g and :m = 20 g  
meaning we should write this as: 

m = (300 ± 20) g 

We use subtraction more often than we realise when we are measuring 
lengths. When we set the zero of our ruler against one end of an object 
we are making a judgement of where the zero is positioned and this really 
means that the value is (0.0 ± 0.5) mm.

A ruler is used to measure a metal rod as shown in figure 6. The length 
is found by subtracting the smaller measurement from the larger one. 
The uncertainty for each measurement is ± 0.5 mm. 

Larger measurement = 195.0 mm

Smaller measurement = 118.5 mm

Length = (76.5 ± 1.0) mm as the uncertainty is 0.5 mm + 0.5 mm ▲ Figure 6 Measuring a length.
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  Nature of science
Subtracting values
When subtraction is involved in a relationship 
you need to be particularly careful. The resulting 
quantity becomes smaller in size (because of 
subtraction), while the absolute uncertainty becomes 
larger (because of addition). Imagine two values that 
are subtracted: b = 4.0 ± 0.1 and c =3.0 ± 0.1. 

We won’t concern ourselves with what these 
quantities actually are here.

If a = b − c then a = 1.0 and since :a = :b + :c 
then :a = 0.2

We have gone from two values in which the 
percentage uncertainty is 2.5% and 3.3% 
respectively to a calculated value with uncertainty 
of 20%. Now that really is propagation of 
uncertainties!

Multiplication and division
When we multiply or divide quantities we add their fractional or 
percentage uncertainties, so:

when a = bc or a =   b __ c   or a =   c __ 
b
  

then   :a
 ___ a   =   :b

 ___ 
b
   +   :c

 ___ c  

There are very few relationships in physics that do not include some 
form of multiplication or division. 

We have seen that density ρ is given by the expression ρ =    m __ V   where 
m is the mass of a sample of the substance and V is its volume. For a 
particular sample, the percentage uncertainty in the mass is 5% and for 
the volume is 12%.

The percentage uncertainty in the calculated value of the density will 
therefore be ±17%.

If the sample had been cubical in shape and the uncertainty in each 
of the sides was 4% we can see how this brings about a volume with 
uncertainty of 12%:

For a cube the volume is the cube of the side length (V = l 3 = l × l × l) 

so   :V
 ___ V   =   :l

 
__ 

l
   +   :l

 __ l   +   :l
 __ l   = 4% + 4% + 4% = 12%

This example leads us to:

Raising a quantity to a power
From the cube example you might have spotted that   :V

 ___ V   = 3   :l
 __ l  

This result can be generalized so that when a = bn (where n can be a 
positive or negative whole, integral, or decimal number)

then   :a
 ___ a   =  ⎜n   :b

 ___ 
b
  ⎟ 

The modulus sign is included as an alternative way of telling us that the 
uncertainty can be either positive or negative.
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Worked example
The period T of oscillation of a mass m on a spring, 
having spring constant k is T = 2π √__

   m __ 
k
    

Don’t worry about what these quantities actually mean 
at this stage.

The uncertainty in k is 11% and the uncertainty in 
m is 5%. 

Calculate the approximate uncertainty in a value 
for T of 1.20 s.

Solution
First let’s adjust the equation a little – we can 
write it as

T = 2π   (  m __ 
k
  )     1 __ 2    which is of the form a = 2π   (  b __ c  )   n 

Although we will truncate π, we can really write it 
to as many significant figures as we wish and so the 
percentage uncertainty in π, as in 2 will be zero.

Using the division and power relationships: 

  :a
 ___ a   = n   :b

 ___ 
b
   + n   :c

 ___ c   or here   :T
 ___ T   =   1 __ 2     :m

 ___ m   +   1 __ 2     :k
 ___ 

k
  

so the percentage uncertainty in T will be half that 
in m + half that in k.

This means that the percentage error in  
T = 0.5 × 5% + 0.5 × 11% = 8%
If the measured value of T is 1.20 s then the 
absolute uncertainty is 1.20 ×   8

 ___ 100   = 0.096 This 
rounds up to 0.10 and so we quote T as being 
(1.20 ± 0.10) s.

Remember that the quantity and the uncertainty 
must be to the same number of decimal places 
and so the zeros are important, as they give us the 
precision in the value.

Drawing graphs
An important justification for experimental work is to investigate the 
relationship between physical quantities. One set of values is rarely very 
revealing even if it can be used to calculate a physical constant, such as 
dividing the potential difference across a resistor by the current in the 
resistor to find the resistance. Although the calculation does tell you the 
resistance for one value of current, it says nothing about whether the 
resistance depends upon the current. Taking a series of values would tell 
you if the resistance was constant but, with the expected random errors, 
it would still not be definitive. By plotting a graph and drawing the line 
of best fit the pattern of results is far easier to spot, whether it is linear or 
some other relationship.

Error bars
In plotting a point on a graph, uncertainties are recognized by adding 
error bars. These are vertical and horizontal lines that indicate the 
possible range of the quantity being measured. Suppose at a time of 
(0.2 ± 0.05) s the speed of an object was (1.2 ± 0.2) m s−1 this would be 
plotted as shown in figure 7. 

This means that the value could possibly be within the rectangle that 
touches the ends of the error bars as shown in figure 8. This is the zone 
of uncertainty for the data point. A line of best fit should be one that 
spreads the points so that they are evenly distributed on both sides of the 
line and also passes through the error bars.

Uncertainties with gradients
Using a computer application, such as a spreadsheet, can allow you to 
plot a graph with data points and error bars. You can then read off the 
gradient and the intercepts from a linear graph directly. The application 

0
0

1.0

2.0

3.0

0.1 0.2 0.3 0.4
time/s

sp
ee

d/
m

 s
−1

▲ Figure 7 Error bars.

▲  Figure 8 Zone of uncertainty.

0
0

1.0

2.0

3.0

0.1 0.2 0.3 0.4
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ee

d/
m
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−1

The value could lie
anywhere inside this
rectangle
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will automatically draw the best trend line. You can then add the trend 
lines with the steepest and shallowest gradients that are just possible – 
while still passing through all the error bars. Students quite commonly, 
but incorrectly, use the extremes of the error bars that are furthest apart 
on the graphs. Although these could be appropriate, it is essential that all 
the trend lines you draw pass through all of the error bars.

In an experiment to measure the electromotive force (emf) and internal 
resistance of a cell, a series of resistors are connected across the cell. The 
currents in and potential differences across the resistors are then measured. 
A graph of potential difference, V, against current, I, should give a straight 
line of negative gradient. As you will see in Topic 5 the emf of a cell is 
related to the internal resistance r by the equation:

ε = I(R + r) = V + Ir

This can be rearranged to give V = ε − Ir

So a graph of V against I is of gradient −r (the internal resistance) and 
intercept ε (the emf of the cell).

The table on the right shows a set of results from this experiment. With 
a milliammeter and voltmeter of low precision the repeat values are 
identical to the measurements given in the table.

The graph of figure 9 shows the line of best fit together with two lines 
that are just possible.

0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

20 40 60
I/mA

EMF and Internal Resistance

V/V

80 100 120 140

V = −0.013I + 1.68
V = −0.0127I + 1.64
V = −0.0153I + 1.78

▲ Figure 9 A graph of potential difference, V, against current, I, for a cell.

Converting from milliamps to amps, the equations of these lines suggest that 
the internal resistance (the gradient) is 13.0 E and the range is from 12.7 E 
to 15.3 E (= 2.6 E) meaning that half the range = 1.3 E.

This leads to a value for r = (13.0 ± 1.3) E. 

The intercept on the V axis of the line of best fit = 1.68 which rounds 
to 1.7 V (since the data is essentially to 2 significant figures). The range 
of the just possible lines gives 1.6 to 1.8 V (when rounded to two 
significant figures). This means that ε = (1.6 ± 0.1) V.

I ± 5/mA V ± 0.1/V

15 1.5

20 1.4

25 1.4

30 1.3

35 1.2

50 1.1

55 0.9

70 0.8

85 0.6

90 0.5
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  Nature of science
Drawing graphs manually

 ●  One of the skills expected of physicists is to 
draw graphs by hand and you may well be 
tested on this in the data analysis question in 
Paper 3 of the IB Diploma Programme physics 
examination. You are also likely to need to 
draw graphs for your internal assessment. 

 ●  Try to look at your extreme values so that you 
have an idea of what scales to use. You will  
need a minimum of six points to give you a 
reasonable chance of drawing a valid line.

 ●  Use scales that will allow you to spread your 
points out as much as possible (you should 
fill your page, but not overspill onto a second 
sheet as that would damage your line quality 
and lose you marks). You can always calculate 
an intercept if you need one; when you don’t 

include the origin, your axes give you a false 
origin (which is fine).

 ●  Use sensible scales that will make both plotting 
and your calculations clear-cut (avoid scales that 
are multiples of 3, 4, or 7 – stick to 2, 5, and 10).

 ●  Try to plot your graph as you are doing the 
experiment – if apparently unusual values 
crop up, you will see them and can check that 
they are correct.

 ●  Before you draw your line of best fit, you need 
to consider whether or not it is straight or a 
curve. There may well be anomalous points 
(outliers) that you can ignore, but if there is 
a definite trend to the curve then you should 
opt for a smooth curve drawn with a single 
line and not “sketched” artistically!

Figure 10 shows some of the key elements of a good hand-drawn graph. Calculating the gradients on 
the graph is very useful when checking values.

260
40

42

44

46

280 300 320 340
T/K

360 380 400

48

50

52

54

56

58

line that is just possiblebest straight line

outlier ignored
for best
straight line

V/
10
−

6 
m

3

gradient of best straight line
(59.6 − 42.0) × 10−6 m3

(398 − 288) K
=

= 1.60 × 10−7 m3 K−1

gradient of just possible line
(58.6 − 42.0) × 10−6 m3

(398 − 286) K
=

= 1.48 × 10−7 m3 K−1

All values on V axis
have been divided by
10−6 and are in m3

False origin – neither
line has been forced
through this point

Use a large gradient
triangle to reduce
uncertainties

Second “just possible”
line  should be added
for a real investigation – 
it has been missed out
here so that you can
clearly see the values
on the two lines

Uncertainties in
temperature are too 
small to draw error bars

▲ Figure 10 Hand-drawn graph.
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Linearizing graphs
Many relationships between physical quantities are not directly 
proportional and a straight line cannot be obtained simply by plotting 
one quantity against the other. There are two approaches to dealing 
with non-proportional relationships: when we know the form of the 
relationship and when we do not.

If we do know the form of the relationship such as p ∝   1 __ V   (for a gas held 
at constant temperature) or T ∝  √_

 l   (for a simple pendulum) we can plot 
a graph of one quantity against the power of the other quantity to obtain 
a straight-line origin graph. An alternative for the simple pendulum is to 
plot a graph of T 2 against l which will give the same result. 

You should think about the propagation of errors when you 
consider the relative merits of plotting T against  √

_
 l   or T 2 against l.

The following discussion applies to HL examinations, but offers such a useful 
technique that SL students may wish to utilize it when completing IAs or if they 
undertake an Extended Essay in a science subject.

If we don’t know the actual power involved in a relationship, but we 
suspect that one quantity is related to the other, we can write a general 
relationship in the form y = kxn where k and n are constants. 

By taking logs of this equation we obtain log y = log k + n log x which we 
can arrange into log y = n log x + log k and is of the form y = m x + c. This 
means that a graph of log y against log x will be linear of gradient n and 
have an intercept on the log y axis of log k.

This technique is very useful in carrying out investigations when a 
relationship between two quantities really is not known. The technique 
is also a useful way of dealing with exponential relationships by taking 
logs to base e, instead of base 10. For example, radioactive nuclides 
decay so that either the activity or the number of nuclei remaining falls 
according to the same general form. Writing the decay equation for the 
number of nuclei remaining gives:

N = N0e
-λt by taking logs to the base e we get lnN = lnN0 - λt (where 

lnN is the usual way of writing logeN).

By plotting a graph of lnN against t the gradient will be -λt and the 
intercept on the lnN axis will be lnN0. This linearizes the graph shown 
in figure 11 producing the graph of figure 12. A linear graph is easier to 
analyse than a curve.

Capacitors also discharge through resistors using the same general 
mathematical relationship as that used for radioactive decay.

Note 
Relationships can never be 
“indirectly proportional” – this 
is a meaningless term since it 
is too vague. Consequently the 
term “proportional” means the 
same as “directly proportional”.

This topic is dealt with in more 
detail and with many further 
examples on the website.
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▲  Figure 11
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▲  Figure 12
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1.3 Vectors and scalars

  Nature of science
All physical quantities that you will meet on the 
course are classified as being vectors or scalars. 
It is important to know whether any quantity is 
a vector or a scalar since this will affect how the 
quantity is treated mathematically. Although 
the concept of adding forces is an intuitive 
application of vectors that has probably been 
used by sailors for millennia, the analytical 
aspect of it is a recent development. In the 

Philosophiæ Naturalis Principia Mathematica, 
published in 1687, Newton used quantities which 
we now call vectors, but never generalized this to 
deal with the concepts of vectors. At the start of 
the 19th century vectors became an indispensible 
tool for representing three-dimensional space 
and complex numbers. Vectors are now used 
as a matter of course by physicists and 
mathematicians alike.

Understanding
 ➔ Vector and scalar quantities
 ➔ Combination and resolution of vectors

  Applications and skills
 ➔ Solving vector problems graphically and 

algebraically.

Equations
The horizontal and vertical components of vector A:

 ➔ AH = A cos θ
 ➔ AV = A sin θ

Vector and scalar quantities
Scalar quantities are those that have magnitude (or size) but no 
direction. We treat scalar quantities as numbers (albeit with units) and 
use the rules of algebra when dealing with them. Distance and time are 
both scalars, as is speed. The average speed is simply the distance divided 
by the time, so if you travel 80 m in 10 s the speed will always be 8 m s−1. 
There are no surprises. 

Vector quantities are those which have both magnitude and direction. 
We must use vector algebra when dealing with vectors since we 
must take into account direction. The vector equivalent of distance is 
called displacement (i.e., it is a distance in a specified direction). The 
vector equivalent of speed is velocity (i.e., it is the speed in a specified 
direction). Time, as we have seen, is a scalar. Average velocity is defined 
as being displacement divided by time. 

A V

AH
u

A
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Dividing a vector by a scalar is the easiest operation that we need to 
do involving a vector. To continue with the example that we looked at 
with scalars, suppose the displacement was 80 m due north and the time 
was, again, 10 s. The average velocity would be 8 m s−1 due north. So, to 
generalize, when we divide a vector by a scalar we end up with a new 
vector that has the direction of the original one, but which will be of 
magnitude equal to that of the vector divided by that of the scalar.

Commonly used vectors and scalars

Vectors Scalars Comments

force (F) mass (m) F
displacement (s) length/distance (s, d, etc.) displacement used to be called “space” – now that 

means something else!

velocity (v or u) time (t)

momentum (p) volume (V)

acceleration (a) temperature (T)

gravitational field strength (g) speed (v or u) velocity and speed often have the same symbol

electric field strength (E) density (ρ) the symbol for density is the Greek “rho” not the letter “p”

magnetic field strength (B) pressure (p)

area (A) energy/work (W, etc.) the direction of an area is taken as being at right angles to 
the surface

power (P)

current (I) with current having direction you might think that it 
should be a vector but it is not (it is the ratio of two 
scalars, charge and time, so it cannot be a vector). In 
more advanced work you might come across current 
density which is a vector.

resistance (R)

gravitational potential (VG)
the subscripts tell us whether it is gravitational or electrical

electric potential (VE)

magnetic flux (Φ) flux is often thought as having a direction – it doesn’t!

Representing  vector quantities
A vector quantity is represented by a line with an arrow.

 ● The direction the arrow points represents the direction of the vector.

 ● The length of the line represents the magnitude of the vector to a 
chosen scale.

When we are dealing with vectors that act in one dimension it is a 
simple matter to assign one direction as being positive and the opposite 
direction as being negative. Which direction is positive and which 
negative really doesn’t matter as long as you are consistent. So, if one 
force acts upwards on an object and another force acts downwards, it is a 
simple matter to find the resultant by subtracting one from the other. ▲ Figure 1 Representing a vector.

5.0 N
this vector can represent a force 
of 5.0 N in the given direction
(using a scale of 1 cm representing
1 N, it will be 5 cm long)
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Figure 2 shows an upward tension and downward weight acting on an 
object – the upward line is longer than the downward line since the 
object is not in equilibrium and has an upward resultant.

Adding and subtracting vectors
When adding and subtracting vectors, account has to be taken of their 
direction. This can be done either by a scale drawing (graphically) or 
algebraically.

▲  Figure 3 Two vectors to be added.

V2

V1

▲ Figure 4 Adding the vectors.

V

V2

V1

Scale drawing (graphical) approach
Adding two vectors V1 and V2 which are not in the same direction can be 
done by forming a parallelogram to scale.

 ● Make a rough sketch of how the vectors are going to add together to 
give you an idea of how large your scale needs to be in order to fill 
the space available to you. This is a good idea when you are adding 
the vectors mathematically too. 

 ● Having chosen a suitable scale, draw the scaled lines in the 
direction of V1 and V2 (so that they form two adjacent sides of the 
parallelogram).

 ● Complete the parallelogram by drawing in the remaining two sides.

 ● The blue diagonal represents the resultant vector in both 
magnitude and direction.

Worked example
Two forces of magnitude 4.0 N and 6.0 N act on a 
single point. The forces make an angle of 60° with 
each other. Using a scale diagram, determine the 
resultant force.

Solution
Don’t forget that the vector must have a 
magnitude and a direction; this means that the 
angle is just as important as the size of the force.

4 N

8.7 N
6 N

6 N

resultant

180
170

160
150

140

130

120
110

1009080
70

60
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20
10

0 18
0

17
0

16
0

15
0

140

130 120 110 100 90 80 70 60
50

40
30

20
10

036°

Scale 10 mm represents 1.0 N 

length of resultant = 87 mm so the force = 8.7 N
angle resultant makes with 4 N force = 36°

▲  Figure 2 Two vectors acting on an object.

tension = 20 N upwards

weight = 15 N downwards

resultant = 5 N upwards
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Algebraic approach
Vectors can act at any angle to each other but the most common 
situation that you are going to deal with is when they are at right angles 
to each other. We will deal with this first.

Adding vector quantities at right angles
Pythagoras’ theorem can be used to calculate a resultant vector when 
two perpendicular vectors are added (or subtracted). Assuming that the 
two vector quantities are horizontal and vertical but the principle is the 
same as long as they are perpendicular. 

Figure 5 shows two perpendicular velocities v1 and v2; they form a 
parallelogram that is a rectangle.

The magnitude of the resultant velocity =  √______
  v  1  

2  +  v  2  
2   

 ● The resultant velocity makes an angle θ to the horizontal given by

 tan θ =  (  v1 _ v2
  )  so that θ = tan−1  (  v1 _ 

 v2
  ) 

 ● Notice that the order of adding the two vectors makes no difference 
to the length or the direction of the resultant.

Worked example
A walker walks 4.0 km due west from his starting 
point. He then stops before walking 3.0 km due 
north. At the end of his journey, how far is the 
walker from his starting point?

Solution
resultant =  √

______
  4  2  +  3  2    = 5 km

angle θ = tan−1  (  3 __ 
4
  )  = 36.9°

θ

4 km

3 km

sketch

▲ Figure 5 Adding two perpendicular vectors.

Before we look at adding vectors that are not perpendicular, we need to 
see how to resolve a vector – i.e. split it into two components.

Resolving vectors
We have seen that adding two vectors together produces a resultant 
vector. It is sensible, therefore, to imagine that we could split the 
resultant into the two vectors from which it was formed. In fact this is 
true for any vector – it can be divided into components which, added 
together, make the resultant vector. There is no limit to the number 
of vectors that can be added together and, consequently, there is no 
limit to the number of components that a vector can be divided into. 
However, we most commonly divide a vector into two components 
that are perpendicular to one another. The reason for doing this is that 
perpendicular vectors have no affect on each other as we will see when 
we look at projectiles in Topic 2. 

The force F in figure 6 has been resolved into the horizontal component 
equal to F cos θ and a vertical component equal to F sin θ. (The 
component opposite to the angle used is always the sine component.)

▲ Figure 6 Resolving a force.

F

θFcos

θFsin

θ

v2

v2

v1

v1

θ
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Worked example
An ice-hockey puck is struck at a constant speed 
of 40 m s–1 at an angle of 60° to the longer side of 
an ice rink. How far will the puck have travelled 
in directions a) parallel and b) perpendicular to 
the long side after 0.5 s?

Solution 

Vx = 40 cos 60° long side of rink

40 ms−1

V y =
 4

0 
si

n 
60

°

60°

a) Resolving parallel to longer side:

  v
x
 = v cos 60°

  v
x
 = 40 cos 60° = 20 m s−1

  distance travelled (x) = v
x
t  = 20 × 0.5  
= 10 m

b) Resolving parallel to shorter side:

    v
x
 = v sin 60°

  v
y
 = 40 cos 60° = 34.6 m s−1

  distance travelled (y) = v
y
t  = 34.6 × 0.5  
= 17 m

Just to demonstrate that resolving is the reverse 
of adding the components we can use Pythagoras’ 
theorem to add together our two components 
giving:

total speed =  √
_________

   20  2  +  34.6  2    = 39.96 m s−1

as the value for v
y
 was rounded this gives the 

expected 40 m s−1

Adding vector quantities that are not at right angles 
You are now in a position to add any vectors.

 ● Resolve each of the vectors in two directions at right angles – this 
will often be horizontally and vertically, but may be parallel and 
perpendicular to a surface.

 ● Add all the components in one direction to give a single component.

 ● Add all the components in the perpendicular direction to give a 
second single component.

 ● Combine the two components using Pythagoras’ theorem, as for two 
vector quantities at right angles.

V1 and V2 are the vectors to be added.

Each vector is resolved into components in the x and y directions. 
Note that since the x component of V2 is to the left it is treated as being 
negative (the y component of each vector is in the same direction . . . so 
upwards is treated as positive).

Total x component V
x
 = V1x

 + V2x
 = V1 cos θ1 - V2 cos θ2

Total y component V
y
 = V1y

 + V2y
 = V1 sin θ1 + V2 sin θ2

Having calculated Vx and Vy we can find the resultant by using 

Pythagoras so V =  √______
  V  x  

2  +  V  y  
2     

and the angle θ made with the horizontal =  tan  –1  (   V  y 
 __  V  x 
  ) .

V1x = V1 cos    1θ

V2x = V2 cos    2θ

V 1y
 =

 V
1 s

in
    

1

V1

V2

θ

1θ

2θ

V 2y
 =

 V
2 s

in
    

2θ

▲  Figure 7 Finding the resultant 
of two vectors that are not 
perpendicular.
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Worked example
Magnetic fields have strength 200 mT and 150 mT 
respectively. The fields act at 27° to one another as 
shown in the diagram. 

150 mT

200 mT

27°

(not drawn
to scale)

Calculate the resultant magnetic field strength.

Solution 
The 150 mT field is horizontal and so has no 
vertical component.

Vertical component of the 200 mT field =  
200 sin 27° = 90.8 mT

This makes the total vertical component of the 
resultant field.

Horizontal component of the 200 mT field =  
200 cos 27° = 178.2 mT

Total horizontal component of resultant field = 
(150.0 + 178.2) mT = 328.2 mT

Resultant field strength  √
____________

   90.8  2  +  328.2  2    = 340 mT

The resultant field makes an angle of: 

tan−1  (  90.8 _____ 
328.2

  )  = 15° with the150 mT field.

Subtraction of vectors
Subtracting one vector from another is very simple – you just form the 
negative of the vector to be subtracted and add this to the other vector. 
The negative of a vector has the same magnitude but the opposite 
direction. Let’s look at an example to see how this works:

Suppose we wish to find the difference between two velocities v1 and v2 
shown in figure 8.

V2

−V1

V1

▲ Figure 8 Positive and negative vectors.

In finding the difference between two values we subtract the first value 
from the second; so we need −v1. We then add −v1 to v2 as shown in 
figure 9 to give the red resultant. 

The order of combining the two vectors doesn’t matter as can be seen 
from the two versions in figure 9. In each case the resultant is the same – 
it doesn’t matter where the resultant is positioned as long as it has the 
same length and direction it is the same vector.

V2

−V1

V2 − V1

V2

−V1

V2 − V1

▲ Figure 9 Subtracting vectors.
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Questions 
1 Express the following units in terms of the SI 

fundamental units.

a) newton (N)

b) watt (W)

c) pascal (Pa)

d) coulomb (C)

e) volt (V)

(5 marks)

2 Express the following numbers to three 
significant figures.

a) 257.52 

b) 0.002 347

c) 0.1783

d) 7873

e) 1.997

(5 marks)

3 Complete the following calculations and 
express your answers to the most appropriate 
number of significant figures.

a) 1.34 × 3.2

b)   1.34 × 102
 _ 

2.1 × 103 
  

c) 1.87 × 102 + 1.97 × 103

d) (1.97 × 105) × (1.0 × 104)

e) (9.47 × 10−2) × (4.0 × 103)

(5 marks)

4 Use the appropriate metric multiplier instead of 
a power of ten in the following.

a) 1.1 × 104 V   

b) 4.22 × 10−4 m  

c) 8.5 × 1010 W

d) 4.22 × 10−7 m

e) 3.5 × 10−13 C

(5 marks)

5 Write down the order of magnitude of the 
following (you may need to do some research).

a) the length of a human foot

b) the mass of a fly

c) the charge on a proton

d) the age of the universe

e) the speed of electromagnetic waves in a 
vacuum

(5 marks)

6 a)  Without using a calculator estimate to one 
significant figure the value of   2π4.9 _ 

480
  . 

b) When a wire is stretched, the area 
under the line of a graph of force against 
extension of the wire gives the elastic 
potential energy stored in the wire. 
Estimate the energy stored in the wire with 
the following characteristic:

 

0
0

4

2

6

8

10

12

1 2 3 4 5 6 7 8
extension/mm

fo
rc

e/
N

(4 marks)

7 The grid below shows one data point and its 
associated error bar on a graph. The x-axis is 
not shown. State the y-value of the data point 
together with its absolute and percentage 
uncertainty. 

 1.0

2.0

3.0

4.0

5.0

(3 marks)24
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8 A ball falls freely from rest with an acceleration g. 
The variation with time t of its displacement s 
is given by s =   1 __ 2   gt2. The percentage uncertainty 
in the value of t is ±3% and that in the value of 
g is ±2%. Calculate the percentage uncertainty  
in the value of s.

(2 marks)

9 The volume V of a cylinder of height h and 
radius r is given by the expression V = π r2h. In 
a particular experiment, r is to be determined 
from measurements of V and h. The percentage 
uncertainty in V is ±5% and that in h is ±2%. 
Calculate the percentage uncertainty in r.

(3 marks)

10 (IB)

  At high pressures, a real gas does not behave 
as an ideal gas. For a certain range of pressures, 
it is suggested that for one mole of a real gas at 
constant temperature the relation between the 
pressure p and volume V is given by the equation

 pV = A + Bp where A and B are constants.

  In an experiment, 1 mole of nitrogen gas 
was compressed at a constant temperature of 
150 K. The volume V of the gas was measured 
for different values of the pressure p. A graph 
of the product pV against p is shown in the 
diagram below.

 
0

10

11

12

13

5 10 15 20
p/ × 106Pa

pV/102Nm

a) Copy the graph and draw a line of best fit 
for the data points.

b) Use your graph to determine the values of 
the constants A and B in the equation  
pV = A + Bp

c) p was measured to an accuracy of 5% and 
V was measured to an accuracy of 2%. 
Determine the absolute error in the value  
of the constant A.

(6 marks)

11 (IB)

  An experiment was carried out to measure the 
extension x of a thread of a spider’s web when 
a load F is applied to it. 

1.0 2.0 3.0 4.0
x/10−2m

5.0 6.0

F/10−2N

0.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0 thread breaks

at this point

a) Copy the graph and draw a best-fit line for 
the data points.

b) The relationship between F and x is of the 
form

 F = kxn

 State and explain the graph you would plot 
in order to determine the value n.

c) When a load is applied to a material, it is 
said to be under stress. The magnitude p of 
the stress is given by

 p =   F _ 
A

  

 where A is the cross-sectional area of the 
sample of the material.

 Use the graph and the data below to deduce 
that the thread used in the experiment has 
a greater breaking stress than steel.

 Breaking stress of steel = 1.0 × 109 N m–2

 Radius of spider web thread = 4.5 × 10–6 m

d) The uncertainty in the measurement of 
the radius of the thread is ±0.1 × 10–6 m. 
Determine the percentage uncertainty in 
the value of the area of the thread.

(9 marks)
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12 A cyclist travels a distance of 1200 m due 
north before going 2000 m due east followed 
by 500 m south-west. Draw a scale diagram to 
calculate the cyclist’s final displacement from 
her initial position.

(4 marks)

13 The diagram shows three forces P, Q, and R in 
equilibrium. P acts horizontally and Q vertically.

 

R
P

Q

 When P = 5.0 N and Q = 3.0 N, calculate the 
magnitude and direction of R.

(3 marks)

14 A boat, starting on one bank of a river, heads 
due south with a speed of 1.5 m s−1. The river 
flows due east at 0.8 m s−1.

a) Calculate the resultant velocity of the boat 
relative to the bank of the river.

b) The river is 50 m wide. Calculate the 
displacement from its initial position when 
the boat reaches the opposite bank.

(7 marks)

15 A car of mass 850 kg rests on a slope at 25° 
to the horizontal. Calculate the magnitude of 
the component of the car’s weight which acts 
parallel to the slope.

(3 marks)
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2  M E C H A N I C S

  Nature of science
An understanding of motion lies at the heart of 
physics. The areas of the subject are linked by 
the concepts of movement and the forces that 
produce motion. Links are used in a creative way 
by scientists to illuminate one part of the subject 
by reference to insights developed for other 
topics. The study of motion also relies on careful 
observation of the world so that accurate models 
of motion can be developed.

Understanding
 ➔ Distance and displacement
 ➔ Speed and velocity
 ➔ Acceleration
 ➔ Graphs describing motion
 ➔ Equations of motion for uniform acceleration
 ➔ Projectile motion
 ➔ Fluid resistance and terminal speed

  Applications and skills
 ➔ Determining instantaneous and average values 

for velocity, speed, and acceleration
 ➔ Solving problems using equations of motion for 

uniform acceleration
 ➔ Sketching and interpreting motion graphs
 ➔ Determining the acceleration of free-fall 

experimentally
 ➔ Analysing projectile motion, including 

the resolution of vertical and horizontal 
components of acceleration, velocity, and 
displacement

 ➔ Qualitatively describing the effect of fluid 
resistance on falling objects or projectiles, 
including reaching terminal speed 

Equations
Kinematic equations of motion:

 ➔ v = u + at
 ➔ s = ut +   1 ___ 2   at2

 ➔ v2= u2+ 2as

 ➔ s =    (v + u)t
 _____________ 2  

Introduction
Everything moves. The Earth revolves on its 
axis as it travels around the Sun. The Sun orbits 
within the Milky Way. Galaxies move apart. 

Motion and its causes are important to a study 
of physics. We begin by defining the meaning 

of everyday terms such as distance, velocity, 
acceleration and go on to develop models for 
motion that will allow us to predict the future 
motion of an object.
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Distance and displacement 
Your journey to school is unlikely to take a completely straight line 
from home to classroom. How do we describe journeys when we turn a 
corner and change direction?

The map shows the journey a student makes to get to school together 
with the times of arrival at various points on the way. To keep life 
simple, the journey has no hills.

home

school

bus stop

bus
stop

A

B

▲ Figure 1 Journey to school.

journey leg time distance for leg / m

leave home 08.10.00 0

walk to bus stop 08.20.15 800

bus arrives at stop 08.24.30 0

bus arrives near school 08.31.10 2400

walk from bus to school 08.34.00 200

The total length of this journey is 3.4 km including all the twists and 
turns. This is the distance travelled. As we saw in Topic 1, distance is a 
scalar quantity; it has no direction. If the student walks home by exactly 
the same route, then the distance travelled going home is the same as 
going to school.
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Journeys can be defined by the starting point (A) and finishing point 
(B) without saying anything about the intermediate route. A vector is 
drawn that starts at A and finishes at B. This straight line from start to 
finish has, as a vector, magnitude, and direction. This vector measurement 
is known as the displacement.

As you saw in Sub-topic 1.3, when you give the details of a displacement 
you must always give two pieces of information:  the magnitude (or 
size) of the quantity together with its unit, and also the direction of the 
vector. This direction can be written in a number of ways. One way is 
as a heading such as N35°E meaning that the finishing direction is at an 
angle of 35° clockwise from north. If you are a sailor or a keen orienteer, 
you may have other ways of measuring the direction of displacement.

The displacement of the student’s journey to school (AB) is also shown 
on the diagram. The displacement is the vector that connects home to 
school. This time the journey from school to home is not the same as 
the trip to school. It has the same vector length, but the direction is the 
opposite to that of the outward route. 

  Nature of science
How long is a piece of string?
Distance can be measured in any appropriate unit of length: metres, 
miles, and millimetres are all common. Some countries and some 
professions use alternatives. Surveyors use chains, the English-speaking 
world once used measures of length called rods, poles, and perches – all 
related to agricultural measurements. Astronomers use light years (a 
unit of length, not time) and a measure called simply the “astronomical 
unit”. Sometimes in everyday life it is a question of using a convenient 
unit rather than the correct metric version. In your exam, however, 
lengths will be in multiples and sub-multiples of the metre or in a well-
recognised scientific unit such as the light year.

  Nature of science
Moving in 3D
Displacement has been described here in terms 
of a journey in a flat landscape. Does a change 
in level alter things? Only one thing changes, 
and that is the number of pieces of information 
required to specify the final position relative to 
the start. Three pieces of information are now 
required: the magnitude plus its unit, the heading, 
and the overall change in height during the journey. 
Specifying motion in three dimensions requires 
three numbers or coordinates, you are already 

familiar with the idea of a coordinate from 
drawing and using graphs.

There is flexibility in how the three numbers can 
be chosen. You may have seen three-dimensional 
graphs with three axes each at 90° to the others, 
in this case coordinate numbers are given that 
relate to the distance along each axis. Another 
option is to use polar coordinates (figure 2): 
where a distance and two angles are required, 
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Speed and velocity
In just the same way that there are scalar and vector measures of the 
length of a journey, so there are two ways of measuring how quickly we 
cover the ground.

The first of these is a scalar quantity speed, which is defined as  
  
distance travelled on the journey

   _______________________  
time taken for the journey

  . Units for speed, familiar to you already, may 
include metre per second (m s–1) and kilometres per hour (km h–1), 
but any accepted distance unit can be combined with any time unit to 
specify speed.

Velocity is the vector term and, just as for displacement, a magnitude 
and direction are required. Examples might be “4.2 m s–1 due north” or 
“55 km h–1 at N22.5°E”.

  Nature of science
Measuring speed?
To measure speed it is necessary to measure the the distance travelled 
(using a “ruler”) and time taken (using a “clock”). The trick is in a good 
choice of “ruler”, “clock” and method for recording the measurements! 
A 30 cm ruler and a wrist watch will be fine for a biologist measuring 
the speed at which an earthworm moves. But if we want to measure 
the speed of a 100 m sprinter, then a measured distance on the ground, 
a good stop watch and a human observer is barely good enough. 
Even then the observer has to be careful to watch the smoke from the 
starting pistol and not to wait for the sound of the gun. 

If you need to measure the speed of a soccer ball during a penalty kick, 
then stop watch-plus-human is no longer adequate to make a valid 
measurement. Perhaps a video camera that takes frames at a known rate 
(the clock) and a scale near the path of the ball visible on the picture (the 
ruler) is needed now?

Move up to measuring the speed of a jet aircraft and the equipment 
needs to change again.

Choosing the right equipment for the task in hand is all part of the job 
of the working science student.

one angle is the bearing from North, the other the 
angle up or down from the horizontal needed to 
look directly at the object above (or below) us.

In some circumstances, even the distance  
itself may not be required. Sailors use latitude 
and longitude when they are navigating. 
They stay on the surface of the sea and this is 
effectively a constant distance from the centre 
of the Earth.

(r, θ, ϕ)

r

ϕ

θ

▲ Figure 2 Polar coordinates.

Worked examples
1 A cyclist travels 16 km  

in 70 minutes. Calculate, 
in m s–1, the speed of 
the cyclist.

Solution
70 minutes is 60 × 70 = 
4200 s, 16 km is 16 000 m. 
The quantities are now in 
the units required by the 
question.

The speed of the cyclist 
is   16 000

 _____ 4200   = 3.8 m s–1.

2 The speed of light  
in a vacuum is  
3.0 × 108 m s–1. A star 
is 22 light years from 
Earth (1 light year is 
the distance travelled 
by light in one year). 
Calculate the distance 
of the star from Earth 
in kilometres.

Solution
Light travels 3.0 × 108 m  
in 1 s. So in a year it travels 
3.0 × 108 × 365 × 24 ×  
60 × 60 = 9.5 × 1015 m. 
The distance of the star 
from the Earth is 22 ×  
9.5 × 1015 = 2.1 × 1017 m.

The question asks for an 
answer in kilometres, so the 
distance is 2.1 × 1014 km.
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Describing motion with a graph – I
The use of two variables, distance and time, to calculate speeds and 
velocities means that things become more complicated. Figure 1 
showed a map of the journey the student makes to school. Part of this 
journey is on foot, part is by bus. It is unlikely that the student will 
travel at the same speed all the time, as the bus will travel faster than 
the student walks. 

If we want to display data in a visual way, a graph of distance against 
time is one of the most common approaches.

0
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▲ Figure 3 Distance–time graph.

The distance travelled by the student is plotted on the vertical axis while 
the time since the beginning of the journey is plotted horizontally (the 
clock times of the journey have been translated into elapsed times since 
the start of the journey for this graph). The different regions of the graph 
are identified and you should confirm that they are matched correctly. 
Notice how the gradient of the graph changes for the different parts of 
the journey: small values of the gradient for the walking sections of the 
journey, horizontal (zero gradient) for stationary at the bus stop, and 
steep for the bus journey. What will the graph for the journey home 
from school look like, assuming that the time for each segment of the 
journey is the same as in the morning?

Information can easily be extracted from this graph. The gradient of the 
graph is the speed. Add the overall direction to this speed and we have 
the velocity too.

For the first walk to the bus stop the distance was 800 m and the time taken 
was 615 s. The constant walking speed was therefore   800

 ___ 615   , which is  
1.3 m s–1.

The gradient of the bus journey is   2400
 ____ 400   (this is marked on the graph) and so 

the speed was 6.0 m s–1.

Of course, even this journey with its changes is simplistic. Real journeys 
have few straight lines, so we must introduce some ways to handle 
rapidly varying speeds and velocities.

1000

time taken for bus
journey = 400 s

distance travelled
on bus = 2400 m

speed = = 6 ms−12400
400

di
st

an
ce

 tr
av

el
le

d/
m

time elapsed/s

▲  Figure 4 Distance–time graph from figure 3 
with gradients.
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Instantaneous and average values
The bus driver knows how fast the bus in the student’s journey is 
travelling because it is displayed on the speedometer. This is the 
instantaneous speed, as it gives the value of the speed at the moment 
in time at which the speed is determined.

1000

a more realistic
graph for the bus

tangent to graph
at t = 1000 s

= 5.0 m s−12000
400

use as large a tangent line as possible,
change in distance = (2500 − 500) m
change in time = (1300 − 900) s
gradient = 
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▲ Figure 5 Instantaneous speed.

The instantaneous speed is also the gradient of the distance–time graph 
at the instant concerned. Figure 5 shows how this is calculated when 
1000 s into the whole journey to school. The original red line for the bus 
from figure has been replaced by a green line that is more realistic for the 
motion of a real bus – the speed varies as the driver negotiates the traffic. 
You will frequently be asked to calculate gradients on physics graphs. 
Make sure that you can do this accurately by using a transparent ruler.

From a mathematical point of view we can describe the instantaneous speed 
as the rate of change of position with respect to time.  
A mathematician will write this as   ds

 __ 
dt

   , where s is the distance and t is the 
time. You may also have seen   ∆s

 ___ ∆t
  , where the symbol ∆ means change in.  

So   ∆s
 ___ ∆t
   is just shorthand for   

change in distance
  ____________ 

change in time
   .

There is however another useful measure of speed. This is the average 
speed and is the speed calculated over the whole the journey without 
regard to variations in speed. So as an equation this is

average speed =   
distance travelled over whole journey

   __________________________   
time taken for whole journey

  

In terms of the distance–time graph, the average speed is equal to the 
gradient of the straight line that joins the beginning and the end of the 
time interval concerned. So, for the part of the student’s journey up 
to the moment when the bus arrives at the stop, the distance travelled 
is 800 m, the time taken is 870 s (including the wait at the stop) so the 
average speed is 0.92 m s–1.

  Nature of science
Calculating a gradient of a 
graph
Taking the gradient of a graph is 
actually a way of averaging results. 
As discussed in Topic 1, a straight-
line graph drawn through points 
that have some scatter makes this 
obvious. The value of the gradient 
is the   

change in the value on the y-axis
   _______________________   

change in the value on the x-axis 
  .  

The unit associated with the gradient 
is the   

y-axis unit
 ________ x-axis unit   . Don’t forget to 

quote the unit every time you write 
down the value of the gradient.
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Worked example
The graph shows how the distance run by a boy 
varies with the time since he began to run.
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Calculate:

a) the instantaneous speed at
   (i) 5.0 s   (ii) 20 s

b) the average speed for the whole 30 s run.

Solution
a)   (i)  The boy runs at constant speed so the 

graph is straight from 0 – 10 s. 

The gradient of the straight line is  
  48

 __ 10   = 4.8 m s–1.

So the instantaneous speed at 5.0 s is  
4.8 m s–1.

 (ii)  Again the boy is running at a constant 
speed, but this time slower than in the 
first 10 s.

The speed from 10 s to 30 s is: 

  
(90 – 48)

 _ 
(30 – 10)

   =   42
 __ 20   = 2.1 m s–1.

The instantaneous speed at 20 s is 2.1 m s–1.

b) The total distance travelled in 30 s is 90 m, so 
the average speed is   90

 __ 30   = 3.0 m s–1.

Acceleration
In real journeys, instantaneous speeds and velocities change frequently. 
Again we need to develop a mathematical language that will help us to 
understand the changes.

The quantity we use is acceleration. Acceleration is taken to be a 
vector, but sometimes we are not interested in the direction and then 
write the “magnitude of the acceleration” meaning the size of the 
acceleration ignoring direction. 

The definition is: acceleration =   change in velocity
  ___________________  

time taken for the change  
  

and this means that the units of acceleration are   m s–1

 ____ s   which is usually 

written as m s–2 (or sometimes you will see m/s2). 

It is important to understand what acceleration means, not just to be 
able to use it in an equation. If an object has an acceleration of 5 m s–2 
then for every second it travels, its velocity increases in magnitude by  
5 m s–1 in the direction of the acceleration vector. 

As an example: the Japanese N700 train has a quoted acceleration of  
0.72 m s–2. Assume that this is a constant value (very unlikely). One second 
after starting from rest, the speed of the train will be 0.72 m s–1. One second 
later (at 2 s from the start) the speed will be 0.72 + 0.72 = 1.44 m s–1. At 3 s 
it will be 2.16 m s–1 and so on. Each second the speed is 0.72 m s–1 more. 

Worked example
How many seconds will 
it take the N700 to reach 
its maximum speed of 
300 km h–1 on the Sanyo 
Shinkansen route?

Solution
300 km h–1 ≡ = 83.3 m s–1

Time taken to reach the 
maximum speed: 

  83.3 _ 
0.72

   = 116 s, 

just under 2 minutes.

Everything said here about average and instantaneous speeds can also 
refer to average and instantaneous velocities. Remember, of course, to 
include the directions when quoting these measurements.

33

2 . 1  M O T I O N



  Nature of science
Spreadsheet models
One powerful way to think about acceleration 
(and other quantities that change in a predictable 
way) is to model them using a spreadsheet. The 
examples here use a version of Microsoft Excel© 
but any computer spreadsheet can be used for this.

This is a spreadsheet model for the N700 train. 
The value of the acceleration is in cell B1. Cells 
A4 to A29 give the time in increments of 5 s; 
the computed speed at each of these times is in 

cells B4 to B29. The speed is calculated by taking 
the change in time between the present cell and 
the one above it, and then multiplying by the 
acceleration (the acceleration is written as $B$1 so 
that the spreadsheet only uses this cell and does 
not drop down a cell every time the new speed is 
calculated). Finally, the spreadsheet plots speed 
against time showing that the graph is a straight 
line and that the acceleration is uniform.

Describing motion with a graph – II
Distance–time plots lead to a convenient display of speed and velocity 
changes. Plots of speed (or velocity) against time also help to display and 
visualize acceleration.

The data table and the graph show a journey with various stages on a 
bicycle. From the start until 10 s has elapsed, the bicycle accelerates at a 
uniform rate to a velocity of +4 m s–1. The positive sign means that the 
velocity is directed to the right.
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▲ Figure 6 Velocity–time graph for the bicycle.

From 10 s to 45 s the cycle moves at a constant velocity of +4 m s–1 and 
at 45 s the cyclist applies the brakes so that the cycle stops in 5 s. The 
cycle is then stationary for 10 s.

From then on the velocity is negative meaning that the cycle is travelling 
in the opposite direction. The pattern is similar, an acceleration to –3 m s–1, 
a period of constant velocity and a deceleration to a stop at 120 s.

As before, the gradient of the graph has a meaning. The gradient of this 
velocity–time graph gives the magnitude (size) of the acceleration and its 
sign (direction) as well.

From 45 s to 50 s the velocity goes from 4 m s–1 to 0 and so the 

acceleration is   
final speed - initial speed

  __________________  
time taken

      
(0–4)

 ____ 5   = –0.8 m s–2. From 90 s to 120 s 

the magnitude of the acceleration is   3 __ 30   = 0.1 m s–2. We need to take care 
with the sign of the acceleration here. Because the cycle is moving in the 
negative direction and is slowing down, the acceleration is positive (as is 
the gradient on the graph) – this simply means that there is a force acting 
to the right, that is, in the positive direction which is slowing the cycle 
down. We will discuss how force leads to acceleration later in this topic.

The area under a velocity–time graph gives yet more information. It tells 
us the total displacement of the moving object. The way to see this is to 
realize that the product of velocity × time is a displacement (and that product 
of speed × time is a distance). The units tell you this too: when the units are 
multiplied the seconds in   metre

 _____ 
second

   × second cancel to leave metre only.

In the case of a graph with uniform acceleration, the areas, and hence the 
displacements (distances) are straightforward to calculate. Divide the graph 
into right-angled triangles and rectangles and then work out the areas for 
each individual part. This is shown in figure 7.
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area =    × 5 × 4 = 10 m1
2

area = 35 × 4 = 140 m

▲ Figure 7 Velocity-time graph broken down into areas.
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The “suvat” equations of motion
The graphs of distance–time and speed–time lead to a set of equations 
that can be used to predict the value of the parameters in motion. 
They also help you to understand the connection between the various 
quantities in your study of motion.

A note about symbols: from now on we will use a consistent set of 
symbols for the quantities. The table gives the list.

If you read down the list of symbols they spell out suvat and the 
equations are sometimes known by this name, another name for them is 
the kinematic equations of motion.

The derivation of the equations of uniformly accelerated motion begins 
from a simple graph of speed against time for a constant acceleration from 
velocity u to velocity v in a time t.

The individual areas are shown on the diagram and for the motion up to 
a time of 60 s the area is 170 m; the area from the 60 s time to the end 
is –120 m. As usual, the negative sign indicates motion in the opposite 
direction to the original.

As discussed in Topic 1, when the velocity–time graph is curved, you will 
need to: 

  (i) estimate the number of squares

   (ii)  assess the area (distance) for one square, and finally 

(iii)  multiply the number of squares by the area of one square. 

This will usually give you an estimate of the overall distance. 

Figure 8 gives an example of how this is done.

There are about 85 squares between the x-axis and the line. (You may 
disagree slightly with this estimate, but that is fine – there is always an 
allowance made for this.)

Each of the squares is 2 s along the time axis and 0.5 m along the speed 
axis. So the area of one square is equivalent to 1.0 m of distance. The 
total distance travelled is 85 m (or, at least, somewhere between 80 and 
90 m).
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time/s

▲ Figure 8 A more difficult area to estimate.

symbol quantity

s displacement/distance

u initial (starting) 
velocity/speed

v final velocity/speed

a acceleration 

t time taken to travel the 
distance s
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time
t0
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u

v

sp
ee

d

area∆ =    × (v − u) × t 1
2

area□ = u × t 

gradient =  
(v − u)

t

▲ Figure 9 Deriving the first two equations of motion.

The acceleration is the gradient of the graph: 

  
change in speed

  __  
time taken for change

  

The change in speed is v – u, the time taken is t.

Therefore, 

a =   v – u _ t  

and re arranging gives

v = u + at first equation of motion

The area under the speed–time graph from 0 to t is made up of two parts, 
the lower rectangle, area□ and the upper right-angled triangle, area∆.

area∆ =   1 _ 
2

   base × height =   1 _ 
2

   t(v – u)

area□ = base × height = ut

s = total area = area∆ + area□ = ut +   1 _ 
2

   (v – u)t = ut +   1 _ 
2

  (at)t

So

s = ut +   1 _ 
2

   at2 second equation of motion

The first equation has no s in it; the second has no v. There are three 
more equations, one with a missing t and one with a missing a. There is 
one equation that has a missing u, but this is not often used.

To eliminate t from the first and second equations, re arrange the first in 
terms of t:

t =   v – u _ a   

This can be substituted into the second equation:

s = u   v – u _ a   +   1 _ 
2

   a   (  v – u _ a  )   2 
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Worked examples
1 A driver of a car travelling at 25 m s–1 along 

a road applies the brakes. The car comes to a 
stop in 150 m with a uniform deceleration. 
Calculate a) the time the car takes to stop, and 
b) the deceleration of the car.

Solution
a)  One way to answer kinematic equation 

questions is to begin by writing down what 
you do and don’t know from the question.

s = 150 m; u = 25 m s–1; v = 0 ; a = ? ; t = ?

To work out t, the fourth equation is required: 
s =  (  v + u

 ____ 2  )  t
which rearranges to t =  (  2

 ____ v + u  )  s
Substituting the values gives 

t =  (  2 __ 25  )  150 = 2 × 6 = 12 s

b)  To find a the equation v2 = u2 + 2as is best.

Substituting:

0 = 252 + 2 × a × 150 

a = –   25 × 25 _ 
300

   = –   25 _ 
12

   = –2.1 m s–2.

The minus sign shows that the car is 
decelerating rather than accelerating.

2 A cyclist slows uniformly from a speed of  
7.5 m s–1 to a speed of 2.5 m s–1 in a time of 5.0 s.

Calculate a) the acceleration, and b) the distance 
moved in the 5.0 s.

Solution
a) s = ?; u = 7.5 m s–1; v = 2.5 m s–1; a = ? ;  

t = 5.0 s

Use v = u + at and therefore 2.5 = 7.5 +  
a × 5.0

so, a = –   5.0
 ___ 5.0   = –1.0 m s–2

The negative sign shows that this is a 
deceleration.

b)  s = ut +   1 __ 2   at2 so  
s = 7.5 × 5.0 −   1 __ 2   × 1.0 × 5.02  
 = 37.5 − 12.5
 = 25 m

and

as = u(v – u) +   1 _ 
2

   (v – u)2 = uv – u2 +   1 _ 
2

   v2 +   1 _ 
2

   u2 –   1 _ 
2

   2uv

which gives 

2as = v2 – u2

or

v2 = u2 + 2as third equation of motion

The derivation of the final equation is left to you as an exercise:

s =  (  v + u
 _________ 2  )  t fourth equation of motion

There are two ways to approach this proof. One way is to think about 
the meaning of the speed that corresponds to   v + u

 ____ 2   and then to recognize 
the time at which this speed occurs in the motion. The second way is to 
take the third equation and amalgamate it with the first.

You will not be expected to remember these proofs or the equations 
themselves (which appear in the data booklet), but they do illustrate how 
useful graphs and equations can be when solving problems in kinematics.

Remember!
These equations only apply if 
the acceleration is uniform. In 
other words, acceleration must 
not change during the motion.
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  Investigate!
Measuring g
Alternative 1

 ● There are a number of ways to measure g. This 
method uses a data logger to collect data. One 
of the problems with measuring g “by hand” is 
that the experiment happens quickly. Manual 
collection of the data is difficult.

 ● An ultrasound sensor is mounted so that it 
senses objects below it. 

 ● Set the logging system up to measure the 
speed of the object over a time of about 1 s. 
Set a sensible interval between measurements.

 ● Switch on the logger system, and drop an 
object vertically that is large enough for the 
sensor to detect.

 ● The output from the system should be a 
speed–time graph that is a straight line; it may 
be that the logger’s software can calculate the 
gradient for you.

 ● You could extend this experiment by testing 
objects of different mass but similar size and 
shape to confirm a suggestion by Galileo that 
such differences do not affect the drop.

Ultrasound
sensor

▲ Figure 10 Ultrasound sensor.

Projectile motion
Falling freely
When an object is released close to the Earth’s surface, it accelerates 
downwards. We say that the force of gravity acts on the object, meaning 
that it is pulled towards the centre of the Earth. Equally the object 
pulls with the same force on the Earth in the opposite direction. Not 
surprisingly, with small objects, the effect of the force on the Earth is so 
small that we do not notice it.

In Topic 6, we shall look in more detail at the effects of gravity but for 
the moment we assume that there is a constant acceleration that acts on 
all bodies close to the surface of the Earth.

The acceleration due to gravity at the Earth’s surface is given the symbol 
g. The accepted value varies from place to place on the surface, so that 
at Kuala Lumpur g is 9.776 m s–2 whereas at Stockholm it is 9.818 m s–2. 
Reasons for the variation include variations in the shape of the Earth (it 
is not a perfect sphere, being slightly flattened at the poles) and effects 
that are due to the densities of the rocks in different locations. The 
different tangential speeds of the Earth at different latitudes also have an 
effect. It is better to buy gold by the newton at the equator and sell it at 
the North Pole than the other way round!
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What goes up must come down
Perhaps you have seen a toy rocket filled with water under pressure and 
fired vertically upwards? Or you may have thrown a ball vertically, high 
into the air?

After the ball has been released, as the pull of gravity takes effect, the 
ball slows down, eventually stopping at the top of its motion and then 
falling back to Earth. If there was no air resistance the displacement–
time graph would look like figure 12a. Remember that this is a graph 
of vertical displacement against time, not the shape of the path the 
ball makes in the air – which is called the trajectory. The ball is going 
vertically up and then vertically down to land in the same spot from 
where it began.

A distance–time graph would look different (figure 12b), it gives similar 
information but without the direction part of the displacement and 
velocity vectors. Make sure that you understand the difference between 
these graphs.

The suvat equations introduced earlier can be used to analyse this 
motion. The initial vertical speed is u, the time to reach the highest point 
is t, the highest point is h and the acceleration of the rocket is –g.  The 

Alternative 2
There are other options that do not involve a  
data logger.

electromagnet

height of fall = h to switch 
and timer

ruler

trap-door

▲ Figure 11 Trap door method.

 ● A magnetic field holds a small steel sphere (such 
as a ball bearing) between two metal contacts. 
The magnetic field is produced by a coil of wire 
with an electric current in it. When the current 
is switched off, the field disappears and the 
sphere is released to fall vertically.

 ● As the sphere leaves the metal contacts, 
a clock starts. The clock stops when the 
sphere opens a small trapdoor and breaks the 
connection between the terminals of a timing 
clock or computer. (The exact details of these 
connections will depend on the equipment 
you have.)

 ● This system measures the time of flight t of the 
sphere from the contacts to the trapdoor.

 ● Measure the distance h from the bottom of the 
sphere to the top of the trapdoor (you might 
think about why these are the appropriate 
measurement points).

 ● A possible way to carry out the experiment 
is to measure t for one value of h – with, of 
course, a few repeat measurements for the 

same h. Then use h = ut +   1 __ 2   gt2 with u = 0 to 

calculate g.

 ● This is a one-off measurement that is prone 
to error. Can you think of some reasons why? 
One way to reduce the errors is to change the 
vertical distance h between the sphere and 
trapdoor and to plot a graph of h against t2. 
The gradient of the graph is   

g
 __ 2   . If you observe 

an intercept on the h-axis, what do you think 
it represents?

Alternative 3
 ● There is a further method that involves taking 

a video or a multiflash image of a falling object 
and analysing the images to measure g. You  
will see an example of such an analysis later in 
this sub-topic.

▲  Figure 12b Distance–time for ball 
thrown vertically.

time

di
st

an
ce

0
0

maximum height

time

di
sp

la
ce

m
en

t

▲  Figure 12a Displacement–time for 
ball thrown vertically.
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Worked examples
1 A student drops a stone from rest at the top of a 

well. She hears the stone splash into the water 
at the bottom of the well 2.3 s after releasing the 
stone. Ignore the time taken for the sound to 
reach the student from the bottom of the well. 

a) Calculate the depth of the well.

b) Calculate the speed at which the stone hits 
the water surface.

c) Explain why the time taken for the sound 
to reach the student can be ignored.

Solution
a) The acceleration due to gravity g is 9.8 m s–2.

u = 0; t = 2.3 s.

s = ut +   1 __ 2   at2 and therefore

s = 0 +   1 __ 2   × 9.8 × 2.32 

  = 26 m

b) v = u + at; v = 0 + 9.8 × 2.3 = 23 m s–1

c) The speed of sound is about 300 m s–1 and so 
the time to travel about 25 m is about 0.08 s. 
Only about 4% of the time taken for the stone 
to fall.

2 A hot-air balloon is rising vertically at a 
constant speed of 5.0 m s–1. A small object is 
released from rest relative to the balloon when 
the balloon is 30 m above the ground.

a) Calculate the maximum height of the 
object above the ground.

b) Calculate the time taken to reach the 
maximum height.

c) Calculate the total time taken for the 
object to reach the ground.

Solution
a) The object is moving upwards at +5.0 m s–1 

when it is released. The acceleration due to 
gravity is –9.8 m s–2.

When the object is released it will continue 
to travel upwards but this upward speed will 
decrease under the influence of gravity. When it 
reaches its maximum height it will stop moving 
and then begin to fall.

v2 = u2 + 2as and s =   0 – 52

 _______  –2 × 9.8   = +1.3 m

This shows that the object rises a further 1.3 m 
above its release point, and is therefore 31.3 m 
above the ground at the maximum height.

b) v = u + at; t =   0 – 5
 ____  –9.8   = +0.51 s (the plus sign 

shows that this is 0.51 s after release)

c) After reaching the maximum height (at which 
point the speed is zero) the object falls with 
the acceleration due to gravity.

s = 31.3 m ; u = 0;  v = ?; a = –9.8 m s–2; t = ?

Using s = ut +   1 __ 2   at2, –31.3 = 0 – 0.5 × 9.8 × t2.

(Notice that s is –31.3 m as it is in the opposite 
direction to the upwards + direction.)

This gives a value for t of ±2.53 s. The positive 
value is the one to use. Think about what the 
negative value stands for. 

So the total time is the 0.51 s to get to the 
maximum height together with the 2.53 s to 
fall back to Earth.

This gives a total of 3.04 s which rounds to 3.0 s.

Notice that, in this example, if you carry the 
signs through consistently, they give you 
information about the motion of the object.

Reminder!
Try to remember this crucial 
point about the signs in the 
equations when you answer 
questions on vertical motion: 
upwards is +ve and downwards 
is –ve. Something else that 
students forget is that at the top 
of the motion the vertical speed 
of the rocket is zero.

sign of g is negative because upwards is the positive direction. As the 
acceleration due to gravity is downwards, g must have the opposite sign. 
The kinematic equations are printed again but with differences to reflect 
the vertical motion to the highest point:

0 = u – gt which comes from v = u + at

h = ut –   1 __ 2   gt2 which comes from s = ut +   1 __ 2   at2

0 = u2 – 2gh which comes from v2 = u2 + 2as

If you want to find out the time for the entire motion (that is, up to the 
highest point and then back to Earth again), it is simply 2t.
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Moving horizontally 
There is little that is new here. We are going to assume that the surface 
of the Earth is large enough for its surface to be considered flat (Topic 6 
will go into more details of what happens in reality) and that there is 
no friction.

Gravity acts vertically and not in the horizontal direction. This will 
be important when we combine the horizontal and vertical motions 
later.

Because the horizontal acceleration is zero, the suvat equations are simple.

For horizontal motion: 

 ● the horizontal velocity does not change

 ● the horizontal distance travelled is horizontal speed × time for the motion.

Putting it all together
A student throws a ball horizontally. Figure 13 shows multiple images 
of the ball every 0.10 s as it moves through the air. The picture also 
shows, for comparison, the image of a similar ball dropped vertically 
at the same moment as the ball is thrown. What do you notice about 
both images?

It is obvious which of the two balls was thrown horizontally. Careful 
examination of the images of this ball should convince you that the 
horizontal distance between them is constant. Knowing the time interval 
and the distance scale on the picture means that you can work out the 
initial (and unchanging) horizontal speed.

The images tell us about the vertical speeds too. The clue here is to 
concentrate on the ball that was dropped vertically. The distance between 
images (strictly, between the same point on the ball in each image) is 
increasing. The distance s travelled varies with time t from release as s ∝ t2. 
If t doubles then s should increase by factor of 4. Does it look as though 
this is what happens? Careful measurements from this figure followed 
by a plot of s against t2 could help you to confirm this.

The two motions, horizontal and vertical, are completely 
independent of each other. The horizontal speed continues 
unchanged (we assumed no air resistance) while the vertical speed 
changes as gravity acts on the ball. This independence allows a 
straightforward analysis of the motion. The horizontal and the vertical 
parts of the motion can be split up and treated separately and then re-
combined to answer questions about the velocity and the displacement 
for the whole of the motion.

The position is summed up in figure 14. At two positions along the 
trajectory, the separate components of velocity are shown and the 
resultant (the actual velocity including its direction) is drawn.

Real-life situations do not always begin with horizontal motion. A well-
aimed throw will project the ball upwards into the air to achieve the best 
range (overall distance travelled). But the general principles above still 
allow the situation to be analysed.

▲  Figure 13 Multi-flash images of 
two falling objects.

projected to the rightdropped 

projected to the rightdropped

 

▲  Figure 14 Horizontal and vertical speed 
components.
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vertical speed = 0
at maximum height 

initial velocity u at θ to horizontal
initial horizontal component = u cos θ
initial vertical component = u sin θ 

horizontal speed is
constant if air
resistance negligible 

at maximum height:

range:

  = 2t (u cos θ)

t is the time to maximum height
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time for whole
motion is twice time
to maximum height

time

g only acts on
vertical speed

h

θ

vertical
acceleration

is -g

0 = u sin θ - gt

h = (u sin θ)t -
0 = u2 sin2 θ - 2gh

  gt2

2
and

▲ Figure 15 Projectile motion.

Study figure 15 carefully and apply the ideas in it to any projectile 
problems you need to solve.

Worked examples
1 An arrow is fired horizontally from the top of 

a tower 35 m above the ground. The initial 
horizontal speed is 30 m s–1. Assume that air 
resistance is negligible.

Calculate:

a) the time for which the arrow is in the air

b) the distance from the foot of the tower at 
which the arrow strikes the ground

c) the velocity at which the arrow strikes the 
ground.

Solution
a) The time taken to reach the ground depends 

on the vertical motion of the arrow.

At the instant when the arrow is fired, the 
vertical speed is zero.

The time to reach the ground can be found 

using s = ut +   1 __ 2   at2

t2 =   2 × 35 _ 
9.8

  , so t = 2.67 s or 2.7 s to 2 s.f.

b) The distance from the foot of the tower 
depends only on the horizontal speed.

s = ut = 30 × 2.67 = 80.1 m = 80 m.

c) To calculate the velocity, the horizontal 
and vertical components are required. The 
horizontal component remains at 30 m s–1. The 
vertical speed is calculated using v = u + at 
and is 0 + 9.8 × 2.67 = 26.2 m s–1.

The speed is  √
_________

  302 + 26.22   = 39.8 m s–1 which 
rounds to 40 m s–1. 

The angle at which the arrow strikes the 
ground is tan   26.2

 ____ 30   = 41° 
2 An object is thrown horizontally from a ship 

and strikes the sea 1.6 s later at a distance of 
37 m from the ship.

Calculate:

a) the initial horizontal speed of the object

b) the height of the object above the sea 
when it was fired thrown.

Solution
a) The object travelled 37 m in 1.6 s and the 

horizontal speed was   37
 ___ 1.6   = 23 m s–1.

b) Use s = ut +   1 __ 2   at2 to calculate s above the sea.

s = 0 + 0.5 × 9.8 × 1.62 = 12.5 m
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  Applications and skills
 ➔ Representing forces as vectors
 ➔ Sketching and interpreting free-body diagrams
 ➔ Describing the consequences of Newton’s first 

law for translational equilibrium
 ➔ Using Newton’s second law quantitatively and 

qualitatively
 ➔ Identifying force pairs in the context of 

Newton’s third law
 ➔ Solving problems involving forces and 

determining resultant force
 ➔ Describing solid friction (static and dynamic) 

by coefficients of friction

Equations
 ➔ Newton’s second law: F = ma
 ➔ static friction equation: Ff ≤ µsR
 ➔ dynamic friction equation: Ff = µd R

  Nature of science
The application of mathematics enhances our 
understanding of force and motion. Isaac Newton 
was able to use the work of earlier scientists and to 
formalize it through the use of the calculus, a form 
of which he developed for this purpose. He made 
many insights during his scientific thinking within 
the topic of force and motion, but also beyond it. 
The story of the falling apple, whether true or not, 
illustrates the importance of serendipity in science 
and the requirement that the creative scientist can 
form links that go beyond what exists already.

Understanding
 ➔ Objects as point particles
 ➔ Free-body diagrams
 ➔ Translational equilibrium
 ➔ Newton’s laws of motion
 ➔ Solid friction

2.2 Forces

Introduction
We depend on forces and their effects for all aspects of our life. Forces 
are often taught in most elementary physics courses as though they 
are “pushes or pulls”, but forces go well beyond this simple description. 
Forces can change the motion of a body and they can deform the shapes 
of bodies. Forces can act at a distance so that there is no contact between 
objects or between a system that produces a force and the object on 
which it acts.

TOK

Aristotle and the concept of force

Discussions about the concept of what is meant by 
a force go back to the dawn of scientific thought. 
Aristotle, a Greek philosopher who lived about 2300 
years ago, had an overarching view of the world (called 
an Aristotelian cosmology) and he can be regarded as 
being an important factor in the development of science. 
The German philosopher Heidegger wrote that there 
would have been no Galileo without Aristotle before him.

 
Despite his importance to us, however, we would not 
have regarded Aristotle as a scientist in any modern 
sense. For one thing he is not known to have performed 
experiments to verify his ideas; some of his ideas seem 
very odd to us today. Aristotle believed in the “nature”  
of all objects including living things. He believed that  
all objects had a natural state which was to be 
motionless on the surface of the Earth and that all
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objects, if left alone, would try to attain this state. Then  
he distinguished between “natural motion” in which, for 
example, heavy objects fall downwards and “unnatural” 
or “forced” motion in which the objects need to have a 
force continually applied if they are to remain anywhere 
other than their natural state.

Unfortunately for those learning physics this is a very 
persuasive idea because we know intuitively that if we 
want to hold something in our hand, our muscles have 
to keep “working” in order to do this.

There are many other examples of Aristotelian thought 
and how later scientists moved our thinking forward. 
But it is important to remember the contribution that 
Aristotle made to science, even if some of his ideas are 
now overturned. What do you think students in 50, 100, 
or even a 1000 years will make of the physics of our 
century?

Newton’s laws of motion
Newton’s first law
By the time of Galileo, scientists had begun to realise that things were 
not as simple as the Greek philosophers such as Aristotle had thought. 
They were coming to the view that moving objects have inertia, 
meaning a resistance to stopping and that, once in motion, objects 
continue to move.

Galileo carried out an experiment with inclined planes and spheres. In 
fact, this may have been a thought experiment – this was often the way 
forward in those days – but in any event it is easy to see what Galileo 
was trying to suggest.

(a) (b) (c)

▲ Figure 1 Galileo’s thought experiment.

In the first experiment (a), the two arms of the inclined plane are at 
the same angle and the sphere rolls the same distance up the slope as it 
rolled down (assuming no energy losses). In the second experiment (b), 
the second arm is at a lower angle than before but the sphere rolls up 
this plane to the same height as that from which it was released. Galileo 
then concluded that if the second plane is horizontal (c), the sphere will 
go on rolling for ever because it will never be able to climb to the original 
release height.

Newton included this idea in his first law of motion that says:

An object continues to remain stationary or to move at a 
constant velocity unless an external force acts on it.

Galileo had suggested that the sphere on his horizontal plane went 
on forever, but it was Newton who realised that there is more to say 
than this. Unless something from outside applies a force to change 
it, the velocity of an object (both its speed and its direction) must 
remain the same.
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This was directly opposed to Aristotle’s view that a force had to 
keep pushing constantly at a moving object for the speed to remain 
the same.

Newton’s second law
The next step is to ask: if a force does act on an object, in what way does 
the velocity change?

Newton proposed that there was a fundamental equation that connected 
force and rate of change of velocity. This is contained in his second 
law of motion. This law can be written in two ways, one way is more 
complex than the other and we will look at the more complicated form 
of the law later in this topic.  

Newton’s second law, in its simpler form, says that

Force = mass × acceleration

As an equation this can be written

F = ma

The appropriate SI units are force in newtons (N), mass in kilograms 
(kg), and acceleration in metres per second2 (m s–2). As discussed in 
Topic 1 the newton is a derived unit in SI. We can represent it in terms  
of fundamental units alone as kg m s–2.

Two things arise from this equation:

 ● Mass is a scalar, so there will not be a change in the direction of the 
acceleration if we multiply acceleration by the mass. The direction of 
the force and the direction of the acceleration must be the same. So, 
applying a force to a mass will change the velocity in the same direction 
as that of the force.

 ● One way to think about the mass in this equation is that it is the ratio 
of the force required per unit of acceleration for a given object. This 
helps us to standardize our units of force. If an object of mass 1 kg is 
observed to accelerate with an acceleration of 1 m s–2 then one unit of 
force (1 N) must have acted on it.

  Nature of science
Inertial and gravitational mass
What exactly do we mean by mass? The mass 
that we use in Newton’s second law of motion 
is inertial mass. Inertial mass is the property 
that permits an object to resist the effects of 
a force that is trying to change its motion. 
In other parts of this book, mass is used in a 
different context. We talk about the weight of 
an object and we know that this weight arises 
from the gravitational attraction between the 

mass of the object and the mass of the Earth. 
The two masses in this case are gravitational 
masses and are the response of matter to the 
effects of gravity. It has been experimentally 
verified that weight is proportional to mass 
to better than 3 parts in 1011. It is a postulate 
of Einstein’s general theory of relativity 
that inertial mass and gravitational mass are 
proportional.
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  Investigate!
Force, mass, and acceleration

card light gate

cart

Experiment 1: force and acceleration
 ● The idea in this experiment is to measure the 

acceleration of the cart (of constant mass) 
when it is towed by different numbers of 
elastic threads each one extended by the  
same amount.

 ● The timing can be done using light gates 
and an electronic timer as shown here. 
Alternatively it can be done using a data logger 
with, say, an ultrasound sensor and the cart 
moving away from the sensor.

 ● Practise accelerating the cart with one elastic 
thread attached to the rear of the cart. The 
thread(s) will have to be extended by the same 
amount for each run. A convenient point to 
judge is the forward end of the cart. Make sure 
that your hand clears the light gates if you are 
using this method. Your hand needs to move 
at the same speed as the cart so that the thread 
is the same length throughout the run.

 ● The card on the cart needs to be of a known 
length so that you can use the time taken to 

break the light beam to calculate, first, the 
average speed at each gate and then (using the 
distance apart of the gates), the acceleration 
of the cart. The kinematic equations are used 
for this. (This is why you must pull the cart 
with a constant force so that the acceleration 
is uniform.)

 ● Repeat the experiment with two, three, and 
possibly four elastic threads, all identical, all 
extended by the same amount. This means 
that you will be using one unit of force (with 
one thread), two units (with two threads) and 
so on. 

 ● Plot a graph of calculated acceleration against 
number of force units. Is your graph straight? 
Does it go through the origin? Remember 
that this experiment has a number of possible 
uncertainties in judging the best-fit line.

Experiment 2: mass and acceleration
 ● The setup is essentially the same as for 

Experiment 1, except this time you will use a 
constant force (possibly two elastic threads is 
appropriate). 

 ● Change the mass of your cart (some laboratory 
carts are specially designed to stack, one on top 
of another) and measure the acceleration with 
a constant force and varying numbers of carts.

 ● This time Newton’s second law predicts that 
mass should be inversely proportional to 
acceleration. Plot a graph of acceleration 
against   1

 ____ mass   . Is it a straight line?

Worked examples
1 A car with a mass of 1500 kg accelerates 

uniformly from rest to a speed of 28 m s–1 
(about 100 km h–1) in a time of 11 s. Calculate 
the average force that acts on the car to 
produce this acceleration.

Solution
The acceleration = a =   v – u _ t   =   28 _ 

11
   = 2.54 m s–2.

Force = ma = 1500 × 2.54 = 3.8 kN.

2 An aircraft of mass 3.3 × 105 kg takes off from 
rest in a distance of 1.7 km. The maximum 
thrust of the engines is 830 kN. Calculate the 
take-off speed.

The acceleration of the aircraft is   8.3 × 105

 _______ 
 3.3 × 105   = 

2.51 m s–2.

v2 = u2 + 2as so v  = 0 + 2 × 2.51 × 1700
which leads to v = 92.4 m s–1.
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Newton’s third law
Newton’s third law of motion is sometimes written in such a way 
that the true meaning of the law has to be teased out. The law can be 
expressed in a number of equivalent ways. 

One common way to write Newton’s third law of motion is: 

Every action has an equal and opposite reaction.

The first point to make is that the words “action” and “reaction” really 
mean “action force” and “reaction force”. So, once again, Newton is 
referring directly to the effects of forces. A second point is that the  
action–reaction pair must be of the same type. So a gravitational action 
force must correspond to a gravitational reaction. It could not, for 
example, refer to an electrostatic force.

The law suggests that forces must appear in pairs, but in thinking about a 
particular situation it is important to identify all possible force pairs and 
then to pair them up correctly. Take, as an example, the situation of a 
rubber ball resting on a table.

At first glance the obvious action force here is the weight of the ball, 
that is, the gravitational pull the Earth exerts on the sphere. This force 
acts downwards and – if the table were not there – the ball would 
accelerate downwards according to Newton’s second law. It would fall 
to the floor. 

What is the reaction force here? Given that action force and reaction 
force must pair up like for like, the reaction must be the gravitational 
force that the ball exerts on the Earth. This is of exactly the same size as 
the pull of the Earth on the ball, but is in the opposite direction. 

What prevents the ball accelerating downwards to the floor? A 
force must be exerted by the table on the ball – and if there are no 
accelerations happening, then this force is equal and opposite to 
the downwards gravitational pull of the Earth on the ball. But the 
upwards table force is not the reaction force to the ball’s weight – we 
have already seen that this is the gravitation pull on the Earth. The 
origin of the table force is the electrostatic forces between atoms. 
As the ball lies on the table, it deforms the horizontal surface very 
slightly, rather like what happens when you push downwards with a 
finger on a metre ruler suspended by supports at its end – the ruler 
bends in a spring-like way to provide a resistance to the force acting 
downwards. The dent in the table surface is the response of the 
atoms in the table to the weight lying on it. Remove the ball and the 
surface will return to being flat. This upwards force that returns the 
table to the horizontal is pushing upwards on the ball. There is a 
corresponding downwards force from the deformed ball (the ball will 
become slightly flattened as a response to the gravitational pull). So 
here is the second action–reaction pair, between two forces that are 
electrostatic in origin.

In summary, there are four forces in this situation: the weight of the ball, 
the upwards “spring-like” force of the table, and the reactions to these 
forces which are the pull of the ball on the Earth and the downwards 
push of the deformed ball on the table.

TOK

But are they really laws?

The essential question is: 
can Newton’s laws of motion 
be proved? The answer is 
that they cannot; strictly 
speaking they are assertions 
as Newton himself 
recognized. In his famous 
Principia (written in Latin as 
was a custom in those days) 
he writes Axiomata sive 
leges motus, or “the axioms 
or laws of motion”.

However, they appear to 
be an excellent set of rules 
that allow us to predict 
most of the motion that we 
undertake. They remained 
unchallenged as a theory for 
about 200 years until the two 
theories of relativity were 
formulated by Einstein at the 
turn of the twentieth century. 
Essentially (said Einstein) 
the rules that Newton 
proposed do not always 
apply to, for example, motion 
that is very fast. However, for 
the modest speeds at which 
humans travel, the rules are 
reliable to a high degree and 
are certainly good enough for 
our needs most of the time.
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To (literally) get a feeling for this, take a one-metre laboratory ruler 
and suspend it between two lab stools as suggested earlier. Press down 
gently with your finger in the centre of the ruler so that it becomes 
curved. The ruler will bend, you will be able to feel it resisting your 
efforts to deform it too far. Remove your finger and the ruler will 
return to its original shape. 

In explaining Newton’s third law in a particular example, you must 
remember to emphasise the nature, the size, and the direction of the 
force you are describing. Another common example is that of a rocket 
in space. Students sometimes write that “...by Newton’s third law, the 
rocket pushes on the atmosphere to accelerate” but this shows a poor 
understanding of how the propulsion actually works.

First, of course, the rocket does not “push” on anything. The fact that a 
rocket can accelerate in space where there is no atmosphere proves this.

What happens inside the rocket is that chemicals react together 
producing a gas with a very high temperature and pressure. The rocket 
has exhaust nozzles through which this gas escapes from the combustion 
chamber. At one end of the chamber inside the rocket the gas molecules 
rebound off the end wall and exert a force on it, as a result they reverse 
their direction. In principle, the rebounding molecules could then 
travel down the rocket and leave through the nozzles. So there is an 
action-reaction pair here, the force forwards that the gas molecules 
exert on the chamber (and therefore the rocket) and the force that the 
chamber exerts on the gas molecules. It is the first of these two forces 
that accelerates the rocket. If the chamber were completely sealed and 
the gas could exert an equal and opposite force at the back of the rocket, 
then the forward force would be exactly countered by the backwards 
force and no acceleration would occur. 

Later we shall interpret this acceleration in a different way. But the 
explanation given here will still be correct at a microscopic level. 

Think about the following situations and discuss them with fellow 
students.

 ● A fireman has to exert considerable force on a fire hose to keep it 
pointing in the direction that will send water to the correct place.

 ● There is a suggestion to power space travel to deep space by ejecting 
ions from a spaceship.

 ● A sailing dinghy moves forward when the wind blows into the sails.

Free-body force diagrams 
As a vector quantity, a force can be represented by an arrow that gives 
both the scaled length and the direction of the force. In simple cases 
where few forces act this works well, but as the situations become more 
complex, diagrams that show all the arrows can become complicated.

One way to avoid this problem is to use a free-body force diagram to 
illustrate what is happening.

The rules for a free-body diagram for a body are simple, as follows.

▲  Figure 2 Chemical rockets in action.
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 ● The diagram is for one body only and the force vectors are 
represented as arrows.

 ● Only the forces acting on the body are considered.

 ● The force (vector) arrows are drawn to scale originating at a point 
that represents the centre of mass of the body.

 ● All forces have a clear label.

Procedure for drawing and using a free-body diagram
 ● Begin by sketching the general situation with all the bodies that 

interact in the situation.

 ● Select the body of interest and draw it again removed from the 
situation.

 ● Draw, to scale, and label all the forces that act on this body due to 
the other bodies and forces. 

 ● Add the force vectors together (either by drawing or calculation) to 
give the net force acting on the body. The sum can be used later to 
draw other conclusions about the motion of the object.

Examples of free-body diagrams
1 A ball falling freely under gravity with no air resistance.

ball

ball

pull of Earth on ball

Earth

pull of ball on Earth

pull of Earth on ball
acceleration of ball

free-body diagram for the ball 

situation diagram

▲ Figure 3 Ball falling freely under gravity.

This straightforward situation speaks for itself. There are two forces 
acting: the Earth pulling on the ball and the ball pulling on the Earth. 
For the free-body diagram of the ball we are only interested in the first 
of these. So the free-body diagram is a particularly simple one, showing 
the object and one force. Notice that the ball is not represented as a real 
object, but as a point that refers to the centre of mass of the object.
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2 The same ball resting on the ground.

acceleration = 0

force on ball
from ground

ball

ground
force of Earth on ball

free-body diagram for the ballgeneral situation 

ball

▲ Figure 4 Ball resting on the ground.

As we saw earlier, four forces act in this case: 

 ● the weight of the ball downwards

 ● the reaction of the Earth to this weight 

 ● the upwards force from the ground

 ● the reaction of the ball to this “spring-like” force.

A free-body diagram (figure 4) definitely helps here because, by 
restricting ourselves  to the forces acting on the ball, the four forces 
reduce to two: the weight of the ball and the upwards force on it due to 
the deformation of the ground. These two forces are equal and opposite. 
The net resultant (vector sum) of the forces is zero and there is therefore 
no acceleration.

3 An object accelerating upwards in a lift.

The weight of the object is downwards and the size of this force is the same 
as though the object had been stationary on the Earth’s surface. However, 
the upwards force of the floor of the lift on the object is now larger than the 
weight and the resultant force of the two has a net upwards component. 
The object is accelerated upwards as you would expect.

For the lift, there is an upward force in the lift cable and a downwards 
weight of the lift is downwards together with the weight of the object. The 
resultant force is upwards and is equal to the force in the cable less the 
weight forces of lift and object.

▲  Figure 5 Mass in a lift accelerating upwards.

general situation 

object

lift

lift cable

acceleration
of object

free-body diagram
for the lift

force exerted
by cable on lift

force exerted
by earth on lift
(weight of lift)

force exerted
by object on lift

free-body diagram for the mass

acceleration 
of object 
upwards

force exerted 
by lift on 
object

force exerted 
by Earth on 
object

object

acceleration
of lift upwards
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Translational equilibrium
When an object is in translational equilibrium it is either at rest 
or moving at a constant velocity (not just constant speed in this case). 
Translational here means moving in a straight line. (There is also 
rotational equilibrium where something is at rest or rotating at a 
constant angular speed; this is discussed in option B).

Newton’s first and second laws remind us that if there is no change of velocity 
then there must be zero force acting on the object. This zero force in many 
cases is the resultant (addition) of more than one force. In this section we 
will examine what equilibrium implies when there is more than one force.

The simplest case is that of two forces. If they are equal in size and 
opposite in direction, they will cancel out and be in equilibrium  
(Figure 6(a)).

If the forces are equal in size but not in the same direction then 
equilibrium is not possible. Horizontally, in figure 6(b), the two 
components of the force vectors are still equal and opposite and we 
could expect that there would be no change in this direction. But 
vertically the two vector components point in the same direction so that 
overall there will be an unbalanced vertical force and an acceleration 
acting on the object on which these forces act.

This gives a clue as to how we should proceed when there are three or 
more forces. 

mg

free-body diagram situation diagram

mg

T1

T2 sinθ

θ

string
sprin

g balance

ring

weight

vertically

θ

T2

T1 T2 cosθ
horizontally

▲ Figure 7 Three forces acting on a ring.

Figure 7 shows a situation diagram and a free-body diagram for a ring on 
which three forces act. 

For equilibrium, in whatever direction we resolve the forces, all three 
components must add up to zero in this direction. 

force 2force 1
(a)

force  components
add vertically

(b)
force  components cancel horizontally

▲  Figure 6 Two equal forces in different 
directions.
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Figure 7 shows that horizontal and vertical are two good directions with 
which to begin, because two forces are aligned with these directions and 
one disappears in each direction chosen. Thus, vertical force mg has no 
component in the horizontal direction and horizontal force T1 has no 
part to play vertically. But whichever direction is chosen, if there is to be 
no resultant force and consequently no acceleration, then all the forces 
must cancel.

There is one more consequence of this idea. Figure 8 shows the forces 
drawn, as usual, to scale and in the correct direction (in red). The forces 
can be moved, as shown by the green arrows, into a new arrangement 
(shown in black). What is special here is that the three forces form a 
closed triangle where all the arrows meet. 

mg

T1

T2

Move the mg vector vertically upwards to begin
at the start of T1.

Move T2 sideways to the end of T1.

The three vectors now form a closed triangle.
The three forces are in translational equilibrium.  

θ

▲ Figure 8 Making a triangle for forces.

Algebraically, this must be true because we know (ignoring the directions of 
the forces) that 

T1 = T2 cos θ (horizontally) and mg = T2 sin θ (vertically)

So 

T1
2 = T2

2 cos2 θ and (mg)2 = T2
2 sin2 θ

Adding these together gives

T1
2 + (mg)2 = T2

2 (sin2 θ + cos2 θ)
and therefore as sin2 θ + cos2 θ = 1

T1
2 + (mg)2 = T2

2

This is equivalent to Pythagoras’ theorem where x = T1
2, y = (mg)2  

and z = T2
2 so that x2 + y2 = z2.

So, because the sum of the squares of two vector lengths equals 
the square of the third vector length, the three must fit together 
as a right-angled triangle. We have a right-angled triangle formed 
by the scaled lengths and directions of the three force vectors. This 
important figure is known as a triangle of forces. If you can draw 
the vectors for a system in this way, then the system must be in 
translational equilibrium.
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  Investigate!
Three forces in equilibrium

T2 T1

mg

stringθ1θ2

 ● If a point is in equilibrium under the influence 
of three forces, then the three forces must 
form a closed triangle.

 ● To verify this, use a mass and two spring 
balances with a knot halfway along the string 
between the two spring balances to act as the 
point object.

 ● Your arrangement for hanging the spring 
balances will depend on the resources in  
your school. 

 ● Select a mass to suit the sensitivity of your 
spring balances.

 ● Place a vertical drawing board with a large 
sheet of paper pinned to it behind the 
balances so that you can mark the position 
of the strings. When these are marked, use a 
protractor to measure the angles.

 ● Begin with a simple case, say when T1 is 
horizontal so that θ1 = 90°.

 ● The knot must be stationary and when this is true:

 ■ T1 cos θ1 = T2 cos θ2 (resolving horizontally)

 ■ T1 sin θ1 + T2 sin θ2 = mg (resolving 
vertically)

 ● Construct this table to enable you to verify that 
both equations are true for every case you set up.

T1/N θ1/° T2/N θ2/° mg/N T1cos θ1/N T1sin θ1/N T2cos θ2/N T2sin θ2/N

Case 1

For each case check that the equations are correct within experimental error.

Solid friction
Friction is the force that occurs between two surfaces in contact. If you 
live in a part of the world where there is snow and ice then you will 
know that when the friction between your shoes and the ice disappears 
it can be a good thing (for skiing) or a bad thing (for falling over).

  Investigate!
Solid friction 
In this experiment you use a spring balance to 
measure the force that acts between two surfaces. 
It gives some unexpected results.

 ● Set up the platform on rollers with a suitable 
weight and a spring balance. A string connects 
the spring balance to the weight. Ensure that the 
weight is attached securely to the block. 

 ● Pull the platform using the winch system with 
an increasing force observing, at the same 
time, the reading on the balance.

spring
balance

platform

rollers

winch system

weight
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 ● Note the maximum value of the force as 
measured on the balance.

 ● Note the way the size of the force changes 
when the platform begins to move.

 ● Is this force constant? Or does it fluctuate?

 ● Change the size of the weights on the 
platform. How does the total weight affect the 
force measured on the balance?

 ● Change the type of surface at the bottom of 
the weights. You might use abrasive (emery) 
paper or cloth in different abrasive grades 
pinned to the platform.

 ● Investigate other changes: does lubrication at 
the bottom of the weights affect the friction?

If you carried out the Investigate! Solid friction experiment you may have 
found that: 

 ● The force on the balance increases as you pull harder and harder, but the 
platform does not begin to move relative to the weights immediately.

 ● Eventually the platform suddenly begins to move at a particular 
value of force and at this instant the force, shown by the balance, 
drops to a new lower value.

 ● This new value is then maintained as the platform moves steadily. 

 ● You may observe “stick-slip” behaviour where the platform 
alternately sticks and then jumps to a new sticking position. This 
behaviour is associated with two values of friction, but this may be 
too difficult to observe unless you get very suitable surfaces.

 ● The friction forces depend on the magnitude of the weights.

The frictional forces that occur in this experiment are described 
empirically as: 

 ● static friction (when there is no relative movement between the 
surfaces) 

 ● dynamic friction (when there is relative movement).

As the pulling force increases but without any slip happening, the friction 
is said to be static (because there is no motion). Eventually however, the 
pulling force will exceed the value of the static friction and the surfaces 
will start to move. As the movement continues, the friction force drops to 
a new value, lower than the maximum static value. This new lower value 
is known as the dynamic friction. Both static and dynamic friction forces 
are highly dependent on the two surfaces concerned. 

Static friction
The static friction force Ff is found to be given empirically by

Ff ≤ µsR

where Ff is the frictional force exerted by the surface on the block. R is 
the normal reaction of the surface on the block, this equals the weight of 
the block as there is no vertical acceleration. The symbol µs refers to the 
coefficient of static friction.

The “less than or equal to” symbol indicates that the static friction force 
can vary from zero up to a maximum value. Between these limits Ff is 
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equal to the pull on the block. Once the pull on the block is equal to 
Ff, then the block is just about to move. Once the pull exceeds Ff then 
the block begins to slide (figure 9). For these larger forces, the friction 
operating is in the dynamic regime. 

pull on block

friction force exerted
by surface on block

reaction force of
surface on block

pull of Earth
on block

▲ Figure 9 Friction force acting on an object.

Dynamic friction
Dynamic friction only applies when the surfaces move relative to each 
other. The friction drops from its maximum static value (there is an 
explanation for this below) and remains at a constant value. This value 
depends on the total reaction force acting on the surface but (according to 
simple theory) is not thought to depend on the relative speed between the 
two surfaces. So, for dynamic friction

Ff = µdR

where µd is the coefficient of dynamic friction.

The values of µs and µd vary greatly depending on the pair of surfaces 
being used and also the condition of the surfaces (for example, 
whether lubricated or not). A few typical values are given in the 
table. If you want to investigate a wider range of surfaces, there are 
many sources of the coefficient values on the Internet – search for 
“Coefficients of friction”.

Each friction coefficient is a ratio of two forces (Ff and R) and so has no units.

Surface 1 Surface 2 µs µd

glass metal 0.7 0.6

rubber concrete 1.0 0.8

rubber wet tarmac 0.6 0.4

rubber ice 0.3 0.2

metal metal (lubricated) 0.15 0.06

Values of µs and µd for pairs of surfaces

It is possible for the coefficients to be greater than 1 for some surface 
pairs. This reflects the fact that for these surfaces the friction is very 
strong and greater than the weight of the block. Remember that the 
surfaces are being pulled sideways by a horizontal force whereas the 
reaction force is vertical so we are not really comparing like with like in 
these empirical rules for friction.
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  Investigate!
Friction between a block and a ramp
One way to measure the static coefficient of friction 
between two surfaces in a school laboratory is to use 
the two surfaces as part of a ramp system.

m

θ

a block on a ramp

free-body diagram of 
just the block

mg mg

Ff
FfN

N

 ● One surface is the top of the ramp, the other is 
the base of the block.

 ● Resolving at 90° to plane, N = mg cos θ; 
resolving along the plane, F = mg sin θ 

 ● So tan θ =   
Ff _ 
N

   = µs

 ● Start with the ramp horizontal, and then 
gradually raise one end until the block starts 
to slip.

 ● At this moment of slip, measure the angle of 
the ramp. The tangent of this angle is equal to 
the coefficient of static friction.

Worked examples
1 A box is pushed across a level floor at a 

constant speed with a force of 280 N at 45°  
to the floor. The mass of the box is 50 kg.

45°
F

Calculate: 

a) the vertical component of the force

b) the weight of the box

c) the horizontal component of the force

d) the coefficient of dynamic friction between 
the box and the floor.

Solution
a) the vertical component is 280 sin 45° = 198 N

b) the weight of the box = mg = 50 × 9.8 = 490 N

c) the horizontal component of the force =  
280 cos 45° = 198 N

d) the vertical component of the force exerted by 
the floor on the box = 490 + 198 N = 688 N

the friction force = the horizontal component 
(the box is travelling at a steady speed), so 

 µ
d =   198 _ 

688
   = 0.29

2 A skier places a pair of skis on a snow slope 
that is at an angle of 1.7° to the horizontal. 
The coefficient of static friction between the 
skis and the snow is 0.025. 

Determine whether the skis will slide away by 
themselves.

Solution

friction force
reaction force
of surface on ski 

weight of ski

weight component
down slope 1.7°

Call the weight of the skis W. 

The component of weight down the slope =  
W sin 1.7°
The reaction force of the surface on the ski =  
W cos 1.7°. 
Therefore, the maximum friction force up slope =  
µS W cos 1.7°.
The skis will slide if 

µS W cos 1.7° < W sin 1.7°
in other words, if µS < tan 1.7°.  
The value of tan 1.7° is 0.0296 and this is greater 
than the value of µS, which is 0.025, so the skis 
will slide away.
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Origins of friction
Friction originates at the interface between the two materials, in other 
words at the surface where they meet. The actual causes of friction are 
still being investigated today and the explanation given here is highly 
simplified and a historical one. Leonardo da Vinci mentions friction in 
his notebooks and some of the next scientific writings about friction 
appear in works by Guillaume Amontons from around 1700. 

liquid lubricant layer

(a)

(b)

moving to right

moving to left

▲ Figure 10 How solid friction arises.

One model for solid friction suggests that what are very smooth surfaces 
to us are not smooth at all. At the atomic level, they are actually full of 
peaks and troughs of atoms (figure 10(a)). When static friction occurs and 
two surfaces are at rest relative to each other, then the atomic peaks rest 
in the troughs, and it needs a certain level of force to deform or break the 
peaks sufficiently for sliding to begin. Once relative motion has started 
(so that dynamic friction occurs), then the top surface rises a little above 
the deformed peaks. Less force is now required to keep the motion going. 
Because the irregularities on the surface are very small and of atomic size, 
even the small forces applied in our lab experiments cause large stresses to 
act on the peaks. The peaks then deform like a soft plastic irrespective of 
whether the material is hard steel or something much softer. 

Moving surfaces are often coated with a lubricant to reduce wear due 
to friction (figure 10(b)). The lubricant fills the space between the 
two surfaces and either prevents the peaks and troughs of atoms from 
touching or reduces the amount of contact. In either event, the atoms 
from the surfaces do not interact as much as before and the friction force 
and the coefficient are reduced.

The origins of these friction forces are bound up in the complex 
electronic properties of the materials that make up the surfaces. 
However, this simple theory should give you some understanding of 
friction as well as an awareness that the bulk materials we perceive 
on the macroscopic scale arise from microscopic properties that are 
operating at the atomic level.

What is important to realize is that the two equations for static and 
dynamic friction do not arise from a study of the interatomic forces 
between the surfaces; they are derived purely from experiments with 
bulk materials. The results are empirical not theoretical.
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Fluid resistance and terminal speed
The assumption that air resistance is negligible is often unrealistic. 
An object that travels through a fluid (a liquid or a gas) is subject to a 
complex process in which, as the object travels through the material, the 
fluid is “stirred up” and becomes subject to a drag force. The process is 
complex, so even after introducing some simple assumptions about the 
resistance of a fluid, we will still not be able to give a complete analysis.

In energy terms, the action of air resistance is to transfer some of the 
energy of the moving body into the fluid through which it is moving. 
Some fluids absorb this energy better than others: swimming through 
water is much more tiring than running in the air.

For your IB Diploma Programme physics exams, you only need to 
describe the effects of fluid resistance without going into the mathematics.

Skydiving
In 2012, Felix Baumgartner jumped safely from a height of 39 km above 
New Mexico to reach a top speed of 1342 km h–1 – faster than the speed 
of sound.

A skydive from more usual heights will not take place at such high 
speeds, usually up to about 200 km h–1. The difference is due to the 
variation in the resistance of the air at different heights above the Earth. 

mg

mg

drag force

drag force

body released
from rest

forces on body
during acceleration

forces on body
at terminal speed

mg

▲ Figure 11 Forces acting on skydiver.

The diagram shows the forces acting on a skydiver. The weight of the 
diver acts vertically downwards and is effectively constant (because there 
is little change in the Earth’s gravitational field strength at the height of 
the dive). The air resistance force acts in the opposite direction to the 
motion of the diver and for a diver falling vertically, this will be vertical 
too. Other forces acting on the diver include the upwards buoyancy 
caused by the displacement of air by the diver.
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When the skydiver initially leaves the aircraft, the diver’s weight acts 
downwards and because the vertical speed is almost zero, there is 
almost no air resistance. Air resistance increases as the speed increases 
so that as the diver goes faster and faster the resistance force becomes 
larger and larger. The net force therefore decreases and consequently 
the acceleration of the diver downwards also decreases. Eventually the 
weight force downwards and the resistance force upwards are equal in 
magnitude and, of course, opposite in direction. At this point there is no 
longer any acceleration and the diver has reached a constant rate of fall 
known as the terminal speed.

The graph of vertical speed against time is as shown in figure 12.

time

ve
rt

ica
l s

pe
ed

accelerates to
terminal speed

parachute opens

lands
greater drag force so
terminal speed smaller

(not to scale)

▲ Figure 12 Speed–time for a parachute jump.

Eventually the skydiver opens the parachute. Now, because of the large 
surface area of the parachute envelope, the upwards resistive force is 
much larger than before and is greater than the weight. As a result, the 
directions of the net force and acceleration are also upwards; the vertical 
velocity decreases in magnitude. Once again a balance will be reached 
where the upward and downward forces are equal and opposite – but at a 
much lower speed than before (about 12 m s–1 for a landing) and the diver 
reaches the ground safely.

Maximum speed of a car 
The top (maximum) speed of a motor car is determined by a number 
of factors. The most obvious of these is the maximum force that the 
engine can exert through the tyres on the road surface. But, as with the 
skydiver, this is not the only force acting. There is a considerable drag on 
the vehicle due to the air and this drag force increases markedly as the 
speed of the car becomes larger. Typically, when the speed doubles the 
drag force will increase by at least a factor of four.

There is a maximum power that the car engine can produce. When 
the car accelerates and the speed increases towards the maximum, the 
power dissipated in friction also increases. When the maximum energy 
output of the engine every second is completely used in overcoming the 
energy losses, then the car cannot accelerate further and has reached its 
maximum speed.
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Worked example
1 Calculate the upward force acting on a 

skydiver of mass 80 kg who is falling at a 
constant speed.

Solution
The weight of the skydiver is 80 × 9.8 = 784 N. 
Because the skydiver is falling at constant speed 
(i.e. terminal speed) the upwards drag force is 
equal to the downwards weight.

The upward force is 784 N.

2 P and Q are two boxes that are pushed across 
a rough surface at a constant velocity with a 

horizontal force of 30 N. The mass of P is  
2.0 kg and the mass of Q is 4.0 kg. 

 

P
Q

F

State the resultant force on box Q.

Solution
Q is moving at constant speed. So the resultant 
force on this box must be 0 N.

2.3 Work, energy, and power

  Nature of science
The theory of conservation of energy allows 
many areas of science to be understood at a 
fundamental level. It allows the explanation of 
natural phenomena but also means that scientists 
can predict the outcome of a previously unknown 
effect. The conservation of energy also demonstrates 
that paradigm shifts occur in science: the 
interchangeability of mass and energy as predicted 
by Einstein is an example of this.

Understanding
 ➔ Principle of conservation of energy 
 ➔ Kinetic energy 
 ➔ Gravitational potential energy 
 ➔ Elastic potential energy 
 ➔ Work done as energy transfer 
 ➔ Power as rate of energy transfer 
 ➔ Efficiency 

  Applications and skills
 ➔ Discussing the conservation of total energy 

within energy transformations 
 ➔ Sketching and interpreting force – distance 

graphs 
 ➔ Determining work done including cases where  

a resistive force acts 
 ➔ Solving problems involving power 
 ➔ Quantitatively describing efficiency in energy 

transfers

Equations
 ➔ work: W = Fs cosθ
 ➔ kinetic energy: EK =   1 ___ 2   mv2

 ➔ elastic potential energy: Ep =   1 ___ 2  k(:x)2

 ➔ change in gravitational potential energy:  
:Ep = mg:h

 ➔ power = Fv
 ➔ efficiency =   useful workout ______________________ total work in   =   useful power out

 _________________________ total power in  
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Introduction
This sub-topic looks at the physics of energy transfers. The importance of 
energy is best appreciated when it moves or transfers between different 
forms. Then we can make it do a useful job for us. 

What is important is that you learn to look below the surface of the 
bald statement: “electrical energy is converted into internal energy” and 
ensure that you can talk about the detailed changes that are taking place.

Energy forms and transfers
Energy can be stored in many different forms. Some of the important 
ones are listed in the table below.

Energy Nature of energy associated with... Notes

kinetic the motion of a mass
(gravitational) potential the position of a mass in a gravitational field sometimes the word “gravitational” is not used
electric/magnetic charge flowing 
chemical atoms and their molecular arrangements
nuclear the nucleus of an atom related to a mass change by :E = :mc2

elastic (potential) an object being deformed The word “potential” is not always used
thermal (heat) a change in temperature or a change of 

state
A change of state is a change of a substance 
between phases, i.e. solid to liquid, or liquid to 
gas. This is referred to as “energy transferred 
as a result of temperature difference” in line 
with the IB Guide. The colloquial term “heat” is 
usually acceptable when referring to situations 
involving conservation of energy situations.

mass conversion to binding (nuclear) energy 
when nuclear changes occur

  

vibration (sound) mechanical waves in solids, liquids, or  
gases

the amount of sound energy transferred is 
almost always negligible when compared with 
other energy forms

light photons of light sometimes called “radiant energy” another 
form of electric/magnetic

Energy can be transferred between any of its forms and it is during such 
transfers we see the effects of energy. For example, water can fall vertically 
to turn the turbine of a hydroelectric power station and drive a generator.
Lots of things are happening here. The water molecules are attracted by 
the Earth and accelerate downwards through the pipe. Their momentum 
is transferred to the blades of the turbine which rotates and turns the 
coils in the generator. As a result of the coils turning, electrons are forced 
to move and there is an electric current. Overall, this chain of physical 
processes can be summed up as the conversion of gravitational potential 
energy of the water into an electrical form. Another example of an energy 
transfer is that of an animal converting stored chemical energy in the 
muscles leading to kinetic and gravitational potential energy forms with 
some of the chemical energy also appearing as frictional losses.
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Worked example
Describe the mechanisms 
associated with the energy 
changes that occur when a 
balloon is blown up.

Solution
Air molecules gain kinetic 
energy that is used to store 
elastic potential energy in 
the skin of the balloon and 
to make changes in the 
energy of the air. The air 
inside is able to exert more 
force (pressure) outwards 
on the skin of the balloon 
until a new equilibrium is 
established between the 
tension in the skin and the 
atmospheric pressure.

Learn to recognise the physical (and sometimes chemical) processes that 
are going on in the system. It is easy to describe the changes in fairly 
broad energy transfer terms. Always try, however, to explain the effects in 
terms of microscopic or macroscopic interactions. Whatever the form of 
the energy transfer, we use a unit of energy called the joule (J). This is in 
honour of James Joule (1818–1889) the English scientist who devoted his 
scientific efforts to studying energy and its transfers.

One joule is the energy required when a force of one newton acts 
through a distance of one metre.

When energy changes from one form to another we find that nothing is 
lost (providing that we take care to include every single form of energy 
that is included in the changes). 

This is known as the principle of conservation of energy which says 
that energy cannot be created or destroyed.

Since Einstein’s work at the turn of the twentieth century, we now 
recognise that mass must be included in our table of energy forms. For 
most changes the mass difference is insignificant, but in nuclear changes 
it makes a major contribution.

In some applications, such as when discussing the output of power 
stations, the joule is too small a unit so you will frequently see energies 
expressed in megajoules (MJ or 106 J) or even gigajoules (GJ or 109 J). Get 
used to working in large powers of ten and with prefixes when dealing 
with energies.

In some parts of physics, different energy units are used. These have 
usually arisen historically. An example of this is the electronvolt (eV), 
which is the energy gained by an electron when it is accelerated through 
a potential difference of one volt. Another example is the calorie used by 
dieticians; this is an old unit that has lingered in the public domain for 
perhaps longer than it should! One calorie (cal) is 4.2 J. You will learn 
the detail about any special units used in the course in the appropriate 
place in this book.

Doing work
In 1826, Gaspard-Gustave Coriolis was studying the engineering 
involved in raising water from a flooded underground mine. He realized 
that energy was being transferred when the steam engines were 
pumping the water vertically. He described this energy transfer as “work 
done”, and he recognized that the energy transferred when the pumping 
engines exerted a force on a particular mass of water and lifted it from 
the bottom of the mine to the surface.

In other words

work done (in J) =  force exerted (in N) ×  distance moved in the direction of 
the force (in m)

So, when a weight of 5 N of water is lifted vertically through a height of 
150 m, then the work done by the engine on the water is 5 × 150 = 750 J.

In the example of the mine, the force and the distance moved are in 
the same direction (vertically upwards), but in many cases this will not ▲ Figure 1 Mine steam engine.
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be the case. A good example of this is a sand yacht, where the force F 
from the wind acts in one direction and the sail is set so that the yacht 
moves through a displacement s that is at an angle θ to the wind.

In this case, the distances moved in the direction of the force and by 
the yacht are not the same. You must use the component of force in the 
direction of movement.

force exerted
by wind, F

sail
θ

distance moved
by sand yacht, s 

plan view

▲ Figure 2 Force on sail.

In this case,

work done = F cos θ × s

Work done against a resistive force
Work is done when a resistive force is operating too. Consider a box 
being pushed at a constant speed in a horizontal straight line. For the 
speed to be constant, friction forces must be overcome. The force that 
overcomes the friction may not act in the direction of movement.  
Again, the work that will be done by the force (or the force provider) is 
force acting × distance travelled × cos θ (figure 3).

θ

direction of motion
horizontal component
of force = F × cosθ

box

force  F

▲ Figure 3 Resistive force.

Worked examples
1 The thrust (driving force) of a microlight 

aircraft engine is 3.5 × 103 N. Calculate the 
work done by the thrust when the aircraft 
travels a distance of 15 km.

Solution
Work done = force × distance = 3500 × 15 000 = 
5.3 × 107 J ≡ 53 MJ.

2 A large box is pulled a distance of 8.5 m along 
a rough horizontal surface by a force of 55 N 

that acts at 50° to the horizontal. Calculate the 
work done in moving the box 8.5 m.

 

8.5 m
55 N

50°
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Solution
The component of force in the direction of travel is 
55 × cos 50 = 35.4 N.

The work done = this force component × distance 
travelled = 35.4 × 8.5 = 301 J.

3 An object moving in a straight line has an 
initial kinetic energy of 24 J. Calculate the 

distance in which the object will come to rest 
if a net force of 4.0 N opposes the motion.

Solution
There must be 24 J of work done to stop the 
motion of the object. The force acting is 4.0 so  
  24

 __ 4   = 6 m.

Force–distance graphs
In practice, it is rare for the force acting on a moving object to be 
constant. Real railway trucks or sand yachts have air resistance and 
other forces that lead to energy losses that vary with the speed of the 
object or the surface over which it runs.

We can deal with this if we know how the force varies with distance. 
Some examples are shown in figure 4.

fo
rc

e

distance moved

area = F × s

0
0

F

s

fo
rc

e

distance moved
(a) (b)

F
s

total area = (number of squares) 
× (energy represented by one square)

one square = F × s

0
0

▲ Figure 4 Force–distance graphs.

For a constant force (figure 4(a)), the graph of force against distance will 
be a straight line parallel to the x-axis.

The work done is the product of force × distance (we are assuming that  
θ = 90° in this case); this corresponds to the area under the graph of 
force against distance.

When the force is not constant with distance moved (figure 4(b)) the 
work done is still the area under the line, but this time you have to work 
a little harder by estimating the number of squares under the graph and 
equating each square to the energy that it represents. The product of 
(energy for one square) × (number of squares) will then give you the overall 
work done.

There is a further example of this type of calculation later in the topic on 
elastic potential energy.

Power
Imagine two boys, Jean and Phillipe with the same weight (let’s say 
650 N) who climb the same hill (70 m high). Because they have the 
same weight and climb the same vertical distance they both gain the 
same amount of gravitational potential energy. This is at the expense 
of the chemical energy reserves in their bodies. However, suppose Jean 
climbs the hill in 150 s whereas Phillipe takes 300 s.

Worked example
The graph shows the 
variation with displacement 
d of a force F that is applied 
to a toy car. Calculate the 
work done by F in moving 
the toy through a distance 
of 4.0 cm.

0
0

1

2

3

4

5

6

2 4 6
d/10-2 m

F/
N

Solution
The work done is equal 
to the area of the triangle 
enclosed by the graph and 
the axes. This is   1 __ 2   × base 
of the triangle × height of 
triangle =   1 __ 2   × 4.0 × 10-2 
× 5.0 = 0.10 J
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The obvious difference here is that Jean is gaining potential energy 
twice as fast as Phillipe because Jean’s time to make the climb is 
half that of Phillipe. This difference is important when we want to 
compare two machines taking different times to carry out the same 
amount of work.   

The quantity power is used to measure the rate of doing work, in 
other words it is the number of joules that can be converted every 
second. So, power is defined as:

power =   
energy transferred

  __  
time taken for transfer

  

Using the correct quantities is important here. If the energy change is in 
joules, and the time for the transfer measured in seconds then the power 
is in watts (W). 

1 W ≡ 1 J s–1

In the example of Jean and Phillipe above, both did 45.5 kJ of work, but 
Jean’s power in climbing the hill was   650 × 70

 _______ 150   = 303 W and Phillipe’s was 
152 W because he took twice as long in the climb.

The equation work done = force × distance can be rearranged to give 
another useful expression for power.

power =   work done _ 
time

   = force ×   
distance moved by force

  __  
time

  

It is easy to see that this is the same as power = force × speed.

So the power required to move an object travelling at a speed v with a 
force F is Fv.

Kinetic energy, KE
Kinetic energy is the energy an object has because of its motion; 
kinetic energy (sometimes abbreviated to KE) has its own symbol, EK. 
Objects gain kinetic energy when their speed increases. 

m(v2 − u2)change in KE = 1
2

umass
m

mu2KE = 1
2

vmass
m

mv2KE = 1
2

▲ Figure 5 Kinetic energy of mass.

James Watt was a mechanical 
engineer who worked at the 
end of the 18th century and 
the beginning of the 19th. He 
did major work in improving 
steam engine design and even 
developed a way of making 
copies of paper documents 
that was used in offices until 
early in the 20th century.

  Nature of 
science

You will see other units 
for power used in various 
areas of everyday life. As an 
example, the horsepower 
is one measure used by car 
manufacturers to provide 
customers with data 
about car engines. This is 
a unit that dates back to 
the beginning of the 18th 
century and was used to 
compare the power of an 
average horse with steam 
engines. (1 horsepower is 
equal to about 750 W in 
modern units.)
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Imagine an object of mass m which is at rest at time t = 0 and which 
is accelerated by a force F for a time T. The kinematic equations and 
Newton’s second law allow us to work out the speed of the object v at 
time t = T.

The acceleration a is   F __ m   (using Newton’s second law of motion).

Therefore v = 0 +   F __ m   T (because the initial speed is zero). So F =   mv
 ___ T  

The work done on the mass is the gain in its kinetic energy, EK , and is  
F × s where s is the distance travelled and therefore

EK = F × s =   mv _ 
T

   ×   vT _ 
2

  

because s =   
(v + 0)T 

 _ 
2
  

The work done by the force is equal to the gain in kinetic energy  
and is

EK =   1 __ 2   mv2

Remember that this is the case where the initial speed was 0. If the 
object is already moving at an initial speed u then the change in kinetic 
energy :EK will be   1 __ 2   m(v2 − u2).

There is a subtle piece of notation here. When we talk about a value of 
kinetic energy, we write EK, but when we are talking about a change 
in kinetic energy from one value to another then we should write :EK 
where :, as usual, means “the change in”. 

Worked example
A car is travelling at a 
constant speed of 25 m s–1 
and its engine is producing 
a useful power output 
of 20 kW. Calculate the 
driving force required to 
maintain this speed.

Solution
driving force =   

power
 _ 

speed
   

=   20 000 _ 
25

   = 800 N

Examiner’s tip
This equation for ∆EK is one 
that needs a little care. Notice 
where the squares are; they 
are attached to each individual 
speed. This equation is not the 
same as   1 ___ 2   m (v − u)2.

Worked examples
1 A vehicle is being designed to capture the world land speed record. 

It has a maximum design speed of 1700 km h–1 and a fully fuelled 
mass of 7800 kg.

Calculate the maximum kinetic energy of the vehicle.

Solution
1700 km h–1 ≡ 470 m s–1 (this is greater than the speed of sound in air!) 

EK =   1 __ 2   mv2 = 0.5 × 7800 × 4702 = 8.6 × 108 J  

      ≡ 0.86 GJ

2 A car of mass 1.3 × 103 kg accelerates from a speed of 12 m s–1 to a 
speed of 20 m s–1. Calculate the change in kinetic energy of the car.

Solution
:EK =   1 __ 2  m(v2 − u2) = 0.5 × 1300 × (202 − 122) 

     = 650 × (400 − 144) = 1.7 × 105 J
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Gravitational potential energy, GPE
Gravitational potential energy is the energy an object has because of 
its position in a gravitational field. When a mass is moved vertically up 
or down in the gravity field of the Earth, it gains or loses gravitational 
potential energy (GPE). The symbol assigned to GPE is EP. Only the 
initial and final positions relative to the surface determine the change 
of GPE (assuming that there is no air resistance on the way). For this 
reason, gravitational force is among the group of forces said to be 
conservative, because they conserve energy (see the Nature of Science 
box below). 

The work done when an object is raised at constant speed through a 
change in height :h is, as usual, equal to force × distance moved. In this 
case the force required is mg and work done, EP = mg × :h.

As usual, the value of g is 9.8 m s–2 close to the Earth’s surface, but this 
value becomes smaller when we move away from the Earth.  

mass, m

gain in gpe(   P) = mg:hE

g

:h

▲  Figure 6 Gravitational potential 
energy.

  Nature of science
Conservative forces
There is an important difference between forces such as gravity and 
frictional forces. When only gravity acts, the energy change depends 
on the start height and end height of the motion but not on the route 
taken by an object to get from start to finish. Horizontal movement 
does not have to be counted if there is no friction acting. This type 
of force is said to be conservative; in other words, it conserves energy. 
We could recover all the energy by moving the object back to the 
start. Contrast this with the friction force that acts between a book 
and a table as the book is moved around the table’s surface from one 
point to another. If the book goes directly from start to finish a certain 
amount of energy will be used up to overcome the friction. But if 
the book goes by a longer route, more energy is needed (work done 
= friction force × distance travelled). When it is necessary to know the 
exact route before we can calculate the total energy conversion, the 
force is said to be non-conservative. If we move the book back again, 
we cannot recover the energy in the way that we could when only 
gravity acted.

You will not need to write about the meaning of the term “conservative 
force” in the IB Diploma Programme physics examination.

Energy moving between GPE and KE
Sometimes the use of gravitational potential energy and kinetic energy 
together provides a neat way to solve a problem.

A snowboarder is moving down a curved slope starting from rest  
(u = 0). The vertical change in height of the slope is ∆h = 50 m. 

What is the speed of the snowboarder at the bottom of the slope? Assume 
we can ignore friction at the base of the board and the air resistance.

What we must not do in this example is to use the kinematic (suvat) 
equations. They cannot be applied in this case because the acceleration 
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of the snowboarder will not be constant – suvat only works when we are 
certain that a does not change. 

Although the suvat equations give the correct answer here, they should 
not be used because the physics is incorrect. The final answer happens 
to be correct only because we use the start and end points and also as 
a consequence of the conservative nature of gravity. We are also using 
an average value for acceleration down the slope by assuming that the 
angle to the horizontal is constant. The equations would not give the 
correct answer if we brought friction forces into the calculation.

Conservation of energy comes to our aid because (as the friction losses 
are negligible) we know that the loss of gravitational potential energy 
as the boarder goes down the slope is equal to the gain in kinetic 
energy over the length of the slope. Because we know that the GPE 
change only depends on the initial and final positions then we do 
not need to worry at all about what is going on at the base of a board 
during the ski run.

So :E
P = mg:h =   1 __ 2   mv2 and v =  √_____

 2g:h  , 

in this case v =  √
__________

  2 × 9.8 × 50   = 31 m s–1

(This is a speed of about 110 km h–1 which tells you that the assumption 
about no air resistance and no friction is a poor one, as any snowboarder 
will tell you!)

Notice that the answer does not depend on the mass of the boarder; the 
mass term cancels out in the equations.

:h = 50 m

▲  Figure 7 Mechanics of snowboarding.

  Investigate!
Converting GPE to KE

smart pulley
to interface

clamp

cart

mass

This experiment will help you to understand the 
conversion between KE and GPE.

 ●  Arrange a cart on a track and compensate the 
track for friction. This is done by raising the 
left-hand end of the track through a small 
distance so that the cart neither gains nor loses 
speed when travelling down the track without 
the string attached.

 ●  Have a string passing over a pulley at the end 
of the track and tie a weight of known mass to 
the other end of the track.

 ●  Measure the mass of the cart too.

 ●  Devise a way to measure the speed of the 
cart. You could use a “smart pulley” that can 
measure the speed as the string turns the 
pulley wheel, or an ultrasound sensor, or a 
data logger with light gates.

 ●  When the mass is released, the cart will gain 
speed, as the gravitational potential energy of 
the weight changes.

 ●  Make measurements to assess the gravitational 
potential energy lost (you will need to know 
the vertical height through which the mass 
falls) and the kinetic energy gained (you will 
need the final speed). Notice that only the 
falling mass is losing GPE but both the mass 
and the cart are gaining kinetic energy.

 ●  Compare the two energies in the light of the 
likely errors in the experiment. Is the energy 
conserved? Where do you expect energy losses 
in the experiment to occur?
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Worked examples
1 A ball of mass 0.35 kg is thrown vertically upwards at a speed of 

8.0 m s–1. Calculate

a) the initial kinetic energy

b) the maximum gravitational potential  
energy

c) the maximum height reached.

Solution 
a) EK =   

1 __ 
2
   mv2 =   1 __ 2   × 0.35 × 82 = 11.2 J

b) At the maximum height all the initial kinetic energy will have 
been converted to gravitational potential energy so the maximum 
value of the GPE is also 11.2 J.

c) The maximum GPE is 11.2 J and this is equal to mg:h, so  
:h =   11.2

 ____ mg   =   11.2
 ________ 0.35 × 9.8   = 3.3 m. 

2 A pendulum bob is released from rest 0.15 m above its rest 
position. Calculate the speed as it passes through the rest position.

 

0.15 m

Solution
EK at the rest position = EP at the release position;

  1 __ 2   mv2 = mg:h which rearranges to  

v =  √___
 2gh   =  √

____________
  2 × 9.8 × 0.15   =1.7 m s–1.

Elastic potential energy
The shape of a solid can be changed by applying a force to it. Different 
materials will respond to a given force in different ways; some materials 
will be able to return the energy that has been stored in them when the 
force is removed. A metal spring is a good example of this; most springs 
are designed to store energy in this way in many different contexts. 
The materials that can return energy in this way have stored elastic 
potential energy. 

To discuss elastic potential energy we need to know something about the 
properties of springs. This is an area of physics that has been studied for 
a long time. Robert Hooke, a contemporary of Newton, published a rule 
about springs that has become known as Hooke’s law.
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  Investigate!
Investigating Hooke’s law
Robert Hooke realized that there was a 
relationship between the load on a spring and the 
extension of the spring.

 ● Arrange a spring of known unstretched  
length with a weight hanging on the end  
of the spring.

 ● You will need to devise a way to measure the 
extension (change in length from the original 
unstretched length) of the string for each 
of a number of different increasing weights 
hanging on the end of the spring.

 ● Repeat the measurements as you remove the 
weights as a check. 

 ● Plot a graph of force (weight) acting on the 
spring (y-axis) against the extension (x-axis). 
This is not the obvious way to draw the graph, 
but it is the way normally used. Normally, 
we would plot the dependent variable (the 
extension in this case) on the y-axis. 
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For small loads acting on the spring, Hooke showed that the extension of the 
spring is directly proportional to the load. (For larger loads, this relationship 
breaks down as the microscopic arrangement of atoms in the spring changes. 
We shall not consider this part of the deformation, however.)

Hooke’s rule means that the graph of force F against extension (:x) is a 
straight line going through the origin.

In symbols the rule is F ∝ :x, or F = k:x where k is a constant known as 
the spring constant, which has units of N m–1. The gradient of the graph 
is equal to k (this is why the graph is plotted the “wrong way round”). 

We can now relate this graph to the work done in stretching the spring. 
The force is not constant (the bigger the extension, the bigger the force

fo
rc

e

extension0
0 :x

Fmax

Area =     Fmax × "x
      
    

1
2

  = stored elastic potential energy
= work done in extending spring

▲ Figure 8 Work done in stretching spring.
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required) but we now know how to deal with this. The work done on 
the spring is the area under the graph of force against extension.

The area is a right-angled triangle and is equal to 

  1 __ 2   × force to stretch spring × extension, 

in symbols EP =   1 __ 2   Fmax:x.

We know from Hooke’s law that F = k:x, so k =   F
 ___ :x
   and therefore EP is 

also equal to   1 __ 2   k(:x)2.

Efficiency
In the Investigate! experiment where gravitational potential energy was 
transferred to kinetic energy, it is likely that some gravitational potential 
energy did not appear in the motion of the cart. Some energy will have 
been lost to internal energy as a consequence of friction and to elastic 
potential energy stored when the string changes its shape. We need to 
have a way to quantify these losses. One way to do this is to compare 
the total energy put into a system with the useful energy that can be 
taken out. This is known as the efficiency of the transfer and can be 
applied to all energy transfers, whether carried out in a mechanical 
system, electrical system or other type of transfer. You can expect to meet 
efficiency calculations in any area of physics where energy transfers occur. 
The definition can also be applied to power transfers, because the energy 
change in these cases takes place in the same time for the total energy in 
and the useful work out. 

efficiency =   useful work out  __  
 total energy in

   =   
useful power out

  __  
total power 

  

Worked examples
1 A spring, of spring 

constant 48 N m–1, is 
extended by 0.40 m. 
Calculate the elastic 
potential energy stored 
in the spring.

Solution
Energy stored =   1 __ 2   kx2 =  
0.5 × 48 × 0.402 = 0.38 J

2 An object of mass  
0.78 kg is attached to a 
spring of unstretched 
length 560 mm. When 
the object has come to 
rest the new length of 
the spring is 620 mm. 
Calculate the energy 
stored in the spring as a 
result of this extension.

Solution
The change in length of the 
spring :x = 620 − 560 = 
60 mm

The tension in the spring 
will be equal to the weight 
of the object = mg =  
0.78 × 9.8 = 7.64 N

The energy stored in the 
spring =   1 __ 2   F:x = 0.5 × 
7.64 × 0.06 = 0.23 J

Worked example
1 An electric motor raises a weight of 150 N through a height of 7.2 m.  

The energy supplied to the motor during this process is 3.5 × 104 J. 
Calculate: 

a) the increase in gravitational potential energy

b) the efficiency of the process.

Solution
a) :EP = 150 × 7.2 = 1080 J

b) Efficiency =   useful work out
  ___________ energy in   =   1080

 ____ 3500   = 0.31 or 31%
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2.4 Momentum

  Nature of science
The concept of momentum has arisen as a result 
of evidence from observations carried out over 
many centuries. The principle of conservation 
of momentum is an example of a law that has 
universal applicability. It allows the prediction 
of the outcomes of physical interactions at both 
the macroscopic and the microscopic level. Many  
areas of physics are informed by it, from the kinetic 
theory of gases to nuclear interactions.

Understanding
 ➔ Newton’s second law expressed as a rate of 

change of momentum
 ➔ Impulse and force–time graphs
 ➔ Conservation of linear momentum
 ➔ Elastic collisions, inelastic collisions, and 

explosions

  Applications and skills
 ➔ Applying conservation of momentum in simple 

isolated systems including (but not limited to) 
collisions, explosions, or water jets

 ➔ Using Newton’s second law quantitatively 
and qualitatively in cases where mass is not 
constant 

 ➔ Sketching and interpreting force–time graphs
 ➔ Determining impulse in various contexts 

including (but not limited to) car safety and 
sports

 ➔ Qualitatively and quantitatively comparing 
situations involving elastic collisions, inelastic 
collisions, and explosions

Equations
 ➔ momentum: p = mv
 ➔ Newton's second law (momentum version): 

F =    :p
 ______ :t
  

 ➔ kinetic energy: EK =    p2

 ______ 2m   

 ➔ impulse: = F:t = :p

Introduction
Many sports involve throwing or catching a ball. Compare catching a 
table-tennis (ping-pong) ball with catching a baseball travelling at the 
same speed. One of these may be a more painful experience than the 
other! What is different in these two cases is the mass of the object. 
The velocity may be the same in both cases but the combination of 
velocity and mass makes a substantial difference. Equally, comparing the 
experience of catching a baseball when gently tossed from one person to 
another with catching a firm hit from a good player should tell you that 
changes in velocity make a difference too.

Momentum
We call the product of the mass m of an object and its instantaneous 
velocity v the momentum p of the object (p = m × v) and this 
quantity turns out to have far-reaching importance in physics. 

First, here are some basics ideas about momentum.
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Worked examples 
1 A ball of mass 0.25 kg is moving to the right at 

a speed of 7.4 m s–1. Calculate the momentum 
of the ball.

Solution
p = mv = 0.25 × 7.4 = 1.85 kg m s–1 to the right.

2 A ball of mass 0.25 kg is moving to the right at 
a speed of 7.4 m s–1. It strikes a wall at 90° and 
rebounds from the wall leaving it with a speed 
of 5.8 m s–1 moving to the left. Calculate the 
change in momentum.

Solution
From the previous example the initial momentum 
is 1.85 kg m s–1 to the right.

The final momentum is 0.25 × 5.8 = 1.45 kg m s–1 
to the left.

So taking the direction to the right as being 
positive, the change in momentum = −1.45 −  
(+1.85) = − 3.3 kg m s–1 to the right (or 
alternatively + 3.3 kg m s–1 to the left).

 ● Momentum is mass × velocity never mass × speed. 

 ● Momentum has direction. The mass is a scalar but velocity is 
a vector. When mass and velocity are multiplied together, the 
momentum is also a vector with the same direction as the velocity. 
Think of the mass as “scaling” the velocity – in other words, just 
making it bigger by a factor equal to the mass of the object.

 ● It follows that the unit of momentum is the product of the units 
of mass and velocity, in other words kg m s–1. There is a shorter 
alternative to this that we shall see later.

 ● If velocity or mass is changing then the momentum must also be 
changing. We shall be looking at the two cases where one quantity 
changes while the other is held constant.

 ● When a net resultant force acts on an object, the object accelerates 
and the velocity must change. This means a change in momentum 
too. So a net force leads to a change in momentum.

Collisions and changing momentum
You may have seen a “Newton’s cradle”. Newton did not invent this device 
(it was developed in the twentieth century as an executive toy), but it helps 
us to visualize some important rules relating to his laws of motion, and it 
certainly seems appropriate to associate his name with it.

One of the balls (the right-hand one in figure 2) is moved up and to the 
right, away from the remaining four. When released the ball falls back 
and hits the second ball from the right. The right-hand ball then stops 
moving and the left-most ball moves off to the left. It is as though the 
motion of the original ball transfers through the middle three – which 
remain stationary – and appears at the left-hand end.

You can analyse this in terms of physics that you already know.

The right-hand ball gains gravitational potential energy when it is raised. 
When it is released the potential energy is converted into kinetic energy 
as the ball gains speed. Eventually the ball strikes the next stationary one 
along, and a pair of action–reaction forces acts at the surfaces of the two 
balls (you might like to consider what they are). The stationary ball is 
compressed slightly by the force acting on it and this compression moves as 
a wave through the middle three balls. When the compression reaches the 

▲ Figure 1 Momentum and velocity.

velocity vmass
m

momentum = mv

▲ Figure 2 Newton’s cradle.
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left-hand ball the elastic potential energy associated with the compression 
wave is converted into kinetic energy (because there is a net force on this 
sphere) and work begins to be done against the Earth’s gravity. The left-
hand ball starts to move to the left. When the speed of the ball becomes 
zero, it is at its highest point on the left-hand side and the motion repeats 
in the reverse direction. The overall result is that the end spheres appear to 
perform an alternate series of half oscillations.

Another way to view this sequence is as a transfer of momentum. Think 
about a simpler case where only two spheres are in contact (in the toy, three 
balls can be lifted out of the way). The right-hand sphere gains momentum 
as it falls from the top of its swing. When it collides with the other sphere, 
the momentum appears to be transferred to the second sphere. The first 
sphere now has zero momentum (it is stationary) and the second has 
gained momentum. What rules govern this transfer of momentum?

These interactions between the balls in the Newton’s cradle are called 
collisions. This is the term given to any interaction where momentum 
transfers. Examples of collisions include firing a gun, hitting a ball with 
a bat in sport, two toy cars running into each other, and a pile driver 
sinking vertical cylinders into the ground on a construction site. There 
are many more.

  Investigate!
Is momentum conserved?
The exact details of this experiment will depend 
on the apparatus you have in your school. 

moving cart

light gate

raised to 
compensate
for friction 
(see page 68)

timing card

stationary 
cart

 ● The experiment consists of measuring the 
speed of a cart of known mass and then 
launching it at another cart also of known 
mass that is initially stationary. Often there 
will be carts available to you of almost 
identical mass, as this is a particularly easy 
case to begin with.

 ● You will need a way to measure the velocity of 
the carts just before and just after the collision. 
This could be done in various ways:

 ■ using a data logger with motion sensors

 ■ using a paper tape system where a tape 
attached to the cart is pulled through a 
device that makes dots at regular time 
intervals on the tape

 ■ using a video camera and computer software

 ■ using a stop watch to measure the time 
taken to cover a short, known distance 
before and after the collision.

 ● If your carts run on a track, you can allow for the 
friction at the cart axles and the air resistance. 
This is done by raising the end of the track a little 
so that, when pushed, a cart runs at a constant 
speed. The friction at the bearings and the air 
resistance will be exactly compensated by the 
component of the cart weight down the track.

 ● For the first part of the experiment, begin by 
arranging that the two carts will stick together 
after colliding. This can be done in a number 
of ways, including using modelling clay, or a 
pin attached to one cart entering a piece of 
cork in the other, or two magnets (one on 
each cart) that attract.

 ● Make the first (moving) cart collide with and 
stick to the second (stationary) cart.

 ● Measure the speed of the first cart before the 
collision and the combined speed of the carts 
after the collision.

 ● Repeat the experiment a number of times and 
think carefully about the likely errors in the results.
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If you carry out an experiment that compares the momentum before 
with the momentum after a collision then you should find (within 
the experimental uncertainty of your measurements) that the total 
momentum in the system does not change. 

An important point here is that there must be no force from outside 
the system acting on the objects taking part in the collision. As we saw 
earlier, external forces produce accelerations, and this changes the 
velocity and hence the momentum.  

You might argue that gravitational force is acting – and gravity certainly 
is acting on the carts in the experiment – but because the gravitational 
force is not being allowed to do any work, the force does not contribute 
to the interaction because the carts are not moving vertically. 

Momentum is always constant if no external force acts on the 
system. This is known as the principle of conservation of linear 
momentum, the word “linear” is here because this is momentum when 
the objects concerned are moving in straight lines. This conservation 
rule has never been observed to be broken, and is one of the important 
conservation rules that (as far as we know) are true throughout the 
universe. In nuclear physics, particles have been proposed in order 
to conserve momentum in cases where it was apparently not being 
conserved. These particles were subsequently found to exist.

Momentum conservation is such an important rule that it is worth 
us considering a few different situations to see how momentum 
conservation works.

In each of these cases we will assume that the centres of the objects lie 
on a straight line so that the collision happens in one dimension.

Two objects with the same mass, one initially stationary, when no 
energy is lost
This is known as an elastic collision and for it to happen no permanent 
deformation must occur in the colliding objects and no energy can 
be released as internal energy (through friction), sound, or any other 
way. The spheres in the Newton’s cradle lose only a little energy every 
time they collide and this is why this is a reasonable demonstration of 
momentum effects.

The initial momentum is mass of first cart ×  
velocity of first cart. The final momentum 
is (mass of first cart + mass of second cart) × 
combined velocity of both carts.

 ● What can you say about the total momentum 
of the system before the collision compared 
with the total momentum after the collision?  
You should consider the experimental errors 
in the experiment before making your 
judgement.

 ● If you have done the experiment carefully, 
you should find that the momentum before 

and the momentum after the collision are 
approximately equal.

 ● Now extend your experiment to different 
cases: 

 ■ where the carts do not stick together

 ■ where they are both moving before the 
collision 

 ■ where the masses are not the same, and  
so on.

 ● You may need to alter how you measure the 
velocity to cope with the different cases.
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mass m1before: mass m2

mass m1after: mass m2

u

v = u

0 m s−1

0 m s−1

▲ Figure 3 Elastic collision between two identical masses.

The first object collides with the second stationary object. The first object 
stops and remains at rest while the second moves off at the speed that 
the first object had before the collision. (Try flicking a coin across a 
smooth table to hit an identical coin head-on.) In this case momentum 
is conserved because (using an obvious set of symbols for the mass m of 
the objects and their velocities u and v)

m1u = m2v

Because m1= m2 then u = v so the velocity of one mass before the 
collision is equal to the velocity of the second mass afterwards. The 
kinetic energy of the moving mass (whichever mass is moving) is   1 __ 2   mu2 
and it does not change either.

Two objects with different masses when no energy is lost
This time (as you may have seen in an experiment or demonstration) 
the situation is more complicated.

m1before:
m2

after:

u1

u2

m1
m2

v1

v2

▲ Figure 4 Two moving objects with different mass in an elastic collision.

Again

m1u1 + m2u2 = m1v1 + m2v2

but this time we cannot eliminate the mass terms so easily. What we do 
know, though, is that kinetic energy is conserved. So the kinetic energy 
before the collision must equal the kinetic energy after the collision 
(because no energy is lost).

This means that (summing the kinetic energies before and after the 
collision)

  1 __ 2   m1u
2
1 +   1 __ 2   m2u

2
2 =   1 __ 2   m1v

2
1 +   1 __ 2   m2v

2
2

TOK

Popper and falsifiability

No-one has yet observed a 
case where the momentum 
in an isolated system is not 
conserved, but we should 
continue to look! Karl 
Popper, a philosopher of the 
twentieth century, argued 
that the test of whether a 
theory was truly scientific 
was that it was capable 
of being falsified. By this 
he meant that there has 
to be an experiment that 
could in principle contradict 
the hypothesis being 
tested. Popper argued that 
psychoanalysis was not a 
science because it could not 
be falsified by experiment. 

Popper also applied his ideas 
to scientific induction. He 
said that, although we cannot 
prove that the Sun will rise 
tomorrow, because it always 
has we can use the theory 
that the Sun rises in the 
morning until the day when it 
fails to do so. At that point we 
must revise our theory. What 
should happen if momentum 
appears not to be conserved 
in an experiment? Is it 
more sensible to look for a 
new theory or to suggest 
that something has been 
overlooked?
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The momentum and kinetic energy equations can be solved to show that

v1 =  (  m1 – m2 _ m1 + m2

  )  u1 +  (  2m2 _ m1 + m2

  )  u2

and

v2 =  (  m2 – m1 _ m1 + m2

  )  u2 +  (  2m1 _ m1 + m2

  )  u1

(You will not be expected to prove these in, or memorize them for, an 
examination.) 

There are some interesting cases when mass m2 is stationary and is struck 
by m1:

 ● Case 1: m1 is much smaller than m2. Look at the v1 equation. If m1≪ m2 

then the first term becomes roughly  (  –m2 _____ 
 m2

  )  u1 which is u1 ; the second 
term is zero because u2 = 0. So the small mass “bounces” off the large 
mass, reversing its direction (shown by the minus sign). The large 
mass gains speed in the forward direction (the original direction of the 
small mass). The magnitude of the speed of the larger mass is roughly  (  2m1 ___ m2

  )  u1 and this is a small fraction of the original speed of the small 
mass because  (  2m1 ___ m2

  )   is much smaller than 1.

 ● Case 2: m1 is much greater than m2. Here the original mass loses 
hardly any speed (though it must lose a little). The momentum lost 
by m1 is given to m2 which moves off in the same direction, but at 
about twice the original speed of m1. Look at the v1 and v2 equations 
and satisfy yourself that this is true.

Two objects colliding when energy is lost
When a moving object collides with a stationary one and the two objects 
stick together, then some of the initial kinetic energy is lost. After the 
collision, there is a single object with an increased (combined) mass and a 
single common velocity. This is known as an inelastic collision (figure 5).  

This is a case you may have studied experimentally in the Investigate!

The momentum equation this time is

m1u1= (m1 + m2)v1

A rearrangement shows that v1 =   
m1 _______ (m1 + m2)

   u1 and, as we might expect, 

the final velocity is in the same direction as before but is always smaller 
than the initial velocity.

As for energy loss, the incoming kinetic energy is   1 __ 2   m1u
2
1 and the final 

kinetic energy is (substituting for v1)

  1 __ 2   (m1 + m2)   
m2

1 __ 
(m1 + m2)

2
    u2

1

This is

  1 __ 2     
m 21  _ 

(m1 + m2)
    u2

1.

The ratio   
initial kinetic energy

  __  
final kinetic energy

   is   
(m1 + m2) _ m1 

  ▲  Figure 5 Inelastic collision between 
two masses.

before: m2

m1

m1

after: + m2

u1

v1

0
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Two objects when energy is gained
There are many occasions when two initially stationary masses gain 
energy in some way. Some laboratory dynamics carts have a way to 
show this. An easy way is to attach two small strong magnets to the 
front of the carts so that when the carts are released after being held 
together with like poles of the magnets facing each other, the magnets 
repel and drive the carts apart.

The analysis is quite straightforward in this case. 

The initial momentum is zero as neither object is moving.

After the collision the momentum is m1v1 + m2v2 = 0. 

So m1v1 = –m2v2

The objects move apart in opposite directions. If the masses are equal the 
speeds are the same, with one velocity the negative of the other. If the 
masses are not equal then 

  
m1 _ m2

   =   
–v2 _ v1

  

Worked examples
1 A rail truck of mass 4500 kg moving at a speed 

of 1.8 m s–1 collides with a stationary truck of 
mass 1500 kg. The two trucks couple together. 
Calculate the speed of the trucks immediately 
after the collision.

Solution
The intial momentum = 4500 × 1.8 kg m s–1.

The final momentum = (4500 + 1500) × v, where 
v is the final speed.

Momentum is conserved and so v =   4500 × 1.8
 __________ (4500 + 1500)   =   4.5 × 1.8

 _______  6.0   = 1.3(5) = 1.4 m s–1.

2 Stone A of mass 0.5 kg travelling at 3.8 m s–1 
across the surface of a frozen pond collides 

with stationary stone B of mass 3.0 kg. Stone 
B moves off at a speed of 0.65 m s–1 in the 
same original direction as stone A.

Calculate the final velocity of stone A.

Solution 
The initial momentum is 0.5 × 3.8 = 1.9 kg m s–1 

The final momentum is 3.0 × 0.65 + 0.5vA and 
this is equal to 1.9 kg m s–1

vA =   
1.9 – (3.0 × 0.65)

  __ 
0.5

   = –   0.05 _ 
0.5

   = –0.1 kg m s–1

The final velocity of stone A is 0.1 kg m s–1 in the 
opposite direction to its original motion.

TOK

Helpful or not?

Are conservation laws helpful to scientists? On the one 
hand they allow the prediction of as yet untested cases, 
but on the other hand they may restrict the progress of 
science. This can happen if scientists are not prepared 
to challenge the status quo. 

In 2012 the results of an experiment suggested that 
neutrinos could travel faster than the speed of light. 

This flew in the face of the accepted science originally 
proposed by Einstein. Later investigations showed 
that small errors in the timings had occurred in the 
experiments, and that there was no evidence for  
faster-than-light travel. Were the scientists right  
to publish their results so that others could test the  
new proposals?

▲  Figure 6 Energy gained in a collision.

after:

before:

0 0

m1 m2

m1 m2

v2v1
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3 

after:

before:

6000 kg 3000 kg

1.9 m s−1

0 m s−1

v m s−1

2.5 m s−1

A railway truck of mass 6000 kg collides with a 
stationary truck of mass 3000 kg. The first truck 
moves with an initial speed of 2.5 m s–1 and the 
second truck moves off with a speed of 1.9 m s–1 
in the same direction.

Calculate:

a) the velocity of the first truck immediately 
after the collision

b) the loss in kinetic energy as a result of  
the collision.

Solution
a) The initial momentum is  

6000 × 2.5 = 15 000 kg m s–1.

The final momentum is 6000v + 3000 × 1.9

Equating these values: 15 000 = 6000v + 5700, 
so 6000v = 9300 and v = 1.5(5) kg m s–1. This 
is positive so the first truck continues to move 
to the right after the collision at a speed of  
1.6 kg m s–1.

b) The initial kinetic energy =   1 __ 2   × 6000 × 2.52  
= 18 750 J.

After the collision the total kinetic energy =  
  1 __ 2   × 6000 × 1.552 +   1 __ 2   × 3000 × 1.92 

= 7208 + 5415 = 12 623 or to 2 s.f. 13 000 J.

So the loss in kinetic energy is 18 750 – 13 000 
= 5800 J.

Energy and momentum
There is a convenient link between kinetic energy and momentum.  

Kinetic energy, EK=   1 __ 2   mu2; momentum, p = mu and therefore p2 = m2u2. 
So 

EK=   
p2

 _ 
2m

  

This is often of use in calculations.

Applications of momentum conservation
Recoil of a gun
Figure 7 shows a gun being fired to trigger a snow fall. This prevents a 
more dangerous avalanche. When the gun fires its shell, the gun moves 
backwards in the opposite direction to that in which the shell goes. You 
should be able to explain this in terms of momentum conservation.

Initially, both gun and shell are stationary; the initial total momentum 
is zero. The shell is propelled in the forwards direction through the gun 
by the expansion of gas following the detonation of the explosive in the 
shell. So this is one of the cases discussed earlier, one in which energy 
is gained. The explosion is a force internal to the system. Gas at high 
pressure is generated by the explosion in the chamber behind the shell. 
The gas exerts a force on the interior of the shell chamber and hence 
a force on the gun as well. The explosive releases energy and this is 
transferred into kinetic energies of both the shell and the gun.

The initial linear momentum was zero and no external force has acted on 
the system. The momentum must continue to be zero and this can only 
be so if the gun and the shell move in opposite directions with the same 
magnitude of momentum. The shell will go fast because it has a small 
mass compared to the gun; the gun moves relatively slowly.

▲  Figure 7 Firing  a gun to cause an 
avalanche.
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Water hoses
Watch a fire being extinguished by firemen using a high-pressure hose 
and you will see the effect of water leaving the system. Often two or 
more firemen are needed to keep the hose on target because there is a 
large force on the hose in the opposite direction to that of the water. This 
can be seen in a more modest form when a garden hose connected to a 
tap starts to shoot backwards in unpredictable directions if it is not held 
when the tap is turned on.

The cross-sectional area of the hose is greater than that of the nozzle 
through which the water emerges. The mass of water flowing past a 
point in the hose every second is the same as the mass that emerges 
from the nozzle every second. So the speed of the water emerging from 
the nozzle must be greater than the water speed along the hose itself. 
The water gains momentum as it leaves the hose because of this increase 
in exit speed compared with the flow speed in the hose.  

The momentum of the system has to be constant and so there must be 
a force backwards on the end of the hose which needs to be countered 
by the efforts of the firemen. The kinetic energy and the momentum are 
being supplied by the water pump that feeds water to the fire hose or 
whatever originally created the pressure in the supply to the garden tap.

The momentum lost by the system per second is (mass of water leaving per 
second) × (speed at which water leaves the nozzle – speed in the hose). 

The mass of water lost per second is   ∆m
 ___ ∆t
   and so the momentum lost per 

second ṗ is   ∆m
 ___ ∆t
   (v – u) where v is the speed of water as it leaves the nozzle 

and u is the speed of the water in the hose. 

v

v

u
A, cross-sectional
area of nozzle

one second of water

▲ Figure 9 Water leaving the hose.

If we know the cross-sectional area A of the nozzle of the hose and the 
density of the water, ρ, then   ∆m

 ___ ∆t
   can be determined. Figure 9 shows what 

happens inside the hose during a one-second time interval. Every second 
you can imagine a cylinder of water leaving the hose; this cylinder is v 
long and has an area A. The volume leaving per second is therefore Av

The mass of the water leaving in one second   ∆m
 ___ ∆t
  

= (density of water) × (volume of cylinder) = ρAv. 

Because the mass entering and leaving the nozzle per second must be 
the same, this means that the change of momentum in one second  
=   ∆m

 ___ ∆t
   × (v – u) = ρAv(v – u). If u ≪ v then the expression simplifies  

to ρAv2.

The hose is an example of where care is needed when looking at 
the whole system. Consider what happens if the water is directed 
at a vertical wall. The water strikes the wall, loses all its horizontal 
momentum, and trickles vertically down the wall. The momentum must 

▲ Figure 8 Fire fighting.
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have gone into the wall, its foundations and, therefore, the ground. So 
we might conclude that the Earth itself has gained momentum and that 
we can speed up the Earth’s rotation by using a garden hose. But this 
is not true, because the water had to be given momentum originally by 
a pump. This gain in momentum at the pump must have given some 
momentum to the Earth too. The amount of momentum the Earth 
gained at the pump is equal and opposite to the momentum gained by 
the Earth when the water strikes the wall.

Rocketry
Earlier in this topic we discussed the acceleration of a rocket and looked 
at the situation from the perspective of Newton’s second and third laws. 
A similar analysis is possible in terms of momentum conservation.

Rockets operate effectively in the absence of an atmosphere because 
momentum is conserved. All rockets release a liquid or gas at high 
speed. The fluid can be a very hot gas generated in the combustion 
of a solid chemical (as in a domestic rocket) or from the chemical 
reaction when two gases are mixed and burnt. Or it can be a fluid stored 
inside the rocket under pressure. In each case, the fluid escapes from 
the combustion/storage chamber through nozzles at the base of the 
rocket. As a result the rocket accelerates in the opposite direction to the 
direction in which the fluid is ejected. Momentum is conserved. The rate 
of loss of momentum from the rocket in the form of high-speed fluid 
must be equal to the rate of gain in momentum of the rocket. We shall 
look again at the mathematics of the rocket later in this topic.

Helicopters
Helicopters are aircraft that can take off and land vertically and also can 
hover motionless above a point on the ground. Vertical flight is said to 
have been invented in China about 2500 years before the present, but 
anyone who has seen the seeds from certain trees spiral down to the 
ground will realize where the original design came from. There were 
many attempts to build flying machines on the helicopter principle over 
the centuries, but the first commercial aircraft flew in the 1930s.

A helicopter uses the principle of conservation of linear momentum 
in order to hover. The rotating blades exert a force on originally 
stationary air causing it to move downwards towards the ground gaining 
momentum in the process. No external force acts and as a result there is 
an upward force on the helicopter through the rotors.

Impulse
Earlier we used Newton’s second law of motion: F = ma where the 
symbols have their usual meaning.

We can rearrange this equation using one of the kinematic equations:

a =   
(v – u)

 _____ t  

Eliminating a gives F =   
m(v – u)

 _ t  

which means that force =   
change in momentum

  __  
time taken for change

  

or

force × time = change in momentum

Worked example
A mass of 0.48 kg of water 
leaves a garden hose every 
second. The nozzle of the 
hose has a cross-sectional 
area of 8.4 × 10–5 m2. The 
water flows in the hose  
at a speed of 0.71 m s–1. 
The density of water is 
1000 kg m–3.

Calculate:

a) the speed at which 
water leaves the hose

b) the force on the hose.

Solution
a) 0.48 kg of water in one 

second corresponds to 
a volume of   0.48

 ____ 1000   m–3 
leaving the hose per 
second. This leaves 
through a nozzle of area 
8.4 × 10–5 m2 so the 

speed v must be  

  0.48
 _____________  

1000 × 8.4 × 10–5    =  

5.71 m s–1.

b) The force on the hose = 
mass lost per second × 
change in speed  
= 0.48 × (5.71 – 0.71) 
= 2.4 N

▲ Figure 10 Helicopter.
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This equation gives a relationship between force and momentum and 
provides a further clue to the real meaning of momentum itself. The 
equation shows that we can change momentum (in other words, 
accelerate an object) by exerting a large force for a short time or by 
exerting a small force for a long time. A small number of people can get 
a heavy vehicle moving at a reasonable speed, but they have to push for 
a much longer time than the vehicle itself would take if powered by its 
own engine (which produces a larger force).

The product of force and time is given the name impulse, its units are 
newton seconds (N s). Impulse is the same as change in momentum, and 
N s gives us an alternative to  kg m s–1 as a unit for momentum. You can 
use whichever you prefer.

There is a short-hand way to write the force =   
change in momentum

  ______________ 
time

   equation. 
We have already used the convention that “∆” means “change in”. So in 
symbols the equation becomes

F =   
∆p

 _ ∆t
  

where p is the symbol for momentum and t (as usual) means time.

(If you are familiar with differential calculus you may also come across 
this expression in the form F =   

dp
 __ 

dt
   , but using the equation in this form 

will take us too far away from IB Diploma Programme physics.)

Force–time graphs
Up till now we have usually assumed that forces are constant and do 
not change with time. This is rarely the case in real life and we need a 
way to cope with changes in momentum when the force is not constant. 
The equation F =   

:p
 ___ :t
   helps here because it suggests that we use a force–

time graph.

fo
rc

e

time0
0

F

T

(a)

fo
rc

e

time0
0

Fmax

T

(b)

area = F × T

area =     × Fmax × T1
2

fo
rc

e

time0
0

T

(C)

▲ Figure 11 Force–time graphs.

If a constant force acts on a mass, then the graph of force, F, against 
time, t, will look like figure 11(a). The change in momentum is F × T 
and this is the shaded area below the line. The area below the line in a 
force–time graph is equal to the change in momentum.

Another straightforward case that is more plausible than a constant force 
is the graph shown in figure 11(b) where the force rises to a maximum  

(Fmax)  and then falls back to zero in a total time T. The area under the 
graph this time is   1 __ 2   Fmax T and, again, this is the change in momentum.

The final case (figure 11(c)) is one where there is no obvious 
mathematical relationship between F and t, but nevertheless we have 

Worked examples
1 An impulse of 85 N s 

acts on a body of mass 
5.0 kg that is initially 
at rest. Calculate the 
distance moved by 
the body in 2.0 s after 
the impulse has been 
delivered.

Solution
The change in momentum is 
85 kg m s–1 so that the final 
speed is   85

 __ 5   = 17 m s–1. In  
2.0 s the distance travelled 
is 34 m.

2 An impulse I acts on an 
object of mass m initially 
at rest. Determine the 
kinetic energy gained 
by the object.

Solution
The change in speed of the 
object is   I __ m  . The object is 
initially at rest and the gain 
in kinetic energy is   1 __ 2   mv2 

which is   1 __ 2   m  (   I _ m   )   2  =    I  
2 
 ___ 2m    
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a graph of how F varies with t. This time you will need to estimate the 
number of squares under the graph and use the area of one square to 
evaluate the momentum change.

Worked examples
1 The sketch graph shows how the force acting 

on an object varies with time.

fo
rc

e/
N

time/s
0 5 20 25

0

15 

The mass of the object is 50 kg and its initial 
speed is zero.

Calculate the final speed of the object.

Solution
The total area under the F – t graph is  
2 ×  (  1 __ 2   × 15 × 5)  + (15 × 15) = 75 + 225  
= 300 N s

This is the change in momentum.

So the final speed is   300
 ___ 50   = 6.0 m s–1

2 The graph shows how the momentum of an 
object of mass 40 kg varies with time. 

Calculate, for the object:  

a) the force acting on it

b) the change in kinetic energy over the 10 s 
of the motion.

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100
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140

160

180

200

p/
kg

 m
 s
−1

t/s

Solution 
a) The gradient of the graph is   

:p
 ___ :t
   and this is 

equal to the force.

The magnitude of the gradient is   200
 ___ 10   and this 

gives a value for force of 20 N.

b) ∆EK =   
p2

 ___ 2m   =   2002

 _____ 2 × 40   = 500 J

Revisiting Newton’s second law
In the last sub-topic we used F = ma to show that F also equals   

:p
 ___ :t
  . Using 

the full expression for momentum p gives 

F =   
:(mv)

 _____ :t
  

This can be written as (using the product rule)

F = m   :v _ :t
   + v   :m _ :t

   

You may have to take this algebra on trust but, by thinking through 
what the two terms stand for, you should be able to understand the 
physics that they represent.

The first term on the left-hand side is just mass ×   
change in velocity

  ___________ 
change in time

   which we 
know as mass × acceleration – our original form of Newton’s second law of 
motion. The second term on the right-hand side is something new, it is the 
instantaneous velocity ×   

change in mass
 __________ 

change in time
    .84
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Our first version of Newton’s second law was a simpler form of the law than 
the full “change in momentum” version. The new extra term takes account 
of what happens when the mass of the accelerating object is changing.

Rockets and helicopters again
Rockets 
We showed that rockets are an excellent example of momentum 
conservation in action. The difficulty in analysing the rocket example 
is that the rocket is always losing mass (in the form of gas or liquid 
propellant), so m is not constant.

F =   m:v
 ____ :t

   +   v:m
 ____ :t

   is our new version of Newton’s second law of motion 
and, in this case, F = 0 because there is no external force acting on  
the system.

So   m:v
 ____ :t

   = –   v:m
 ____ :t

   . The two terms have quite separate meanings:   m:v
 ____ :t

    
refers to the instantaneous mass of the rocket (including the remaining 
fuel) and to the acceleration of this total mass   :v

 ___ :t
   . The other term  

is the ejection speed of the fuel and the rate at which mass is lost  
from the system   :m

 ___ :t
  . So at one instant in time, the acceleration of  

the rocket 

a =   :v
 ___ :t
   = –   v:m

 ____ 
m:t

  . 

The negative sign reminds us that the rocket is losing mass while gaining 
speed.

Helicopters
With the helicopter hovering, there is a weight force downwards and so 
the equation now becomes

Mg =   m:v
 ____ :t

   +   v:m
 ____ :t

   where M is the mass of the helicopter

There is no change in the speed of the helicopter (it is hovering) so :v = 0, 
there is however momentum gained by the air that moves downwards. This 
is the speed, v, the air gains multiplied by the mass of the air accelerated 
every second so Mg = v  :m

 ___ :t
   or

weight of helicopter (in N) =  mass of air pushed downwards per second  
(in kg s–1) × speed of air downwards (in m s–1)

Momentum and safety
Many countries have made it compulsory to wear seat belts in a moving 
vehicle. Likewise, many modern cars have airbags that inflate very 
quickly if the car is involved in a collision.

Obviously, both these devices restrain the occupants of the car, preventing 
them from striking the windscreen or the hard areas around it. But there 
is more to the physics of the air bag and the seat belt than this.

On the face of it, someone in a car has to lose the same amount of 
kinetic energy and momentum whether they are stopped by the 
windscreen or restrained by the seat belt. What differs in these two 

Worked example
A small firework rocket has 
a mass of 35 g. The initial 
rate at which hot gas is lost 
from the firework has been 
lit is 3.5 g s–1 and the speed 
of release of this gas from 
the rear of the rocket is  
130 m s–1.

Calculate the initial 
acceleration of the rocket.

Solution
a =   :v

 ___ :t
   = –   v:m

 ____ 
m:t

   where v 
is the release speed of the 
gas,   :m

 ___ :t
   is the rate of loss 

of gas, and m is the mass of 
the rocket

a =   130 × 3.5
 _______ 65   = 7.0 m s–2

▲  Figure 12 Car safety: seat belts and air bags.
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  Investigate!
Estimating the force on a soccer ball
This experiment will allow you to estimate the 
force used to kick a soccer ball. It uses many of 
the ideas contained in this topic and is a good 
place to conclude our look at IB mechanics! 

h

s

aluminum foil
foot

to timer

ball

 ● The basis of the method is to measure the 
contact time between the foot and the ball and 
the subsequent change in momentum of the 
ball. The use of force × contact time = change in 
momentum allows the force to be calculated.

 ● To measure the contact time: stick some 
aluminium foil to the shoe of the kicker and 
to the soccer ball. Set up a data logger or fast-
timer so that it will measure the time T for 
which the two pieces of foil are in contact.

 ● To measure the change in momentum: the ball 
starts from rest so all you need is the magnitude 
of the final momentum. Get the kicker to kick 
the ball horizontally from a lab bench. Measure 
the distance s from where the ball is kicked to 
where it lands. Measure the distance h from the 
bottom of the ball on the bench to the floor.  
Use the ideas of projectile motion to calculate 
(i) the time t taken for the ball to reach the 
floor  [ h =   1 __ 2   gt2 and so t =  √__

   2h
 __ g     ] . Then using 

this t, the initial speed u of the ball can be 
estimated as   s _ t  . Measure the mass of the ball M 
and therefore the change in momentum is Mu 
which is equal to the force on the ball × T.

 ● This method can be modified for many sports 
including hockey, baseball, and golf.

cases is the time during which the loss of energy and momentum occur. 
Unrestrained, the time to stop will be very short and the deceleration 
will therefore be very large. A large deceleration means a large force and 
it is the magnitude of the force that determines the amount of damage.

Seat belts and air bags dramatically increase the time taken by the 
occupants of the car to stop and as force × time = momentum change, for 
a constant change in momentum, a long stopping time will imply a 
smaller, and less damaging, force.

Momentum and sport
This sub-topic began with a suggestion that it was less painful to catch a 
table-tennis ball than a baseball. You should now be able to understand 
the reason for the difference. You should also realize why good technique 
in many sports hinges on the application of momentum change.

Many sports in which an object – usually a ball – is struck by hand, 
foot or bat rely on the efficient transfer of momentum. This transfer 
is often enhanced by a “follow through”, which increases the contact 
time between bat and ball. The player maintains the same force but for 
a longer time, so the impulse on the ball will increase, increasing the 
momentum change as well.

Think about your sport and how effective use of momentum change can 
help you.
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Questions
1 (IB)

Christina stands close to the edge of a vertical cliff 
and throws a stone at 15 m s–1 at an angle of 45° 
to the horizontal. Air resistance is negligible.

15 m s−1

sea

25 m

O

P

Q

Point P on the diagram is the highest point 
reached by the stone and point Q is at the same 
height above sea level as point O. Christina’s 
hand is at a height of 25 m above sea level. 

a) At point P on a copy of the diagram above 
draw arrows to represent:

(i) the acceleration of the stone (label 
this A)

(ii) the velocity of the stone (label this V).

b) Determine the speed with which the 
stone hits the sea. (8 marks)

2 (IB)

Antonia stands at the edge of a vertical cliff and 
throws a stone vertically upwards.

The stone leaves Antonia’s hand with a speed  
v = 8.0 m s–1. The time between the stone 
leaving Antonia’s hand and hitting the sea is  
3.0 s. Assume air resistance is negligible.

a) Calculate:

(i) the maximum height reached by the 
stone

(ii) the time taken by the stone to reach its 
maximum height.

b) Determine the height of the cliff. (6 marks)

3 (IB)

A marble is projected horizontally from the edge 
of a wall 1.8 m high with an initial speed V.

A series of flash photographs are taken of the 
marble and combined as shown below. The 
images of the marble are superimposed on a 
grid that shows the horizontal distance x and 
vertical distance y travelled by the marble.

The time interval between each image of the 
marble is 0.10 s.

0 0.50 1.0 1.5 2.0
x/m

−2.0

−1.50

0

−0.50

−1.0

y/
m

Use data from the photograph to calculate a 
value of the acceleration of free fall. (3 marks)

4 (IB)

A cyclist and his bicycle travel at a constant 
velocity along a horizontal road.

a) (i)  State the value of the resultant force 
acting on the cyclist.

    (ii)  Copy the diagram and draw labelled 
arrows to represent the vertical forces 
acting on the bicycle.
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   (iii)  Explain why the cyclist and bicycle are 
travelling at constant velocity.

b)  The total mass of the cyclist and bicycle is 
70 kg and the total resistive force acting on 
them is 40 N. The initial speed of the cycle 
is 8.0 m s–1. The cyclist stops pedalling and 
the bicycle comes to rest.

   (i)  Calculate the magnitude of the initial 
acceleration of the bicycle and rider.

    (ii)  Estimate the distance taken by the 
bicycle to come to rest from the time the 
cyclist stops pedalling.

  (iii)  State and explain one reason why your 
answer to b)(ii) is an estimate.

 (13 marks)

5 A car of mass 1000 kg accelerates on a straight 
flat horizontal road with an acceleration  
a = 0.30 m s–2. The driving force T on the  
car is opposed by a resistive force of 500 N. 
Calculate T. (3 marks)

6 A crane hook is in equilibirium under the 
action of three forces as shown in the diagram.

T2

T1

3.8 kN

60° 30°

Calculate T1 and T2. (4 marks)

7 (IB) 

A small boat is powered by an outboard motor 
of variable power P. The graph below shows 
the variation with speed v of the power P for a 
particular load.

0
0

0.2
0.4
0.6
0.8

1
1.2
1.4

0.5 1 1.5 2 2.5 3 3.5
v/m s-1

P/
kW

For a steady speed of 2.0 m s–1:

a) use the graph to determine the power of the 
boat’s engine

b) calculate the frictional (resistive) force acting 
on the boat. (3 marks)

8 (IB) 

The graph shows the variation with time t of the 
speed v of a ball of mass 0.50 kg that has been 
released from rest above the Earth’s surface.

0 2 4 6 8 10
t/s

v/
m

 s
-

1

0

5

10

15

20

25

The force of air resistance is not negligible. 

a) State, without any calculations, how the 
graph could be used to determine the 
distance fallen.

b) (i)  Copy the diagram and draw and label 
arrows to represent the forces on the 
ball at 2.0 s.

ball at t = 2.0s

Earth’s surface

 (ii)  Use the graph to show that the 
acceleration of the ball at 2.0 s is 
approximately 4 m s–2.
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 (iii)  Calculate the magnitude of the force of 
air resistance on the ball at 2.0 s.

 (iv)  State and explain whether the air 
resistance on the ball at t = 5.0 s is 
smaller than, equal to, or greater than 
the air resistance at t = 2.0 s.

c) After 10 s the ball has fallen 190 m.

 (i)  Show that the sum of the potential 
and kinetic energies of the ball has 
decreased by about 800 J. (14 marks)

9 (IB) 

A bus is travelling at a constant speed of  
6.2 m s–1 along a section of road that is inclined 
at an angle of 6.0° to the horizontal.

6.0°

6.2m s−1

a) (i)  Draw a labelled sketch to represent the 
forces acting on the bus.

 (ii)  State the value of net force acting on 
the bus.

b) The total output power of the engine of 
the bus is 70 kW and the efficiency of the 
engine is 35%. 

 Calculate the input power to the engine.

c) The mass of the bus is 8.5 × 103 kg. 

 Determine the rate of increase of 
gravitational potential energy of the bus.

d) Using your answer to c (and the data in b), 
estimate the magnitude of the resistive 
forces acting on the bus. (12 marks)

10 (IB)

Railway truck A moves along a horizontal track 
and collides with a stationary truck B. The 
two join together in the collision. Immediately 
before the collision, truck A has a speed of  
5.0 m s–1. Immediately after collision, the speed 
of the trucks is v.

5.0 m s−1

A B

immediately before collision

v

A B

immediately after collision

The mass of truck A is 800 kg and the mass of 
truck B is 1200 kg.

a) (i) Calculate v.
 (ii)  Calculate the total kinetic energy lost 

during the collision.

b) Suggest where the lost kinetic energy has 
gone. (6 marks)

11 (IB)

Large metal bars are driven into the ground 
using a heavy falling object.

object mass = 2.0 × 103 kg

bar mass = 400 kg

The falling object has a mass 2000 kg and the 
metal bar has a mass of 400 kg.

The object strikes the bar at a speed of 6.0 m s–1. 
It comes to rest on the bar without bouncing. 
As a result of the collision, the bar is driven into 
the ground to a depth of 0.75 m.

a) Determine the speed of the bar immediately 
after the object strikes it.

b) Determine the average frictional force 
exerted by the ground on the bar. (7 marks)
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12 (IB)

An engine for a spacecraft uses solar power 
to ionize and then accelerate atoms of xenon. 
After acceleration, the ions are ejected from the 
spaceship with a speed of 3.0 × 104 m s–1. 

spaceship mass = 5.4 × 102 kg

xenon ions 
speed

= 3.0 × 104 m s−1

The mass of one ion of xenon is 2.2 × 10
–25 kg

a) The original mass of the fuel is 81 kg. 
Determine how long the fuel will last if 
the engine ejects 77 × 1018 xenon ions 
every second. 

b) The mass of the spaceship is 5.4 × 102 kg. 
Determine the initial acceleration of the 
spaceship.

The graph below shows the variation with 
time t of the acceleration a of the spaceship. 
The solar propulsion engine is switched on at 
time t = 0 when the speed of the spaceship is 
1.2 × 103 m s–1.

1.0 2.0 3.0 4.0 5.0 6.0

8.5

9.0

9.5

10.0

a/
10

−5
m

 s
−2

t/×107 s
0.0

8.0

c) Explain why the acceleration of the 
spaceship increases with time.

d) Using data from the graph, calculate the 
speed of the spaceship at the time when the 
xenon fuel has all been used.  (15 marks)

13 (IB)

A large metal ball is hung from a crane by 
means of a cable of length 5.8 m as shown 
below.

5.8 m

metal ball

cable

wall

crane

To knock a wall down, the metal ball of mass 
350 kg is pulled away from the wall and then 
released. The crane does not move. The graph 
below shows the variation with time t of the 
speed v of the ball after release.

The ball makes contact with the wall when the 
cable from the crane is vertical.

a) For the ball just before it hits the wall use 
the graph, to estimate the tension in the 
cable. The acceleration of free fall is 9.8 m s–2.

b) Determine the distance moved by the ball 
after coming into contact with the wall.

c) Calculate the total change in momentum of 
the ball during the collision of the ball with 
the wall. (7 marks)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

1.0

2.0

3.0

v/
m

 s
−1

t/s
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Understanding
 ➔ Temperature and absolute temperature
 ➔ Internal energy
 ➔ Specific heat capacity
 ➔ Phase change
 ➔ Specific latent heat

  Applications and skills
 ➔ The three states of matter are solid, liquid, 

and gas
 ➔ Solids have fixed shape and volume and 

comprise of particles that vibrate with respect 
to each other

 ➔ Liquids have no fixed shape but a fixed volume 
and comprise of particles that both vibrate 
and move in straight lines before colliding with 
other particles

 ➔ Gases (or vapours) have no fixed volume or 
shape and move in straight lines before colliding 
with other particles – this is an ideal gas 

 ➔ Thermal energy is often misnamed “heat” 
or “heat energy” and is the energy that 
is transferred from an object at a higher 
temperature by conduction, convection, and 
thermal radiation

Equations
 ➔ Conversion from Celsius to kelvin:  

T(K) = θ(°C) + 273
 ➔ Specific heat capacity relationship: Q = mc:T
 ➔ Specific latent heat relationship: Q = mL

Introduction
In this topic we look at at thermal processes 
resulting in energy transfer between objects at 
different temperatures. We consider how the 
energy transfer brings about further temperature 
changes and/or changes of state or phase. 

We then go on to look at the effect of energy 
changes in gases and use the kinetic theory to 
explain macroscopic properties of gases in terms 
of the behaviour of gas molecules. 

3  T H E R M A L  P H Y S I C S

3.1 Temperature and energy changes 

  Nature of science
Evidence through experimentation
Since early humans began to control the use 
of fire, energy transfer because of temperature 
differences has had significant impact on society. 
By controlling the energy flow by using insulators 
and conductors we stay warm or cool off, and we 
prepare life-sustaining food to provide our energy 
needs (see figure 2). Despite the importance of 
energy and temperature to our everyday lives, 
confusion regarding the difference between 
“thermal energy” or “heat” and temperature is 
commonplace. The word “heat” is used colloquially 
to mean energy transferred because of a 
temperature difference, but this is a throwback to 
the days in which scientists thought that heat was 
a substance and different from energy.
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Temperature and energy transfer
You may have come across temperature described as the “degree of 
hotness” of an object. This is a good starting point since it relates to 
our senses. A pot of boiling water feels very hot to the touch and 
we know instinctively that the water and the pot are at a higher 
temperature than the cold water taken from a refrigerator. The 
relative temperature of two objects determines the direction in which 
energy passes from one object to the other; energy will tend to pass 
from the hotter object to the colder object until they are both at the 
same temperature (or in thermal equilibrium). The energy flowing 
as a result of conduction, convection, and thermal radiation is what is 
often called “heat”.

Temperature is a scalar quantity and is measured in units of degrees 
Celsius (°C) or kelvin (K) using a thermometer. Figure 2 Dinner is served!

Introduction
From the 17th century until the end of the 19th century scientists 
believed that “heat” was a substance that flowed between hot and cold 
objects. This substance travelling between hot and cold objects was 
known as “phlogiston” or “caloric” and there were even advocates of 
a substance called “frigoric” that flowed from cold bodies to hot ones. 
In the 1840s James Joule showed that the temperature of a substance 
could be increased by doing work on that substance and that doing 
work was equivalent to heating. In his paddle wheel experiment 
(see figure 1) he dropped masses attached to a mechanism connected 
to a paddle wheel; the wheel churned water in a container and the 
temperature of the water was found to increase. Although the caloric 
theory continued to have its supporters it was eventually universally 
abandoned. The unit “calorie” which is sometimes used relating to food 
energy is a residual of the caloric theory, as is the use of the word heat 
as a noun.

2 kg

when masses fall they turn the 
axle and cause the paddle wheels 
to churn up the water – this raises 
the water temperature 

2 kg

paddles

thermometer

water

 Figure 1 Joule’s paddle wheel experiment.
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  Nature of science
Thermometers
Most people are familiar with liquid-in-glass 
thermometers in which the movement of 
a column of liquid along a scale is used to 
measure temperature. Thermometers are 
not just restricted to this liquid-in-glass type; 
others use the expansion of a gas, the change 
in electrical resistance of a metal wire, or 
the change in emf (electromotive force) at 
the junction of two metal wires of different 
materials. A thermometer can be constructed 
from any object that has a property that varies 
with temperature (a thermometric property). 
In the case of a liquid-in-glass thermometer 
the thermometric property is the expansion 
of the liquid along a glass capillary tube. The 
liquid is contained in the bulb which is a 
reservoir; when the bulb is heated the liquid 
expands, travelling along the capillary. Since 
the bore of the capillary is assumed to be 
constant, as the volume of the liquid increases 
with temperature so does the length of the 
liquid. Such thermometers are simple but not 
particularly accurate. Reasons for the inaccuracy 
could be that the capillary may not be uniform, 
or its cross-sectional area may vary with 
temperature, or it is difficult to make sure that 
all the liquid is at the temperature of the object 
being investigated. Glass is also a relatively good 
insulator and it takes time for thermal energy to 
conduct through the glass to the liquid, making 

the thermometer slow to respond to rapid 
changes in temperature.

Liquid-in-glass thermometers are often calibrated 
in degrees Celsius, a scale based on the scale 
reading at two fixed points, the ice point and the 
steam point. These two temperatures are defined 
to be 0 °C and 100 °C respectively (although 
Celsius actually used the steam point for 0 and 
ice point for 100). The manufacturer of the 
thermometer assumes that the length of the liquid 
in the capillary changes linearly with temperature 
between these two points, even though it may not 
actually do so. This is a fundamental assumption 
made for all thermometers, so that thermometers 
only agree with each other at the fixed points – 
between these points they could well give 
different values for the same actual temperature. 

Digital thermometers or temperature sensors 
have significant advantages over liquid-in-glass 
thermometers and have largely taken over from 
liquid-in-glass thermometers in many walks 
of life. The heart of such devices is usually a 
thermistor. The resistance of most thermistors 
falls with temperature (they are known as “ntc” 
or “negative temperature coefficient of resistance” 
thermistors). Since the thermistor is usually quite 
small, it responds very quickly to temperature 
changes. Thermistor thermometers are usually far 
more robust than liquid-in-glass ones.

steam point

ice point
flask

melting ice

finding the ice point finding the steam point

funnel

beaker

steam
boiling water

 Figure 3 Calibration of a liquid-in glass thermometer at the ice point and steam point.
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Absolute temperature
The Celsius temperature scale is based on the ice point and steam point 
of water; by definition all thermometers using the Celsius scale agree 
at these two temperatures. Between these fixed points, thermometers 
with different thermometric properties do not all agree, although 
differences may be small. The absolute temperature scale is the 
standard SI temperature scale with its unit the kelvin (K) being one 
of the seven SI base units. Absolute temperature is defined to be 
zero kelvin at absolute zero (the temperature at which all matter 
has minimum kinetic energy) and 273.16 K at the triple point of 
water (the unique temperature and pressure at which water can 
exist as liquid water, ice, and water vapour). Differences in absolute 
temperatures exactly correspond to those in Celsius temperatures (with 
a temperature difference of 1 °C being identical to 1 K). For this reason 

  Investigate!
Calibrating a thermistor against an alcohol-in-glass thermometer
This investigation can be performed by taking 
readings manually or by using a data logger. Here 
we describe the manual way of performing the 
experiment. The temperature can be adjusted either 
using a heating coil or adding water at different 
temperatures (including some iced water, perhaps).

 ● A multimeter set to “ohms” or an ohm-meter is 
connected across the thermistor (an ammeter/
voltmeter method would be a suitable alternative 
but resistance would need to be calculated).

 ● The thermistor is clamped so that it lies below 
the water surface in a Styrofoam (expanded 
polystyrene) container next to an alcohol-in-
glass thermometer. 

 ● Obtain pairs of values of readings on the 
multimeter and the thermometer and record 
these in a table.

 ● Plot a graph of resistance/E against 
temperature/°C (since this is a calibration 
curve there can be no systematic uncertainties 
and any uncertainties will be random – being 
sufficiently small to be ignored in the context 
of this investigation).

 ● The graph shown is typical for a “ntc” 
thermistor.

 ● Suggest why, on a calibration curve, 
systematic uncertainties are not appropriate.

 ● Would the designers of a digital thermometer 
assume a linear relationship between 
resistance and temperature?

 ● Would you expect the reading on a digital 
thermometer to correspond to that on a 
liquid-in-glass thermometer?
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Styrofoam cups

water

cardboard
square

rubber seals

multimeter

calibration of thermistor

0

0.5×104

1.0×104

1.5×104

2.0×104

500 100

temperature/°C

re
si

st
an

ce
 o

f t
he

m
is

to
r/Ω

94

3 T H E R M A L  P H YS I CS



it is usual to write the units of temperature difference as K but not °C 
(although you are unlikely to lose marks in an examination for making 
this slip). To convert from temperatures in degrees Celsius to absolute 
temperatures the following relationship is used:

T(K) = θ(°C) + 273

where T represents the absolute temperatures and θ the temperature in 
degrees Celsius.

Other aspects of the absolute temperature scale will be considered in Sub-topic 3.2. 

Internal energy
Substances consist of particles (e.g., molecules) in constant random 
motion. As energy is transferred to a substance the separation of the 
particles could increase and they could move faster. When particles 
move further apart (or closer to other neighbouring particles) the 
potential energy of the particles increases. As they move faster their 
random kinetic energy increases. The internal energy of a substance 
is the total of the potential energy and the random kinetic 
energy of all the particles in the substance. For a solid, these two 
forms of energy are present in roughly equal amounts; however in a gas 
the forces between the particles are so small that the internal energy is 
almost totally kinetic. We will discuss this further in the Sub-topic 3.2.

Specific heat capacity
When two different objects receive the same amount of energy they 
are most unlikely to undergo the same temperature change. For 
example, when 1000 J of energy is transferred to 2 kg of water or 
to 1 kg of copper the temperature of each mass changes by different 
amounts. The temperature of the water would be expected to increase 
by about 0.12 K while that of copper by 2.6 K. The two masses have 
different heat capacities. You may think that it is hardly a fair 
comparison since there is 2 kg of water and 1 kg of copper; and you 
would be right to think this! If we chose equal masses of the two 
substances we would discover that 1 kg of water would increase by 
0.24 K under the same conditions.  

In order to be able to compare substances more closely we define 
the specific heat capacity (c) of a substance as the energy 
transferred to 1 kg of the substance causing its temperature to 
increase by 1 K.

The defining equation for this is

c =   
Q
 _ 

m:T
  

where Q is the amount of energy supplied to the object of mass m and 
causing its temperature to rise by :T. When Q is in J, m in kg, and :T in 
K, c will be in units of J kg−1 K−1.

You should check that the data provided show that water has a specific 
heat capacity of approximately 4.2 × 103 J kg–1 K–1 and copper a value of 
approximately 380 J kg–1 K–1.

Worked example
A temperature of 73 K is 
equivalent to a temperature of

 A. −346 °C.  B. −200 °C.   
 C. +73 °C.     D. +200 °C.

Solution
Substituting values into the 
conversion equation:  
73 = θ + 273  
so θ = 73 – 273 = −200  
making the correct option B.

  Figure 4 Motion of molecules in solids, 
liquids, and gases.

gas

liquid

solid

Note: Students often confuse 
the terms internal energy and 
thermal energy. Avoid using the 
term thermal energy – talk about 
internal energy and the energy 
transferred because of temperature 
differences, which is what most 
people mean by thermal energy.
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  Investigate!
Estimating the specific heat capacity of a metal
This is another investigation that can be performed manually or by 
using a data logger. Here we describe the manual way of performing the 
experiment. A metal block of known mass is heated directly by a heating 
coil connected to a low-voltage electrical supply. Channels in the block 
allow the coil to be inserted and also a thermometer or temperature 
probe. The power supplied to the block is calculated from the product 
of the current (I) in the heating coil and the potential difference (V) 
across it. The supply is switched on for a measured time (t) so that the 
temperature changes by at least 10 K. When the temperature has risen 
sufficiently the power is switched off, but the temperature continues to 
be monitored to find the maximum temperature rise (it takes time for the 
thermometer to reach the same temperature as the surrounding block).

 ● Thermal energy transferred to the block in time t = VIt

 ● The heater itself, the temperature probe and the insulation 
will all have heat capacities that will mean that there is a further 
unknown term to the relationship: which should become 
VIt = (mc + C)∆T where C is the heat capacity of everything except 
the block – which will undergo the same temperature change as 
the block since they are all in good thermal contact. This term 
may be ignored if the mass of the block is high (say, 1 kg or so).

 ● As the block is heated it will also be losing thermal energy to the 
surroundings and so make the actual rise in temperature lower 

Worked example
A piece of iron of mass 0.133 kg is placed in a 
kiln until it reaches the temperature θ of the 
kiln. The iron is then quickly transferred to 
0.476 kg of water held in a thermally insulated 
container. The water is stirred until it reaches 
a steady temperature. The following data are 
available.

Specific heat capacity of iron = 450 J kg–1 K–1

Specific heat capacity of water = 4.2 × 103 J kg–1 K–1

Initial temperature of the water = 16 °C
Final temperature of the water = 45 °C
The specific heat capacity of the container and 
insulation is negligible. 

a) State an expression, in terms of θ and the 
above data, for the energy transfer of the iron 
in cooling from the temperature of the kiln to 
the final temperature of the water.

b) Calculate the increase in internal energy of 
the water as the iron cools in the water. 

c) Use your answers to b) and c) to determine θ.

Solution 
a) Using Q = mc∆T for the iron 

Q = 0.133 × 450 × (θ − 45) = 60 × (θ − 45)

b) Using Q = mc∆T for the water  
Q = 0.476 × 4200 × (45 − 16) = 5.8 ×104 J

c) Equating these and assuming no energy is 
transferred to the surroundings 
60 × (θ − 45) = 5.8 × 104 

∴ 60θ − 2700 = 5.8 × 104

60θ = 6.1 × 104 

     ∴ θ =   6.1 × 104
 _ 

60
  

    θ = 1000 °C (or 1010 °C to 3 s.f. )
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TOK

The development of 
understanding of energy 
transfer due to temperature 
differences

The term specific heat 
capacity is a throwback 
to the caloric days when 
energy was thought to 
be a substance. A more 
appropriate term would be 
to call this quantity specific 
energy capacity but specific 
heat capacity is a term that 
has stuck even though 
scientists now recognize its 
inappropriateness.

Are there other cases where 
we still use an old-fashioned 
term or concept because it 
is simpler to do so than to 
change all the books? Has 
the paradigm shift believing 
that heating was a transfer 
of substance into being a 
transfer of energy been taken 
on by society or is there still 
confusion regarding this?

that might be predicted. You are not expected to calculate “cooling 
corrections” in your IB calculations but it is important to recognize 
that this happens. A simple way of compensating for this is to cool 
the apparatus by, say 5 K, below room temperature before switching 
on the power supply. If you then allow its temperature to rise to 5 K 
above room temperature, then you can assume that the thermal 
energy gained from the room in reaching room temperature is 
equal to that lost to the room when the apparatus is above room 
temperature.

 ● This method can be adapted to measure the specific heat capacity 
of a liquid, but you must remember that the temperature of the 
container will also rise.

immersion heater

aluminium block
(calorimeter)

0−100 °C thermometer

insulating board

to immersion
heater circuit

A

B

Specific latent heat
The temperature of a block of ice in a freezer is likely to be well below 
0 °C. If we measure the temperature of the ice from the time it is taken 
from the freezer until it has all melted and reached room temperature 
we would note a number of things. Initially the temperature of the ice 
would rise; it would then stay constant until all of it had melted then it 
would rise again but at a different rate from before. If we now put the 
water into a pan and heat it we would see its temperature rise quickly 
until it was boiling and then stay constant until all of the water had 
boiled away. These observations are typical of most substances which 
are heated sufficiently to make them melt and then boil. Figure 5 shows 
how the temperature changes with time for energy being supplied. 
Energy is continually being supplied to the ice but there is no temperature 
change occurring during melting or boiling. The energy required to 
achieve the change of phase is called latent heat; the word latent 
meaning “hidden”. In a similar way to how specific heat capacity was 
defined in order to compare equal masses of substances, physicists define:

 ● specific latent heat of fusion (melting) as the energy required to 
change the phase of 1 kg of substance from a solid to a liquid without 
any temperature change
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 ● specific latent heat of vaporization (boiling) as the energy 
required to change the phase of 1 kg of liquid into a gas without any 
temperature change. 

The equations for these take the form

L =   
Q

 _ m  

where Q is the energy supplied to the object of mass which causes its 
phase to change without any temperature change. When Q is in J, m in 
kg, L will be in units of J kg–1.

  Figure 5 Change of phase (not to scale).
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The graph shows how the temperature of a substance changes with 
time. The portions of the graph that are flat indicate when there is no 
temperature change and so the substance is changing phase.

 ● This graph assumes that energy is supplied by a constant power 
source and so, since energy is the product of power and time, a graph 
of temperature against energy transferred to the substance will take 
the same shape as this. 

 ● If you are told the rate at which energy is supplied (i.e. the power 
supplied) then from the gradients of the temperature–time graph you 
can work out the heat capacity of the liquid, the solid and the gas.

 ● From the time of each horizontal section of the graph you can also 
calculate the specific heat capacity of the solid and liquid phases.

 ● When a gas transfers energy to another object at a constant rate we 
see the temperature of the gas drop until it reaches the boiling point 
(condensing point is the same temperature as this) at which time the 
graph becomes flat. Again as the liquid transfers energy away the 
temperature will fall until the melting (or solidifying) temperature 
is reached when the graph again becomes flat until all the substance 
has solidified. After this it will cool again.

 ● Cooling is the term generally used to mean falling temperature 
rather than loss of energy, so it is important not to say the substance 
is cooling when the temperature is constant (flat parts of the graph).
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Molecular explanation of phase change
The transfer of energy to a solid increases its internal energy – this 
means that the mean random kinetic energy of the molecules increases 
(as the vibrations and speeds increase) and the intermolecular potential 
energy increases (as the molecules move further apart). Eventually some 
groups of molecules move far enough away from their neighbours for 
the influence of their neighbours to be reduced – chemists would often 
use the model of the intermolecular bonds being broken. When this 
is happening the energy supplied does not increase the mean random 
kinetic energy of the molecules but instead increases the potential 
energy of the molecules.

Eventually the groups of molecules are sufficiently free so that the solid 
has melted. The mean speed of the groups of molecules now increases 
and the temperature rises once more – the molecules are breaking away 
from each other and joining together at a constant rate. The potential 
energy is not changing on average. As the liquid reaches its boiling 
point the molecules start moving away from each other within their 
groups. Individual molecules break away and the potential energy once 
more increases as energy is supplied. Again a stage is reached in which 
the mean kinetic energy remains constant until all the molecules are 
separated from each other. We see a constant temperature (although 
much higher than during melting). The energy is vaporizing the liquid 
and only when the liquid has all vaporized is the energy re-applied to 
raising the gas temperature.

Worked example
A heater is used to boil a liquid in a pan for a measured time. 

The following data are available.

Power rating of heater = 25 W

Time for which liquid is boiled = 6.2 × 102 s

Mass of liquid boiled away = 4.1 × 10–2 kg

Use the data to determine the specific latent heat of vaporization of 
the liquid.

Solution 
Using Q = Pt for heater: Q = 25 × 6.2 × 102 = 15 500 J

Using Q = mL for the liquid: 15 500 = 4.1 × 10−2 × L

L =   15 500 _ 
4.1 × 10−2

   = 3.8 × 105 J kg−1
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3.2 Modelling a gas

  Nature of science
Progress towards understanding by collaboration and modelling
Much of this sub-topic relates to dealing with 
how scientists collaborated with each other and 
gradually revised their ideas in the light of the work 
of others. Repeating and often improving the original 
experiment using more reliable instrumentation 
meant that generalizations could be made. Modelling 

the behaviour of a real gas by an ideal gas and the 
use of statistical methods was groundbreaking in 
science and has had a major impact on modern 
approaches to science including the quantum theory 
where certainty must be replaced by probability.

Understanding
 ➔ Pressure
 ➔ Equation of state for an ideal gas
 ➔ Kinetic model of an ideal gas
 ➔ Mole, molar mass, and the Avogadro constant
 ➔ Differences between real and ideal gases

  Applications and skills
 ➔ Equation of state for an ideal gas
 ➔ Kinetic model of an ideal gas
 ➔ Boltzmann equation
 ➔ Mole, molar mass, and the Avogadro constant
 ➔ Differences between real and ideal gases

Equations
 ➔ Pressure: p =   F ___ A  
 ➔ Number of moles of a gas as the ratio of number 

of molecules to Avogadro’s number: n =   N 
_____ NA

  
 ➔ Equation of state for an ideal gas: pV = nRT
 ➔ Pressure and mean square velocity of 

molecules of an ideal gas: p =   1 ___ 3   
___

 ρc2 
 ➔ The mean kinetic energy of ideal gas molecules:  

 E   K  mean   =   3 ___ 2   kBT =   3 ___ 2     R ____ NA
    T

Introduction
One of the triumphs of the use of mathematics in physics was the 
successful modelling of the microscopic behaviour of atoms to give an 
understanding of the macroscopic properties of a gas. Although the Swiss 
mathematician Daniel Bernoulli had suggested that the motion of atoms 
was responsible for gas pressure in the mid-1700s, the kinetic theory of 
gases was not widely accepted until the work of the Scottish physicist, 
James Clerk-Maxwell and the Austrian, Ludwig Boltzmann working 
independently over a hundred years later.
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The gas laws
The gas laws were developed independently experimentally between 
the mid-seventeenth century and the start of the nineteenth century. 
An ideal gas can be defined as one that obeys the gas laws under all 
conditions. Real gases do not do this but they approximate well to an 
ideal gas so long as the pressure is little more than normal atmospheric 
pressure. With the modern apparatus available to us it is not difficult to 
verify the gas laws experimentally.

As a consequence of developing the vacuum pump and thus the 
hermetically-sealed thermometer, the Irish physicist Robert Boyle 
was able to show in 1662 that the pressure of a gas was inversely 
proportional to its volume. Boyle’s experiment is now easily repeatable 
with modern apparatus. Boyle’s law states that for a fixed mass of gas 
at constant temperature the pressure is inversely proportional to 
the volume. The French experimenter Edmé Mariotte independently 
performed a similar experiment to that of Boyle and was responsible for 
recognizing that the relationship only holds at a constant temperature – 
so with modern statements of the law, there is much justification for 
calling this law Mariotte’s law.

Mathematically this can be written as p ∝   1 __ V   (at constant temperature) or 
pV = constant (at constant temperature).

A graph of pressure against volume at constant temperature (i.e., a 
Boyle’s law graph) is known as an isothermal curve (“iso” meaning 
the same and “thermo” relating to temperature). Isothermal curves are 
shown in figure 2(b) on p104.

TOK

Boyle’s impact on scientific method

Robert Boyle was a scientific giant and experimental 
science has much to thank him for in addition to his 
eponymous law. In the mid-1600s where philosophical 
reasoning was preferred to experimentation, Boyle 
championed performing experiments. Boyle was most 
careful to describe his experimental techniques to allow 
them to be reproduced by others – this gave reliability 
to experimental results and their interpretation.  At this 
time, many experimenters were working independently. 
The confusion in correct attribution of gas laws to their 
discoverer may have been less involved had others 
followed Boyle's lead. His rapid and clear reporting of 
his experimental work and data avoided the secrecy 
that was common at the time; this was advantageous to 
the progress of other workers.

Although Boyle was apparently not involved in the 
ensuing quarrels, there was great debate regarding 
whether Boyle or the German chemist Henning Brand 
discovered the element phosphorus. This is largely 
because Brand kept his discovery secret while he

pursued the “philosopher’s stone” in an attempt to 
convert base metals such as lead into gold. Is rapid or 
frequent publication usually a case of a scientist's self-
promotion or is the practice more often altruistic?

 Figure 1 Robert Boyle.
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The French physicist Jacques Charles around 1787 repeated the 
experiments of his compatriot Guillaume Amontons to show that all 
gases expanded by equal amounts when subjected to equal temperature 
changes. Charles showed that the volume changed by   1

 ___ 273   of the volume 
at 0 °C for each 1 K temperature change. This implied that at –273 °C, 
the volume of a gas becomes zero. Charles’s work went unpublished and 
was repeated in 1802 by another French experimenter, Joseph Gay-
Lussac. The law that is usually attributed to Charles is now stated as for 
a fixed mass of gas at constant pressure the volume is directly 
proportional to the absolute temperature. 

Mathematically this law can be written as V ∝ T (at constant pressure) 
or   V __ T   = constant (at constant pressure).

Amontons investigated the relationship between pressure and 
temperature but used relatively insensitive equipment. He was able to 
show that the pressure increases when temperature increases but failed to 
quantify this completely. The third gas law is stated as for a gas of fixed 
mass and volume, the pressure is directly proportional to the 
absolute temperature. This law is sometimes attributed to Amontons 
and often (incorrectly) to Gay-Lussac or Avogadro and sometimes it is 
simply called the pressure law. Maybe it is safest to refer to this as the third 
gas law!

Mathematically this law can be written as p ∝ T (at constant volume) 
or   

p
 __ T   = constant(at constant volume).

The Italian physicist, Count Amadeo Avogadro used the discovery that 
gases expand by equal amounts for equal temperature rises to support a 
hypothesis that all gases at the same temperature and pressure contain 
equal numbers of particles per unit volume. This was published in a 
paper in 1811. We now state this as the number of particles in a gas 
at constant temperature and pressure is directly proportional to 
the volume of the gas.

Mathematically this law can be written as n ∝ V (at constant 
pressure and temperature) or   n __ V   = constant (at constant pressure and 
temperature). 

Since each of the gas laws applies under different conditions the 
constants are not the same in the four relationships. The four equations 
can be combined to give a single constant, the ideal gas constant, R. 
Combining the four equations gives what is known as the equation of 
state of an ideal gas:

   
pV

 _ 
nT

   = R    or    pV = nRT

When pressure is measured in pascal (Pa), volume in cubic metre (m3), 
temperature in kelvin (K), and n is the number of moles in the gas, then 
R has the value 8.31 J K–1 mol–1.

The mole and the Avogadro constant
The mole, which is given the symbol “mol”, is a measure of the amount 
of substance that something has. It is one of the seven SI base units 
and is defined as being the amount of substance having the same 
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Worked example
Calculate the percentage change in volume of 
a fixed mass of an ideal gas when its pressure 
is increased by a factor of 2 and its temperature 
increases from 30 °C to 120 °C.

Solution 
Since n is constant the equation of state can be 
written 

  
p1V1 _ 
T1

   =   
p2V2 _ 
T2

  

We are trying to obtain the ratio   
V2 __ V1

   and so the 

equation can be rearranged into the form   
V2 __ V1

    =   
p1T2 ___ p2T1

  

p2 = 2p1 and T1 = 303 K and T2 = 393 K, so   
V2 __ V1

   

=   393
 ______ 2 × 303   = 0.65 or 65%

This means that there is a 35% reduction in the 
volume of the gas.

  Investigate!
Verifying the gas laws experimentally
Boyle’s law

 ● Pressure is changed using the pump. 

 ● This pushes different amounts of oil into the 
vertical tube, which changes the pressure on 
the gas (air).

 ● Changes are carried out slowly to ensure there 
is no temperature change.

 ● A graph of pressure against volume gives 
a curve known as an isothermal (line at 
constant temperature).

number of particles as there are neutral atoms in 12 grams of 
carbon-12. One mole of a gas contains 6.02 × 1023 atoms or molecules. 
This number is the Avogadro constant NA. In the same way that you can 
refer to a dozen roses (and everyone agrees that a dozen is the name for 
12) you can talk about three moles of nitrogen gas which will mean that 
you have 18.06 × 1023 gas molecules. The mole is used as an alternative 
to expressing quantities in volumes or masses.

Molar mass
As we have just seen, the mole is simply a number that can be used to 
count atoms, molecules, ions, electrons, or roses (if you wanted). In 
order to calculate the molar mass of a substance (which differs from 
substance to substance) we need to know the chemical formula of a 
compound (or whether a molecule of an element is made up from one 
or more atoms). Nitrogen gas is normally diatomic (its molecules have 
two atoms), so we write it as N2. One mole of nitrogen gas will contain 
6.02 × 1023 molecules but 12.04 × 1023 atoms. As one mole of nitrogen 
atoms has a mass of approximately 14.01 g then a mole of nitrogen 
molecules will have a mass of 28.02 g – this is its molar mass. The 
chemical formula for water is, of course, H2O, so one mole of water 
molecules contains two moles of hydrogen atoms and one mole of 
oxygen atoms. 1 mol of hydrogen atoms has a mass of 1.00 g and 1 mol 
of oxygen atoms has a mass of 16.00 g, so 1 mol of water has a mass of 
(2 × 1.00 g) + 16.00 g = 18.00 g. The mass of water is 18.00 g mol−1. 
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 ● Isothermals can be plotted over a range of 
different temperatures to give a series of 
curves such as those in figure 2(b).

 ● A graph of pressure against the reciprocal of 
volume   1 __ V   should give a straight line passing 
through the origin.

 ● This investigation could be monitored 
automatically using a data logger with a 
pressure sensor.

 Figure 2 (a) Boyle’s law apparatus and (b) graph.
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Charles’s law
 ● Pressure is kept constant because the capillary 

tube is open to the surrounding atmosphere 
(provided the atmospheric pressure does 
not change).

 ● Change the temperature by heating (or 
cooling/icing) the water.

 ● Assuming that the capillary is totally uniform 
(which is unlikely) the length of the column 
of air trapped in the tube will be proportional 
to its volume.

 ● Stir the water thoroughly to ensure that it is at 
a constant temperature throughout.

thermometer

rubber bands

capillary tube

air trapped by 
liquid index

L

−200 500
temperature/°

This is your
value for absolute zero

L/mm

Your results are going
to be in the region from 0 °C up

to 50 °C, but if you draw your graph on
the scale shown here it will not give a very

reliable value for absolute zero – it is better
to use the page from 0 °C up to 50 °C and

to use the method of similar triangles
to find absolute zero

 Figure 3 Charles’ law apparatus and graph.
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  Nature of science
Evidence for atoms
The concept of atoms is not a new one but it has only been accepted 
universally by scientists over the past century. Around 400 BCE the 
Greek philosopher Democritus theorized the existence of atoms – 
named from ancient Greek: “ατοµοσ” – meaning without division. 
He suggested that matter consisted of tiny indivisible but discrete 
particles that determined the nature of the matter of which they 
comprised. Experimental science did not become fashionable until 
the 17th century and so Democritus’ theory remained unproven. Sir 
Isaac Newton had a limited view of the atomic nature of matter but 
believed that all matter was ultimately made of the same substance. 
In the 19th century the chemist, John Dalton, was the first to suggest 
that the individual elements were made of different atoms and could 
be combined in fixed ratios. Yet even Dalton and his successors were 
only able to infer the presence of atoms from chemical reactions.

Less explicit evidence (yet still indirect) came from experiments with 
diffusion and “Brownian motion”. 

 ● Leave a reasonable length of time in between 
readings to allow energy to conduct to the 
air in the capillary – when this happens the 
length of the capillary no longer changes.

 ● A graph of length of the air column against 
the temperature in °C should give a straight 
line, which can be extrapolated back to 
absolute zero.

 ● To choose larger (and therefore better) scales 
you can use similar triangles to calculate 
absolute zero.

The third gas law
 ● There are many variants of this apparatus 

which could, yet again, be performed using 
a data logger with temperature and pressure 
sensors.

 ● The gas (air) is trapped in the glass bulb and 
the temperature of the water bath is changed.

 ● The pressure is read from the Bourdon gauge 
(or manometer or pressure sensor, etc.).

 ● Leave a reasonable length of time in between 
readings to allow energy to conduct to the 
air in the glass bulb – when this happens the 
pressure no longer changes.

 ● A graph of pressure against the 
temperature in oC should give a straight 

line, which can be extrapolated back to 
absolute zero.

 ● To choose larger (and therefore better) scales 
you can use similar triangles to calculate 
absolute zero.

water bath

thermometerBourdon gauge

250 ml round-bottomed flask 
containing air

−200 500
temperature/°C

This is your value
for absolute zero

pressure

 Figure 4 Third gas law apparatus and graph.
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The microscopic interpretation of gases
Diffusion
The smell of cooked food wafting from a barbecue is something that 
triggers the flow of stomach juices in many people. This can happen 
on a windless day and is an example of diffusion of gases. The atomic 
vapours of the cooking food are being bombarded by air molecules 
causing them to move through the air randomly. The bromine vapour 
experiment shown in figure 5 is a classic demonstration of diffusion. 
Bromine (a brown vapour) is denser than air and sinks to the bottom 
of the lower right-hand gas jar. This is initially separated from the 
upper gas jar by a cover slide. As the slide is removed the gas is 
gradually seen to fill the upper gas jar (as seen in the jars on the left); 
this is because the air molecules collide with the bromine atoms. If 
this was not the case we would expect the bromine to remain in the 
lower gas jar.

Brownian motion
In 1827, English botanist, Robert Brown, first observed the motion 
of pollen grains suspended in water. Today we often demonstrate 
this motion using a microscope to see the motion of smoke particles 
suspended in air. The smoke particles are seen to move around in a 
haphazard way. This is because the relatively big and heavy smoke 
particles are being bombarded by air molecules. The air molecules have 
momentum, some of which is transferred to the smoke particles. At 
any instant there will be an imbalance of forces acting on each smoke 
particle giving it the random motion observed. The experiment of 
figure 6(a) shows how smoke in an air cell is illuminated from the side. 
Each smoke particle scatters light in all directions and so some reaches 
the microscope. The observer sees the motion as tiny specks of bright 
light that wobble around unpredictably as shown in figure 6(b).

 Figure 6  The smoke cell.

microscope

lamp

convex lens window smoke

air cell

 

these specks of light
are the smoke particles
scattering light

the random motion of a
smoke particle showing
how it moves linearly in
between collisions with
air molecules

(a)

 Figure 5 Bromine diffusion.

(b)
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Kinetic model of an ideal gas
The kinetic theory of gases is a statistical treatment of the movement 
of gas molecules in which macroscopic properties such as pressure are 
interpreted by considering molecular movement. The key assumptions of 
the kinetic theory are:

 ●  A gas consists of a large number of identical tiny particles called 
molecules; they are in constant random motion.

 ● The number is large enough for statistical averages to be made. 

 ● Each molecule has negligible volume when compared with the 
volume of the gas as a whole. 

 ● At any instant as many molecules are moving in one direction as in 
any other direction.

 ● The molecules undergo perfectly elastic collisions between 
themselves and also with the walls of their containing vessel; during 
collisions each momentum of each molecule is reversed.

 ● There are no intermolecular forces between the molecules between 
collisions (energy is entirely kinetic).

 ● The duration of a collision is negligible compared with the time 
between collisions.

 ● Each molecule produces a force on the wall of the container.

 ● The forces of individual molecules will average out to produce a 
uniform pressure throughout the gas (ignoring the effect of gravity). 

Using these assumptions and a little algebra it is possible to derive the 
ideal gas equation: 

In figure 7 we see one of N molecules each of mass m moving in a box 
of volume V. The box is a cube with edges of length L. We consider the 
collision of one molecule moving with a velocity c towards the right-
hand wall of the box. The components of the molecule’s velocity in the 
x, y, and z directions are c

x
, c

y
, and c

z
 respectively. As the molecule collides 

with the wall elastically, its x component of velocity is reversed, while its 
y and z components remain unchanged. 

The x component of the momentum of the molecule is mc
x
 before the 

collision and – mc
x
 after the collision.

The change in momentum of the molecule is therefore – mc
x – (mc

x
) = –2mc

x

As force is the rate of change of momentum, the force F
x
 that the  

right-hand wall of the box exerts on our molecule will be   
−2m c  x 

 _____ t   where t 
is the time taken by the molecule to travel from the right-hand wall of 
the box to the opposite side and back again (in other words it is the time 
between collisions with the right-hand wall of the box).

Thus t =   2L _  c  x 
   and so F

m
 =   −2m c  x  _ 

  2L
 __  c  x 
  
   =   

−m c  x  
2 
 _ 

L
  

Using Newton’s third law of motion we see that the molecule must exert 
a force of   

m c  x  
2 
 ___ L   on the right-hand wall of the box (i.e. a force equal in 

magnitude but opposite in direction to the force exerted by the right-
hand wall on the molecule).

x
LL

L

cx

m

c

z

y

  Figure 7 Focusing on the x-component of 
the velocity.  

What quantity is equivalent to the 
reciprocal of t?
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Since there are N molecules in total and they will have a range of speeds, 
the total force exerted on the right-hand wall of the box

F
x
 =   m _ 

L
    (  c   x  1 

  2
   +  c   x  2 

  2
   +  c   x  3 

  2
   + ... +  c   x  N 

  2
   ) 

Where  c   x  1 
  is the x component of velocity of the first molecule,  c   x  2 

  that of 
the second molecule, etc.

With so many molecules in even a small volume of gas, the forces 
average out to give a constant force.

The mean value of the square of the velocities is given by

 
__

  c  x  
2   =   

 (  c   x  1 
  2
   +  c   x  2 

  2
   +  c   x  3 

  2
   + ... +  c   x  N 

  2
   ) 
   ___  

N
  

This means that the total force on the right-hand wall of the box is  
given by F

x
 =   Nm

 ___ L    
__

  c  x  
2   .

Figure 8 shows a velocity vector c being resolved into components c
x
‚ c

y
, 

and c
z
. 

Using Pythagoras’ theorem we see that c2 =  c  x  
2  +  c  y  

2  +  c  z  
2 

It follows that the mean values of velocity can be resolved into the mean 
values of its components such that

 
__

  c  2   =  
__

  c  x  
2   +  

__
  c  y  

2   +  
__

  c  z  
2   

 
__

  c  2   is called the mean square speed of the molecules.

On average there is an equal likelihood of a molecule moving in any 
direction as in any other direction so the magnitude of the mean 
components of the velocity will be the same, i.e.,

 
__

  c  x  
2   =  

__
  c  y  

2   =  
__

  c  z  
2   , so  

__
  c  2   = 3  

__
  c  x  

2   or  
__

  c  x  
2   =   1 __ 3    

__
  c  2  

So our equation for the total force on the right-hand wall becomes  
F =   1 __ 3     Nm

 ___ L    
__
 c2 

The pressure on this wall (which has an area A) is given by p
x =   

 F  X 
 __ A   and 

A = L2 so that

p
x =   1 _ 

3
     Nm _ 

L3
    

__
 c2  or p

x =   1 _ 
3

     Nm _ 
V

    
__
 c2 

Since pressure at a point in a fluid (gas or liquid) acts equally in all 
directions we can write this equation as

p =   1 _ 
3

     Nm _ 
V

    
__
 c2 

As Nm is the total mass of the gas and the density ρ (Greek, rho) is the 
total mass per unit volume, our equation simplifies to

p =   1 _ 
3

   ρ __
 c2 

Be careful not to confuse p, the pressure, with ρ, the density.

You should note that the guidance in the IB Diploma Programme physics 
guide says that you should understand this proof – that does not mean 
that you need to learn it line by line but that each of the steps should 
make sense to you. You should then be able to answer any question 
asked in examinations.

 Figure 8 Resolving the velocity of a molecule.
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Which assumption is related to 
molecules having a range of speeds?

Which assumption is being used here?

Do collisions between 
molecules affect this result?
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Molecular interpretation of temperature
Returning to the equation of an ideal gas in the form

p =   1 __ 3     Nm _ 
V

   
__
 c2 

we get

pV =   Nm _ 
3

   
__
 c2 

Multiplying each side by   3 __ 2   gives

  3 __ 2   pV =  (   3 __ 2     Nm
 ___ 3    
__
 c2   )  = N ×   1 __ 2   m 

__
 c2 

Comparing this with the equation of state for an ideal gas pV = nRT

we can see that   3 __ 2   nRT = N ×   1 __ 2   m 
__
 c2 

This may look a little confusing with both n and N in the equation so 
let’s recap:

n is the number of moles of the gas and N is the number of molecules so 
let’s combine them to give a simpler equation:

  3 __ 2     nRT
 ___ N   =   1 __ 2   m 

__
 c2 

But   N ___ NA

   = n so   N __ n   is the number of molecules per mole (the Avogadro 
number, NA) making the equation:

  3 __ 2     RT
 ___  N  A    =   1 __ 2   m 

__
 c2 

Things get even easier when we define a new constant to be   R ___  N  A    ; this 
constant is given the symbol kB and is called the Boltzmann constant.

So the equation now becomes:

  3 __ 2   kBT =   1 __ 2   m 
__
 c2 

Now   1 __ 2   m 
__
 c2  should remind you of the equation for kinetic energy and, 

indeed, it represents the mean translational kinetic energy of the gas 
molecules. We can see from this equation that the mean kinetic energy gives 
a measure of the absolute temperature of the gas molecules. 

The kinetic theory has linked the temperature (a macroscopic property) 
to the microscopic energies of the gas molecules. In an ideal gas there 
are no long-range intermolecular forces and therefore no potential 
energy components; the internal energy of an ideal gas is entirely 
kinetic. This means that the total internal energy of an ideal gas is 
found by multiplying the number of molecules by the mean kinetic 
energy of the molecules

total internal energy of an ideal gas =   3 __ 2   NkBT

We have only considered the translational aspects of our gas molecules 
in this derivation and this is fine for atomic gases (gases with only 
one atom in their molecules); when more complex molecules are 
considered this equation is slightly adapted using a principle called the 
equipartition of energies (something not included in the IB Diploma 
Programme Physics guide).
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Worked example
Nitrogen gas is sealed in a container at a 
temperature of 320 K and a pressure of  
1.01 × 105 Pa.

a) Calculate the mean square speed of the 
molecules.

b) Calculate the temperature at which the mean 
square speed of the molecules reduces to 50% 
of that in a).

mean density of nitrogen gas over the 
temperatures considered = 1.2 kg m−3

Solution 
a) p =   1 __ 3   ρ __

 c2  so  
__
 c2  =   

3p
 __ ρ   =   3 × 1.01 × 105

 ___________ 1.2    

= 2.53 × 105 m2 s−2 (notice the unit here?)

b)  
__
 c2  ∝ T so the temperature would need to be 

50% of the original value (i.e. it would be  
160 K).

  Nature of science
Maxwell–Boltzmann distribution
In the 1850s James Clerk Maxwell realized 
that a gas had too many molecules to have any 
chance of being analysed using Newton’s laws 
(even though this could be done in principle). 
With no real necessity to consider the motion of 
individual molecules he realized that averaging 
techniques could be used to link the motion of 
the molecules with their macroscopic properties. 
He recognized that he needed to know the 
distribution of molecules having different speeds. 
Ludwig Boltzmann had proposed a general 
idea about how energy was distributed among 
systems consisting of many particles and Maxwell 
developed Boltzmann’s distribution to show how 
many particles have a particular speed in the gas. 
Figure 9 shows the three typical distributions 

for the same number of gas molecules at three 
different temperatures. At higher temperatures 
the most probable speed increases but overall 
there are less molecules travelling at this speed 
since there are more molecules travelling at 
higher speeds. The speeds of molecules at these 
temperatures can be greater than 1 km s–1 (but 
they don’t travel very far before colliding with 
another molecule!).

The Maxwell–Boltzmann distribution was first 
verified experimentally between 1930 and 1934 by 
the American physicist I F Zartman using methods 
devised by the German-American Otto Stern in the 
1920s. Zartman measured the speed of molecules 
emitted from an oven by collecting them on the 
inner surface of a rotating cylindrical drum. 

Alternative equation of state of an ideal gas
The gas laws produced the equation of state in the form of pV = nRT. 
Now we have met the Boltzmann constant we can use an alternative 
form of this equation. As we have seen n represents the number of 
moles of our ideal gas and R is the universal molar gas constant. If we 
want to work with the number of molecules in the gas (as physicists 
often do) the equation of state can be written in the form of pV = NkBT 
where N represents the number of molecules and kB is the Boltzmann 
constant. Thus nR = NkB and if we consider 1 mol of gas then n = 1 
and N = NA = 6.02 × 1023. We see from this why kB =   R __ NA

   as was used 
previously.

With R = 8.3 J K–1 mol–1 kB must =   8.3 J mol–1 K–1

  ____________  
6.02 × 1023 mol–1   = 1.38 × 10−23 J K−1

Note
When you look at the unit 
for Boltzmann's constant 
you should see a similarity 
with specific heat capacity. 
This is like the specific heat 
capacity for one mole of every 
monatomic gas
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  Nature of science
Real gases
An ideal gas is one that would obey the gas laws 
and the ideal gas equation under all conditions – so 
ideal gases cannot be liquefied. In 1863, the Irish 
physician and chemist Thomas Andrews succeeded 
in plotting a series of p–V curves for carbon dioxide; 
these curves deviated from the Boyle’s law curves 
at high pressures and low temperatures. Until this 
time it had been believed that certain gases could 
never be liquefied. Andrews showed that there was 
a critical temperature above which the gas could 
not be liquefied by simply increasing the pressure. 
He demonstrated that for carbon dioxide the critical 
temperature is approximately 31 °C.

The difference between ideal gases and  
real gases
The 19th century experimenters showed that ideal 
gases are just that – ideal – and that real gases do 
not behave as ideal gases. Under high pressures 
and low temperatures all gases can be liquefied 
and thus become almost incompressible. This can 
be seen if we plot a graph of   

pV
 ___ RT   against p for one 

mole of a real gas – we would expect this plot to 
give a horizontal straight line of value of 1.00 for 

an ideal gas. Figure 10 is such a plot for nitrogen. 
The pressure axis is in atmospheres – this is a 
non-SI unit that is appropriate for high pressures 
and quite commonly used by experimenters (e.g. 
900 atm converts to 900 × 1.01 × 105 Pa or 9.1 × 
107 Pa). The ideal gas line is a better fit to the real 
gas line at 1000 K and better still at low pressure. 

 Figure 9 Maxwell–Boltzmann distribution for the speed of gas molecules.
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 Figure 10 Deviation of a real gas from an ideal gas situation.
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Thus we can see that the best approximation of a 
real gas to an ideal gas is at high temperature and 
low pressures. In deriving the ideal gas equation 
we made assumptions that are not true for a 
real gas. In particular we said that “there are no 
intermolecular forces between the molecules in 
between collisions.” This is not true for real gases 
on two accounts:

● Short-range repulsive forces act between gas 
molecules when they approach each other – 
thereby reducing the effective distance in which 
they can move freely (and so actually reducing 
the useful gas volume below the value of V that 
we considered).

● At slightly greater distances the molecules 
will exert an attractive force on each other – 
this causes the formation of small groups 

of loosely attached molecules. This in turn 
reduces the effective number of particles in 
the gas. With the groups of molecules at the 
same temperature as the rest of the gas, they 
have the same translational kinetic energy 
and momentum as other groups of molecules 
or individual molecules. The overall effect 
of intermolecular attraction is to reduce the 
pressure slightly.

The Dutch physicist Johannes van der Waals was 
awarded the 1910 Nobel Physics Prize for his work 
in developing a real gas equation, which was a 
modification of the ideal gas equation. In this 
equation two additional constants were included 
and each of these differed from gas to gas. In the 
ensuing years many have tried to formulate a 
single simple equation of state which applies to all 
gases, no one has been successful to date. 

TOK

Empirical versus theoretical models

Theoretical models such as the kinetic theory of gas are 
based on certain assumptions. If these assumptions are 
not met in the real world, the model may fail to predict 
a correct outcome as is the case with real gases at high 
pressure and low temperature.

Despite the best efforts of van der Waals and others, there 
is no theorectical model that gives the right answer for all 
gases in all states. This, however, does not mean that we 
cannot make correct predictions about a particular gas – 
we can use an empirical model that is based on how the 
gas has behaved in these circumstances previously. We 
can sensibly expect that if the conditions are repeated 
then the gas will behave in the same way again. In the 
17th century, with no understanding of the nature of gas 
molecules, a theoretical model of gases was not possible 
and so Boyle, Charles, and others could only formulate 
empirical laws that were repeatable with the precision 
that their apparatus allowed. In the 21st century we still 
rely on empirical methods when gases are not behaving 
ideally; even when the van der Waals modification of the 
equation of state for an ideal gas is used, the constants 
that need to be included are different from gas to gas and 
determined experimentally. So even though it is, perhaps, 
aesthetically pleasing to have a “one size fits all” equation, 
the reality is that theoretical models rarely account for all 
circumstances. Even Newton’s laws of motion must be 

modified when objects are moving at speeds approaching 
that of light. Theoretical models are not inherently better 
than empirical models, or vice versa. The best model, 
whether it is theoretical or empirical, is the model that gives 
the best predictions for a particular set of circumstances.

 When a set of experimental results are not in line 
with theory does this mean that the theory must be 
abandoned?

 In March 2012 the following report appeared on the 
BBC website:

“The head of an experiment that appeared to 
show subatomic particles travelling faster than 
the speed of light has resigned from his post….. 
Earlier in March, a repeat experiment found that 
the particles, known as neutrinos, did not exceed 
light speed. When the results from the Opera group 
at the Gran Sasso underground laboratory in Italy 
were first published last year, they shocked the 
world, threatening to up-end a century of physics 
as well as relativity theory – which holds the speed 
of light to be the Universe’s absolute speed limit.”

The media were very quick to applaud the experiment when 
the initial results were published, but the scientific community 
was less quick to abandon a well-established “law”. Which of 
the two groups was showing bias in this case?
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Questions
1 Two objects are in thermal contact. State and 

explain which of the following quantities 
will determine the direction of the transfer of 
energy between these objects?

a) The mass of each object.

b) The area of contact between the objects.

c) The specific heat capacity of each object.

d) The temperature of each object. (4 marks)

2 Two objects are at the same temperature. 
Explain why they must have the same internal 
energy. (2 marks)

3 The internal energy of a piece of copper is 
increased by heating.

a) Explain what is meant, in this context, by 
internal energy and heating. 

b) The piece of copper has mass 0.25 kg. The 
increase in internal energy of the copper is 
1.2 × 103 J and its increase in temperature 
is 20 K. Estimate the specific heat capacity 
of copper. (4 marks)

4 Calculate the amount of energy needed to raise 
the temperature of 3.0 kg of steel from 20 °C to 
120 °C. The specific heat capacity of steel is  
490 J kg–1 K–1.  (2 marks)

5 Calculate the energy supplied to 0.070 kg of 
water contained in a copper cup of mass  
0.080 kg. The temperature of the water and  
the cup increases from 17 °C to 25 °C.  

Specific heat capacity of water = 4200 J kg–1K–1

Specific heat capacity of copper = 390 J kg–1 K–1 

 (2 marks)

6 The temperature difference between the 
inlet and the outlet of an air-cooled engine is 
30.0 K. The engine generates 7.0 kW of waste 
power that the air extracts from the engine. 
Calculate the rate of flow of air (in kg s–1) 
needed to extract this power.  

Specific heat capacity of air (at constant pressure) 
= 1.01 × 103 J kg–1 K–1 (3 marks)

7 2.0 kg of water at 0 °C is to be changed into ice 
at this temperature. The same mass of water 
now at 100 °C is to be changed into steam at 
this temperature.

Specific latent heat of fusion of water = 3.34 × 
105 J kg–1

Specific latent heat of vaporization of water = 
2.26 × 106 J kg–1

a) Calculate the amount of energy needed to 
be removed from the water to freeze it.

b) Calculate the amount of energy required by 
the water to vaporize it.

c) Explain the difference between the values 
calculated in a) and b). (6 marks)

8 (IB) A container holds 20 g of neon and also 8 g 
of helium. The molar mass of neon is 20 g and 
that of helium is 4 g.

Calculate the ratio of the number of atoms of 
neon to the number of atoms of helium.  
 (2 marks)

9 A fixed mass of an ideal gas is heated at 
constant volume. Sketch a graph to show 
the variation with Celsius temperature t with 
pressure p of the gas? (3 marks)

10 Under what conditions does the equation of 
state for an ideal gas, pV = nRT, apply to a 
real gas? (2 marks)

11 a) (i)    Explain the difference between an ideal 
gas and a real gas.

 (ii)  Explain why the internal energy of an ideal 
gas comprises of kinetic energy only.

b) A fixed mass of an ideal gas has a volume of 
870 cm3 at a pressure of 1.00 × 105 Pa and a 
temperature of 20.0 °C. The gas is heated at 
constant pressure to a temperature of 21.0 °C.

 Calculate the change in volume of the gas. 
 (6 marks)
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12 (IB)

a) The pressure p of a fixed mass of an ideal 
gas is directly proportional to the kelvin 
temperature T of the gas, that is, p ∝ T.

 (i)    State the relation between the pressure 
p and the volume V for a change at 
constant temperature.

 (ii)  State the relation between the volume 
V and kelvin temperature T for a change 
at a constant pressure.

b) The ideal gas is held in a cylinder by a 
moveable piston. The pressure of the 
gas is p

1
, its volume is V

1
 and its kelvin 

temperature is T
1
. 

 The pressure, volume and temperature are 
changed to p

2
, V

2 and T
2
 respectively. The 

change is brought about as illustrated below.

p1, V1, T1 p2, V1, T' p2, V2, T2

heated at constant volume to
pressure p2 and temperature T' 

heated at constant pressure to
volume V2 and temperature T2 

State the relation between

 (i)    p1, p2, T1 and T ′
 (ii) V1, V2, T′ and T2

c) Use your answers to b) to deduce, that for 
an ideal gas

 pV = KT,

 where K is a constant. (6 marks)

13 A helium balloon has a volume of 0.25 m3 
when it is released at ground level. The 
temperature is 30 °C and the pressure  
1.01 ×105 Pa. The balloon reaches a height such 
that its temperature has fallen to –10 °C and its 
pressure to 0.65 × 105 Pa.

a) Calculate the new volume of the balloon.

b) State two assumptions that must be made 
about the helium in the balloon.

c) Calculate the number of moles of helium in 
the balloon. (6 marks)
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4  O S C I L L AT I O N S  A N D  W AV E S
Introduction
All motion is either periodic or non-periodic. In 
periodic motion an object repeats its pattern 
of motion at fixed intervals of time: it is regular 
and repeated. Wave motion is also periodic and 

there are many similarities between oscillations 
and waves; in this topic we will consider the 
common features but also see that there are 
differences.

2.1 Motion4.1 Oscillations 

Understanding
 ➔ Simple harmonic oscillations 
 ➔ Time period, frequency, amplitude, 

displacement, and phase difference 
 ➔ Conditions for simple harmonic motion

  Applications and skills
 ➔ Qualitatively describing the energy changes 

taking place during one cycle of an oscillation
 ➔ Sketching and interpreting graphs of simple 

harmonic motion examples 

Equations
 ➔ Period-frequency relationship: T =   1 ___ f  
 ➔ Proportionality between acceleration and 

displacement: a ∝ – x

  Nature of science
Oscillations in nature 
Naturally occurring oscillations are very common, 
although they are often enormously complex. When 
analysed in detail, using a slow-motion camera, 
a hummingbird can be seen to flap its wings at 
a frequency of around 20 beats per second as it 
hovers, drinking nectar. Electrocardiographs are 
used to monitor heartbeats as hearts pulsate, 
pushing blood around our bodies at about one per 
second when we are resting and maybe two or three 
times this rate as we exert ourselves. Stroboscopes 
can be used to freeze the motion in engines and 
motors where periodic motion is essential, but 
too strong vibrations can be potentially very 
destructive. The practical techniques that have 
been developed combined with the mathematical 
modelling that is used to interpret oscillations  

are very powerful tools; they can help us to 
understand and make predictions about many 
natural phenomena.

▲ Figure 1 Hummingbird hovering over flower.
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Isochronous oscillations
A very common type of oscillation is known as isochronous (taking the 
same time). These are oscillations that repeat in the same time period, 
maintaining this constant time property no matter what amplitude changes 
due to damping occur. It is the isochronicity of oscillations such as that 
of a simple pendulum that has made the pendulum such an important 
element of the clock. If we use a stroboscope (or strobe) we can freeze 
an isochronous oscillation so that it appears to be stationary; the strobe is 
made to flash at a regular interval, which can be matched to the oscillation. 
If the frequency of the strobe matches that of the oscillating object then, 
when the object is in a certain position, the strobe flashes and illuminates 
it. It is then dark while the object completes an oscillation and returns to 
the same position when the strobe flashes again. In this way the object 
appears motionless. The lowest frequency of the strobe that gives the object 
the appearance of being static will be the frequency of the object. If you 
now double the strobe frequency the object appears to be in two places. 
Figure 2 shows a swinging pocket watch which is illuminated with strobe 
light at 4 Hz, so the time interval between the images is 0.25 s. The watch 
speeds up in the middle and slows down at the edges of the oscillation.

Describing periodic motion
The graph in figure 3 is an electrocardiograph display showing the rhythm 
of the heart of a healthy 48-year-old male pulsing at 65 beats per minute. 
The pattern repeats regularly with the repeated pattern being called the 
cycle of the motion. The time duration of the cycle is called the time 
period or the period (T) of the motion. Thus, a person with a pulse of 65 
beats per minute has an average heartbeat period of 0.92 s. 

A

▲ Figure 3 Normal adult male heart rhythm.

Let us now compare the pattern of figure 3 with that of figure 4, 
which is a data-logged graph of a loaded spring. The apparatus used 
for the datalogging is shown in figure 5 and the techniques discussed 
in the Investigate! section on p117. The graph for the loaded spring is 
a more straightforward example of periodic motion, obtained as the 
mass suspended on a spring oscillates up and down, above and below 
its normal rest position. There are just over 12 complete oscillations 
occurring in 20 seconds giving a period of approximately 1.7 s. Although 
the two graphs are very different the period is calculated in the same way.

As the mass passes its rest or equilibrium position its displacement 
(x) is zero. We have seen in Topics 1 and 2 that displacement is a vector 

▲  Figure 2 Pocket watch under strobe 
light.
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quantity and, therefore, must have a direction. In this case, since 
the motion is linear or one dimensional, it is sufficient to specify the 
direction as simply being positive or negative. The choice of whether 
above or below the rest position is positive is arbitrary but, once 
decided, this must be used consistently. In the graph of figure 4 the 
data logger has been triggered to start as the mass passes through the 
rest position. In this case positive displacements are above the rest 
position – so the mass is moving downwards when timing is started. 

The maximum value of the displacement is called the amplitude (x0). 
In the case of the loaded spring the amplitude is a little smaller than 
0.25 m. It is much more difficult to measure the amplitude for the 
heart rhythm (figure 3) because of determining the rest position – 
additionally with no calibration of the scale it is impossible to give any 
absolute values. The amplitude is marked as A which is approximately 
3 cm on this scale.

The frequency (f ) of an oscillation is the number of oscillations 
completed per unit time. When the time is in seconds the frequency 
will be in hertz (Hz). Scientists and engineers regularly deal with 
high frequencies and so kHz, MHz, and GHz are commonly seen. The 
vibrations producing sound waves range from about 20 Hz to 20 kHz 
while radio waves range from about 100 kHz to 100 MHz. 

With frequency being the number of oscillations per second and 
period the time for one oscillation you may have already spotted the 
relationship between these two quantities:

T =   1 _ 
f
  

▲ Figure 4 Loaded spring.
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▲ Figure 5 Data logger arrangement.

spring

rigid card 

retort stand

clamp

always more than
25 cm above
motion sensor

motion sensor

mesh guard

Worked example
A child’s swing oscillates 
simple harmonically with a 
period of 3.2 s. What is the 
frequency of the swing?

Solution
T =   1 _ 

f
   so f =   1 _ 

T
  

=   1 _ 
3.2

   = 0.31 Hz

  Investigate!
In this investigation, a motion sensor is used to 
monitor the position of a mass suspended from 
the end of a long spring. The data logger software 
processes the data to produce a graph showing 
the variation of displacement with time. The 
apparatus is arranged as shown in figure 5 with 
the spring having a period of at least 1 second.

 ● The apparatus is set up as shown above. 

 ● The mass is put into oscillation by displacing 
and releasing it.

 ● The details of the data logger will determine 
the setting values but data loggers can usually 
be triggered to start reading at a given 
displacement value.
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 ● Motion sensors use ultrasound, so reflections 
from surroundings should be avoided.

 ● The software can normally be used to plot 
graphs of velocity and acceleration (in addition 
to displacement) against time.

 ● Similar investigations can be performed with 
other oscillations. 

  Nature of Science
“Simple” for physicists
“Simple” does not mean “easy” in the context of 
physics! In fact, mathematically (as discussed in 
Sub-topic 9.1) simple harmonic motion (SHM) is 
not “simple”. Simple may be better thought of as 
simplified in that we make life easier for ourselves by 
either limiting or ignoring some of the forces that 
act on a body. A simple pendulum consists of a mass 
suspended from a string. In dealing with the simple 

pendulum the frictional forces acting on it (air 
resistance and friction between the string and the 
suspension) and the fact that the mass will slightly 
stretch the string are ignored without having any 
disastrous effect on the equations produced. It also 
means that smooth graphs are produced, such as for 
the loaded spring.

Simple harmonic motion
We saw that the graph produced by the mass oscillating on the spring was 
much less complex than the output of a human heart. The mass is said to 
be undergoing simple harmonic motion or SHM.

In order to perform SHM an object must have a restoring force acting on it.

 ● The magnitude of the force (and therefore the acceleration) is 
proportional to the displacement of the body from a fixed point.

 ● The direction of the force (and therefore the acceleration) is always 
towards that fixed point.

Focusing on the loaded spring, the “fixed point” in the above definition is the 
equilibrium position of the mass – where it was before it was pulled down. 
The forces acting on the mass are the tension in the spring and the pull of 
gravity (the weight). In the equilibrium position the tension will equal the 
weight but above the equilibrium the tension will be less and the weight will 
pull the mass downward; below the equilibrium position the tension will 
be greater than the weight and this will tend to pull the mass upwards. The 
difference between the tension and the weight provides the restoring force – 
the one that tends to return the mass to its equilibrium position.

We can express the relationship between acceleration a and displacement 
x as:

a ∝ – x

which is equivalent to

a = – kx

This equation makes sense if we think about the loaded spring. When 
the spring is stretched further the displacement increases and the tension 
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increases. Because force = mass × acceleration, increasing the force increases 
the acceleration. The same thing applies when the mass is raised but, in 
this case, the tension decreases, meaning that the weight dominates and 
again the acceleration will increase. So although we cannot prove the 
proportionality (which we leave for HL) the relationship makes sense.

The minus sign is explained by the second bullet point “the acceleration 
is always in the opposite direction to the displacement”. So choosing 
upwards as positive when the mass is above the equilibrium position, 
the acceleration will be downwards (negative). When the mass is below 
the equilibrium position (negative), the (net) force and acceleration are 
upwards (positive). The force decelerates the mass as it goes up and then 
accelerates it downwards after it stopped.

Figure 6 is a graph of a against x. We can see that a = – kx. takes the 
form y = mx + c with the gradient being a negative constant.

Graphing SHM
From Topic 2 we know that the gradient of a displacement–time graph 
gives the velocity and the gradient of the velocity–time graph gives the 
acceleration at any given time. This remains true for any motion. Let’s 
look at the displacement graph for a typical SHM.

In figure 7 the graph is a sine curve (but if we chose to start measuring 
the displacement from any other time it could just as easily be a cosine, 
or a negative sine, or any other sinusoidally shaped graph). If we want 
to find the velocity at any particular time we simply need to find the 
gradient of the displacement–time graph at that time. With a curved graph 
we must draw a tangent to the curve (at our chosen time) in order to find 
a gradient. The blue tangent at 0 s has a gradient of +2.0 cm s–1, which 
gives the maximum velocity (this is the steepest tangent and so we 
see the velocity is a maximum at this time). Looking at the gradient at 
around 1.6 s or 4.7 s and you will see from the symmetry that it will give 
a velocity of –2.0 cm s−1, in other words it will be the minimum velocity 
(i.e. the biggest negative velocity). At around 0.8, 2.4, 3.9, and 5.5 s the 
gradient is zero so the velocity is zero.

▲ Figure 7 The displacement graph for a typical SHM.
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▲  Figure 6 Acceleration–displacement 
graph.
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Using these values you will see that, overall, the velocity is going to change 
as shown in figure 8(b); it is a cosine graph in this instance.

You may remember that the gradient of the velocity–time graph gives 
the acceleration and so if we repeat what we did for displacement to 
velocity, we get figure 8(c) for the acceleration graph. You will notice 
that this is a reflection of the displacement–time graph in the time axis 
i.e. a negative sine curve. This should be no surprise, since from our 
definition of simple harmonic motion we expect the acceleration to be a 
negative constant multiplied by the displacement.
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▲ Figure 8 The variation with time of displacement, velocity, and acceleration.

Directions with SHM

In many situations it is helpful 
to think about the magnitude 
of the velocity i. e. speed.

For SHM organize a table for 
an object oscillating between 
+A and -A. In your table 
show where the magnitudes 
of the position, velocity, 
acceleration and force are 
(a) zero and (b) maximum. 
Once you have done that 
mark in the directions of 
these these vectors at +A, 
-A and zero. By doing this 
you should be thinking 
physics before algebra.

Worked examples
1 On a sheet of graph paper sketch two cycles of 

the displacement–time (x - t) relationship for a 
simple pendulum. Assume that its displacement 
is a maximum at time 0 seconds. Mark on 
the graph a time for which the velocity is 
maximum (labeled A), a time for which the 
velocity is zero (labeled B) and a time for which 
the acceleration is a maximum (labeled C).

Solution
x

t

A B C
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Note 
 This is a sketch graph so no units are needed – 

they are arbitrary.  

 A, B, and C are each labelled on the time axis – as 
this is what the question asks.

 There are just two cycles (two complete periods) 
marked – since this is what the question asks.

 A is where the gradient of the displacement–time 
graph is a maximum.

 B is where the gradient of the displacement–
time graph is a zero.

 C is where the displacement is a minimum –  
because a = –kx this means that the 
acceleration will be a maximum.

2 The equation defining simple harmonic 
motion is a = –kx.

a) What are the units of the constant k?

b) Two similar systems oscillate with simple 
harmonic motion. The constant for 
system S1 is k, while that for system S2 is 
4k. Explain the difference between the 
oscillations of the two systems.

Solution
a) Rearranging the equation we obtain 

   k = –   a _ x  

Substituting the units for the quantities gives 
unit of k = –   ms–2

 ____ m   = s–2

So the units of k are s–2 or per second  
squared – this is the same as frequency 
squared (and could be written as Hz2).

b) Referring to the solution to (a) we can see that 
for S2 the square of the frequency would be 4 
times that of S1. This means that S2 has  √

__
 4   or 

twice the frequency (or half the period) of S. 
That is the difference.

Phase and phase difference
Referring back to figures 8 a, b, and c we can see that there is a big 
similarity in how the shapes of the displacement, velocity, and acceleration 
graphs change with time. The three graphs are all sinusoidal – they take the 
same shape as a sine curve. The difference between them is that the graphs 
all start at different points on the sine curve and continue like this. The 
graphs are said to have a phase difference.

When timing an oscillation it really doesn’t matter when we start timing – we 
could choose to start at the extremes of the oscillation or the middle. In doing 
this the shape of the displacement graph would not change but would look 
like the velocity graph (quarter of a period later) or acceleration graph (half 
a period later). From this we can see that the phase difference between the 
displacement–time graph and the velocity–time graph is equivalent to quarter 
of a period or   T __ 4   (we could say that velocity leads displacement by quarter of 
a period). The phase difference between the displacement–time graph and 
the acceleration–time graph is equivalent to half a period or   T __ 2   (we could say 
that acceleration leads displacement by half a period or that displacement leads 
acceleration by half a period – it makes no difference which).

Although we have discussed phase difference in term of periods here, it is 
more common to use angles. However, transferring between period and 
angle is not difficult:

Period T is equivalent to 360° or 2π radians, 

so   T __ 2   is equivalent to 180° or π radians 

and   T __ 4   is equivalent to 90° or   π __ 2   radians.

When the phase difference is 0 or T then two systems are said to be 
oscillating in phase.
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Worked example
1 Calculate the phase difference between the 

two displacement–time graphs shown in  
figure 9. Give your answers in a) seconds b) 
radians c) degrees.
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▲ Figure 9

Solution
a) It can be seen from either graph that the 

period is 2.0 s. 

Drawing vertical lines through the peaks of 
the two curves shows the phase difference. 
This appears to be between 0.25–0.26 s so we 
will go with (0.25 ± 0.01) s.

b) The period (2.0 s) is equivalent to 2π radians, 
so taking ratios:

  2.0
 ___ 2π   =   0.25

 ____ ϕ   (where ϕ is the phase difference in 

radians)

This gives a value for ϕ of 0.79 radian.

c) The period (2.0 s) is equivalent to 360°, so 
taking ratios: 

  2.0
 ___ 360   =   0.25

 ____ ϕ   (where ϕ is the phase difference in 
degrees)

This gives a value for ϕ of 45°.
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▲ Figure 10

Energy changes in SHM
Let’s think of the motion of the simple pendulum of figure 11 as an 
example of a system which undergoes simple harmonic motion. For a 
pendulum to oscillate simple harmonically the string needs to be long and 
to make small angle swings (less than 10°). The diagram is, therefore, not 
drawn to scale. Let’s imagine that the bob just brushes along the ground 
when it is at its lowest position. When the bob is pulled to position A, it 
is at its highest point and has a maximum gravitational potential energy 
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(GPE). As the bob passes through the rest position B, it 
loses all the GPE and gains a maximum kinetic energy 
(KE). The bob now starts to slow down and move towards 
position C when it briefly stops, having regained all its 
GPE. In between A and B and between B and C the bob 
has a combination of KE and GPE.

In a damped system over a long period of time the 
maximum height of the bob and its maximum speed will 
gradually decay. The energy gradually transfers into the 
internal energy of the bob and the air around it. Damping 
will be discussed in Option B.4.

▲ Figure 11 simple pendulum.
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4.2 Travelling waves 

  Nature of science
Patterns and trends in physics
One of the aspects of waves that makes it an 
interesting topic is that there are so many similarities 
with just enough twists to make a physicist think. 
Transverse waves have many similarities to 
longitudinal waves, but there are equally many 
differences. An electromagnetic wave requires no 
medium through which to travel, but a mechanical 

wave such a sound does need a medium to carry it; 
yet the intensity of each depends upon the square of 
the amplitude and the two waves use the same wave 
equation. Physicists enjoy patterns but at the same 
time they enjoy the places where patterns and trends 
change – the similarities give confidence but the 
differences can be thought-provoking.

Understanding
 ➔ Travelling waves
 ➔ Wavelength, frequency, period, and wave speed
 ➔ Transverse and longitudinal waves 
 ➔ The nature of electromagnetic waves
 ➔ The nature of sound waves

  Applications and skills
 ➔ Explaining the motion of particles of a medium 

when a wave passes through it for both 
transverse and longitudinal cases

 ➔ Sketching and interpreting displacement –
distance graphs and displacement – time 
graphs for transverse and longitudinal waves

 ➔ Solving problems involving wave speed, 
frequency, and wavelength

 ➔ Investigating the speed of sound 
experimentally

Equation
 ➔ The wave equation: c = fλ
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Introduction
When you consider waves you probably immediately think of the 
ripples on the surface of a lake or the sea. It may be difficult to 
think of many examples of waves, but this topic is integral to our 
ability to communicate and, since life on Earth is dependent on 
the radiation that arrives from the Sun, humankind could not exist 
without waves.

Waves are of two fundamental types:

 ● mechanical waves, which require a material medium through 
which to travel

 ● electromagnetic waves, which can travel through a vacuum.

Both types of wave motion can be treated analytically by equations  
of the same form. Wave motion occurs in several branches of 
physics and an understanding of the general principles underlying 
their behaviour is very important. Modelling waves can help us to 
understand the properties of light, radio, sound ... even aspects of the 
behaviour of electrons.

Travelling waves
Figure 2 shows a slinky spring being used to demonstrate some of the 
properties of travelling waves.

With one end of the stretched spring fixed (as in figure 3(a)),  
moving the other end sharply upwards will send a pulse along the 
spring. The pulse can be seen to travel along the spring until it  
reaches the fixed end; then it reflects and returns along the spring. 
On reflection the pulse changes sides and what was an upward pulse 
becomes a downwards pulse. The pulse has undergone a phase  
change of 180° or π radians on reflection. When the end that was  
fixed is allowed to move there is no phase change on reflection as  
shown in figure 3(b) and the pulse travels back on the same side that it 
went out.

Note 
You should discuss with fellow students how Newton’s second and third laws of 
motion apply to the motion of the far end of the spring.

Observing the motion of a slinky can give much insight into the 
movement of travelling waves. To help focus on the motion of the 
spring, it is useful if one of the slinky coils is painted to make it stand  
out from the others. The coils are being used to model the particles of 
the medium through which the wave travels – they could be air or  
water molecules. If a table tennis ball is placed beside the spring, it 
shoots off at right angles to the direction of the wave pulse. This  
shows that this is a transverse wave pulse – the direction of the  
pulse being perpendicular to the direction in which the pulse travels 
along the slinky. When the slinky is vibrated continuously from  
side to side a transverse wave is sent along the spring as shown in  
figure 4 overleaf.

▲  Figure 1 Ripples spreading out 
from a stone thrown into a pond.

▲  Figure 2 Slinky spring being used to 
demonstrate travelling waves.

fixed end end free
to move

(a) (b)

▲  Figure 3 Reflection of wave pulses.
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▲ Figure 4 Transverse waves on a slinky spring.

From observing the wave on the spring and water waves on a pond we 
can draw the following conclusions:

 A wave is initiated by a vibrating object (the source) and it travels 
away from the object.

 The particles of the medium vibrate about their rest position at the 
same frequency as the source.

 The wave transfers energy from one place to another.

A slinky can generate a different type of wave called a longitudinal 
wave. In this case the free end of a slinky must be vibrated back and 
forth, rather than from side to side. As a result of this the coils of the 
spring will vibrate about their rest position and energy will travel along 
the spring in a direction parallel to that of the spring’s vibration as 
shown in figure 5.

rarefaction compression

▲ Figure 5 Longitudinal waves on a slinky spring.

Describing waves
When we describe wave properties we need specialist vocabulary to help us:

 Wavelength λ is the shortest distance between two points 
that are in phase on a wave, i.e. two consecutive crests or two 
consecutive troughs.

 Frequency f is the number of vibrations per second performed by 
the source of the waves and so is equivalent to the number of crests 
passing a fixed point per second.

 Period T is the time that it takes for one complete wavelength 
to pass a fixed point or for a particle to undergo one complete 
oscillation.

Amplitude A is the maximum displacement of a wave from its rest 
position.

These definitions must be learned, but it is often easier to describe waves 
graphically. There are two types of graph that are generally used when 
describing waves: displacement–distance and displacement–time graphs. 
Such graphs are applicable to every type of wave. 
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For example displacement could represent: 

 ● the displacement of the water surface from its normal flat position 
for water waves

 ● the displacement of air molecules from their normal position for 
sound waves

 ● the value of the electric field strength vector for electromagnetic waves.

Displacement–distance graphs
This type of graph is sometimes called a wave profile and represents the 
displacement of many wave particles at a particular instant of time. On 
figure 6 the two axes are perpendicular but, in reality, this is only the 
case when we describe transverse waves (when the graph looks like a 
photograph of the wave taken at a particular instant). For longitudinal 
waves the actual displacement and distance are parallel. Figure 7 shows 
how the particles of the medium are displaced from the equilibrium 
position when the longitudinal wave travels through the medium 
forming a series of compressions (where the particles are more bunched 
up than normal) and rarefactions (where the particles are more spread 
out than normal). In this case the particles that are displaced to the left of 
their equilibrium position are given a negative displacement, while those 
to the right are allocated a positive displacement.

0.5

0

displacement/cm

−0.5

2 4 6 8 distance/cm

trough

amplitude

wavelength

crest cresttrough

▲ Figure 6 Transverse wave profile.
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▲ Figure 7 Longitudinal wave profile.

126

4 O S C I LL AT I O N S  A N D  WAV E S

126

4 O S C I LL AT I O N S  A N D  WAV E S



It is very easy to read the amplitude and wavelength directly from a 
displacement–time graph. For the longitudinal wave the wavelength 
is both the crest-to-crest distance and the distance between two 
consecutive compressions or rarefactions.

Using a sequence of displacement–distance graphs can provide a good 
understanding of how the position of an individual particle changes 
with time in both transverse and longitudinal waves (figure 8). On this 
diagram the wave profile is shown at a quarter period  (   T __ 4   )  intervals; 
diagrams like this are very useful in spotting the phase difference 
between the particles. P and Q are in anti-phase here (i.e. 180° or π 
radians out of phase) and Q leading R by 90° or   π __ 2   radians. You may wish 
to consider the phase difference between P and R.
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▲ Figure 8 Sequence of displacement-distance graphs at   T ___ 4   time intervals.
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Displacement–time graphs
A displacement–time graph describes the displacement of one particle at 
a certain position during a continuous range of times. Figure 9 shows the 
variation with time of the displacement of a single particle. Each particle 
along the wave will undergo this change (although with phase difference 
between individual particles).

0.5

0

−0.5

time/s

displacement/cm

T
2

T 2T3T
2

▲ Figure 9 Displacement–time graphs.

This graph makes it is very easy to spot the period and the amplitude of 
the wave.

The wave equation
When a source of a wave undergoes one complete oscillation the wave 
it produces moves forward by one wavelength (λ). Since there are f 
oscillations per second, the wave progresses by f λ during this time and, 
therefore, the velocity (c) of the wave is given by c = f λ.

With f in hertz and λ in metres, c will have units of hertz metres or 
(more usually) metres per second. You do need to learn this derivation 
and it is probably the easiest that you will come across in IB Physics.

Worked example
The diagram below represents the direction of 
oscillation of a disturbance that gives rise to 
a wave.

a) Draw two copies of the diagram and add 
arrows to show the direction of wave energy 
transfer to illustrate the difference between (i) a 
transverse wave and (ii) a longitudinal wave.

b) A wave travels along a stretched string. The 
diagram to the right shows the variation with 
distance along the string of the displacement 
of the string at a particular instant in time. A 
small marker is attached to the string at the 
point labelled M. The undisturbed position of 
the string is shown as a dotted line.

directions of wave travel

M

On a copy of the diagram: 

  (i)  Draw an arrow to indicate the direction in 
which the marker is moving.

(ii)  Indicate, with the letter A, the amplitude 
of the wave.

Note 
It is common to confuse 
displacement–distance 
graphs (where crest-to-crest 
gives the wavelength) with 
displacement–time graphs 
(where crest-to-crest gives the 
period).
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(iii)  Indicate, with the letter λ, the wavelength 
of the wave.

(iv)  Draw the displacement of the string a 
time T/4 later, where T is the period of 
oscillation of the wave.

  (v)  Indicate, with the letter N, the new 
position of the marker.

c) The wavelength of the wave is 5.0 cm and its 
speed is 10 cm s–1.

Determine:

  (i) the frequency of the wave

(ii)  how far the wave has moved in a quarter 
of a period.

Solution
a) (i)  The energy in a transverse wave travels in 

a direction perpendicular to the direction 
of vibration of the medium:

direction of vibration
direction of energy 

(ii) The energy in a longitudinal wave travels 
in a direction parallel to the direction of 
vibration of the medium:

direction of vibration

direction of energy 

b) direction of wave

M

A

N trough

crest
λ

A

    (i)  With the wave travelling to the left, 
the trough shown will move to the 
left and that must mean that M moves 
downwards.

 (ii)  The amplitude (A) is the height of a crest 
or depth of a trough.

(iii)  The wavelength (λ) is the distance 
equivalent to crest to next crest or trough 
to next trough.

(iv)  In quarter of a period the wave will have 
moved quarter of a wavelength to the left 
(broken line curve).

 (v)  After quarter of a period the marker is 
now at the position of the trough (N).

c)  (i)  f =   c __ λ   =   10
 __ 5   = 2.0 Hz (since both 

wavelength and speed are in cm, there is 
no need to convert the units)

(ii) T =   1 __ 
f
   = 0.5 s

 Because the wave moves at a constant speed 

 s = ct = c   T _ 
4

   = 10 × 0.125 = 1.25 cm

  Investigate!
Measuring the speed of sound
Here are two of the many ways of measuring the 
speed of sound in free air (i.e. not trapped in a 
tube).

Method one – using a fast timer
This is a very simple method of measuring the 
speed of sound:

 ● Two microphones are connected to a fast 
timer (one which can measure the nearest 
millisecond or even microsecond).

 ● The first microphone triggers the timer to 
start.

 ● The second microphone triggers the time to 
stop.

 ● When the hammer is made to strike the 
plate the sound wave travels to the two 
microphones triggering the nearer microphone 
first and the further microphone second.

 ● By separating the microphones by 1 m, the 
time delay is around 3.2 ms. 
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 ● This gives a value for the speed of sound to be 
c =   s _ t   =   1.0

 _______ 
3.2 × 10–3   ≈ 310 m s–1

 ● This should be repeated a few times and an 
average value obtained.

 ● You might think about how you could 
develop this experiment to measure the 
speed of sound in different media. Sound 
travels faster in solids and liquids than 
in gases – can you think why this should 
be the case? If the temperature in your 
country varies significantly over the year 
you might try to perform the experiment 
in a hot or cold corridor and compare 
your results.

Method two – using a double beam 
oscilloscope

 ● Connect two microphones to the inputs of a 
double-beam oscilloscope (figure 11). 

 ● Connect a signal generator to a loudspeaker and 
set the frequency to between 500 Hz and 2.0 kHz.

 ● One of the microphones needs to be close to 
the loudspeaker, with the second a metre or so 
further away.

 ● Compare the two traces as you move the 
second microphone back and forth in line with 
the first microphone and the speaker.

 ● Use a ruler to measure the distance that you 
need to move the second microphone for the 
traces to change from being in phase to changing 
to antiphase and then back in phase again. 

 ● The distance moved between the microphones 
being in consecutive phases will be the 
wavelength of the wave.

 ● The speed is then found by multiplying the 
wavelength by the frequency shown on the 
signal generator.

  Nature of Science
Analogies can slow down progress 
You may have seen a demonstration, called the 
“bell jar” experiment, to show that sound needs 
a material medium through which to travel. 

An electric bell is suspended from the mouth of 
a sealed bell jar and set ringing (figure 12). A 
vacuum pump is used to evacuate the jar. When 

upper trace shifted
horizontally to align
with lower trace

loudspeaker

microphones
signal generator

oscilloscope

▲ Figure 11 Double beam oscilloscope method for the speed of sound.

1st
microphone

2nd
microphonefast timer

metre ruler

hammer

plate

▲ Figure 10 Fast timer method for the speed of sound.
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there is no longer any air present in the jar, no 
sound can be heard. This experiment was first 
performed by Robert Boyle in 1660 although, long 
before this time, the Ancient Greeks understood 
that sound needed something to travel through. 
The first measurements of the speed of sound 
were made over four hundred years ago. These 
experiments were based on measuring the time 
delay either between a sound being produced 
and its echo reflecting from a distant surface or 
between seeing the flash of a cannon when fired 
and hearing the bang. From the middle to the 
end of the seventeenth century physicists such as 
Robert Hooke and Christiaan Huygens proposed 
a wave theory of light. In line with the model for 
sound, Huygens suggested that light was carried by 

a medium called the luminiferous ether. It was not 
until 1887, when Michelson and Morley devised an 
experiment in an attempt to detect the ether wind, 
that people began to realize that electromagnetic 
waves were very different from sound waves.

electric bell

to vacuum pump

▲ Figure 12 The bell jar experiment.

Electromagnetic waves
You may have seen the experiment shown in figure 13 in which a 
beam of white light is dispersed into the colours of the visible spectrum 
by passing it through a prism. The fact that what appears to be a single 
“colour” actually consists of multiple colours triggers the question “what 
happens beyond the red and blue ends of the spectrum?” The two 
colours represent the limit of vision of the human eye but not the limit 
of detection of electromagnetic radiation by the human body. Holding 
the back of your hand towards the Sun allows you to feel the warmth 
of the Sun’s infra-red radiation. In the longer term, your hand will be 
subjected to sunburn and even skin cancer caused by the higher energy 
ultraviolet radiation. Figure 14 shows the full electromagnetic spectrum 
with the atmospheric windows; these are the ranges of electromagnetic 
waves that can pass through the layers of the atmosphere. 

All electromagnetic waves are transverse, carry energy, and exhibit 
the full range of wave properties. They travel at 300 million metres 
per second (3.00 × 108 m s–1) in a vacuum. All electromagnetic 
waves (except gamma rays) are produced when electrons undergo 
an energy change, even though the mechanisms might differ. For 
example, radio waves are emitted when electrons are accelerated in 
an aerial or antenna. Gamma rays are different, they are emitted by a 
nucleus or by means of other particle decays or annihilation events. 
All electromagnetic waves consist of a time-varying electric field 
with an associated time-varying magnetic field. As the human eye is 
sensitive to the electric component, the amplitude of an electromagnetic 
wave is usually taken as the wave’s maximum electric field strength. 
By graphing the electric field strength on the y-axes, we can use 
displacement–distance and displacement–time graphs to represent 
electromagnetic waves. In the following discussion of the different areas 
of the electromagnetic spectrum the range of the wavelength is given 
but these values are not hard and fast. There are overlaps of wavelength 
when radiation of the same wavelength is emitted by different 

▲  Figure 13 Dispersion of white light 
using a glass prism.

▲  Figure 14 The electromagnetic spectrum.
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mechanisms (most notably X-rays and gamma rays). In addition to 
comparing the wavelengths of the radiations it is sometimes more 
appropriate to compare their frequencies (for example, radio waves) or 
the energy of the wave photon (for example, with X-rays and gamma 
rays). The frequency range is easy to calculate from wavelengths using 
the equation c = f λ with c = 3.00 × 108 m s–1. Photon energies will be 
discussed in Topic 7. Those electromagnetic waves with frequencies 
higher than that of visible light ionize atoms – and are thus harmful to 
people. Those with lower frequencies are generally believed to be safe.

  Nature of Science
Infra-red radiation (λir~1 – 1000 µm)
William Herschel discovered infra-red in 1800 by 
placing a thermometer just beyond the red end of 
the spectrum formed by a prism. Today we might 
do the same experiment but using an infra-red 
detector as a modern thermometer. Objects that 
are hot but not glowing, i.e. below 500 °C, emit 
infra-red only. At this temperature objects become 
red-hot and emit red light in addition to infra-red. 
At around 1000 °C objects become white hot and 
emit the full visible spectrum colours. Remote 
controllers for multimedia devices utilize infra-red 
as do thermal imagers used for night vision. Infra-
red astronomy is used to “see” through dense 
regions of gas and dust in space with less scattering 
and absorption than is exhibited by visible light.

Ultraviolet radiation (λuv ~ 100 – 400 nm)
In 1801, Johann Ritter detected ultraviolet by 
positioning a photographic plate beyond the 
violet part of the spectrum formed by a prism. 
It can also be detected using fluorescent paints 
and inks – these absorb the ultraviolet (and 
shorter wavelengths) and re-emit the radiation 
as visible light. Absorption of ultraviolet produces 
important vitamins in the skin but an overdose 
can be harmful, especially to the eyes. The Sun 
emits the full range of ultraviolet: UV-A, UV-
B, and UV-C. These classifications are made in 
terms of the range of the wavelengths emitted 
(UV-A ~315–400 nm, UV-B ~280–315 nm, 
and UV-C ~ 100–280 nm). UV-C rays, having 
the highest frequency, are the most harmful 
but, fortunately, they are almost completely 
absorbed by the atmosphere. UV-B rays cause 
sunburn and increase the risk of DNA and other 
cellular damage in living organisms; luckily only 
about 5% of this radiation passes through the 
ionosphere (this consists of layers of electrically 

charged gases between 80 and 400 km above 
the Earth). Fluorescent tubes, used for lighting, 
contain mercury vapour and their inner surfaces 
are coated with powders. The mercury vapour and 
powders fluoresce when radiated with ultraviolet 
light. With the atmosphere absorbing much of the 
ultraviolet spectrum, satellites must be positioned 
above the atmosphere in order to utilize 
ultraviolet astronomy, which is very useful in 
observing the structure and evolution of galaxies.

Radio waves (λradio~1 mm – 100 km)
James Clerk Maxwell predicted the existence of 
radio waves in 1864. Between 1885 and 1889 
Heinrich Hertz produced electromagnetic waves 
in the laboratory, confirming that light waves 
are electromagnetic radiation obeying Maxwell’s 
equations. Radio waves are used to transmit radio 
and television signals. VHF (or FM) radio waves 
have shorter wavelengths than those of AM. VHF 
and television signals have wavelengths of a few 
metres and travel in straight lines (or rays) from 
the transmitter to the receiver. Long-wave radio 
relies on reflections from the ionosphere and 
diffracts around obstacles on the Earth’s surface. 
Satellite communication requires signals with 
wavelengths less than 10 m in order to penetrate 
the ionosphere. Radio telescopes are used by 
astronomers to observe the composition, structure 
and motion of astronomic bodies. Such telescopes 
are physically large, for example the Very Large 
Array (VLA) radio telescope in New Mexico which 
consists of 27 antennas arranged in a “Y” pattern 
up to 36 km across. 

Microwaves (λmicro ~ 1 mm – 30 cm)
Microwaves are short wavelength radio waves 
that have been used so extensively with radar, 
microwave cooking, global navigation satellite 
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systems and astronomy that they deserve their 
own category. In 1940, Sir John Randall and  
Dr H A Boot invented the magnetron which 
produced microwaves that could be used in 
radar (an acronym for radio detection and ranging) 
to locate aircraft on bombing missions. The 
microwave oven is now a common kitchen 
appliance; the waves are tuned to frequencies 
that can be absorbed by the water and fat 
molecules in food, causing these molecules to 
vibrate. This increases the internal energy of the 
food – the container holding the food absorbs an 
insignificant amount of energy and stays much 
cooler. Longer wavelength microwaves pass 
through the Earth’s atmosphere more effectively 
than those of shorter wavelength. The Cosmic 
Background Radiation is the elemental 
radiation field that fills the universe, having been 
created in the form of gamma rays at the time of 
the Big Bang. With the universe now cooled to 
a temperature of 2.73 K the peak wavelength is 
approximately 1.1 mm (in the microwave region 
of the spectrum). 

X-rays (λX~30 pm – 3 nm)
X-rays were first produced and detected in 
1895 by the German physicist Wilhelm Conrad 
Roentgen. An X-ray tube works by firing a beam 
of electrons at a metal target. If the electrons 

have sufficient energy, X-rays will emitted by 
the target. X-rays are well known for obtaining 
images of broken bones. They are also used in 
hospitals to destroy cancer cells. Since they can 
also damage healthy cells, using lead shielding in 
an X-ray tube is imperative. Less energetic and 
less invasive X-rays have longer wavelengths 
and penetrate flesh but not bone: such X-rays 
are used in dental surgery. In industry they are 
used to examine welded metal joints and castings 
for faults. X-rays are emitted by astronomical 
objects having temperatures of millions of kelvin, 
including pulsars, galactic supernovae remnants, 
and the accretion disk of black holes. The 
measurement of X-rays can provide information 
about the composition, temperature, and density 
of distant galaxies.

Gamma rays (λγ < 1 pm)
Gamma rays were discovered by the French 
scientist Paul Villard in 1900. Gamma rays have the 
shortest wavelength and the highest frequency of 
all electromagnetic radiation. They are generated, 
amongst other mechanisms, by naturally occurring 
radioactive nuclei in nuclear explosions and by 
neutron stars and pulsars. Only extra-terrestrial 
gamma rays of the very highest energies can reach 
the surface of the Earth – the rest being absorbed 
by ozone in the Earth’s upper atmosphere.

  Nature of Science
Night vision
Humans eyes are sensitive to the electric 
component of a portion of the electromagnetic 
spectrum known as the visible spectrum; this is 
what we call sight. Some animals, in particular 
insects and birds, are able to see using the 
ultraviolet part of spectrum. However, ultraviolet 
consists of relatively short wavelength radiation 
that can damage animal tissue, yet these animals 
appear to be immune to these dangers. It has 
been speculated whether any animal eye might 
be adapted to be able to use the infra-red part 

of the electromagnetic spectrum. As these long 
wavelengths have low energy it might be far-
fetched to believe that they can be detected 
visually. There are animals that have evolved 
ways of sensing infra-red that are similar to the 
processes occurring in the eye. For example, the 
brains of some snakes are able to interpret the 
infra-red radiation in a way that can be combined 
with other sensory information to enable them 
to have a better understanding of surrounding 
danger or food sources.
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  Applications and skills
 ➔ Sketching and interpreting diagrams involving 

wavefronts and rays
 ➔ Solving problems involving amplitude and 

intensity
 ➔ Sketching and interpreting the superposition of 

pulses and waves
 ➔ Describing methods of polarization
 ➔ Sketching and interpreting diagrams illustrating 

polarized reflected and transmitted beams
 ➔ Solving problems involving Malus’s law

Equations
 ➔  Relationship between intensity and amplitude: 

I ∝ A2

 ➔ Malus’s law: I = I0 cos2 θ

  Nature of science
Imagination and physics
“Imagination ... is more important than knowledge. 
Knowledge is limited. Imagination encircles the 
world1.”
Einstein was famous for his gedanken “thought” 
experiments and one of the qualities that makes 
a great physicist is surely a hunger to ask the 
question “what if ... ?”. Mathematics is a crucial tool 
for the physicist and it is central to what a physicist 
does, to be able to quantify an argument. However, 

imagination can also play a major role in interpreting 
the results. Without imagination it is hard to believe 
that we would have Huygens’ principle, Newton’s 
law of gravitation, or Einstein’s theory of special 
relativity. To visualize the abstract and apply theory 
to a practical situation is a flair that is fundamental to 
being an extraordinary physicist.
1Viereck, George Sylvester (October 26, 1929). ‘What life 
means to Einstein: an interview’. The Saturday Evening Post.

Understanding
 ➔ Wavefronts and rays
 ➔ Amplitude and intensity
 ➔ Superposition
 ➔ Polarization

4.3 Wave characteristics 

Introduction
Wavefronts and rays are visualizations that help our understanding of 
how waves behave in different circumstances. By drawing ray or wave 
diagrams using simple rules we can predict how waves will behave when 
they encounter obstacles or a different material medium. 
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Definitions of these two quantities are:

 ● A wavefront is a surface that travels with a wave and is 
perpendicular to the direction in which the wave travels – the ray.

 ● A ray is a line showing the direction in which a wave transfers 
energy and is, of course, perpendicular to a wavefront.

The distance between two consecutive wavefronts is one wavelength (λ).

The motion of wavefronts
One of the simplest ways to demonstrate the motion of wavefronts 
is to use a ripple tank such as that shown in figure 1. This is simply a 
glass-bottomed tank that contains water, illuminated from above. Any 
waves on the water focus the light onto a screen often placed below the 
tank. The bright patches result from the crests focusing the light and the 
dark patches from the troughs defocusing the light. Using a vibrating 
dipper, plane or circular waves can be produced allowing us to see what 
happens to wavefronts in different situations.

lamp

shallow
water tray

white screenwave pattern
on screen

elastic bands

to power
supply

dipper

vibrator

water surface

▲ Figure 1 A ripple tank.

The images shown in figure 2 show the effect on the wavefronts as they 
meet (a) a plane barrier, (b) a shallower region over a prism-shaped glass 
and (c) a single narrow slit.

Using wavefront or ray diagrams we can illustrate how waves behave 
when they are reflected, refracted, and diffracted. We will refer to these 
diagrams in the sections of this topic following on from this.
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In figure 3a we can see that there is no change of wavelength and that 
the angle of incidence (i) is equal to the angle of reflection (r).

In figure 3b we see the wave slowing down and bending as it enters the 
denser medium. The wavelength of the wave in the denser medium 
is shorter than in the less dense medium – but the frequency remains 
unchanged (although it is not possible to tell this from the the pattern 
shown in the ripple tank).

Figure 3c shows diffraction where the wave spreads out on passing 
through the slit but there is no change in the wavelength.

▲  Figure 3b Wavefront and ray diagrams for 
refraction of waves.

deep water shallow water

reflected rayincident ray

metal strip
placed in water

incident
wave front

i r

reflected
wave front

▲  Figure 3a Wavefront and ray diagrams for 
reflection of waves.

▲  Figure 3c Wavefront and ray diagrams for  
diffraction of waves by a single slit.

(b)(a) (c)

▲  Figure 2 Reflection, refraction, and diffraction of waves in a ripple tank.
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The intensity of waves
The loudness of a sound wave or the brightness of a light depends on the 
amount of energy that is received by an observer. For example, when 
a guitar string is plucked more forcefully the string does more work on 
the air and so there will be more energy in the sound wave. In a similar 
way, to make a filament lamp glow more brightly requires more electrical 
energy. The energy E is found to be proportional to the square of the 
amplitude A:

E ∝ A2 

So doubling the amplitude increases the energy by a factor of four; 
tripling the amplitude increases the energy by a factor of nine, etc.

Loudness is the observer’s perception of the intensity of a sound and 
brightness that of light; loudness and brightness are each affected by 
frequency.

If we picture waves being emitted by a point source, S, they will 
spread out in all directions. This will mean that the total energy 
emitted will be spread increasingly thinly the further we go from the 
source. Figure 5 shows how the energy spreads out over the surface 
area of a sphere.

In order to make intensity comparisons more straightforward it is 
usual to use the idea of the energy transferred per second – this is the 
power (P) of the source. This means that the intensity (I) at a distance (r) 

r

S

I = P/4πr2

▲  Figure 5 Energy spreading out from 
a point source.

  Nature of Science
Huygens’ principle
One of the ways to predict what will happen 
to wavefronts under different circumstances is 
to use Huygens’ principle. This was suggested 
in 1678 by the Dutch physicist Christiaan 
Huygens: the wavefront of a travelling wave at 
a particular instant consists of the tangent to 
circular wavelets given out by each point on 
the previous wavefront as shown in figure 4. 
In this way the wavefront travels forward with 
a velocity c.

Huygens was able to derive the laws of reflection 
and refraction from his principle. What the 
principle does not explain is why an expanding 
circular (but really spherical) wave continues 
to expand outwards from its source rather than 
travel back and focus on the source. The French 
physicist Augustin Fresnel (1788–1827) adapted 
Huygens’ principle to explain diffraction by 
proposing the principle of superposition, discussed 
in Sub-topic 4.4. The Huygens–Fresnel principle 

(as the overall principle should more accurately 
be called) is useful in explaining many wave 
phenomena.

plane wavefronts spherical wavefronts

primary
source

secondary
sources

ct

ctsecondary
wavelets

▲ Figure 4 Huygens’ principle.
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Worked example
At a distance of 15 m from the source, the intensity of a loud sound is 
2.0 × 10–4 W m–2. 

a) Show that the intensity at 120 m from the source is approximately 
3 × 10–6 W m–2.

b) Deduce how the amplitude of the wave changes. 

Solution
a) Using the equation I =   P

 ___ 4πr2   ,   P __ 4π   remains constant so I1 r1
2 = I2 r2

2 this 

gives 2.0 × 10–4 × 152 = I2 × 1202  

I2 = 2.0 × 10–4 ×   152
 _ 

1202
   = 3.1 × 10−6 W m–2 ≈  

3 × 10−6 W m–2

Note
In “show that” questions there is an expectation that you will give a detailed 
answer, showing all your working and that you will give a final answer to more 
significant figures than the data in the question – actually this is good practice 
for any answer!

b) With the intensity changing there must be a change of amplitude. 
The intensity is proportional to the square of the amplitude so:

  
I2 _ 
I2

   =   
 A  1  

2 
 _ 

 A  2  
2 
   or   

A1 _ 
A2

   =  √__
   

I2 _ 
I2

     =  √_________
    2.0 × 10–4
 _ 

3.1 × 10–6
     = 8.0 

Thus the amplitude at 15 m from the source is 8.0 times that at 
120 m from the source. Another way of looking at this is to say 
that A is proportional to   1 __ r  .

Note
Because the previous part was a “show that” question you had all the data 
needed to answer this question. In questions where you need to calculate data 
you will never be penalized for using incorrect data that you have calculated 
previously. In a question that has several parts you might fail to gain a sensible 
answer to one of the parts. When a subsequent part requires the use of your 
answer as data – don’t give up, invent a sensible value (and say that is what you 
are doing). You should then gain any marks available for the correct method.

r
2r

3r

I
I /4

I /9

▲  Figure 6 Inverse square law.

from a point source is given by the power divided by the surface area of 
the sphere at that radius:

I =   P _ 
4πr2

  

This equation shows that intensity has an inverse-square 
relationship with distance from the point source; this means that, 
as the distance doubles, the intensity falls to a quarter of the previous 
value and when the distance the is tripled, the intensity falls to one 
nineth as shown in figure 6.

The SI unit for intensity is W m−2.
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The principle of superposition
Unlike when solid objects collide, when two or more waves meet the 
total displacement is the vector sum of their individual displacements. 
Having interacted, the waves continue on their way as if they had never 
met at all. This principle is used to explain interference and standing 
waves in Sub-topics 4.4 and 4.5 respectively. For a consistent pattern, 
waves need to be of the same type and have the same frequency and 
speed; the best patterns are achieved when the waves have the same 
or very similar amplitudes. Figure 7 shows two pulses approaching and 
passing through each other. When they meet, the resultant amplitude is 
the algebraic sum of the two amplitudes of the individual pulses.

▲  Figure 7 Superposition of pulses.

This principle applies equally well to complete waves as to pulses – this is 
shown in figure 8. You should convince yourself that the green wave is the 
vector sum of the red and blue waves at every instant. It is equally valid to 
use the principle of superposition with displacement–distance graphs.

0

0.1

0.2

0.3

−0.1

−0.2

−0.3

di
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ce

m
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time/s

0.10 0.2 0.3 0.4 0.5

▲  Figure 8 Displacement–time graph showing the superposition of waves.
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Worked examples
1 Two identical triangular pulses of amplitude A 

travel towards each other along a rubber cord. 
At the instant shown on the diagram below, 
point M is midway between the two pulses.

A M
A

What is the amplitude of the disturbance in 
the string as the pulses move through M?

Solution
The pulses are symmetrical, so when they meet 
they completely cancel out giving zero amplitude 
at M.

2 a)  For a travelling wave, distinguish between 
a ray and a wavefront.

 The diagram below shows three 
wavefronts incident on a boundary 
between medium I and medium R. 
Wavefront CD is shown crossing the 
boundary. Wavefront EF is incomplete.

B

A

F

medium R
medium I

E

D

C

b)      (i)  On a copy of the diagram above, draw 
a line to complete the wavefront EF.

  (ii)  Explain in which medium, I or R, the 
wave has the higher speed.

(iii)  By taking appropriate measurements 
from the diagram, determine the ratio 
of the speeds of the wave travelling 
from medium I to medium R.

Solution
a) A ray is a line that shows the direction of 

propagation of a wave. Wavefronts are 
lines connecting points on the wave that 
are in phase, such as a crest or a trough. 
The distance between wavefronts is one 
wavelength and wavefronts are always 
perpendicular to rays.

b) (i) 

λ2

λ1

A

B D

C E

F
medium R

medium I

  On entering the new medium the 
waves refract by the same amount to 
give parallel wavefronts.

  (ii)  As the wavefronts are closer in the 
medium R the waves are travelling 
more slowly.

 (iii)  The frequency of a wave does not 
change when the wave moves from 
one medium to another. As c = fλ 
then   c __ λ   = constant and so:

      
c1 __ λ1

   =   
c2 __ λ2

   ∴   c1 __ c2
   =   

λ1 __ λ2

  

3 The graphs below show the variation with 
time of the individual displacements of two 
waves as they pass through the same point.

0
0

−A1

A1
x1
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timeT

0 0

−A2

A2

−x2
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m
en

t

timeT

What is the total displacement of the resultant 
wave at the point at time T?

Solution
The total displacement will be the vector sum 
of the individual displacements. As they are in 
opposite directions the vector sum will be their 
difference, i.e. x1 – x2
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Polarization
Although transverse and longitudinal waves have common properties – 
they reflect, refract, diffract and superpose – the difference between 
them can be seen by the property of polarization. Polarization of 
a transverse wave restricts the direction of oscillation to a plane 
perpendicular to the direction of propagation. Longitudinal waves, such 
as sound waves, do not exhibit polarization because, for these waves, the 
direction of oscillation is parallel to the direction of propagation. Figure 9 
shows a demonstration of the polarization of a transverse wave on a 
rubber tube.

vibrations
go through

vibrations
stopped

fence with horizontal
rails acting as slits

fence with vertical
rails acting as slits

vibrations
stopped at
second fence

same plane
as fence

different plane

two planes at
right angles

▲ Figure 9 Polarization demonstration.

Most naturally occurring electromagnetic waves are completely 
unpolarized; this means the electric field vector (and therefore the 
magnetic field vector perpendicular to it) vibrate in random directions 
but in a plane always at right angles to the direction of propagation of the 
wave. When the direction of vibration stays constant over time, the wave 
is said to be plane polarized in the direction of vibration – this is the case 
with many radio waves which are polarized as a result of the orientation 
of the transmitting aerial (antenna). Partial polarization is when there is 
some restriction to direction of vibration but not 100%. There is a further 
type of polarization when the direction of vibration rotates at the same 
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frequency as the wave – this called circular or elliptical polarization and 
is caused when a wave is in a strong magnetic field – but you will not 
be examined on this. Figure 10 shows how we represent polarized and 
unpolarized light diagramatically; the double-headed arrow represents a 
polarized wave, showing the plane of polarization of the wave. The crossed 
arrows show that the vibration has an electric field vector in all planes and 
these are resolved into the two perpendicular planes shown (you may see 
this marked as four double-headed arrows in some texts). These diagrams 
can become a little confusing when rays are added to show the direction in 
which the waves are travelling. Figure 11 shows some examples of this.

polarized light

or
unpolarized light

▲ Figure 10 Representing polarized and unpolarized waves.

Polarization of light
In 1809 the French experimenter Étienne-Louis Malus showed that 
when unpolarized light reflected off a glass plate it could be polarized 
depending upon the angle of incidence – the plane of polarization being 
that of the flat surface reflecting the light. In 1812 the Scottish physicist 
Sir David Brewster showed that when unpolarized light incident on 
the surface of an optically denser material (such as glass), at an angle 
called the polarizing angle, the reflected ray would be completely plane 
polarized. At this angle the reflected ray and refracted ray are at right 
angles as shown in figure 11. 

Today the most common method of producing polarized light is to 
use a polarizing filter (usually called Polaroid). These filters are 
made from chains of microcrystals of iodoquinine sulfate embedded 
in a transparent cellulose nitrate film. The crystals are aligned during 
manufacture and electric field vibration components, parallel to the 
direction of alignment, become absorbed. The electric field vector causes 
the electrons in the crystal chains to oscillate and thus removes energy 
from the wave. The direction perpendicular to the chains allows the 
electric field to pass through. The reason for this is that the limited width 
of the molecules restricts the motion of the electrons, meaning that they 
cannot absorb the wave energy. When a pair of Polaroids are oriented 
to be at 90° to each other, or “crossed”, no light is able to pass through. 
The first Polaroid restricts the electric field to the direction perpendicular 
to the crystal chains; the second Polaroid has its crystals aligned in this 
direction and so absorbs the remaining energy. The first of the two 
Polaroids is called the polarizer and the second is called the analyser.

Malus’s law
When totally plane-polarized light (from a polarizer) is incident on 
an analyser, the intensity I of the light transmitted by the analyser is 
directly proportional to the square of the cosine of angle between the 
transmission axes of the analyser and the polarizer.

θp
θp

θ2

90°

plane polarized
reflected beam

partially polarized
refracted beam

unpolarized
incident beam

▲  Figure 11 Polarization of reflected 
light.
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Figure 12 shows polarized light with the electric field vector of amplitude 
E0 incident on an analyser. The axis of transmission of the analyser 
makes an angle θ with the incident light. The electric field vector E0 can 
be resolved into two perpendicular components E0 cos θ and E0 sin θ. The 
analyser transmits the component that is parallel to its transmission axis, 
which is E0 cos θ. 
We have seen that intensity is proportional to the square of the 
amplitude of a wave so I0 ∝ E0

2 the transmitted intensity will be I which 
is proportional to (E0 cos θ)2 or I ∝ E0

2 cos2 θ
Taking ratios we have   I __ I0

   =   E0
2 cos2 θ _______ 
E0

2   cancelling E0
2 gives 

I = I0 cos2 θ
When θ = 0° (or 180°) I = I0 (since cos 0° = 1); this means that the 
intensity of light transmitted by the analyser is maximum when the 
transmission axes of the two Polaroids are parallel.

When θ = 90°, I = I0 cos2 90° = 0; this means that no light is transmitted 
by the analyser when the Polaroids are crossed.

Figure 13 shows a pair of Polaroids. The left-hand image shows that, 
when their transmission axes are aligned, the same proportion of light 
passing through one Polaroid passes through both. The central image 
shows that when one of the Polaroids is rotated slightly, less light passes 
through their region of overlap. The right-hand image shows that where 
the Polaroids are crossed no light is transmitted.

  Nature of science
Uses of polarization of light
Polaroid sunglasses are used to reduce the glare 
coming from the light scattered by surfaces such 
as the sea or a swimming pool. In industry, stress 
analysis can be performed on models made 
of transparent plastic by placing the model in 
between a pair of crossed Polaroids. As white 
light passes through a plastic, each colour of the 
spectrum is polarized with a unique orientation. 
There is high stress in the regions where the 
colours are most concentrated – this is where the 
model (or real object being modelled) is most 
likely to break when it is put under stress.

Certain asymmetric molecules (called chiral 
molecules) are optically active – this is the ability 
to rotate the plane of plane-polarized light. The 
angle that the light is rotated through is measured 
using a polarimeter, which consists of a light 
source, and a pair of Polaroids. The light passes 
through the first Polaroid (the polarizer) and, 
initially with no sample present, the second 
Polaroid (the analyser) is aligned so that no light 
passes through. With a sample placed between 

the Polaroids, light does pass through because 
the sample has rotated the plane of polarization. 
The analyser is now rotated so that again no light 
passes through. The angle of rotation is measured 
and from this the concentration of a solution, 
for example, can be found. An easily produced, 
optically active substance is a sugar solution.

Polarization can also be used in the recording and 
projection of 3D films. These consist of two films 
projected at the same time. Each of the films is 
recorded from a slightly different camera angle 
and the projectors are also set up in this way. The 
two films are projected through polarizing filters – 
one with its axis of transmission horizontal and 
one with it vertical. By wearing polarized eye 
glasses with one lens horizontally polarized and 
one vertically polarized, the viewer’s left eye only 
sees the light from the left projector and the right 
eye light from the right projector – thus giving the 
viewer the perception of depth. In cinemas the 
screen needs to be metallic as non-metallic flat 
surfaces have a polarizing effect.

θ
 0cosθ

0

orientation of light
from polarizer

orientation of analyser

E

E

▲ Figure 12 Analysing polarized light.

▲ Figure 13 Two Polaroids.
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Worked examples
1 Unpolarized light of intensity I0 is incident on a 

polarizer. The transmitted light is then incident 
on an analyser. The axis of the analyser makes 
an angle of 60° to the axis of the polarizer.

analyser

unpolarized
light

polarizer

Calculate the intensity emitted by the analyser.

Solution
The first polarizer restricts the intensity to   

I0
 __ 2  . 

Using Malus’s law I = I0 cos2 θ 
cos 60° = 0.5 so cos2 60° = 0.25

thus I = 0.25  
I0 _ 
2

   = 0.125I0

2 a)  Distinguish between polarized and 
unpolarized light.

b)  A beam of plane-polarized light of intensity 
I0 is incident on an analyser.

 

transmission axis

plane of
polarization

incident beam

analyser

The angle between the transmission axis of 
the analyser and the plane of polarization 
of the light θ can be varied by rotating 
the analyser about an axis parallel to the 
direction of the incident beam. In the 

position shown, the transmission axis 
of the analyser is parallel to the plane of 
polarization of the light (θ = 0°).
Sketch a graph to show how the intensity I 
of the transmitted light varies with θ as the 
analyser is rotated through 180°.

Solution
a) In unpolarized light the electric field 

vector vibrates randomly in any plane 
(perpendicular to the direction of 
propagation). In polarized light this vector  
is restricted to just one plane.

b) This is an application of Malus’s law I = I0 cos2 θ
When θ = 0 or 180°, cos θ = 1 and so  
cos2 θ = 1 and I = I0

When θ = 90°, cos θ = 0 and so cos2  θ = 0  
and I = 0

These are the key points to focus on. Note that 
cos2  θ will never become negative. There is no 
need to include a unit for intensity as this is a 
sketch graph.

I

I0

0

0 90

θ/°

180
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  Applications and Skills
 ➔ Sketching and interpreting incident, reflected 

and transmitted waves at boundaries between 
media

 ➔ Solving problems involving reflection at a  
plane interface

 ➔ Solving problems involving Snell’s law, critical 
angle, and total internal reflection

 ➔ Determining refractive index experimentally
 ➔ Qualitatively describing the diffraction pattern 

formed when plane waves are incident 
normally on a single-slit

 ➔ Quantitatively describing double-slit 
interference intensity patterns

Equations
 ➔ Snell’s law:   

n1 ____ n2
   =   

sinθ2 _________ 
sinθ1

   =   
v1 ____ v2

  

 Interference at a double slit: s =   λD ______ d  

  Nature of science
Wave or particle?
In the late seventeenth century two rival theories of the 
nature of light were proposed by Newton and Huygens. 
Newton believed light to be particulate and supported 
his view by the facts that it apparently travels in straight 
lines and can travel through a vacuum; at this time it was a 
strongly held belief that waves needed a medium through 
which to travel. Huygens’ wave model was supported by 
the work of Grimaldi who had shown that light diffracts 
around small objects and through narrow openings. He 

was also able to argue that when a wave meets a boundary 
the total incident energy is shared by the reflected and 
transmitted waves; Newton’s argument for this was based 
on the particles themselves deciding whether or not to 
reflect or transmit – this was not a strong argument and 
the wave theory of light became predominant. In the 21st 
century light is treated as both a wave and a particle in 
order to explain the full range of its properties.

Understanding
 ➔ Reflection and refraction
 ➔ Snell’s law, critical angle, and total  

internal reflection
 ➔ Diffraction through a single-slit and  

around objects
 ➔ Interference patterns
 ➔ Double-slit interference
 ➔ Path difference

4.4 Wave behaviour

Introduction
Now we have looked at how to describe waves, we are in the position 
to look at wave properties – or, as it is described in IB Physics, wave 
behaviour. You are likely to have come across some of this topic if you 
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have studied physics before starting the IB Diploma Programme and we 
have used some of the ideas in the previous sub-topic. In Sub-topic 4.3 
we studied polarization – a property that is restricted to transverse waves 
alone. The ideas examined in this sub-topic apply to transverse waves 
(both mechanical and electromagnetic) and longitudinal waves. There 
are many demonstrations of wave properties utilizing sound and light; 
however, microwaves are commonly used for demonstrating these wave 
properties too.

Reflection and refraction of waves
We have looked at much of the content of figure 1 when we considered 
polarization. We will now focus on what is happening to the rays – 
remember we could always add wavefronts at right angles to the rays 
drawn on these diagrams. What the ray diagrams do not show is what 
is happening to the wavelength of the waves – we will return to this in 
due course.

The laws of reflection and refraction can be summarized in three laws 
as follows:

1 The reflected and refracted rays are in the same plane as the 
incident ray and the normal. 
This means that the event of reflection or refraction does not alter the 
plane in which the light ray travels – this is not obvious because we draw 
ray diagrams in two dimensions but, when we use ray boxes to perform 
experiments with light beams, we can confirm that this is the case.

2 The angle of incidence equals the angle of reflection. 
The angle of incidence is the angle between the incident ray and 
the normal and the angle of reflection is the angle between the 
reflected ray and the normal. The normal is a line perpendicular to 
a surface at any chosen point. The angle of incidence and reflection 
are both labelled as θ1 on figure 1.

3 For waves of a particular frequency and for a chosen pair 
of media the ratio of the sine of the angle of incidence to 
the sine of the angle of refraction is a constant called the 
(relative) refractive index. 
This is called Snell’s law (or Descartes’s law in the French speaking 
world). The angle of refraction is the angle between the refracted ray 
and the normal. Snell’s law can be written as 

  
sin θ1 _ 
sin θ2

   = 1n2

For light going from medium 1 to medium 2 – this way of writing Snell’s 
law has several variants and the IB course uses one that we will look  
at soon. 

When light is normal on a surface Snell’s law breaks down because 
the light passes directly through the surface.

reflected ray
normal

refracted ray

incident ray

θ1
θ1

medium 1:
refractive index = n1

medium 2:
refractive index = n2

θ2

▲  Figure 1 Reflection and refraction of waves.

▲  Figure 2 Use of ray box to demonstrate the laws 
of reflection and refraction.
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Refractive index and Snell’s law
The absolute refractive index (n) of a medium is defined in terms of 
the speed of electromagnetic waves as:

n =   
speed of electromagnetic waves in a vacuum

     ____    
speed of electromagnetic waves in the medium

   =   c _ v  

The refractive index depends on the frequency of the electromagnetic 
radiation and, since the speed of light in a vacuum is the limit of speed, 
the absolute refractive index is always greater than 1 (although there 
are circumstances when this is not true – but that is well beyond the 
expectation of your IB Physics course). For all practical purposes the 
absolute refractive index of air is 1 so it is not necessary to perform 
refractive index experiments in a vacuum.

  Nature of science
What happens to light at an interface between  
two media?
This is a complex process but in general terms, when charges are 
accelerated, for example when they are vibrated, they can emit 
energy as an electromagnetic wave. In moving through a vacuum 
the electromagnetic wave travels with a velocity of 3.00 × 108 m s–1. 
When the wave reaches an atom, energy is absorbed and causes 
electrons within the atom to vibrate. All particles have frequencies 
at which they tend to vibrate most efficiently – called the natural 
frequency. When the frequency of the electromagnetic wave does 
not match the natural frequency of vibration of the electron, then 
the energy will be re-emitted as an electromagnetic wave. This new 
electromagnetic wave has the same frequency as the original wave 
and will travel at the usual speed in the vacuum between atoms. 
This process continues to be repeated as the new wave comes into 
contact with further atoms of unmatched natural frequency. With the 
wave travelling at 3.00 × 108 m s–1 in space but being delayed by the 
absorption–re-emission process, the overall speed of the wave will be 
reduced. In general, the more atoms per unit volume in the material, 
the slower the radiation will travel. When the frequency of the light 
does match that of the atom’s electrons the re-emission process is 
occurs in all directions and the atom gains energy, increasing the 
internal energy of the material.

TOK

Conservation of energy  
and waves

The wave and ray diagram 
for reflection and refraction 
tells just part of the story. 
As with many areas of 
physics, returning to the 
conservation of energy 
is important. For the total 
energy incident on the 
interface between the two 
media the energy is shared 
between the reflected 
wave, the transmitted wave 
and the energy that is 
absorbed – the further the 
wave passes through the 
second medium, the more 
of the energy is likely to be 
absorbed. The conservation 
of mass/energy is a principle 
in physics which, to date, 
has not let physicists down. 
Does this mean that we have 
proved that the principle of 
conservation of energy is 
infallible?

Worked example
Calculate the angle of refraction when the angle 
of incidence at a glass surface is 55° (refractive 
index of the glass = 1.48).

Solution
As we are dealing with air and glass there is no 
difference between absolute refractive index and 
relative refractive index.

Snell’s law gives   
sinθ1 ____ 
sinθ2

   = nglass

=   sin55° _ 
sinθ2

   = 1.48

sinθ2 =   sin55° _ 
1.48

   =   0.819 _ 
1.48

   = 0.553 

θ = sin–1 (0.553) = 33.6 ≈ 34°
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Reversibility of light
You should be able to prove to yourself that rays are reversible. Place a 
ray box and a glass block on a piece of paper. Mark, on the paper, the 
path of the beam of light emitted by the ray box as it approaches and 
leaves the glass block. Then place the ray box on the other side of the 
block and you will see that the light travels along the same path in the 
opposite direction.

We have seen that for light travelling from medium 1 to medium 2 
Snell’s law can be written as

  
sinθ1 _ 
sinθ2

   = 1n2

here 1n2 means the relative refractive index going from medium 1 to 
medium 2. For light travelling in the opposite direction and since light is 
reversible we have

  
sinθ2 _ 
sinθ1

   = 2n1

It should be clear from this that 1n2 =   1 ___ 
2n1

  

Worked example
The (absolute) refractive index of water is 1.3 and 
that of glass is 1.5.  

a) Calculate the relative refractive index from 
glass to water.  

b) Explain what this implies regarding the 
refraction of light rays.

c) Draw a wavefront diagram to show how light 
travels through a plane interface from glass to 
water.

Solution
a) nwater = vacnwater = 1.3 and nglass = vacnglass = 1.5

We are calculating glassnwater

  
sinθvac

 ______ 
sinθwater

   = vacnwater and   
sinθvac

 _____ 
sinθglass

   = vacnglass

  
sinθglass

 _____ 
sinθvac

   ×   
sinθvac

 ______ 
sinθwater

   =   
sinθglass

 ______ 
sinθwater

    = glassnwater

This means that glassnwater =   1
 ___ 1.5   ×1.3 = 0.87

b) With a relative refractive index less than one 
this means that the light travels faster in the 
water than the glass and therefore bends away 
from the normal. 

c) 

λwater

λglass

water

glass

interface

As the refractive index of water is lower 
than that of glass the light wave speeds 
up on entering the water. The frequency 
is constant and, as = fλ, the wavelength 
will be greater in water – meaning 
that the wavefronts are further apart. 
The fact that the frequency remains 
constant is a consequence of Maxwell’s 
electromagnetic equations – something 
not covered in IB Physics.

The critical angle and total internal reflection
When a light wave reaches an interface travelling from a higher optically 
dense medium to a lower one the wave speeds up. This means that 
the wavelength of the wave increases (frequency being constant) and 
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the direction of the wave moves away from the normal – the angle of 
refraction being greater than the angle of incidence so as the angle of 
incidence increases the angle of refraction will approach 90°. Optical 
density is not the same as physical density, i.e. mass per unit volume, 
it is measured in terms of refractive index – higher refractive index 
material having higher optical density. 

θc

θc

n1

Light incident
at any angle > θc

is totally reflected.

light source

high index
materialcritical angle

1 2
3

4
5

Though not
bent, part of the

normal ray is
reflected.

▲  Figure 3 Light passing from more optically dense medium to less optically dense medium.

Ray 1 in figure 3 shows a ray passing from a more optically dense 
medium to a less optically dense medium normal to an interface. Most 
of the light passes though the interface but a portion is reflected back 
into the original medium. Increasing the angle of incidence (as for rays 
2 and 3) will increase the angle of refraction and ray 4 shows an angle 
of incidence when the angle of refraction is 90°. The angle of incidence 
at this value is called the critical angle (θc). Ray 5 shows that, when 
the angle of incidence is larger than the critical angle, the light wave 
does not move into the new medium at all but is reflected back into the 
original medium. This process is called total internal reflection.

It should be noted that for angles smaller than the critical angle there 
will always be a reflected ray; although this will carry only a small 
portion of the incident energy.

A ray box and semicircular glass block can be used to measure the 
critical angle for glass as shown in figure 4. When the beam is incident 
on the curved face of the block making it travel towards the centre of 
the flat face, it is acting along a radius and so enters the block normally 
and, therefore, without bending. By moving the ray box, different angles 
of incidence can be obtained. Both the critical angle and total internal 
reflection can be seen. 

r1

i1

semicircular
glass slab

ray box

c

critical angle

r = 90°

∠i2 = ∠r2 

i2 r2

▲  Figure 4 Use of ray box to investigate critical angle and total internal reflection.
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When a ray box emitting white light is used, the light emerging through 
the glass block is seen to disperse into the colours of the rainbow. This 
is due to each of the colours, of which white light is comprised, having 
a different frequency. The refractive index for each of the colours is 
different. 

Calculating the critical angle
Snell’s law gives   

sinθ1 ____ 
sinθ2

   = 1n2 .

In order to obtain a critical angle, medium 1 must be more optically 
dense than medium 2.

When θ1 = θc then θ2 = 90° so sin θ2 = 1

This gives sin θc = 1n2

1n2 =   
n2 _ n1

  

When the less dense medium (medium 2) is a vacuum or air then n2 = 1

So sin θc =   1 _ n1
  

Worked example
Calculate the (average) 
critical angle for a material 
of (average) absolute 
refractive index 1.2.

Solution
The word “average” is 
included because the 
refractive index and 
critical angle would each 
be different for different 
colours. Don’t be surprised 
if it is left out in some 
questions – it is implied by 
talking about single values.

sin θc =   1 _ n1
   =   1 _ 

1.2
   = 0.833 

θc = sin–1 0.833 = 56.4° ≈ 56°

  Investigate!
Measuring the refractive index
There are several possible experiments that 
you could do to measure the refractive index 
depending on whether a substance is a liquid or 
a solid (we assume the refractive index of gases is 
1 – although mirages are a good example of how 
variations in air density can affect the refraction 
of light). You could research how to use real and 
apparent depth measurements to measure the 
refractive index of a liquid. The investigation 
outlined below will be to trace some rays (or 
beams of light, really) through a glass block of 
rectangular cross-section.

 ● The arrangement is similar to that shown in 
figure 2 on p146. 

 ● Place the block on a piece of white paper and 
mark its position by drawing around the edges.

 ● Direct a beam of light to enter the block near 
the centre of a longer side and to leave by the 
opposite side. 

 ● Mark the path of the beam entering and 
leaving the block – you will need at least two 
points on each beam to do this.

 ● Remove the block and use a ruler to mark 
the path of the beam on either side of the 

block and then inside. Add arrows to these to 
remind you that they represent rays and to 
indicate which is the incident beam and which 
is the refracted beam.

 ● Using a protractor, mark in and draw normals 
for the beam entering and leaving the block.

 ● Remembering that light is reversible and the 
beam is symmetrical, measure two values for 
each of θ1 and θ2.

 ● Calculate the refractive index of the block 
using Snell’s law.

 ● Estimate the experimental uncertainty on 
your measurements of θ1 and θ2.

 ● Note that the uncertainty in θ1 and θ2 is not 
the same as that in sin θ1 and sin θ2 but you 

can calculate the uncertainty in   
sinθ1 ____ 
sinθ2

   (and 

hence n) by calculating half the difference 

between   
sinθ1max

 ______ 
sinθ2min

   and   
sinθ1min ______ 
sinθ2max

  

 ● Repeat the experiment for a range of values of 
the angle of incidence. 

 ● Which of your values is likely to be the most 
reliable?
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Diffraction
The first detailed observation and description of the phenomenon 
that was named diffraction was made by the Italian priest Francesco 
Grimaldi. His work was published in 1665, two years after his death. 
He found that when waves pass through a narrow gap or slit (called an 
aperture), or when their path is partly blocked by an object, the waves 
spread out into what we would expect to be the shadow region. This 
is illustrated by figure 5 and can be demonstrated in a ripple tank. He 
noted that close to the edges the shadows were bordered by alternating 
bright and dark fringes. Given the limited apparatus available to 
Grimaldi his observations were quite extraordinary.

obstacle

obstacle

aperture

▲ Figure 5 Diffraction.

Further observation of diffraction has shown:

 ● the frequency, wavelength, and speed of the waves each remains the 
same after diffraction

 ● the direction of propagation and the pattern of the waves change

 ● the effect of diffraction is most obvious when the aperture width is 
approximately equal to the wavelength of the waves.

 ● the amplitude of the diffracted wave is less than that of the incident 
wave because the energy is distributed over a larger area.

Explaining diffraction by a single slit is complex and you will only 
be asked for a qualitative description of single-slit diffraction at SL – 
however, as mentioned in Sub-topic 4.3, the Huygens–Fresnel principle 
gives a good insight into how the single-slit diffraction pattern comes 
about (see figure 6). 
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▲ Figure 6 Huygens–Fresnel explanation of diffraction.

Plane waves travelling towards the slit behave as if they were sources 
of secondary wavelets. The orange dots in figure 6 show these 
“secondary sources” within the slit. These “sources” each spread out as 
circular waves. The tangents to these waves will now become the new 
wavefront. The central image is bright and wide, beyond it are further 
narrower bright images separated by darkness. Single-slit diffraction is 
further explored for those studying HL Physics in Topic 9.

▲ Figure 7 Single-slit diffraction pattern.

Worked example
Complete the following 
diagrams to show the 
wavefronts after they have 
passed through the gaps.

Solution

When the width of the slit 
is less than or equal to the 
wavelength λ of the wave, 
the waves emerge from the 
slit as circular wavefronts. As 
the slit width is increased, the 
spreading of the waves only 
occurs at the edges and the 
diffraction is less noticeable. 

Double-slit interference
We briefly discussed the principle of superposition in Sub-topic 4.3. 
Interference is one application of this principle.  

When two or more waves meet they combine to produce a new wave –  
this is called interference. When the resultant wave has larger 
amplitude than any of the individual waves the interference is said 
to be constructive; when the resultant has smaller amplitude the 
interference is destructive. Interference can be achieved by using 
two similar sources of all types of wave. It is usually only observable if 
the two sources have a constant phase relationship – this means that 
although they need not emit the two sets of waves in phase, the phase 
of the waves cannot alter relative to one another. Such sources will have 
the same frequency and are said to be coherent.
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▲ Figure 8 Interference of sound waves.

Interference of sound waves is easy to demonstrate using two 
loudspeakers connected to the same audio frequency oscillator as shown 
in figure 8. Moving the microphone (connected to an oscilloscope) in 
a line perpendicular to the direction in which the waves are travelling 
allows an equally spaced loud–soft sequence to be detected. More 
simply, the effect can be demonstrated by the observer walking along the 
loud–soft line while listening to the loudness.

When a coherent beam of light is incident on two narrow slits very 
close together the beam is diffracted at each slit and, in the region 

destructive interference
(trough meets trough)

constructive interference
(crest meets crest)

diffracted beam from bottom slit

diffracted beam from top slit

double slit

lamp

S

▲ Figure 9 Interference of light waves.
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where the two diffracted beams cross, interference occurs as seen in 
figure 9. A pattern of equally spaced bright and dark fringes (shown 
in figure 10) is obtained on a screen positioned in the region where 
the diffracted beams overlap. When a crest meets a crest (or a trough 
meets a trough) constructive interference occurs. When a crest meets 
a trough destructive interference occurs. A similar experiment to this 
was performed by the talented English physicist (and later physician) 
Thomas Young in 1801. The coherent beam is achieved by placing a 
single slit close to the source of light – this means that the wavefronts 
spreading from the single slit each reach the double slit with the same 
phase relationship and so the secondary waves coming from the double 
slit retain their constant phase relationship.

Path difference and the double-slit equation
You will never be asked to derive this equation but the ideas regarding 
path difference are vital to your understanding of interference. 

B

OC

P

A2

A1

D

S

d

▲ Figure 11 The double-slit geometry.

Figure 11 shows two slits (apertures) A1 and A2 distance d apart. The 
double slit is at distance D from a screen. O is the position of the central 
bright fringe (arising from constructive interference). B is the position of 
the next bright fringe above O; the distance OB is the fringe spacing s. 
There will be another bright fringe distance s below O. The beams 
from A1 and A2 to O will travel equal distances and so will meet with 
the same phase relationship that they had at A1 and A2 – they have zero 
path difference. At B the beam from A1 will travel an extra wavelength 
compared with the beam from A2 – the path distance (= A1P) equals λ. 
Because of the short wavelength of light and the fact that D is very much 
larger than d, the line A2P is effectively perpendicular to lines A1B and 
CB (C being the midpoint of A1 A2). This means that the triangles A1A2P 
and CBO are similar triangles.

Taking ratios   BO _ 
CO

   =   
A1P _ 
A1A2

   or   s _ 
D

   =   λ _ 
d
  

Rearranging gives s =   λD _ 
d
  

This gives the separation of successive bright fringes (or bands of loud 
sound for a sound experiment).

▲ Figure 10 Fringes produced by a double-slit.
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Worked examples
1 In a double-slit experiment using coherent light 

of wavelength λ, the central bright fringe is 
observed on a screen at point O, as shown below.

coherent light

P

wavelength λ

double slit

screen
(not to scale)

O

At point P, the path difference between light 
arriving at P from the two slits is 7λ.

a) Explain the nature of the fringe at P.

b) State and explain the number of dark 
fringes between O and P.

Solution
a) As the path difference is an integral number of 

wavelengths there will be a bright fringe at P.

b) For destructive interference the path difference 
must be an odd number of half wavelengths, 
so there will be dark fringes when the path 

difference is   λ __ 2  ,   3λ ___ 2   ,   5λ ___ 2   ,   7λ ___ 2   ,   9λ ___ 2   ,   11λ ___ 2   ,   13λ ___ 2   giving a 
total of 7 dark fringes.

2 Two coherent point sources S1 and S2 oscillate 
in a ripple tank and send out a series of 
coherent wavefronts as shown in the diagram.

Q

P

S2S1

State and explain the intensity of the waves at 
P and Q?

Solution
Considering each wavefront to be a crest; at point 
P two crests meet and so superpose constructively 
giving an amplitude which is twice that of one 
wave (assuming the wavefronts each have the 
same amplitude) – the intensity is proportional to 
the square of this so will be four times the intensity 
of either of the waves alone. At Q a blue crest 
meets a red trough and so there is cancellation 
occurring and there will be zero intensity.

In general for two coherent beams starting in phase, if the path 
difference is a whole number of wavelengths we get constructive 
interference and if it is an odd number of half wavelengths we get 
destructive interference. It must be an odd number of half wavelengths 
for destructive interference because an even number would give a whole 
number (integer) and that is constructive interference!

Summarizing this:

For constructive interference the path difference must = nλ where  
n = 0,1,2…

For destructive interference the path difference must =  ( n +   1 __ 2   )  where  
n = 0,1,2…

n is known as the order of the fringe, n = 0 being the zeroth order, n = 1 
the first order, etc.
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  Investigate!
Measuring the wavelength of laser light using a double slit

double slit

laser

screen

bright spots

▲  Figure 12 Measuring the wavelength of laser light using a double slit.

This experiment, using a gas laser (or laser 
pointer), is a modern version of the one 
performed by Young. A laser emits a highly 
coherent beam of light ideal for performing this 
experiment. Care should be taken not to shine 
the laser beam or its reflection into your 
eye – should this happen, look away immediately 
to avoid the risk of permanent damage to your 
eye. One way to minimise eye damage is to keep 
sufficient light in the room so that you can still do 
the experiment. This means that the iris of your 
eye will not be fully open.

 ● Set up the apparatus as shown in  
figure 12 – the screen should be a few metres 
from the double slit.

 ● The double slit can be homemade by 
scratching a pair of narrow lines on a piece of 
glass painted with a blackened material or it 
could be a ready prepared slide.

 ● The slit separation (d) can be measured using 
a travelling microscope (however, d is likely to 
be provided by a manufacturer).

 ● Light from the laser beam diffracts through 
the slits and emerges as two separate coherent 
waves. Both slits must be illuminated by the 
narrow laser beam; sometimes it may be 
necessary to use a diverging (concave) lens to 
achieve this.

 ● The interference pattern is then projected onto 
the screen and the separation of the spots 
(images of the laser aperture) is measured as 
accurately as possible using a metre ruler or 
tape measure. This is best done by measuring 
the distance between the furthest spots, 
remembering that nine spots would have a 
separation of 8S.

 ● The distance from the double slit to the screen 
(D) should also be measured using metre 
rulers or a tape measure.

 ● Once your readings are taken the wavelength 
of the light can be calculated from λ =   Sd

 __ D  .

When red light is used as the source, the bright fringes are all red. When 
blue light is used as a source, the bright fringes are all blue. As blue 
light has a shorter wavelength than red light the blue fringes are closer 
together than the red fringes. When the source is white light the zeroth 
order (central) bright fringe is white but the other fringes are coloured 
with the blue edges closer to the centre and the red edges furthest from 
the centre. Can you explain this?
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  Investigate!
Measuring the wavelength of microwaves using a double slit

double slit

mA

receiver

milliammeter

transmitter

▲ Figure 13 Microwave arrangement.

 ● The double slit is adjusted so that the slits are 
around 3 cm apart – for maximum diffraction.

 ● Arrange both transmitter and receiver about 
half a metre from the slit. 

 ● Alter the position of the receiver until the 
received signal is at its strongest.

 ● Now slowly rotate the receiver until the signal 
is weakest. 

 ● Cover up one of the slits with a book and 
explain the result.

 ● Remove the book so that two slits are again 
available and attempt to discover if “fringes” 

occur as in Young's double-slit interference 
experiment with light. Look for fringes on 
both sides of the maximum.

 ● Measure as accurately as you can the values 
for D, d, and S. 

 ● Calculate the wavelength of the microwaves.

 ● Repeat for other distances of transmitter and 
receiver from the slits.

These investigations can be repeated with sound 
waves or radio waves given appropriate transmitters, 
receivers and slits of the correct dimension.
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  Applications and Skills
 ➔ Describing the nature and formation of standing 

waves in terms of superposition
 ➔ Distinguishing between standing and  

travelling waves
 ➔ Observing, sketching, and interpreting standing 

wave patterns in strings and pipes
 ➔ Solving problems involving the frequency of a 

harmonic, length of the standing wave, and the 
speed of the wave

  Nature of science
Fourier synthesis
Synthesizers are used to generate a copy of the 
sounds naturally produced by a wide range of 
musical instruments. Such devices use the principle 
of superposition to join together a range of harmonics 
that are able to emulate the sound of the natural 
instrument. Fourier synthesis works by combining 
a sine-wave signal with sine-wave or cosine-wave 

harmonics of correctly chosen amplitude. The 
process is named after the French mathematician 
and physicist Jean Baptiste Joseph, Baron de Fourier 
who, in the early part of the nineteenth century, 
developed the mathematical principles on which 
synthesis of music is based. In many ways Fourier 
synthesis is a visualization of music.

Understanding
 ➔ The nature of standing waves
 ➔ Boundary conditions
 ➔ Nodes and antinodes

4.5 Standing waves

Introduction
We have seen in Sub-topic 4.2 how travelling waves transfer energy 
from the source to the surroundings. In a travelling wave the position of 
the crests and troughs changes with time. Under the right circumstances, 
waves can be formed in which the positions of the crests and troughs do 
not change – in such a case the wave is called a standing wave. When 
two travelling waves of equal amplitude and equal frequency travelling 
with the same speed in opposite directions are superposed, a standing 
wave is formed.

Standing waves on strings
Figure 1 shows two travelling waves (coloured green and blue) moving 
towards each other at four consecutive times t1, t2, t3, and t4. The 
green and blue waves superpose to give the red standing wave. As 
the green and blue waves move forward there are points where the 
total displacement (seen on the red wave) always remains zero – these 
are called nodes. At other places the displacement varies between a 
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maximum in one direction and a maximum in the other direction – 
these are called antinodes.

time t1

standing wavetravelling waves

time t2

time t3

time t4

standing wave node node

λ
2

▲ Figure 1 The formation of a standing wave.

At any instant the displacement of the standing wave will vary at all 
positions other than the nodes. Thus a single frame shot of a standing 
wave would look like a progressive wave – as can be seen from the red 
wave in figure 1. When representing the standing wave graphically it is 
usual to show the extremes of standing waves, but over a complete time 
period of the oscillation the wave will occupy a variety of positions as 
shown by the arrow in the loop of figure 2.

extreme positions
(antinodes)

range of motion at antinode

nodes

▲ Figure 2 Nodes and antinodes on a string.

Melde’s string
The apparatus shown in figure 3 is useful in demonstrating standing waves 
on a string. A variant of this apparatus was first used in the late nineteenth 
century by the German physicist Franz Melde. A string is strung between 
a vibration generator and a fixed end. When the vibration generator is 
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connected to an audio frequency oscillator, the end of the string attached 
to the vibration generator oscillates vertically. A wave travels down the 
string before undergoing a phase change of 180° when it reflects at the 
fixed end. The reflected wave superposes with the incident wave and 
(at certain frequencies) a standing wave is formed. The frequency of the 
audio frequency generator is slowly increased from zero and eventually a 
frequency is reached at which the string vibrates with large amplitude in 
the form of a single loop – the first harmonic. If the frequency is further 
increased, the amplitude of the vibrations dies away until a frequency of 
twice the first harmonic frequency is achieved – in this case two loops are 
formed and we have the second harmonic frequency shown in figure 3. 
This is an example of resonance – the string vibrates with large amplitude 
only when the applied frequency is an integral multiple of the natural 
frequency of the string. We return to resonance in more detail in Option B. 
Using a stroboscope to freeze the string reveals detail about a standing wave. 
For example, when the flash frequency is slightly out of synch with the 
vibration frequency, it is possible to see the variation with time of the string’s 
displacement; this will be zero at a node but a maximum at an antinode.

Note
 Although we often treat the point of attachment of the string to the vibration 

generator as being a node, this is not really correct. The generator vibrates 
the string to set up the wave and therefore the nearest node to the generator 
will be a short distance from the vibrator. We call this inaccuracy an “end 
correction” but often draw a diagram showing the node at the vibrator.

 Because some of the travelling wave energy is transmitted or absorbed 
by whatever is clamping the fixed end, the reflected waves will be slightly 
“weaker” than the incident waves. This means that cancellation is not 
complete and there will be some slight displacement at the nodes.

 Within each loop all parts of the string vibrate together in phase, but loops 
next to each other are constistently 180o out of phase. 

 Although strings are often used to produce sound waves, it is not a sound 
wave travelling along the string – it is a transverse wave. This wave travels at 
a speed which is determined by the characteristics of the string.

▲ Figure 3 Melde’s string.

stroboscope
fixed end of string node antinode

vibration generator

signal generator
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N = 1

N = 2

N = 3

N = 4

N = 5

▲ Figure 4 Harmonics on a string.

Harmonics on strings
We have seen from Melde’s string that a string has a number of frequencies 
at which it will naturally vibrate. These natural frequencies are known as 
the harmonics of string. The natural frequency at which a string vibrates 
depends upon the tension of the string, the mass per unit length and the 
length of the string. With a stringed musical instrument each end of a string 
is fixed, meaning there will be a node at either end. The first harmonic is the 
lowest frequency by which a standing wave will be set up and consists of a 
single loop. Doubling the frequency of vibration halves the wavelength and 
means that two loops are formed – this is called the second harmonic; three 
times the fundamental frequency gives the third harmonic (see figure 4).

You will see from figure 1 that the distance between two consecutive nodes 
is equal to half a wavelength – in other words each loop in a standing 
wave is equivalent to   λ __ 2   . Figure 4 shows the first five harmonics of a wave 
on a string of a fixed length. With the speed of the wave along the string 
being constant, halving the wavelength doubles the frequency; reducing 
the wavelength by a factor of three triples the frequency, etc. (the wave 
equation c = fλ applies to all travelling waves). The different harmonics 
can be achieved either by vibrating the string at the appropriate 
frequency or by plucking, striking or bowing the string at a different 
position – although plucking at the centre is likely to produce the first, 
third and fifth harmonics. By pinching the string at different places a 
node is produced so, for example, pinching at the centre of the string 
would produce the even harmonics. In a musical instrument several 
harmonics occur at the same time, giving the instrument its rich sound.

Worked example
A string is attached between two rigid supports 
and is made to vibrate at its first harmonic 
frequency f.

The diagram shows the displacement of the string 
at t = 0.

(a) Draw the displacement of the string at time

(i) t =   1 _ 
4f

   (ii) t =   1 _ 
2f

  

(b) The distance between the supports is 1.0 m.  
A wave in the string travels at a speed of  
240 m s–1. Calculate the frequency of the 
vibration of the string.

Solution
(a)   (i)  We must remember the relationship 

between period T and frequency f is T =   1 __ 
f
   . 

This means that t =   T __ 4   =   1 __ 
4f

   so a quarter 
of a period has elapsed and the string has 
gone through quarter of a cycle to give:

(ii)  In this case the wave has gone through 

half a period  ( t =   T __ 2   =   1 __ 
2f

   )  and so will have 

moved from a crest to a trough:

(b) The string is vibrating in first harmonic mode 
and so the distance between the fixed ends is 
half a wavelength  (   λ __ 2   ) .
So   λ __ 2   = 1.0 m and λ = 2.0 m.

Using c = fλ  f =   c __ λ   =   240
 ___ 2.0  

        = 120 Hz

Standing waves in pipes
Standing waves in a pipe differ from standing waves on a string. In 
pipes the wave medium is (usually) air and the waves themselves are 
longitudinal. Pipes can have two closed ends, two open ends, or one 
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open and one closed; the latter two being shown in figure 5. The sound 
waves are reflected at both ends of the pipe irrespective of whether they 
are open or closed. The variation of displacement of the air molecules 
in the pipe determines how we graphically represent standing waves 
in pipes. There is a displacement antinode at an open end (since the 
molecules can be displaced by the largest amount here) and there will 
be a displacement node at the closed end (because the molecules next 
to a closed end are unable to be displaced). Similar ideas to strings apply 
to the harmonics in pipes. Strictly speaking, the displacement antinode 
forms just beyond an open end of the pipe but this end effect can be 
ignored for most purposes.

9th harmonic 5th harmonic

7th harmonic

2 λ
4th harmonic

1st harmonic

5th harmonic

3rd harmonic

1st harmonic

3rd harmonic

1 λ
2nd harmonic

λ1
4

λ3
4

λ3
2

λ5
2

λ5
4

λ7
4

λ9
4

λ1
2

▲ Figure 5 Harmonics in a pipe.

Harmonics in pipes
The harmonic in a pipe depends on whether or not the ends of a pipe are 
open or closed. For a pipe of fixed length with one open and one closed 
end there must always be a node at the closed end and an antinode at 
the open end. This means that only odd harmonics are available (the 
number of the harmonic is the number of half loops in this type of pipe). 
For a pipe with two open ends there must always be an antinode at each 
end and this means that all harmonics are achieveable (in this case the 
number of loops gives the number of the harmonic). 

Let’s compare the frequencies of the harmonics for the “one open end” 
pipe. Suppose the pipe has a length L. The wavelength (λ) of the first 
harmonic would be 4L and, from c = fλ, the frequency would be   c

 __ 4L  .  
c is the speed of sound in the pipe.

For the third harmonic L =   3 __ 4   λ, so λ =   4 __ 3   L and the frequency =   3c
 __ 4L   (or 

three times that of the first harmonic).

A harmonic is named by the ratio of its frequency to that of the 
first harmonic. 
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Worked examples
1 The first harmonic frequency for a particular 

organ pipe is 330 Hz. The pipe is closed at 
one end but open at the other. What is the 
frequency of its second harmonic?

Solution
A named harmonic is the ratio of its frequency to 
that of the first harmonic – so in this case the second 
harmonic will be 660 Hz since the second harmonic 
has twice the frequency of the first harmonic.

2 The first harmonic frequency of the note 
emitted by an organ pipe which is closed 

at one end is f. What is the first harmonic 
frequency of the note emitted by an organ pipe 
of the same length that is open at both ends?

Solution
The length of a pipe closed at one end in first 
harmonic mode is   λ __ 4   (= L ) so λ = 4L

This length will be half the wavelength of a pipe 
open at both ends so L =   λ __ 2   so λ = 2L

Since the wavelength has halved the frequency 
must double so the new frequency will be 2f.

Boundary conditions
In considering both pipes and strings we have assumed reflections at the 
ends or boundaries. In meeting the boundary of a string the wave reflects 
(or at least partially reflects) – this is known as a fixed boundary; there 
will be the usual phase change of 180° at a fixed boundary meaning that 
the reflected wave cancels the incident wave and so forms a node. The 
closed ends of pipes and edges of a drumhead also have fixed boundaries. 
In the case of an open-ended pipe there is still a reflection of the wave 
at the boundary but no phase change, so the reflected wave does not 
cancel the incident wave and there is an antinode formed – the same idea 
applies to strips of metal vibrated at the centre, xylophones, and vibrating 
tuning forks. This type of boundary is called a free boundary.

Comparison of travelling waves and stationary waves
The following table summarizes the similarities and differences between 
travelling waves and standing waves:

Property Travelling wave Standing wave
energy 
transfer

energy is transferred 
in the direction of 
propagation

no energy is transferred by the wave 
although there is interchange of kinetic and 
potential energy within the standing wave

amplitude all particles have the 
same amplitude

amplitude varies within a loop – maximum 
occurs at an antinode and zero at a node

phase within a wavelength 
the phase is different 
for each particle

all particles within a “loop” are in phase 
and are antiphase (180° out of phase) 
with the particles in adjacent “loops”

wave profile 
(shape)

propagates in the 
direction of the wave at 
the speed of the wave

stays in the same position

wavelength the distance between 
adjacent particles 
which are in phase

twice the distance between adjacent 
nodes (or adjacent antinodes)

frequency all particles vibrate 
with same frequency.

all particles vibrate with same frequency 
except at nodes (which are stationary)

TOK

Pitch and frequency

Musical pitch is closely 
linked to frequency but 
also has a psychological 
component in relation to 
music. We think of pitch as 
being someone’s perception 
of frequency. Musical notes 
of certain pitches, when 
heard together, will produce 
a pleasant sensation and 
are said to be consonant 
or harmonic. These sound 
waves form the basis of 
a musical interval. For 
example, any two musical 
notes of frequency ratio 2:1 
are said to be separated 
by an octave and result 
in a particularly pleasing 
sensation when heard. 
Similarly, two notes of 
frequency ratio of 5:4 are 
said to be separated by an 
interval of a third (or strictly 
a pure third); again this 
interval sounds pleasing. 
Has music always been 
thought of in this way? Is 
the concept of consonance 
accepted by all societies?
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Questions
1 (IB)

 a)  A pendulum consists of a bob suspended 
by a light inextensible string from a rigid 
support. The pendulum bob is moved to 
one side and then released. The sketch 
graph shows how the displacement of 
the pendulum bob undergoing simple 
harmonic motion varies with time over 
one time period.

 

0 time
0

displacement

On a copy of the sketch graph:

(i)    Label, with the letter A, a point 
at which the acceleration of the 
pendulum bob is a maximum.

(ii)  Label, with the letter V, a point at 
which the speed of the pendulum bob 
is a maximum.

b) Explain why the magnitude of the tension 
in the string at the midpoint of the 
oscillation is greater than the weight of the 
pendulum bob.

2 (IB) 

The graph below shows how the displacement x 
of a particle undergoing simple harmonic motion 
varies with time t. The motion is undamped.

0 t
0

x

a) Sketch a graph showing how the velocity v 
of the particle varies with time. 

b) Explain why the graph takes this form. 

 (4 marks)

3 (IB)

 a)  In terms of the acceleration, state two 
conditions necessary for a system to 
perform simple harmonic motion.

  b)  A tuning fork is sounded and it is assumed 
that each tip vibrates with simple harmonic 
motion. 

d

 The extreme positions of the oscillating tip 
of one fork are separated by a distance d. 

(i)  State, in terms of d, the amplitude of 
vibration. 

(ii)  Sketch a graph to show how the 
displacement of one tip of the tuning 
fork varies with time.    

(iii)  On your graph, label the time period T 
and the amplitude A. 

(8 marks)

4 (IB)

a) Graph 1 below shows the variation with 
time t of the displacement d of a travelling 
(progressive) wave. Graph 2 shows the 
variation with distance x along the same 
wave of its displacement d.

0
2
4

−2
−4

d/
m

m

x/cm
0.40.0 0.8 1.2 1.6 2.0 2.4

0
2
4

0.10.0 0.2 0.3 0.4 0.5 0.6

Graph 1

Graph 2

−2
−4

d/
m

m

t/s

a) State what is meant by a travelling 
wave. 
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b) Use the graphs to determine the 
amplitude, wavelength, frequency and 
speed of the wave. 

(5 marks)

5 (IB)

a) With reference to the direction of energy 
transfer through a medium, distinguish 
between a transverse wave and a 
longitudinal wave.  

b) A wave is travelling along the surface of 
some shallow water in the x-direction. The 
graph shows the variation with time t of the 
displacement d of a particle of water.
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t/s0.050.0 0.1 0.15 0.2 0.25 0.3

 Use the graph to determine the frequency 
and the amplitude of the wave. 

c) The speed of the wave in b) is 15 cm s–1. 
Deduce that the wavelength of this wave  
is 2.0 cm. 

d) The graph in b) shows the displacement of a 
particle at the position x = 0.

 Draw a graph to show the variation with 
distance x along the water surface of the 
displacement d of the water surface at time  
t = 0.070 s. 

(11 marks)

6 (IB)  

a)  By referring to the energy of a travelling 
wave, explain what is meant by:

(i) a ray 

(ii) wave speed. 

b) The following graph shows the variation 
with time t of the displacement xA of wave 
A as it passes through a point P.

0.0

1.0

2.0

3.0

−1.0

−2.0

−3.0

x A
/m

m

t/ms
2.0

wave A

0.0 4.0 6.0 8.0 10.0

 The graph below shows the variation with 
time t of the displacement xB of wave B as 
it passes through point P. The waves have 
equal frequencies.

0.0

1.0

2.0

−1.0

−2.0

x B
/m

m

t/ms
2.0

wave B

0.0 4.0 6.0 8.0 10.0

(i)   Calculate the frequency of the waves. 

(ii) The waves pass simultaneously through 
point P. Use the graphs to determine 
the resultant displacement at point P of 
the two waves at time t = 1.0 ms and 
at time t = 8.0 ms. 

(6 marks)

7 (IB)

a) With reference to the direction of energy 
transfer through a medium, distinguish 
between a transverse wave and a 
longitudinal wave.  

b) The graph shows the variation with time t 
of the displacement d of a particular water 
particle as a surface water wave travels 
through it. 
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 Use the graph to determine for the wave:

 (i)   the frequency

 (ii) the amplitude. 

c) The speed of the water wave is 12 cm s−1. 
Calculate the wavelength of the wave. 

d) The graph in b) shows the displacement of a 
particle at the position x = 0.

 Sketch a graph to show the variation with 
distance x along the water surface of the 
displacement d of the water surface at time  
t = 0.20 s. 

e) The wave meets a shelf that reduces the 
depth of the water. 

 

shelf
wave fronts

shallow water deep water

30°

direction of
travel of wave

 The angle between the wavefronts in the 
shallow water and the shelf is 30°. The 
speed of the wave in the shallow water is  
12 cm s–1 and in the deeper water is  
18 cm s–1. For the wave in the deeper  
water, determine the angle between the 
normal to the wavefronts and the shelf. 

(12 marks)

8 (IB)  
a) A beam of unpolarized light of intensity I0 is 

incident on a polarizer. The polarization axis 
of the polarizer is initially vertical as shown.

direction of
rotation

polarizer

polarization axis
unpolarized light

 The polarizer is then rotated by 180° in the 
direction shown. Sketch a graph to show 
the variation with the rotation angle θ, of 
the transmitted light intensity I, as θ varies 
from 0° to 180°. Label your sketch-graph 
with the letter U. 

b) The beam in a) is now replaced with a 
polarized beam of light of the same intensity.

 The plane of polarization of the light is 
initially parallel to the polarization axis of 
the polarizer.

direction of
rotation

polarizer

polarization axis
polarized light

 The polarizer is then rotated by 180° in the 
direction shown. On the same axes in a), 
sketch a graph to show the variation with 
the rotation angle θ, of the transmitted light 
intensity I, as θ varies from 0° to 180°. 

(5 marks)

9 (IB) 

An orchestra playing on boat X can be heard by 
tourists on boat Y, which is situated out of sight 
of boat X around a headland.

Y

X

ocean

headland

The sound from X can be heard on Y due to

A. refraction

B. reflection

C. diffraction

D. transmission.
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10 (IB) 

A small sphere, mounted at the end of a vertical 
rod, dips below the surface of shallow water in 
a tray. The sphere is driven vertically up and 
down by a motor attached to the rod.

The oscillations of the sphere produce travelling 
waves on the surface of the water.

water surfacerod

sphere

a) The diagram shows how the displacement 
of the water surface at a particular instant in 
time varies with distance from the sphere. 
The period of oscillation of the sphere is 
0.027 s.

 

0
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Use the diagram to calculate, for the wave:

(i)     the amplitude 

(ii)   the wavelength 

(iii) the frequency 

(iv) the speed. 

b) The wave moves from region A into a 
region B of shallower water. The waves 
move more slowly in region B. The diagram 
(not to scale) shows some of the wavefronts 
in region A.

 

60°

direction of
motion

region A region B

(i)      With reference to a wave, distinguish 
between a ray and a wavefront. 

(ii)    The angle between the wavefronts and 
the interface in region A is 60°. The 
refractive index AnB is 1.4. 
Determine the angle between the 
wavefronts and the interface in  
region B. 

(iii)  On the diagram above, construct three 
lines to show the position of three 
wavefronts in region B. 

c) Another sphere is dipped into the water. 
The spheres oscillate in phase. The diagram 
shows some lines in region A along which 
the disturbance of the water surface is a 
minimum.

 
lines of minimum disturbance

wavefront

(i)     Outline how the regions of minimum 
disturbance occur on the surface. 

(ii)  The frequency of oscillation of the 
spheres is increased. 
State and explain how this will affect 
the positions of minimum disturbance. 

 (15 marks)

11 (IB)

a) Describe two ways in which standing waves 
differ from travelling waves. 

b) An experiment is carried out to measure the 
speed of sound in air, using the apparatus 
shown below.
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tank of water

tube

tuning fork,
frequency 440 Hz

A tube that is open at both ends is placed 
vertically in a tank of water until the top of 
the tube is just at the surface of the water. A 
tuning fork of frequency 440 Hz is sounded 
above the tube. The tube is slowly raised out 
of the water until the loudness of the sound 
reaches a maximum for the first time, due 
to the formation of a standing wave. 

(i)  Explain the formation of a standing 
wave in the tube. 

(ii)  State the position where a node will 
always be produced. 

(iii)   The tube is raised a little further. 
Explain why the loudness of the sound 
is no longer at a maximum. 

c) The tube is raised until the loudness of the 
sound reaches a maximum for a second 
time.

 Between the two positions of maximum 
loudness the tube has been raised by 36.8 cm.

 The frequency of the sound is 440 Hz. 
Estimate the speed of sound in air. 

 (10 marks)

12 (IB)

a) State two properties of a standing 
(stationary) wave. 

b) The diagram shows an organ pipe that is 
open at one end.

l

 The length of the pipe is l. The frequency 
of the fundamental (first harmonic) note 
emitted by the pipe is 16 Hz.

(i)  On a copy of the diagram, label with 
the letter P the position along the pipe 
where the amplitude of oscillation of 
the air molecules is the largest. 

(ii)  The speed of sound in the air in the 
pipe is 330 m s–1. Calculate the length l. 
 

c) Use your answer to b)(ii) to suggest why it 
is better to use organ pipes that are closed at 
one end for producing low frequency notes 
rather than pipes that are open at both 
ends. 

 (8 marks)

13 (IB) 

A microwave transmitter emits radiation of a 
single wavelength towards a metal plate along 
a line normal to the plate. The radiation is 
reflected back towards the transmitter.

metal plate

microwave
transmitter

microwave
detector

A microwave detector is moved along a line 
normal to the microwave transmitter and the 
metal plate. The detector records a sequence 
of equally spaced maxima and minima of 
intensity.

a) Explain how these maxima and minima  
are formed. 

b) The microwave detector is moved through 
130 mm from one point of minimum 
intensity to another point of minimum 
intensity. On the way it passes through nine 
points of maximum intensity. Calculate the

  (i) wavelength of the microwaves. 

(ii) frequency of the microwaves. 

c) Describe and explain how it could be 
demonstrated that the microwaves are 
polarized. 

 (11 marks)

4
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5  E L E C T R I C I T Y  A N D  M A G N E T I S M
Introduction
Modern society uses a whole range of electrical 
devices from the simplest heated metal 
filaments that provide light, through to the 
most sophisticated medical instruments and 
computers. Devices of increasing technical 
complexity are developed every day.

In this topic we look at the phenomenon of 
electricity, and what is meant by charge and 
electric current. We consider the three effects 
that can be observed when charge flows in an 
electric circuit.

5.1 Electric fields

  Nature of science
Electrical theory resembles the kinetic theory 
of gases in that a theory of the microscopic 
was developed to explain the macroscopic 
observations that had been made over centuries. 
The development of this subject and some of the 
byways that were taken make this a fascinating 
study. We should remember the many scientists 
who were involved. It is a tribute to them that they 
could make so much progress when the details of 
the microscopic nature of electronic charge were 
unknown to them.

Understanding
 ➔ Charge
 ➔ Electric field
 ➔ Coulomb’s law
 ➔ Electric current
 ➔ Direct current (dc)
 ➔ Potential difference (pd)

  Applications and skills
 ➔ Identifying two species of charge and the 

direction of the forces between them
 ➔ Solving problems involving electric fields and 

Coulomb’s law
 ➔ Calculating work done when charge moves in 

an electric field in both joules and electronvolts
 ➔ Identifying sign and nature of charge carriers in 

a metal
 ➔ Identifying drift speed of charge carriers
 ➔ Solving problems using the drift-speed equation
 ➔ Solving problems involving current, potential 

difference, and charge

Equations
 ➔ current-charge relationship: I =   ∆q

 ______ ∆t
  

 ➔ Coulomb's law: F = k   
q1 q2 ________ 

r2  

 ➔ the coulomb constant: k =   1 ________ 4πε0
  

 ➔ potential difference definition: V =   W ____ q  

 ➔ conversion of energy in joule to electron-volt: 
W(J) ≡   W(eV)

 __________ e  
 ➔ electric field strength: E =   F ___ q  
 ➔ drift speed: I = nAvq



Charge and field
Simple beginnings
Take a plastic comb and pull it through your hair. Afterwards, the comb 
may be able to pick up small pieces of paper. Look closely and you may 
see the paper being thrown off shortly after touching the comb.

Similar observations were made early in the history of science. The 
discovery that objects can be charged by friction (you were doing this 
when you drew the comb through your hair) is attributed to the Greek 
scientist Thales who lived about 2600 years ago. In those days, silk was 
spun on amber spindles and as the amber rotated and rubbed against its 
bearings, the silk was attracted to the amber. The ancient Greek word for 
amber is ηλεκτρον (electron).

In the 1700s, du Fay found that both conductors and insulators could 
be “electrified” (the term used then) and that there were two opposite 
kinds of “electrification”. However, he was unable to provide any 
explanation for these effects. Gradually, scientists developed the idea 
that there were two separate types of charge: positive and negative. 
The American physicist, Benjamin Franklin, carrying out a famous 
series of experiments flying kites during thunderstorms, named the 
charge on a glass rod rubbed with silk as “positive electricity”. The 
charge on materials similar to ebonite (a very hard form of rubber) 
rubbed with animal fur was called “negative”. One of Franklin’s other 
discoveries was that a charged conducting sphere has no electric field 
inside it (the field and the charges always being outside the sphere). 
Joseph Priestley was able to deduce from this that the force between 
two charges is inversely proportional to the square of the distance 
between the charges.

At the end of the nineteenth century J. J. Thomson detected  
the presence of a small particle that he called the electron.  
Experiments showed that all electrons have the same small quantity  
of charge and that electrons are present in all atoms. Atoms were  
found to have protons that have the same magnitude of electronic 
charge as,  but have opposite charge to, the electron. In a neutral atom 
or material the number of electrons and the number of protons are 
equal. We now assign a negative charge to the electron and positive to 
the proton. There are only these two species of charge.

Explaining electrostatics
Experiments also show that positively charged objects are attracted 
to negatively charged objects but repelled by any other positively 
charged object. The possible cases are summed up in figure 1. There 
can also be an attraction between charged and uncharged objects due 
to the separation of charge in the uncharged object. In figure 1(c) 
the electrons in the uncharged sphere are attracted to the positively 
charged sphere (sphere A) and move towards it. The electrons in 
sphere B are now closer to the positives in sphere A than the fixed 
positive charges on B. So the overall force is towards sphere A as 
the force between two charges increases as the distance between 
them decreases.
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▲ Figure 1 Attractions between charges.

We now know that the simple electrostatic effects early scientists observed 
are due only to the movement of the negatively charged electrons. An object 
with no observed charge has an exact balance between the electrons and 
the positively charged protons; it is said to be neutral. Some electrons in 
conducting materials are loosely attached to their respective atoms and can 
leave the atoms to move from one object to another. This leaves the object 
that lost electrons with an overall positive charge. The electrons transferred 
give the second object an overall negative charge. Notice that electrons are 
not lost in these transfers. If 1000 electrons are removed from a rod when 
the rod is charged by a cloth, the cloth will be left with 1000 extra electrons 
at the end of the process. Charge is conserved; the law of conservation of 
charge states that in a closed system the amount of charge is constant.

When explaining the effects described here, always use the idea of 
surplus of electrons for a negative charge, and describe positive charge 
in terms of a lack (or deficit) of electrons. Figure 2 shows how an 
experiment to charge a metal sphere by induction is explained.
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▲ Figure 2 Charging by induction.

TOK

Inverse-square laws 

Forces between charged 
objects  is one of several 
examples of inverse-square 
laws that you meet in this 
course. They are of great 
importance in physics. 
Inverse-square laws model 
a characteristic property of 
some fields, which is that as 
distance doubles, observed 
effects go down by one 
quarter. 

Mathematics helps you to 
learn and conceptualize your 
ideas about the subject. 
When you have learnt the 
physics of one situation 
(here, electrostatics) then 
you will be able to apply the 
same rules to new situations 
(for example, gravitation, in 
the next topic).

Is the idea of field a human 
construct or does it reflect 
the reality of the universe?
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Measuring and defining charge
The unit of charge is the coulomb (abbreviated to C). Charge is a scalar 
quantity.

The coulomb is defined as the charge transported by a current of 
one ampere in one second.

Measurements show that all electrons are identical, with each one 
having a charge equal to –1.6 × 10–19 C; this fundamental amount of 
charge is known as the electronic (or elementary) charge and given 
the symbol e.  

Charges smaller than the electronic charge are not observed in nature. 
(Quarks have fractional charges that appear as ±   1 __ 3   e or ±   2 __ 3   e; however, 
they are never observed outside their nucleons.) 

In terms of the experiments described here, the coulomb is a very large 
unit. When a comb runs through your hair, there might be a charge of 
somewhere between 1 pC and 1 nC transferred to it.

Forces between charged objects
In 1785, Coulomb published the first of several Mémoires in which he 
reported a series of experiments that he had carried out to investigate 
the effects of forces arising from charges.

He found, experimentally, that the force between two point charges 
separated by distance r is proportional to   1 __ 

r2   thus confirming the earlier 
theory of Priestley. Such a relationship is known as an inverse-square law.

  Investigate!
Forces between charges

 ● These are sensitive experiments that need care 
and a dry atmosphere to achieve a result.

 ● Take two small polystyrene spheres and paint 
them with a metal paint or colloidal graphite, 
or cover with aluminum foil. Suspend one 
from an insulating rod using an insulating 
(perhaps nylon) thread. Mount the other on 
top of a sensitive top-pan balance, again using 
an insulating rod.

 ● Charge both spheres by induction when they 
are apart from each other. An alternative 
charging method is to use a laboratory high 
voltage power supply. Take care, your teacher 
will want to give you instructions about this.

 ● Bring the spheres together as shown in 
figure 3 and observe changes in the reading 
on the balance.

insulating support

insulating rod

sensitive top-pan
balance

−

+

▲ Figure 3
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d ∝ sideways 
force on ball
r = distance 
between balls

d 

r

▲ Figure 4

 ● Another method is to bring both charged 
spheres together as shown in figure 4.

 ●  The distance d moved by the sphere depends 
on the force between the charged spheres. The 
distance r is the distance between the centres 
of the spheres.

 ●  Vary d and r making careful measurements of 
them both.

 ●  Plot a graph of d against   1 __ 
r2   . An experiment 

performed with care can give a straight-line 
graph.

 ● For small deflections, d is a measure of the 
force between the spheres (the larger the 
force the greater the distance that the sphere 
is moved) whereas r is the distance between 
sphere centres.

  Nature of science
Scientists in Coulomb’s day published their work in a very different 
way from scientists today. Coulomb wrote his results in a series of 
books called Mémoires. Part of Coulomb’s original Mémoire in which he 
states the result is shown in figure 5.

▲ Figure 5

Later experiments confirmed that the force is proportional to the product 
of the size of the point charges q1 and q2.

Combining Coulomb’s results together with these gives

F ∝   q1 q2 _ 
r2

  

where the symbol ∝ means “is proportional to”.

The magnitude of the force F between two point charges of charge q1 
and q2 separated by distance r in a vacuum is given by

F =   kq1 q2 _ 
r2

  

where k is the constant of proportionality and is known as Coulomb’s 
constant.

In fact we do not always quote the law in quite this mathematical form. 
The constant is frequently quoted differently as

k =   1 _ 
4πε0

  

The new constant ε0 is called the permittivity of free space (free space is 
an older term for “vacuum”. The 4π is added to rationalize electric and 
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magnetic equations – in other words, to give them a similar shape and 
to retain an important relationship between them (see the TOK section 
on page 177).

So the equation becomes

F =   1 _ 
4πε0

     q1 q2 _ 
r2

  

When using charge measured in coulombs and distance measured in 
metres, the value of k is 9 × 109 N m2 C–2.

This means that ε0 takes a value of 8.854 × 10–12 C2 N–1 m–2 or, in 
fundamental units, m–3 kg–1 s4 A2. 

The equation as it stands applies only for charges that are in a 
vacuum. If the charges are immersed in a different medium (say, air 
or water) then the value of the permittivity is different. It is usual to 
amend the equation slightly too, k becomes   1

 ___ 4πε   as the “0” subscript 
in ε0 should only be used for the vacuum case. For example, the 
permittivity of water is 7.8 × 10–10 C2 N–1 m–2  and the permittivity of air 
is 8.8549 × 10–12 C2 N–1 m–2. The value for air is so close to the free-space 
value that we normally use 8.85 × 10–12 C2 N–1 m–2 for both. The table 
gives a number of permittivity values for different materials.

Material Permittivity / 10–12 C2 N–1 m–2

paper 34
rubber 62
water 779
graphite 106
diamond 71

This equation appears to say nothing about the direction of the force 
between the charged objects. Forces are vectors, but charge and 
(distance)2 are scalars. There are mathematical ways to cope with this, 
but for point charges the equation gives an excellent clue when the signs 
of the charges are included.

force on B
due to A

positive direction

force on A
due to B charge

A
charge

B

r

▲ Figure 6 Force directions.

We take the positive direction to be from charge A to charge B; in  
figure 6 that is from left to right. Let’s begin with both charge A 
and charge B being positive. When two positive charges are multiplied 
together in   

q1 q2 ____ 
r2   , the resulting sign of the force acting on charge B due to 

charge A is also positive. This means that the direction of the force will 
be assigned the positive direction (from charge A to charge B): in other 
words, left to right. This agrees with the physics because the charges are 
repelled. If both charges are negative then the answer is the same, the 
charges are repelled and the force is to the right.

174

5 E L E C T R I C I T Y  A N D  M A GN E T I S M



Electric fields
Sometimes the origin of a force between two objects is obvious, an 
example is the friction pad in a brake rubbing on the rim of a bicycle wheel 
to slow the cycle down. In other cases there is no physical contact between 
two objects yet a force exists between them. Examples of this include the 
magnetic force between two magnets and the electrostatic force between 
two charged objects. Such forces are said to “act at a distance”. 

The term field is used in physics for cases where two separated objects 
exert forces on each other. We say that in the case of the comb picking 
up the paper, the paper is sitting in the electric field due to the comb. 
The concept of the field is an extremely powerful one in physics not 
least because there are many ideas common to all fields. As well as the 
magnetic and electrostatic fields already mentioned, gravity fields also 
obey the same rules. Learn the underlying ideas for one type of field and 
you have learnt them all.

Worked examples
1 Two point charges of +10 nC and –10 nC in 

air are separated by a distance of 15 mm. 

a) Calculate the force acting between the two 
charges.

b) Comment on whether this force can lift a 
small piece of paper about 2 mm × 2 mm 
in area.

Solution
a) It is important to take great care with the 

prefixes and the powers of ten in electrostatic 
calculations.

The charges are: +10 × 10–9 C and –10 × 10–9 C. 
The separation distance is 1.5 × 10–2 m (notice 
how the distance is converted right at the outset 
into consistent units).

So F =    (+1 × 10–8) × (–1 × 10–8)
   ___  

4πε0 (1.5 ×10–2)2
    

 = 4.0 × 10–3 N

The charges are attracted along the line joining 
them. (Do not forget that force is a vector 
and needs both magnitude and direction for a 
complete answer.)

b) A sheet of thin A4 paper of dimensions  
210 mm by 297 mm has a mass of about 2 g. 
So the small area of paper has a mass of about 
1.3 × 10–7 kg and therefore a weight of  
1.3 × 10–6 N. The electrostatic force could lift 
this paper easily.

2 Two point charges of magnitude +5 µC and 
+3 µC are 1.5 m apart in a liquid that has a 
permittivity of 2.3 × 10–11 C2 N–1 m–2.

Calculate the force between the point charges.

Solution

F =   
(+5 ×10–6) × (+3 × 10–6)

  __________________  
4π × 2.3 × 10–11 × (1.5)2   = 23 mN;

a repulsive force acting along the line joining the 
charges.

If, however, one of the charges is positive and the other negative, then 
the product of the charges is negative and the force direction will be 
opposite to the left-to-right positive direction. So the force on charge 2 is 
now to the left. Again, this agrees with what we expect, that the charges 
attract because they have opposite signs.
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Mapping fields

  Investigate!
Plotting electric fields

+ −

castor oil
semolina

(a)

(b)

(c)

▲ Figure 7

 ● At an earlier stage in your school career you 
may have plotted magnetic field patterns using 
iron filings (if you have not done this there is 
an Investigate! in Sub-topic 5.4 to illustrate 

the method). This experiment allows patterns 
to be observed for electric fields.

 ● Put some castor oil in a Petri dish and sprinkle 
some grains of semolina (or grits) onto the 
oil. Alternatives for the semolina include grass 
seed and hairs cut about 1 mm long from an 
artist paint brush.

 ● Take two copper wires and bend one of them 
to form a circle just a little smaller than the 
internal diameter of the Petri dish. Place the end 
of the other wire in the centre of the Petri dish.

 ● Connect a 5 kV power supply to the wires – 
take care with the power supply!

 ● Observe the grains slowly lining up in the 
electric field.

 ● Sketch the pattern of the grains that is 
produced.

 ● Repeat with other wire shapes such as the four 
shown in figure 7(c).

−−
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−
−
−−
−
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+
+
+
+
+
+
+
+

− +

−
−
−
−
−
−
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−

−
−−

−−

−−
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▲ Figure 8 Electric field patterns.

In the plotting experiment, the grains line up in the field that is 
produced between the wires. The patterns observed resemble those in 
figure 8. The experiment cannot easily show the patterns for charges 
with the same sign.

The idea of field lines was first introduced by Michael Faraday 
(his original idea was of an elastic tube that repelled other tubes). 
Although field lines are imaginary, they are useful for illustrating 
and understanding the nature of a particular field. There are some 
conventions for drawing these electric field patterns.

 ●  The lines start and end on charges of opposite sign.

 ●  An arrow is essential to show the direction in which a positive charge 
would move (i.e. away from the positive charge and towards the 
negative charge).

 ●  Where the field is strong the lines are close together. The lines act to 
repel each other.

 ●  The lines never cross.

 ●  The lines meet a conducting surface at 90°.
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TOK

So why not use k?

James Maxwell, working in 
the middle of the nineteenth 
century, realized that there 
was an important connection 
between electricity, 
magnetism and the speed of 
light. In particular he was able 
to show that the permittivity 
of free space ε0 (which 
relates to electrostatics) 
and the permeability of free 
space -0 (which relates 
to electromagnetism) are 
themselves connected to the 
speed of light c:

  1 ________ ε0µ0
   = c2

This proves to be an 
important equation. So 
much so that, in the set of 
equations that arise from the 
SI units we use, we choose to 
use ε0 in all the electrostatics 
equations and µ0 in all the 
magnetic equations. 

However, not all unit 
systems choose to do this. 
There is another common 
system, the cgs system 
(based on the centimetre, 
the gram and the second, 
rather than the metre, 
kilogram and second). In cgs, 
the value of the constant k 
in Coulomb’s law is chosen 
to be 1 and the equation 
appears as F =   

q1 q2 ________ 
r2   . If the 

numbers are different, is the 
physics the same?

Electric field strength
As well as understanding the field pattern, we need to be able to 
measure the strength of the electric field. The electric field strength 
is defined using the concept of a positive test charge. Imagine an 
isolated charge Q sitting in space. We wish to know what the strength of 
the field is at a point P, a distance r away from the isolated charge. We 
put another charge, a positive test charge of size q, at P and measure the 
force F that acts on the test charge due to Q. Then the magnitude of the 
electric field strength is defined to be

E =   F _ q  

+Q

+q

test charge, P

electric force

r

▲ Figure 9 Definition of electric field strength.

The units of electric field strength are N C–1. (Alternative units, that have 
the same meaning, are V m–1 and will be discussed in Topic 11.) Electric 
field strength is a vector, it has the same direction as the force F (this is 
because the charge is a scalar which only “scales” the value of F up or 
down). A formal definition for electric field strength at a point is 
the force per unit charge experienced by a small positive point 
charge placed at that point.

Coulomb’s law can be used to find how the electric field strength varies 
with distance for a point charge.

Q is the isolated point charge and q is the test charge, so

F =   1 _ 
4πε0

     
Qq

 _ 
r2

  

E =   F _ q  

Therefore 

E =   1 _ 
4πε0

     
Qq

 _ 
r2

   ×   1 _ q  

so

E =   1 _ 
4πε0

     
Q

 _ 
r2

  

The electric field strength of the charge at a point is proportional to the 
charge and inversely proportional to the square of the distance from 
the charge.

If Q is a positive charge then E is also positive. Applying the rule that r is 
measured from the charge to the test charge, then if E is positive it acts 
outwards away from the charge. This is what we expect as both charge and 
test charge are positive. When Q is negative, E acts towards the charge Q.

The field shape for a point charge is known as a radial field. The field 
lines radiate away (positive) or towards (negative) the point charge as 
shown in figure 10.

−+ Q −Q

▲  Figure 10 Radial fields for positive  
and negative point charges.
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The electric field strengths can be added using either a calculation or a 
scale diagram as outlined in Topic 1.

test charge

field due to -q -q field

field due to +Q
net

electric field

+Q -q
gives

+q field

net
electric fieldgives gives

field due to 1 field due to 2

field due to 1 and 2

field due to 3 field due to 3

charge 3

charge 2 charge 1

test charge

+Q

=

+2Q

+Q

▲ Figure 11 Vector addition of electric fields.

This vector addition of field strengths (figure 11) can give us an insight 
into electric fields that arise from charge configurations that are more 
complex than a single point charge.

Close to a conductor
Imagine going very close to the surface of a conductor. Figure 12 shows 
what you might see. First of all, if we are close enough then the surface 
will appear flat (in just the same way that we are not aware of the 
curvature of the Earth until we go up in an aircraft). Secondly we would 
see that all the free electrons are equally spaced. There is a good reason 
for this: any one electron has forces acting on it from the other electrons. 
The electron will accelerate until all these forces balance out and it is in 
equilibrium, for this to happen they must be equally spaced. 

Now look at the field strength vectors radiating out from these individual 
electrons. Parallel to the surface, these all cancel out with each other so 
there is no electric field in this direction. (This is the same as saying that 
any one electron will not accelerate as the horizontal field strength is 

Worked examples
1 Calculate the electric field strengths in a 

vacuum

a) 1.5 cm from a +10 µC charge

b) 2.5 m from a –0.85 mC charge

Solution
a) Begin by putting the quantities into consistent 

units: r = 1.5 × 10–2 m and Q = 1.0 × 10–5 C.

Then E =   1.0 × 10–5

 ____________  
4πε0 (1.5 × 10–2)2   = + 4.0 ×108 N C–1. 

The field direction is away from the positive 
charge.

b) E =   –8.5 × 10–4
 __ 

4πε0 (2.5)2
   = –1.2 × 106 N C–1

The field direction is towards the negative charge.

2 An oxygen nucleus has a charge of +8e. 
Calculate the electric field strength at a 
distance of 0.68 nm from the nucleus.

Solution
The charge on the oxygen nucleus is  
8 × 1.6 × 10–19 C; the distance is 6.8 × 10–10 m.

E =   1.3 × 10–18

  _______________  
4πε0 × (6.8 × 10–10)2   = –2.5 ×1010 N C–1 away from 

the nucleus.
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zero). Perpendicular to the surface, however, things are different. Now 
the field vectors all add up, and because there is no field component 
parallel to the surface, the local field must act at 90° to it.

So, close to a conducting surface, the electric field is at 90° to the surface.

Conducting sphere
This can be taken a step further for a conducting sphere, whether it 
is hollow or solid. Again, the free electrons at the surface are equally 
spaced and all the field lines at the surface of the sphere are at 90° to 
it. The consequence is that the field must be radial, just like the field 
of an isolated point charge. So, to a test charge outside the sphere, the 
field of the sphere appears exactly the same as that of the point charge. 
Mathematical analysis shows that outside a sphere the field indeed 
behaves as though it came from a point charge placed at the centre of the 
sphere with a charge equal to the total charge spread over the sphere.

(Inside the sphere is a different matter, it turns out that there is 
no electric field inside a sphere, hollow or solid, a result that was 
experimentally determined by Franklin.)

TOK

But does the test charge 
affect the original field?

If we wanted to use the 
definition of the strength of 
an electric field practically 
by using a test charge, we 
would have to take care. Just 
as a thermometer alters the 
temperature of the object it 
measures, so the test charge 
will exert a force on the original 
charge (the one with the field we 
are trying to measure) and may 
accelerate it, or disturb the field 
lines. This means in practice 
that a test charge is really an 
imaginary construct that we use 
to help our understanding. In 
practice we prefer to measure 
electric field strengths using 
the idea that it is the potential 
gradient, in other words the 
change in the voltage divided 
by the change in distance: the 
larger this value, the greater 
the field strength. We will 
leave further discussion of 
this point to Topic 11 but it is 
food for thought from a theory 
of knowledge perspective: 
a measurement that we 
can think about but not, in 
practice, carry out. The German 
language has a name for it: 
gedankenexperiment “thought 
experiment”. How can a practical 
subject such as a science have 
such a thing?

surface

− − surface

leaving electric field only
perpendicular to surface

perpendicular
to surface add

parallel to
surface cancel

− −

▲ Figure 12 Close to conducting surfaces.

Worked example
Two point charges, a +25 nC charge X and a +15 nC 
charge Y are separated by a distance of 0.5 m.

a) Calculate the resultant electric field strength at 
the midpoint between the charges.

b) Calculate the distance from X at which the 
electric field strength is zero.

c) Calculate the magnitude of the electric  
field strength at the point P on the diagram.  
X and Y are 0.4 m and 0.3 m from P respectively.

P

X Y

0.3 m0.4 m
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Solution 
a) EA =   2.5 × 10–8

  __  
4πε0 × 0.252

   = 3600 N C–1

EB =   1.5 × 10–8
  __  

4πε0 × 0.252
   = 2200 N C–1

The field strengths act in opposite directions,  
so the net electric field strength is  
(3600 – 2200) = 1400 N C–1;  
this is directed away from X towards Y.

b) For E to be zero, EA = –EB and so 

  2.5 × 10–8
 _ 

4πε0 × d2
   =   1.5 × 10–8

  __  
4πε0 × (0.5 – d)2

  

thus

  d2
 _ 

(0.5 – d)2
   =   2.5 _ 

1.5
  

or 

  d _ 
(0.5 – d)

   =  √____
   2.5 _ 

1.5
     = 1.3

   d = 0.65 – 1.3d

   2.3d = 0.65

   d = 0.28 m

c) PX  = 0.4 m so EX at P is   2.5 × 10–8

 ________ 
4πε0 × 0.42   

 =  1400 N C–1 along XP in the direction 

away from X.

PY  = 0.3 m so EY at P is   1.5 × 10–8

 ________ 
4πε0 × 0.32   

 =  1500 N C–1 along PY in the direction 

towards Y.

P

X

Y

net electric field

The magnitude of the resultant electric field 
strength is  √

___________
  14002 + 15002   = 2100 N C–1

(The calculation of the angles was not required 
in the question and is left for the reader.)

  Investigate!
Moving charge around

A
ammeter

high voltage
(approx. 5 kV) supply

metal plate

+coated ball

insulating thread

insulating handle

▲ Figure 13

 ● Arrange two metal plates vertically and about 
20 cm apart. Suspend a table tennis (ping-

pong) ball with a painted metal surface from 
a long insulating thread so that it is midway 
between the plates.

 ● Connect the plates to a high-voltage power 
supply with a sensitive ammeter or light-beam 
galvanometer in the circuit.

 ● When the supply is turned on, the ball should 
“shuttle” between the plates (it may need to be 
kickstarted by making it touch one of the plates).

 ● Notice what happens on the scale of the 
galvanometer. Every time the ball touches a 
plate there is a deflection on the meter. Look 
at the direction and size of the deflections – do 
they vary?

Moving charge
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In the previous Investigate! the power supply is connected to the plates 
with conducting leads. Electrons move easily along these leads. When 
the supply is turned on, the electrons soon distribute themselves so 
that the plate connected to the negative supply has surplus electrons, 
and the other plate has a deficit of electrons, becoming positive. As the 
ball touches one of the plates it loses or gains some of the electrons. The 
charge gained by the ball will have the same sign as the plate and as a 
result the ball is almost immediately repelled. A force acts on the ball 
because it is in the electric field that is acting between the plates. The ball 
accelerates towards the other plate where it transfers all its charge to the 
new plate and gains more charge. This time the charge gained has the 
sign of the new plate. The process repeats itself with the ball transferring 
charge from plate to plate.

The meter is a sensitive ammeter, so when it deflects it shows that there 
is current in the wires leading to the plates. Charge is moving along 
these wires, so this is evidence that: 

 ● an electric current results when charge moves

 ● the charge is moved by the presence of an electric field.

A mechanism for electric current
The shuttling ball and its charge show clearly what is moving in the 
space between the plates. However, the microscopic mechanisms that 
are operating in wires and cells are not so obvious. This was one of the 
major historical problems in explaining the physics of electricity.

Electrical conduction is possible in gases, liquids, solids, and a vacuum. 
Of particular importance to us is the electrical conduction that takes 
place in metals.

Conduction in metals
The metal atoms in a solid are bound together by the metallic bond. 
The full details of the bonding are complex, but a simple model of what 
happens is as follows.

When a metal solidifies from a liquid, its atoms form a regular lattice 
arrangement. The shape of the lattice varies from metal to metal but the 
common feature of metals is that as the bonding happens, electrons are 
donated from the outer shells of the atoms to a common sea of electrons 
that occupies the entire volume of the metal.

electrons
leaving metal

electrons
entering metal metal rod

+positive ions

+

+

+
+

+
+

++

+
+

+

+

▲ Figure 14 Conduction by free electrons in a metal.

Figure 14 shows the model. The positive ions sit in fixed positions on 
the lattice. There are ions at each lattice site because each atom has 
now lost an electron. Of course, at all temperatures above absolute zero 
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they vibrate in these positions. Most of the electrons are still bound to 
them but around the ions is the sea of free electrons or conduction 
electrons; these are responsible for the electrical conduction.

Although the conduction electrons have been released from the atoms, 
this does not mean that there is no interaction between ions and 
electrons. The electrons interact with the vibrating ions and transfer 
their kinetic energy to them. It is this transfer of energy from electrons 
to ions that accounts for the phenomenon that we will call “resistance” 
in the next sub-topic.

The energy transfer in a conductor arises as follows:

(+) high potential
low potential (−) −

electric field

drift direction

▲ Figure 15

In a metal in the absence of an electric field, the free electrons are 
moving and interacting with the ions in the lattice, but they do so 
at random and at average speeds close to the speed of sound in the 
material. Nothing in the material makes an electron move in any 
particular direction.

However, when an electric field is present, then an electric force will act 
on the electrons with their negative charge. The definition of electric 
field direction reminds us that the electric field is the direction in which 
a positive charge moves, so the force on the electrons will be in the 
opposite direction to the electric field in the metal (figure 15).

In the presence of an electric field, the negatively charged electrons 
drift along the conductor. The electrons are known as charge 
carriers. Their movement is like the random motion of a colony of 
ants carried along a moving walkway. 

Conduction in gases and liquids
Electrical conduction is possible in other materials too. Some gases and 
liquids contain free ions as a consequence of their chemistry. When an 
electric field is applied to these materials the ions will move, positive in 
the direction of the field, negative the opposite way. When this happens 
an electric current is observed.

If the electric field is strong enough it can, itself, lead to the creation 
of ions in a gas or liquid. This is known as electrical breakdown.  
It is a common effect during electrical storms when lightning  
moves between a charged cloud and the Earth. You will have seen 
such conduction in neon display tubes or fluorescent tubes use  
for lighting.
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  Nature of science 
Models of conduction
The model here is of a simple flow of free electrons 
through a solid, a liquid, or a gas. But this is 
not the end of the story. There are other, more 
sophisticated models of conduction in solids that 
can explain the differences between conductors, 
semiconductors and insulators better than the 
flow model here. These involve the electronic 
band theory which arises from the interactions 
between the electrons within individual atoms and 
between the atoms themselves. 

Essentially, this band model proposes that 
electrons have to adopt different energies within 
the substance and that some groups of energy 
levels (called band gaps) are not permitted to 
the electrons. Where there are wide band gaps, 

electrons cannot easily move from one set of 
levels to another and this makes the substance an 
insulator. Where the band gap is narrow, adding 
energy to the atomic structure allows electrons 
to jump across the band gap and conduct more 
freely – this makes a semiconductor, and you will 
later see that one of the semiconductor properties 
is that adding internal energy allows them to 
conduct better. In conductors the band gap is of 
less relevance because the electrons have many 
available energy states and so conduction happens 
very easily indeed.

Full details of this theory are beyond IB Physics, but 
if you have an interest in taking this further, you can 
find many references to the theory on the Internet.

Electric current
When charge flows in a conductor we say that there is an electric 
current in the conductor. Current is measured in ampères, the symbol 
for the unit is A. Often, in the English speaking world, the accent is 
omitted.

Current is linked to flow of charge in a simple way.

one coulomb of electron charge

−
−
− − − −

−
−

−
−

−

point P

▲ Figure 16 Charge flow leading to current.

Imagine a block of electrons with a total charge of one coulomb moving 
along a conductor.

An observer at point P is watching these electrons move along the 
conductor. If all the electrons in the block move past the point in one 
second then, the current is one ampere.

If it takes twice as long (2 s) for the block to pass, then the current is half 
and is 0.5 A.

If the block takes 0.1 s to pass the observer, then the current is 10 A.

Mathematically 

electric current, I =   
total charge that moved past a point

    ____    
time taken for charge to move past the point

  

Tip
It is not good practice to write or 
say that “current flows”, what 
is flowing in the circuit is the 
electric charge. The movement 
of this charge is what we call 
current and it is best to write 
that “there is a current in the 
circuit, or in a component” as 
appropriate.
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Worked examples
1 In the shuttling ball experiment, the ball 

moves between the two charged plates at a 
frequency of 0.67 Hz. The ball carries a charge 
of magnitude 72 nC each time it crosses from 
one plate to the other.

Calculate:

a) the average current in the circuit

b) the number of electrons transferred each 
time the ball touches one of the plates.

Solution
a) The time between the ball being at the same plate  

=   1 __ 
f
   =   1

 ____ 0.67   = 1.5 s. The time to transfer 72 nC 
is therefore 0.75 s. 

Current =   7.2 × 10–8

 _______ 0.75   = 96 nA

b) The charge transferred is 72 nC = 7.2 ×10–8 C

Each electron has a charge of –1.6 × 10–19 C, 
so the number of electrons involved in the 
transfer is   7.2 × 10–8

 ________ 
1.6 × 10–19   = 4.5 × 1011

2 a)   Calculate the current in a wire through 
which a charge of 25 C passes in 1500 s.

b) The current in a wire is 36 mA. Calculate 
the charge that flows along the wire in  
one minute. 

Solution
a) I =   :Q

 ___ :t
   , so the current =   25

 ____ 1500   = 17 mA

b) :Q = I:t and ∆t = 60 s. Thus charge that  
flows = 3.6 × 10–2 × 60 = 2.2 C

Charge carrier drift speed
Turn on a lighting circuit at home and the lamp lights almost 
immediately. Does this give us a clue to the speed at which the electrons 
in the wires move? In the Investigate! experiment on page 185, the 
stain indicating the position of the ions moves at no more than a few 
millimetres per second. The lower the value of the current, the slower 
the rate at which the ions move. This slow speed at which the ions move 
along the conductor is known as the drift speed. 

We need a mathematical model to confirm this observation.

  Nature of science
Another physics link
This link between flowing charge and current is 
a crucial one. Electrical current is a macroscopic 
quantity, transfer of charge by electrons is a 
microscopic phenomenon in every sense of the 
word. This is another example of a link in physics 
between macroscopic observations and inferences 
about what is happening on the smallest scales. 

It was the lack of knowledge of what happens 
inside conductors at the atomic scale that forced 
scientists, up to the end of the nineteenth century, 
to develop concepts such as current and field to 
explain the effects they observed. It also, as we 
shall see, led to a crucial mistake.

or in symbols

I =   
:Q

 _ :t
  

The ampere is a fundamental unit defined as part of the SI. Although 
it is explained here in terms of the flow of charge, this is not how it 
is defined. The SI definition is based on ideas from magnetism and is 
covered in Sub-topics 1.1 and 5.4.
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  Investigate!

+−

potassium manganate(VII)
crystal crocodile clip

microscope slidefilter paper soaked in
aqueous ammonia solution

▲ Figure 17

 ● The speeds with which electrons move in 
a metal conductor during conduction are 
difficult to observe, but the progress of 
conducting ions in a liquid can be inferred by 
the trace they leave.

 ● You should wear eye protection during this 
experiment.

 ● Fold a piece of filter paper around a 
microscope slide and fix it with two crocodile 
clips at the ends of the slide. The crocodile 

clips should be attached to leads that are 
connected to a low voltage power supply 
(no more than 25 V is required in this 
experiment).

 ● Wet the filter paper with aqueous ammonia 
solution.

 ● Take a small crystal of potassium 
manganate(VII) and place it in the centre of the 
filter paper. Ensure that the slide is horizontal.

 ● Turn on the current and watch the crystal. You 
should see a stain on the paper moving away 
from the crystal.

 ● Reverse the current direction to check that 
the effect is not due to the slide not being 
horizontal.

 ● How fast is the stain moving?

Imagine a cylindrical conductor that is carrying an electric current I. 
The cross-sectional area of the conductor is A and it contains charge 
carriers each with charge q. We assume that each carrier has a speed v 
and that there are n charge carriers in 1 m3 of conductor – this quantity 
is known as the charge density. 

cross-sectional
area, A

n charge carriers
per unit volume

length of volume
swept out in one second

v

− −
− −

− −

− − −
−

P
charge carrier q

▲ Figure 18 A model for conduction.

Figure 18 shows charge carriers, each of charge q, moving past point P at 
a speed v.

In one second, a volume Av of charge carriers passes P. 

The total number of charge carriers in this volume is nAv and therefore 
the total charge in the volume is nAvq. 

However, this is the charge that passes point P in one second, which is 
what we mean by the electric current. So

I = nAvq
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The example shows that the drift speed of each charge is less than one-
tenth of a millimetre each second. You may well be surprised by this 
result – but it is probably of the same order as the speed you observed in 
the experiment with the potassium manganate(VII). Although the electron 
charge is very small, the speed can also be small because there are very 
large numbers of free electrons available for conduction in the metal. 

To see how sensitive the drift speed is to changes in the charge carrier 
density, we can compare the drift speed in copper with the drift speed in 
a semiconductor called germanium. The number of charge carriers in one 
cubic metre of germanium is about 109 less than in copper. So to sustain the 
same current in a germanium sample would require a drift speed  
109 times greater than in the copper or a cross-sectional area 109 as large.

The slow drift speed in conductors for substantial currents poses the 
question of how a lamp can turn on when there may be a significant 
run of cable between switch and lamp. The charge carriers in the cable 
are drifting slowly around the cable. However, the information that 
the charge carriers are to begin to move when the switch is closed 
travels much more quickly – close to the speed of light in fact. The 
information is transferred when an electromagnetic wave propagates 
around the cable and produces a drift in all the free electrons virtually 
simultaneously. So the lamp can turn on almost instantaneously, even 
though, for direct current, it may take an individual electron many 
minutes or even hours to reach the lamp itself.

Potential difference
Free electrons move in a conductor when an electric field acts on the 
conductor. Later we shall see how devices such as electric cells and power 
supplies provide this electric field. At the same time the power supplies 
transfer energy to the electrons. As the electrons move through the 
conductors, they collide with the positive ions in the lattice and transfer the 
energy gained from the field to the ions.

In situations where fields act, physicists use two quantities called potential 
and potential difference when dealing with energy transfers. Potential 
difference (often abbreviated to “pd”) is a measure of the electrical potential 
energy transferred from an electron when it is moving between two points 
in a circuit. However, given the very small amount of charge possessed by 
each electron this amount of energy is also very small. It is better to use the 
much larger quantity represented by one coulomb of charge.

Worked example
1 A copper wire of diameter 0.65 mm carries a 

current of 0.25 A. There are 8.5 × 1028 charge 
carriers in each cubic metre of copper; the 
charge on each charge carrier (electron) is 
1.6 × 10–19 C. Calculate the drift speed of the 
charge carriers.

Solution
Rearranging the equation

v =   I _ 
nAQ

  

and the area A of the wire is π   (   0.65 × 10–3

 ________ 2   )   2   
= 3.3 × 10–7 m2.

So v =   0.25
  _________________________   

8.5 × 1028 × 3.3 × 10–7 × 1.6 × 10–19    

= 0.055 mm s–1
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Potential difference between two points is defined as the work done (energy 
transferred) W when one unit of charge Q moves between the points. 

potential difference =   W _ 
Q

  

The symbol given to potential difference is V; its unit is the J C–1 and is 
named the volt (symbol: V) after the Italian scientist Alessandro Volta who 
was born in the middle of the eighteenth century and who worked on the 
development of electricity.

The potential difference between two points is one volt if one joule of 
energy is transferred per coulomb of charge passing between the two points.

A simple circuit will illustrate these ideas:

An electric cell is connected to a lamp via a switch and three leads. Figure 19 
shows a picture of the circuit as it would look set up on the bench.

electronic
 current

conventional
 current

lead

conventional
 current

electronic
 current

lamp

+ −

cell

▲  Figure 19 Conventional and electronic current in a circuit.

When the switch is closed, electrons flow round the circuit. Notice the 
direction in which the electrons move and also that the diagram shows the 
direction of a conventional current. The two directions are opposite; in this 
case, clockwise for the electron flow and anti-clockwise for the conventional 
current. The reason for this difference is explained in a later Nature of science 
section. You need to take care with this difference, particularly when using 
some of the direction rules that are introduced later in this topic.

What happens to an electron as it goes round the circuit once? The electron 
gains electric potential energy as it moves through the cell (this will be 
covered in Sub-topic 5.3). The electron then leaves the cell and begins to 
move through the connecting lead. Leads are designed so that they do not 
require much energy transfer to allow the electrons through (we say that 
they have a low electrical resistance) and so the potential difference from 
one end of the lead to the other is small. The electron moves through the 
switch which also gains little energy from the charge carrier.

After moving through another lead the electron reaches the lamp. 
This component is different from others in the circuit, it is deliberately 
designed so that it can gain much of the electrical potential energy from 
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the electrons as they pass through it. The metal lattice in the filament 
gains energy and as a result the ions vibrate at greater speeds and with 
greater amplitudes. At these high temperatures the filament in the lamp 
will glow brightly; the lamp will be lit. 

In potential difference terms, the pds across the leads and the switch are 
small because the passage of one coulomb of charge through them will 
not result in much energy transfer to the lattice. The pd across the lamp 
will be large because, for each coulomb going through it, large amounts 
of energy are transferred from electrons to the lattice ions in the filament 
raising its temperature. 

Worked examples
1 A high efficiency LED lamp is lit for 2 hours. 

Calculate the energy transfer to the lamp 
when the pd across it is 240 V and the current 
in it is 50 mA.

Solution
2 hours is 2 × 60 × 60 = 7200 s.

The charge transferred is I∆t  
= 7.2 × 103 × 50 × 10–3 = 360 C

Work done = charge × pd = 360 × 240 = 86 400 J

2 A cell has a terminal voltage of 1.5 V and can 
deliver a charge of 460 C before it becomes 
discharged. 

a)  Calculate the maximum energy the cell 
can deliver.

b)  The current in the cell never exceeds 5 mA. 
Estimate the lifetime of the cell.

Solution
a)  Potential difference,V =   W __ q    

so W = qV = 460 × 1.5 = 690 J

b)  The current of 5 mA means that no more 
than 5 mC flows through the cell at any time. 
So   460

 _____ 0.005   = 92 000 s (which is about 25 hours)

  Nature of science
Conventional and electron currents 
In early studies of current electricity, the idea 
emerged that there was a flow of “electrical fluid” 
in wires and that this flow was responsible for the 
observed effects of electricity. At first the suggestion 
was that there were two types of fluid known as 
“vitreous” and “resinous”. Benjamin Franklin (the 
same man who helped draft the US Declaration of 
Independence) proposed that there was only one 
fluid but that it behaved differently depending on 
the circumstances. He was also the first scientist to 
use the terms “positive” and “negative”. 

What then happened was that scientists assigned 
a positive charge to the “fluid” thought to be 
moving in the wires. This positive charge was said 
to flow out of the positive terminal of a power 
supply (because the charge was repelled) and 
went around the circuit re-entering the power 

supply through the negative terminal. This is what 
we now term the conventional current. 

In fact, we now know that in a metal the charge 
carriers are electrons and that they move in the 
opposite direction, leaving a power supply at the 
negative terminal. This is termed the electronic 
current. You should take care with these two 
currents and not confuse them.

You may ask: why do we now not simply drop 
the conventional current and talk only about the 
electronic current? The answer is that other rules 
in electricity and magnetism were set up on the 
assumption that charge carriers are positive. All 
these rules would need to be reversed to take 
account of our later knowledge. It is better to 
leave things as they are.
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Electromotive force (emf)
Another important term used in electric theory is electromotive 
force (usually written as “emf” for brevity). This term seems to imply 
that there is a force involved in the movement of charge, but the real 
meaning of emf is connected to the energy changes in the circuit. 
When charge flows electrical energy can go into another form such 
as internal energy (through the heating, or Joule, effect), or it can be 
converted from another form (for example, light (radiant energy) in solar 
(photovoltaic) cells). The term emf will be used in this course when 
energy is transferred to the electrons in, for example, a battery. (Other 
devices can also convert energy into an electrical form. Examples include 
microphones and dynamos.)

The term potential difference will be used when the energy is transferred 
from the electrical form. So, examples of this would be electrical into 
heat and light, or electrical into motion energy. 

The table shows some of the devices that transfer electrical energy and it 
gives the term that is most appropriate to use for each one.

Device

converts 
energy 
from

into

pd or emf?
Cell chemical electrical emf
Resistor electrical internal pd
Microphone sound electrical emf
Loudspeaker electrical sound pd
Lamp electrical light (and 

internal)
pd

Photovoltaic cell light electrical emf
Dynamo kinetic electrical emf
Electric motor electrical kinetic pd

Power, current, and pd
We can now answer the question of how much energy is delivered to a 
conductor by the electrons as they move through it.

Suppose there is a conductor with a potential difference V between its 
ends when a current I is in the conductor.

In time ∆t the charge Q that moves through the conductor is equal to I∆t.

The energy W transferred to the conductor from the electrons is QV 
which is (I∆t)V.

So the energy transferred in time ∆t is

W = IV∆t

The electrical power being supplied to the conductor is   
energy

 _____ time   =   W __ ∆t   and 
therefore

electrical power P = IV

Alternative forms of this expression that you will find useful are I =   P __ V   
and V =   P __ I  
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  Nature of science
A word about potential
The use of the term “potential difference” implies 
that there is something called potential which can 
differ from point to point. This is indeed the case. 

An isolated positive point charge will have field 
lines that radiate away from it. A small positive 
test charge in this field will have a force exerted 
on it in the field line direction and, if free to do 
so, will accelerate away from the original charge. 
When the test charge is close, there is energy 
stored in the system and we say that the system 
(the two charges interacting) has a high potential. 
When the test charge is further away, there is still 
energy stored, but it is smaller because the system 
has converted energy into the kinetic energy of 
the charge – it has “done work” on the charge. So 
to move the test charge away from the original 
charge transfers some of the original stored 

energy; this is described as a loss of potential. 
Positive charges move from points of high 
potential to low potential if they are free to do so. 

Negative charges on the other hand move from 
points of low potential to high. You can work this 
through yourself by imagining a negative test 
charge near a positive original charge. This time 
the two charges are attracted and to move the 
negative charge away we have to do work on the 
system. This increases the potential of the system. 
If charges are free they will fall towards each 
other losing potential energy. In what form does 
this energy re-appear?

We shall return to a discussion of potential in 
Topic 10. From now on Topic 5 only refers to 
potential differences.

The electronvolt
Earlier we said that the energy possessed by individual electrons is very 
small. If a single electron is moved through a potential difference of 
equal to 15 V then as V =   W __ Q  , so W = QV and the energy gained by this 
electron is 15 × 1.6 ×10–19 J = 2.4 × 10–18 J. This is a very small amount 
and involves us in large negative powers of ten. It is more convenient to 
define a new energy unit called the electronvolt (symbol eV). 

Worked examples
1 A 3 V, 1.5 W filament lamp is connected to a  

3 V battery. Calculate:

a) the current in the lamp

b) the energy transferred in 2400 s.

Solution
a) Electrical power, P = IV, so I =   P __ V   =   1.5

 ___ 3   = 0.5 A

b) The energy transferred every second is 1.5 J so 
in 2400 s, 3600 J.

2 An electric motor that is connected to a 12 V 
supply is able to raise a 0.10 kg load through 

a distance of 1.5 m in 7 s. The motor is 40% 
efficient. Calculate the average current in the 
motor while the load is being raised.

Solution
The energy gained is mg∆h  
= 0.01 × g ×1.5 = 0.147 J

The power output of the motor must be  
=   0.147

 _____ 7   = 0.021 W

The current in the motor =   P __ V   =   0.021
 _____ 12   = 1.8 mA. 

Since the motor is 40% efficient the current will 
be 4.5 mA.

The unit of power is the watt (W) – 1 watt (1 W) is the power 
developed when 1 J is converted in 1 s, the same in both mechanics 
and electricity. So another way to think of the volt is as the power 
transferred per unit current in a conductor.
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Worked examples
1 An electron, initially at rest, is accelerated 

through a potential difference of 180 V. 
Calculate, for the electron:

a) the gain in kinetic energy

b) the final speed.

Solution
(a) The electron gains 180 eV of energy during its 

acceleration.

1 eV ≡ 1.6 × 10–19 J so 180 eV ≡ 2.9 × 10–17 J

(b) The kinetic energy of the election =   1 __ 2   mv2 and 
the mass of the electron is 9.1 × 10–31 kg.

So v =  √___
   

2Eke
 ___ me
     =  √_________

    2 × 2.9 × 10–17

 ___________ 
9.1 × 10–31     = 8.0 × 106 m s–1.

2 In a nuclear accelerator a proton is accelerated 
from rest gaining an energy of 250 MeV. 
Estimate the final speed of the particle and 
comment on the result.

Solution 
The energy gained by the proton, in joules, is  
4.0 × 10–11 J.

As before, v =  √___
   

2Eke
 ___ mp
     =  √_________

    2 × 4.0 × 10–12

  ___________ 
1.7 × 10–27     , but using a 

value for the mass of the proton this time.

The numerical answer for v = 2.2 × 108 m s–1. 
This is a large speed, 70% of the speed of light. In 
fact the speed will be less than this as some of the 
energy goes into increasing the mass of the proton 
through relativistic effects rather than into the 
speed of the proton.

This is defined as the energy gained by an electron when it moves 
through a potential difference of one volt. An energy of 1 eV is 
equivalent to 1.6 × 10–19 J. The electronvolt is used extensively in 
nuclear and particle physics.

Be careful, although the unit sounds as though it might be connected to 
potential difference, like the joule it is a unit of energy.
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  Nature of science
Peer review – a process in which scientists repeat 
and criticize the work of other scientists – is an 
important part of the modern scientific method. It 
was not always so. The work of Ohm was neglected 
in England at first as Barlow, a much-respected 
figure in his day, had published contradictory 
material to that of Ohm. In present-day science 
the need for repeatability in data collection is 
paramount. If experiments or other findings cannot 
be repeated, or if they contradict other scientists’ 
work, then a close look is paid to them before they 
are generally accepted.

Understanding
 ➔ Circuit diagrams
 ➔ Kirchhoff’s laws
 ➔ Heating effect of an electric current and its 

consequences
 ➔ Resistance
 ➔ Ohm’s law
 ➔ Resistivity
 ➔ Power dissipation

5.2 Heating effect of an electric current

  Applications and skills
 ➔ Drawing and interpreting circuit diagrams
 ➔ Indentifying ohmic and non-ohmic 

conductors through a consideration of the V–I 
characteristic graph

 ➔ Investigating combinations of resistors in 
parallel and series circuits

 ➔ Describing ideal and non-ideal ammeters and 
voltmeters

 ➔ Describing practical uses of potential divider 
circuits, including the advantages of a potential 
divider over a series variable resistor in 
controlling a simple circuit

 ➔ Investigating one or more of the factors that 
affect resistivity

 ➔ Solving problems involving current, charge, 
potential difference, Kirchhoff’s laws, power, 
resistance and resistivity

Equations
 ➔ resistance definition: R =   V ___ I  
 ➔ electrical power: P = VI = I2 R =   V

2
 _______ R  

 ➔ combining resistors: 
in series Rtotal = R1 + R2 + R3 ...

 ➔ in parallel   1 ___________ Rtotal
   =   1 _______ R1

   +   1 _______ R2
   +   1 _______ R3

   + ...

 ➔ resisitivity definition: ρ =   RA ________ l  

Effects of electric current 
Introduction
This is the first of three sub-topics that discusses some of the effects that 
occur when charge flows in a circuit. The three effects are:

 ● heating effect, when energy is transferred to a resistor as internal energy

 ● chemical effect, when chemicals react together to alter the energy 
of electrons and to cause them to move, or when electric current in a 
material causes chemical changes (Sub-topic 5.3)

 ● magnetic effect, when a current produces a magnetic field, or 
when magnetic fields change near conductors and induce an emf in 
the conductor (Sub-topic 5.4).192
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This sub-topic deals with the heating effect of a current after giving you 
some advice on setting up and drawing electric circuits.

Drawing and using circuit diagrams
At some stage in your study of electricity you need to learn how to 
construct electrical circuits to carry out practical tasks.  

This section deals with drawing, interpreting, and using circuit diagrams 
and is designed to stand alone so that you can refer to it whenever you 
are working with diagrams and real circuits.

You may not have met all the components discussed here yet. They will 
be introduced as they are needed. 

Circuit symbols
A set of agreed electrical symbols has been devised so that all physicists 
understand what is represented in a circuit diagram. The agreed symbols 
that are used in the IB Diploma Programme are shown in figure 1. Most 
of these are straightforward and obvious; some may be familiar to you 
already. Ensure that you can draw and identify all of them accurately.

resistor variable resistor

switch ammeter voltmeter

galvanometer

heating element fusepotentiometer

ac supplytransformer

battery lamp ac supply

joined wires wires crossing (not joined) cell

A V

diode variable power supplythermistor

capacitor

▲ Figure 1 Circuit symbols.

193

5 . 2  H E A T I N G  E F F E C T  O F  A N  E L E C T R I C  C U R R E N T



There are points to make about the symbols. 

 ● Some of the symbols here are intended for direct current (dc) 
circuits (cells and batteries, for example). Direct current refers to a 
circuit in which the charge flows in one direction. Typical examples 
of this in use would be a low-voltage flashlight or a mobile phone.  
Other types of electrical circuits use alternating current (ac) in 
which the current direction is first one way around the circuit and 
then the opposite. The time between changes is typically about 
1/100th of a second. Common standards for the frequencies around 
the world include 50 Hz and 60 Hz. Alternating current is used in 
high-voltage devices (typically in the home and industry), where 
large amounts of energy transfer are required: kettles, washing 
machines, powerful electric motors, and so on. Alternating supplies 
can be easily transformed from one pd to another, whereas this is 
more difficult (though not impossible) for dc. 

 ● There are separate symbols for cells and batteries. Most people use 
these two terms interchangeably, but there is a difference: a battery 
is a collection of cells arranged positive terminal to negative – the 
diagram for the battery shows how they are connected. A cell only 
contains one source of emf. Sub-topic 5.3 goes into more detail about 
cells and batteries.

Circuit conventions
 ● It is not usual to write the name of the component in addition to giving 

its symbol, unless there is some chance of ambiguity or the symbol is 
unusual. However, if the value of a particular component is important 
in the operation of the circuit it is usual to write its value alongside it.

 ● Particular care needs to be taken when it is necessary to draw 
one connecting lead over another. The convention is that if two 
leads cross and are joined to each other, then a dot is placed at the 
junction. If there is no dot, then the leads are not connected to each 
other. In the circuit in figure 2 it is important to know the emf of the 
cell, the data for the lamp at its working temperature, and the full 
scale deflections (fsd) of the two meters in the circuit. 

Practical measurements of current and  
potential difference
We often need to measure the current in a circuit and the pd across 
components in the circuit. This can be achieved with the use of meters 
or sensors connected to computers (data loggers). You may well use both 
during the course. Schools use many types and varieties of meters and 
it is impossible to discuss them all here, but an essential distinction to 
make is between analogue and digital meters. Again, you may well use 
both as you work through the course. 

Analogue meters have a mechanical system of a coil and a magnet. 
When charge flows through the coil, a magnetic field is produced that 
interacts with the field of the magnet and the coil swings round against 
a spring. The position reached by the pointer attached to the coil is a 
measure of the current in the meter.

A

V

0–6 V

0–1 A

0–10 V

6 V, 300 mA

▲ Figure 2 Circuit diagram.
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Digital meters sample the potential difference across the terminals 
of the meter (or, for current, the pd across a known resistor inside the 
meter) and then convert the answer into a form suitable for display on 
the meter.

Ammeters measure the current in the circuit. As we want to know the 
size of the current in a component it is clear that the ammeter must have 
the same current. The ammeter needs to be in series with the circuit 
or component. An ideal ammeter will not take any energy from the 
electrons as they flow through it, otherwise it would disturb the circuit 
it is trying to measure. Figure 2 shows where the ammeter is placed to 
measure the current.

Voltmeters measure the energy converted per unit charge that flows in 
a component or components. You can think of a voltmeter as needing to 
compare the energy in the electrons before they enter a component to 
when they leave it, rather like the turnstiles (baffle gates) to a rail station 
that count the number of people (charges) going through as they give a set 
amount of money (energy) to the rail company. To do this the voltmeter 
must be placed across the terminals of the component or components 
whose pd is being measured. This arrangement is called parallel. Again, 
figure 2 shows this for the voltmeter.

Constructing practical circuits from a diagram
Wiring a circuit is an important skill for anyone studying physics. If you 
are careful and work in an organized way then you should have no 
problems with any circuit no matter how complex.

As an example, this is how you might set up one of the more difficult 
circuits in this course.

A

V

(a)

step 1

step 2

step 3

step 4

A B

A

B'A'

link A → A'; B → B'

(c)

V

▲ Figure 3 Variable resistors.

(b)
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This is a potential divider circuit that it is used to vary the pd across a 
component, in this case a lamp.

The most awkward component to use here is the potential divider 
itself (a form of variable resistor, that is sometimes known as a 
potentiometer). In one form it has three terminals (figure 3(b)), in 
another type it has three in a rotary format. The three-terminal linear 
device has a terminal at one end of a rod with a wiper that touches the 
resistance windings, and another two terminals one at each end of the 
resistance winding itself. 

Begin by looking carefully at the diagram figure 3(a). Notice that it is 
really two smaller circuits that are linked together: the top sub-circuit 
with the cell, and the bottom sub-circuit with the lamp and the two 
meters. The bottom circuit itself consists of two parts: the lamp/ammeter 
link together with the voltmeter loop.

The rules for setting up a circuit like this are:

 ● If you do not already have one, draw a circuit diagram. Get your 
teacher to check it if you are not sure that it is correct.

 ● Before starting to plug leads in, lay out the circuit components on the 
bench in the same position as they appear on the diagram.

 ● Connect up one loop of the circuit at a time.

 ● Ensure that components are set to give minimum or zero current 
when the circuit is switched on.

 ● Do not switch the circuit on until you have checked everything.

Figure 3(c) shows a sequence for setting up the circuit step-by-step.

Another skill you will need is that of troubleshooting circuits – this is an 
art in itself and comes with experience. A possible sequence is:

 ● Check the circuit – is it really set up as in your diagram? 

 ● Check the power supply (try it with another single component such 
as a lamp that you know is working properly).

 ● Check that all the leads are correctly inserted and that there are no 
loose wires inside the connectors. 

 ● Check that the individual components are working by 
substituting them into an alternative circuit known to be 
working.

Resistance 
We saw in Sub-topic 5.1 that, as electrons move through a metal, they 
interact with the positive ions and transfer energy to them. This energy 
appears as kinetic energy of the lattice, in other words, as internal 
energy: the metal wire carrying the current heats up.

However, simple comparison between different conductors shows 
that the amount of energy transferred can vary greatly from metal to 
metal. When there is the same current in wires of similar size made 
of tungsten or copper, the tungsten wire will heat up more than the 
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copper. We need to take account of the fact that some conductors 
can achieve the energy transfer better than others. The concept of 
electrical resistance is used for this.

The resistance of a component is defined as

  
potential difference across the component

    ____    
current in the component

  

The symbol for resistance is R and the definition leads to a well-known 
equation

R =   V _ 
I
  

The unit of resistance is the ohm (symbol Ω; named after Georg Simon 
Ohm, a German physicist). In terms of its fundamental units, 1 Ω is  
1 kg m2 s–3 A–2; using the ohm as a unit is much more convenient!

Alternative forms of the equation are: V = IR and I =   V __ R  

  Investigate!
Resistance of a metal wire

 ● Take a piece of metal wire (an alloy called 
constantan is a good one to choose) and 

connect it in the circuit shown. Use a power 
supply with a variable output so that you can 
alter the pd across the wire easily.

 ● If your wire is long, coil it around an insulator 
(perhaps a pencil) and ensure that the coils do 
not touch.

 ● Take readings of the current in the wire and 
the pd across it for a range of currents. Your 
teacher will tell you an appropriate range to 
use to avoid changing the temperature of  
the wire.

 ● For each pair of readings divide the pd by the 
current to obtain the resistance of the wire  
in ohms. 

A

V

▲ Figure 4

A table of results is shown in figure 5 for a metal wire 1 m in length 
with a diameter of 0.50 mm. For each pair of readings the resistance 
of the wire has been calculated by dividing the pd by the current. 
Although the resistance values are not identical (it is an experiment 
with real errors, after all), they do give an average value for the 
resistance of 2.54 Ω. This should be rounded to 2.5 Ω given the 
signficant figures in the data. 

current/A pd/V
0.13
0.26
0.50
0.76
1.01
1.27
1.53
1.78

2.55
2.60
2.50
2.53
2.53
2.54
2.55
2.54

0.05
0.10
0.20
0.30
0.40
0.50
0.60
0.70

resistance/E

▲  Figure 5 Variation of pd with current 
for a conductor.
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  Nature of science
Edison and his lamp
The conversion of electrical energy into internal 
energy was one of the first uses of distributed 
electricity. Thomas Edison an inventor and 
entrepreneur, who worked in the US at around 
the end of the nineteenth century, was a pioneer 
of electric lighting. The earliest forms of light 
were provided by producing a current in a metal 
or carbon filament. These filaments heated up 

until they glowed. Early lamps were primitive but 
produced a revolution in the way that homes and 
public spaces were lit. The development continues 
today as inventors and manufacturers strive 
to find more and more efficient electric lamps 
such as the light-emitting diodes (LED). More 
developments will undoubtedly occur during the 
lifetime of this book.

Worked example
The current in a 
component is 5.0 mA when 
the pd across it is 6.0 V.

Calculate:

a) the resistance of the 
component

b) the pd across the 
component when the 
current in it is 150 µA.

Solution
a) R =   V __ I   =   6

 ______ 
5 × 10–3   = 1.2 kΩ

b) V = IR = 1.5 × 10–4 × 
1.2 × 103 = 0.18 A

Ohm’s law
Figure 6 shows the results from the metal wire when they are plotted as 
a graph of V against I.

1.00

1.20

1.40

1.60

1.80

2.00

0.80

0.60

0.40

0.20

0.00

pd
/V

current/A
0.100.00 0.20 0.30 0.40 0.50 0.60 0.70 0.80

▲ Figure 6 pd against current from the table.

A best straight line has been drawn through the data points. For this 
wire, the resistance is the same for all values of current measured. Such 
a resistor is known as ohmic. An equivalent way to say this is that the 
potential difference and the current are proportional (the line is straight 
and goes through the origin). In the experiment carried out to obtain 
these data, the temperature of the wire did not change.

This behaviour of metallic wires was first observed by Georg Simon Ohm 
in 1826. It leads to a rule known as Ohm’s law.

Ohm’s law states that the potential difference across a metallic conductor 
is directly proportional to the current in the conductor providing that the 
physical conditions of the conductor do not change. 

By physical conditions we mean the temperature (the most important 
factor as we shall see) and all other factors about the wire. But the 
temperature factor is so important that the law is sometimes stated 
replacing the term “physical conditions” with the word “temperature”.
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  Investigate!
Variation of resistance of a lamp filament

 ● Use the circuit you used in the investigation 
on resistance of a metal wire, but repeat the 
experiment with a filament lamp instead of 
the wire.

Your teacher will advise you of the range of 
currents and pds to use.

 ● This time do the experiment twice, the second 
time with the charge flowing through the lamp 
in the opposite direction to the first. There are 

two ways to achieve this: the first is to reverse the 
connections to the power supply, also reversing 
the connections to the ammeter and voltmeter 
(if the meters are analogue). The second way is 
somewhat easier, simply reverse the lamp and 
call all the readings negative because they are in 
the opposite direction through the lamp.

 ● Plot a graph of V (y-axis) against I (x-axis) with 
the origin (0,0) in the centre of the paper. Figure 
7 shows an example of a V–I graph for a lamp.

4

2

20−20−40−60 40 600

0

−2

−4

−6

6
pd/V

current, I/mA

         ▲ Figure 7

  Nature of science
Ohm and Barlow
Ohm’s law has its limitations because it only tells us about a material 
when the physical conditions do not change. However, it was a 
remarkable piece of work that did not find immediate favour. Barlow 
was an English scientist who was held in high respect for his earlier 
work and had recently published an alternative theory on conduction. 
People simply did not believe that Barlow could be wrong.

This immediate acceptance of one scientist’s work over another would 
not necessarily happen today. Scientists use a system of peer review. 
Work published by one scientist or scientific group must be set out in 
such a way that other scientists can repeat the experiments or collect 
the same data to check that there are no errors in the original work. 
Only if the scientific community as a whole can verify the data is the 
new work accepted as scientific “fact”. 

Towards the end of the 20th century a research group thought 
that it had found evidence that nuclear fusion could occur at low 
temperatures (so-called “cold fusion”). Repeated attempts by other 
research groups to replicate the original results failed, and the cold 
fusion ideas were discarded.
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TOK

But is it a law?

This rule of Ohm is always 
called a law – but is it? In 
reality it is an experimental 
description of how a group 
of materials behave under 
rather restricted conditions. 
Does that make it a law? You 
decide.

There is also another aspect 
to the law that is often 
misunderstood.

Our definition of resistance 
is that R =   V ___ I   or V = IR. Ohm’s 
law states that 

V ∝ I

and, including the constant 
of proportionality k,

V = kI

We therefore define R to 
be the same as k, but the 
definition of resistance 
does not correspond to 
Ohm’s law (which talks only 
about a proportionality). 
V = IR is emphatically not 
a statement of Ohm’s law 
and if you write this in an 
examination as a statement 
of the law you will lose marks.

The graph is not straight (although it goes through the origin) so V and 
I are not proportional to each other. The lamp does not obey Ohm’s law 
and it is said to be non-ohmic. However, this is not a fair test of ohmic 
behaviour because the filament is not held at a constant temperature. If 
it were then, as a metal, it would probably obey the law. 

When the resistance is calculated for some of the data points it is not 
constant either. The table shows the resistance values at each of the 
positive current points.

Current/mA Resistance/Ω
20  50
34  59
41  73
47  85
52  96
55 109

The data show that resistance of the lamp increases as the current 
increases. At large currents, it takes greater changes in pd to change 
the current by a fixed amount. This is exactly what you might have 
predicted. As the current increases, more energy is transferred from the 
electrons every second because more electrons flow at higher currents. 
The energy goes into increasing the kinetic energy of the lattice ions and 
therefore the temperature of the bulk material. But the more the ions 
vibrate in the lattice, the more the electrons can collide with them so at 
higher temperatures even more energy is transferred to the lattice by the 
moving charges.

Other non-ohmic conductors include semiconducting diodes and 
thermistors; these are devices made from a group of materials known  
as semiconductors. 

  Investigate!
Diodes and thermistors

 ● You can easily extend the Investigate! lamp experiment to include 
these two types of device. There are some extra practical points 
however: 

 ● The diode will require a protecting resistor in series with it  
(100 Ω is usually appropriate) as the current can become very 
large at even quite small potential differences; this will cause  
the diode to melt as large amounts of energy are transferred  
to it. The resistor limits the current so that the diode is not 
damaged.

 ● The thermistor also needs care, because as it heats up its resistance 
decreases and if too much current is used, the thermistor can also 
be destroyed.

Tip
Notice that these resistances were 
calculated for each individual 
data point using   V __ I   . They were not 
evaluated from the tangent to the 
graph at the current concerned. 
The definition of resistance is in 
terms of   V __ I   not in terms of   ∆V

 ___ ∆I
   which 

is what the tangent would give.
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The results of these experiments and some others are summarized in the 
I–V graphs in figure 8.

I

V

ohmic conductor

0
0

I

V

filament lamp

0
0

0
0

0
0

II

neon tube
V

thermistor
V

I

V

semiconducting diode

0
0

▲ Figure 8 I–V graphs for various conductors.

Semiconducting diodes
Semiconducting diodes are designed only to allow charges to flow 
through them in one direction. This is seen clearly in the graph. For 
negative values of V there is actually a very small current flowing in the 
negative direction but it is far less than the forward current. The nature 
of semiconductor material also means that there is no significant current 
in the forward direction until a certain forward pd is exceeded.

Thermistors
Thermistors are made from one of the two elements that are electrical 
semiconductors: silicon and germanium. There are several types 
of thermistor, but we will only consider the negative temperature 
coefficient type (ntc). As the temperature of an ntc thermistor increases, 
its resistance falls. This is the opposite behaviour to that of a metal.

Semiconductors have many fewer free electrons per cubic metre 
compared with metals. Their resistances are typically 105 times greater 
than similar samples of metals. However, unlike in a metal, the charge 
density in semiconductors depends strongly on the temperature. The 
higher the temperature of the semiconductor, the more charge carriers 
are made available in the material. 

As the temperature rises in the germanium:

 ● The lattice ions vibrate more and impede the movement of the 
charge carriers. This is exactly the same as in metals and also leads to 
an increase in resistance.

 ● More and more charge carriers become available to conduct because 
the increase in temperature provides them with enough energy to 
break away from their atoms. This leads to a large decrease in resistance.

 ● The second effect is much greater than the first and so the net effect 
is that conduction increases (resistance falls) as the temperature of 
the semiconductor rises.
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  Investigate!
How resistance depends on size and shape

 ● You will need a set of wires made from the 
same metal or metal alloy. The wires should 
have a circular cross-section and be available 
in a range of different diameters. You will also 
need to devise a way to vary the length of one 
of the wires in the circuit.

 ● Use the circuit in figure 4 on p197 to answer 
the following questions:

 ■ How does the resistance R of one of the 
wires vary with length l?

 ■ How does the resistance R of the wires 
vary with diameter d when the wires all 
have the same length?

 ● Try to make things easy for your analysis. 
Double and halve the values of length to see 
what difference this makes to the resistance – 
is there an obvious relationship? The diameter 
of the wire may be more difficult to test in this 
way, but a graph of resistance against diameter 
may give you a clue.

 ● Once you have an idea what is going on, you 
may decide that the best way to answer these 
questions is to plot graphs of

 R against l, and

 R against   1 __ 
d2  

Resistivity
The resistance of a sample of a material depends not only on what it is 
made of, but also on the physical dimensions (the size and shape) of the 
sample itself.

The graphs suggested in the Investigate! should give straight lines that go 
through the origin and can be summed up in the following rule.

The resistance of a conductor is:

 ● proportional to its length l

 ● inversely proportional to its cross-sectional area A (which is itself 
proportional to d2).

So

R ∝   l _ 
A

  

This leads to a definition of a new quantity called resistivity.

Resistivity ρ is defined by

ρ =   RA _ 
l
  

The unit of resistivity is the ohm-metre (symbol Ω m). Take care here: 
this is ohm metre. It is not ohm metre–1 – a mistake frequently made by 
students in examinations. The meaning of ohm metre–1 is the resistance 
of one metre length of a particular conductor, which is a relevant 
quantity to know, but is not the same as resistivity. 

Resistivity is a quantity of considerable use. The resistance of a material 
depends on the shape of the sample as well as what it is made from. 
Even a constant volume of a material will have values of resistance that 
depend on the shape. However, the value of the resistivity is the same 
for all samples of the material. Resistivity is independent of shape or size 
just like quantities such as density (where the size of a material has been 
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removed by the use of volume) or specific latent heat (where the value is 
related to unit mass of the material).

Worked examples
1 A uniform wire has a radius of 0.16 mm and a 

length of 7.5 m. Calculate the resistance of the 
wire if its resistivity is 7.0 × 10–7 Ω m.

Solution
Unless told otherwise, assume that the wire has a 
circular cross-section.

area of wire = π(1.6 × 10–4)2 = 8.04 × 10–8 m2 

ρ =   RA _ 
l
  

and R =   
ρl

 _ 
A

   =   7.0 × 10–7 × 7.5  __  
8.04 × 10–8

   = 65 Ω

2 Calculate the resistance of a block of copper 
that has a length of 0.012 m with a width 
of 0.75 mm and a thickness of 12 mm. The 
resistivity of copper is 1.7 × 10–8 Ω m.

Solution
The cross-sectional area of the block is  
7.5 × 10–4 × 1.2 × 10–2 = 9.0 × 10–6 m2

The relevant dimension for the length is 0.012 m, 
so  

R =   
ρl

 _ 
A

   =   1.7 × 10–8 × 0.012
  _____________ 

9.0 × 10–6   = 0.023 mΩ

  Investigate!
Resistivity of pencil lead

pencil

V

A

▲ Figure 9

 ● Graphite is a semi-metallic conductor and is 
a constituent of the lead in a pencil. Another 
constituent in the pencil lead is clay. It is the 
ratio of graphite to clay that determines the 
“hardness” of the pencil. This experiment 
enables you to estimate the resistivity of the 
graphite.

 ● Take a B grade pencil (sometimes known as #1 
grade in the US) and remove about 1.5 cm of 
the wood from each end leaving a cylinder of 
the lead exposed. Attach a crocodile (alligator) 
clip firmly to each end. Use leads attached to 
the crocodile clips to connect the pencil into 
a circuit in order to measure the resistance 
of the lead. Expect the resistance of the 
pencil lead to be about 1 Ω for the purpose of 
choosing the power supply and meters.

 ● Determine the resistance of the lead.

 ● Measure the length of pencil lead between the 
crocodile clips.

 ● Measure the diameter of the lead using a 
micrometer screw gauge or digital callipers 
and calculate the area of the lead.

 ● Using the data, calculate the resistivity of the 
lead. The accepted value of the resistivity of 
graphite is about 3 × 10–5 Ω m but you will 
not expect to get this value given the presence 
of clay in the lead as well.

 ● Take the experiment one step further with 
a challenge. Use your pencil to uniformly 
shade a 10 cm by 2 cm area on a piece 
of graph paper. This will make a graphite 
resistance film on the paper. Attach the 
graphite film to a suitable circuit and 
measure the resistance of the film. Knowing 
the resistance and the dimensions of your 
shaded area should enable you to work out 
how thick the film is. (Hint: in the resistivity 
equation, the length is the distance across 
the film, and the area is width of the film × 
thickness of the film.)
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Practical resistors 
Resistors are of great importance in the electronics and electrical 
industries. They can be single value (fixed) devices or they can be 
variable. They can be manufactured in bulk and are readily and 
cheaply available. 

Resistors come in different sizes. Small resistors can have a large 
resistance but only be able to dissipate (lose) a modest amount of energy 
every second. If the power that is being generated in the resistor is too 
large, then its temperature will increase and in a worst case, it could 
become a thermal fuse! Resistors are rated by their manufacturers so 
that, for example, a resistor could have a resistance of 270 Ω with a 
power rating of 0.5 W. This would mean that the maximum current that 
the resistor can safely carry is  √___

   0.5
 ___ 270     = 43 mA.

Combining resistors
Electrical components can be linked together in two ways in an electrical 
circuit: in series, where the components are joined one after another as 
the ammeter, the cell and the resistor in figure 10, or in parallel as are 
the resistor and the voltmeter in the same figure.

Two components connected in series have the same current in each. 
The number of free electrons leaving the first component must equal 
the number entering the second component; if electrons were to stay 
in the first component then it would become negatively charged and 
would repel further electrons and prevent them from entering it. The 
flow of charges would rapidly grind to a halt. This is an important rule to 
understand.

In series the potential differences (pds) add. To see this, think of charge 
as it travels through two components, the total energy lost is equal to 
the sum of the two separate amounts of energy in the components. 
Because the charge is the same in both cases, therefore, the sum of the 
pds is equal to the total pd dropped across them.

Components in parallel, on the other hand, have the same pd across 
them, but the currents in the components differ when the resistances 
of the components differ. Consider two resistors of different resistance 
values, in parallel with each other and connected to a cell. If one of the 
resistors is temporarily disconnected then the current in the remaining 
resistor is given by the emf of the cell divided by the resistance. This will 
also be true for the other resistor if it is connected alone. If both resistors 
are now connected in parallel with each other, both resistors have the 
same pd across them because a terminal of each resistor is connected to 
one of the terminals of the cell. The cell will have to supply more current 
than if either resistor were there alone – to be precise, it has to supply 
the sum of the separate currents.

To sum up 

Currents ... Potential 
differences ...

In series ...are the same ...add
In parallel ...add ...are the same

A

V

▲ Figure 10
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  Investigate!
Resistors in series and parallel

 ● For this experiment you need six resistors, 
each one with a tolerance of ±5%. Two 
of these resistors should be the same. The 
tolerance figure means that the manufacturer 
only guarantees the value to be within 5% 
of the nominal value – “nominal” means the 
printed value. Your resistors may have the 
nominal value written on them or you may 
have to use the colour code printed on them. 
The code is easy to decipher.

silver
gold
black
brown
red 2
orange
yellow
green
blue
violet

0.01

2

multiplier tolerance

0.1
1

10
100

1 k
10 k

100 k

10%
5%

1%
2%

0.5%
1 M

10 M
grey
white

0
1

3
4
5
6
7
8
9

7 ×1k (±5%) = 27kΩ (±5%)

 ● You also need a multimeter set to measure 
resistance directly and a way to join the 
resistors together and to connect them to the 
multimeter.

 ● First, measure the resistance of each resistor and 
record this in a table.

 ● Take the two resistors that have the same 
nominal value and connect them in series. 
Measure the resistance of the combination. 
Can you see a rule straight away for the 
combined resistance of two resistors?

 ● Repeat with five of the possible combinations 
for connecting resistors in series.

 ● Now measure the combined resistance of the 
two resistors with the same nominal value 
when they are in parallel. Is there an obvious 
rule this time?

 ● One way to express the rule for combining 

two resistors R1 and R2 in parallel is as   
R1 R2 ______ R1 + R2

   . 

Test this relationship for five combinations of 
parallel resistors.

 ● Test your two rules together by forming 
combinations of three resistors such as:

These ideas provide a set of rules for the combination of resistors in 
various arrangements:

Resistors in series
Suppose that there are three resistors in series: R1, R2 and R3 (figure 11(a)). 
What is the resistance of the single resistor that could replace them so 
that the resistance of the single resistor is equivalent to the combination 
of three?

The resistors are in series (figure 11(a)) and therefore the current I is the 
same in each resistor.

Using the definition of resistance, the pd across each resistor, V1, V2 and 
V3 is

V1 = IR1   V2 = IR2   and   V3 = IR3
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The single resistor with a resistance R has to be indistinguishable  
from the three in series. In other words, when the current through  
this single resistor is the same as that through the three, then it must 
have a pd V across it such that 

V = IR

I

I

R2

R2

R3

R3

R1

(a) series

R1

V1

I1

I2

I3

V2

V

(b) parallel
V

V3

▲ Figure 11 Resistors in series and parallel.

As this is a series combination, the potential differences add, so

V = V1 + V2 + V3

Therefore 

IR = IR1 + IR2 + IR3

and cancelling I leads to, in series

R = R1 + R2 + R3

When resistors are combined in series, the resistances add to give the 
total resistance.

Resistors in parallel
Three resistors in parallel (figure 11(b)) have the same pd V across them 
(figure 11(b)). The currents in the three separate resistors add to give the 
current in the connecting leads to and from all three resistors, therefore

I = I1 + I2 + I3

Each current can be written in terms of V and R using the definition of 
resistance:

  V _ 
R

   =   V _ 
R1

   +   V _ 
R2

   +   V _ 
R3
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This time V cancels out and, in parallel, 

  1 _ 
R

   =   1 _ 
R1

   +   1 _ 
R2

   +   1 _ 
R3

  

In parallel combinations of resistors, the reciprocal of the total resistance 
is equal to the sum of the reciprocals of the individual resistances.

The parallel equation needs some care in calculations. The steps are:

●  calculate the reciprocals of each individual resistor

● add these reciprocals together

● take the reciprocal of the answer.

It is common to see the last step ignored so that the answer is incorrect; 
a worked example below shows the correct approach. 

More complicated networks
When the networks of resistors are more complicated, then the 
individual parts of the network need to be broken down into the 
simplest form.

Figure 12 shows the order in which a complex resistor network could be 
worked out.

Worked examples
1 Three resistors of resistance, 2.0 Ω, 4.0 Ω, 

and 6.0 Ω are connected. Calculate the total 
resistance of the three resistors when they are 
connected:

a) in series 

b) in parallel.

Solution 
a) In series, the resistances are added together, so 

2 + 4 + 6 = 12 Ω
b) In parallel, the reciprocals are used:  

  1 __ R   =   1 __ R1

   +   1 __ R2

   +   1 __ R3

   =   1 __ 2   +   1 __ 4   +   1 __ 6   =    6 + 3 + 2
 ________ 12   =   11

 __ 12  

The final step is to take the reciprocal of the 
sum, R =   12

 __ 11   = 1.1 Ω
2 2.0 Ω, 4.0 Ω, and 8.0 Ω resistors are connected 

as shown. Calculate the total resistance of this 
combination.

2.0 E
4.0 E

8.0 E

Solution
The two resistors in parallel have a combined 
resistance of   1 __ R   =   1 __ R1

   +   1 __ R2

   =   1 __ 4   +   1 __ 8   =   3 __ 8  

R =   8 _ 
3

   = 2.67 Ω
This 2.67 Ω resistor is in series with 2.0 Ω, so the 
total combined resistance is 2.67 + 2.0 = 4.7 Ω.

3 Four resistors each of resistance 1.5 Ω are 
connected as shown. Calculate the combined 
resistance of these resistors.

Solution
Two 1.5 Ω resistors in parallel have a resistance 
given by   1 __ R   =   1

 ___ 1.5   +   1
 ___ 1.5   =   2

 ___ 1.5  . So R = 0.75 Ω.

Two 0.75 Ω resistors in series have a combined 
resistance of 0.75 + 0.75 =1.5 Ω 

step 1
combine series resistors

step 2
combine parallel resistor
separately

step 3
combine series 
resistors together

▲ Figure 12

207

5 . 2  H E A T I N G  E F F E C T  O F  A N  E L E C T R I C  C U R R E N T



Potential divider
In the section on circuit diagrams, a potential divider circuit was shown. 
This is a circuit commonly used with sensors and also to produce 
variable potential differences. It has some advantages over the simpler 
variable resistor circuit even though it is more complicated to set up.

R1 Rtop

thermistor

V1

V2
R2 Vout Vout

Vin

V

(a) (b) (c)

Vin

R

LDR

Vin

▲ Figure 13 The potential divider.

The most basic potential divider consists of two resistors with resistances 
R1 and R2 in series with a power supply. This arrangement is used to 
provide a fixed pd at a value somewhere between zero and the emf of 
the power supply. Figure 13(a) shows the arrangement.

The two resistors have the same current in them, and the sum of the pds 
across the resistors is equal to the source emf.

So

The current I in both resistors is

I =   
total pd across both resistors

   ___  
total resistance

   =   V _ 
R

  

As usual,

V1 = IR1 and V2 = IR2

The resistors are in series so 

R = R1 + R2

This leads to equations for the pd across each resistor

V1 =   
R1 _ 

 ( R1 + R2 )    Vin   and   V2 =   
R2 _ 

 ( R1 + R2 )   Vin

Using a potential divider with sensors 
It is a simple matter to extend the fixed pd arrangement to a circuit that 
will respond to changes in the external conditions. Such an arrangement 
might be used by a computer that can sense changes in pd and respond 
accordingly, for example, by turning on a warning siren if a refrigerator 
becomes too warm, or turning on a light when it becomes dark.

Typical circuits are shown in figures 13(b) and13(c). 

In figure 13(b) a thermistor is used instead of one of the fixed resistors. 

Worked example
1 A potential divider 

consists of two resistors 
in series with a battery 
of 18 V. The resistors 
have resistances 3.0 Ω 
and 6.0 Ω. Calculate, 
for each resistor:

a) the pd across it

b) the current in it.

Solution 
a) The pd across the 3.0 Ω 

resistors   
Vin × R1 _______ (R1 + R2)

   =   18 × 3
 _____ 3 + 6   

= 6.0 V. The pd across 
the 6.0 Ω is then 18 – 
6.0 V = 12 V.

b) The current is the 
same in both resistors 
because they are 
in series. The total 
resistance is 9.0 Ω and 
the emf of the battery  
is 18 V. The current =  
  V __ R   =   18

 __ 9   = 2.0 A.
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Recall that when a thermistor is at a high temperature its resistance is 
small, and that the resistance increases when the temperature falls.

Rather than calculating the values, for this example we will use our 
knowledge of how pd and current are related to work out the behaviour 
of the circuit from first principles.

Suppose the temperature is low and that the thermistor resistance is 
high relative to that of the fixed-value resistor. Most of the pd will be 
dropped across the thermistor and very little across the fixed resistor. 
If you cannot see this straight away, remember the equations from the 
previous section:

Vthermistor =   
VinRthermistor  __  

 ( Rthermistor + Rresistor )     and Vresistor =   
VinRresistor  __  

 ( Rthermistor + Rresistor )   

If Rthermistor ⪢ Rresistor (⪢ means “much greater than”)  
then Rthermistor ≈  (Rthermistor + Rresistor)  and Vthermistor ≈ Vin. 

So the larger resistance (the thermistor at low temperatures) has the 
larger pd across it.

If the thermistor temperature now increases, then the thermistor 
resistance will fall. Now the fixed-value resistor will have the larger 
resistance and the pds will be reversed with the thermistor having the 
small voltage drop across it. A voltage sensor connected to a computer 
can be set to detect this voltage change and can activate an alarm if the 
thermistor has too high a temperature.

You may be asking what the resistance of the fixed resistor should be. 
The answer is that it is normally set equal to that of the thermistor when 
it is at its optimum (average) temperature. Then any deviation from the 
average will change the potential difference and trigger the appropriate 
change in the sensing circuit.

The same principle can be applied to another sensor device, a light-
dependent resistor (LDR). This, like the thermistor, is made of 
semiconducting material but this time it is sensitive to photons incident 
on it. When the light intensity is large, charge carriers are released in 
the LDR and thus the resistance falls. When the intensity is low, the 
resistance is high as the charge carriers now re-combine with their atoms.

Look at figure 13(c). You should be able to explain that when the LDR is 
in bright conditions then the pd across the fixed resistor is high.

Using a potential divider to give a variable pd
A variable resistor circuit is shown in figure 14(a). It consists of a power 
supply, an ammeter, a variable resistor and a resistor. The value of each 
component is given on the diagram.

We can predict the way this circuit will behave. 

When the variable resistor is set to its minimum value, 0 Ω, then there 
will be a pd of 2 V across the resistor and a current of 0.2 A in the circuit. 

When the variable resistor is set to its maximum value, 10 Ω, then the 
total resistance in the circuit is 20 Ω, and the current is 0.1 A. 

This means that with 0.1 A in the 10 Ω fixed resistor, only 1 V is dropped 
across it. Therefore the range of pd across the fixed resistor can only vary 

209

5 . 2  H E A T I N G  E F F E C T  O F  A N  E L E C T R I C  C U R R E N T



from 1 V to 2 V – half of the available pd that the power supply can in 
principle provide. You should now be able to predict the range across the 
variable resistor. 

2 V

0 V

1 V

A

V

fixed resistor
10 E

variable resistor
0–10 E

2 V

fixed resistor
10 E

slider

(a)   variable resistor (b)   potential divider

2 V

▲ Figure 14

The limited range is a significant limitation in the use of the variable 
resistor. To achieve a better range, we could use a variable resistor 
with a much higher range of resistance. To get a pd of 0.1 V across 
the fixed resistor the resistance of the variable resistor has to be about 
200 Ω. If the fixed resistor had a much greater resistance, then the 
variable resistor would need an even higher value too and this would 
limit the current.

The potential divider arrangement (figure 14(b)) allows a much greater 
range of pd to the component under test than does a variable resistor 
in series with the component. In a potential divider, the same variable 
resistor can be used but the set up is different and involves the use of 
the three terminals on the variable resistor. (A variable resistor is also 
sometimes called a rheostat.) One terminal is connected to one side of 
the cell, and the other end of the rheostat resistor is connected to the 
other terminal of the cell. 

The potential at any point along the resistance winding depends 
on the position of the slider (or wiper) that can be swept across the 
windings from one end to the other. Typical values for the potentials 
at various points on the windings are shown for the three blue slider 
positions on figure 14(b). The component that is under test (again, 
a resistor in this case) is connected in a secondary circuit between 
one terminal of the resistance winding and the slider on the rheostat. 
When the slider is positioned at one end, the full 2 V from the cell 
is available to the resistor under test. When at the other end, the pd 
between the ends of the resistor is 0 V (the two leads to the resistor 
are effectively connected directly to each other at the variable 
resistor).

You should know how to set this arrangement up and also how to draw 
the circuit and explain its use. 
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Heating effect equations
We saw earlier that the power P dissipated in a component is related to 
the pd V across the component and the current I in it:

P = IV

The energy E converted in time ∆t is

E = IV∆t

When either V or I are unknown, then two more equations become 
available:

P = IV = I2R =   V
2
 _ 

R
  

  Investigate!
Variable resistor or potential divider?

 ● Set up the two circuits shown in figure 14. 
Match the value of the fixed resistor to the 
variable resistor – they do not need to be exactly 
the same but should be reasonably close. Add a 
voltmeter connected across the fixed resistor to 
check the pd that is available across it.

 ● Make sure that the maximum current rating 
for the fixed resistor and the variable resistor 
cannot be exceeded.

 ● Check the pd available in the two cases and 
convince yourself that the potential divider 
gives a wider range of voltages.

Worked examples
1 A light sensor consists of a 6.0 V battery, a 

1800 Ω resistor and a light-dependent resistor 
in series. When the LDR is in darkness the pd 
across the resistor is 1.2 V. 

a) Calculate the resistance of the LDR when it 
is in darkness.

b) When the sensor is in the light, its 
resistance falls to 2400 Ω. Calculate the pd 
across the LDR.

Solution
a) As the pd across the resistor is 1.2 V, the pd 

across the LDR must be 6 – 1.2 = 4.8 V.

The current in the circuit is  
I =   V __ R   =   1.2

 ____ 1800   = 0.67 mA.  
The resistance of the LDR is  
  V __ I   =   4.8

 ________ 
0.67 × 10–3   = 7200 Ω.

b) The ratio of   resistance across LDR
  ________________  

resistance across 1800 Ω   =   2400
 ____ 1800   = 1.33. 

This is the same value as   
pd across LDR

 ___________  
pd across 1800 Ω   . For the 

ratio of pds to be 1.33, the pds must be 2.6 V 

and 3.4 V with the 3.4 V across the LDR.

2 A thermistor is connected in series with a fixed 
resistor and a battery. Describe and explain 
how the pd across the thermistor varies with 
temperature.

Solution 
As the temperature of the thermistor rises, its 
resistance falls. The ratio of the pd across the  
fixed resistor to the pd across the thermistor  
rises too because the thermistor resistance is 
dropping. As the pd across the fixed resistor 
and thermistor is constant, the pd across the 
thermistor must fall. 

The change in resistance in the thermistor  
occurs because more charge carriers are  
released as the temperature rises. Even  
though the movement of the charge carriers is 
impeded at higher temperatures, the release of 
extra carriers means that the resistance of the 
material decreases.
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Worked examples
1 Calculate the power dissipated in a 250 Ω resistor when the pd 

across it is 10 V.

Solution
P =   V

2
 _ 

R
   =   102

 _ 
250

   = 0.40 W

2 A 9.0 kW electrical heater for a shower is designed for use on a 
250 V mains supply. Calculate the current in the heater.

Solution 
P = IV so I =   P _ 

V
   =   9000 _ 

250
   = 36 A

3 Calculate the resistance of the heating element in a 2.0 kW electric 
heater that is designed for a 110 V mains supply.

Solution
P =   V

2
 _ 

R
   ; R =   V

2
 _ 

P
   =   1102

 _ 
2000

   = 6.1 A.

Kirchhoff’s first and second laws
This section contains no new physics, but it will consolidate your 
knowledge and put the electrical theory you have learnt so far into a 
wider physical context.

We saw that the charge carriers in a conductor move into and out of the 
conductor at equal rates. If 106 flow into a conductor in one second, then 106 
must flow out during the same time to avoid the buildup of a static charge.

We also considered what happens when current splits into two or more 
parts at the junction where a parallel circuit begins. This can be taken 
one step further to a situation where there is more than one incoming 
current at the junction too.

Figure 15 shows a junction with three incoming currents and two 
outgoing ones. Our rule about the incoming charge equating to the 
outgoing charge must apply here too, so algebraically:

I1 + I2 + I3 = I4 + I5

A general way to write this is to use the ∑ sign (meaning “add up 
everything”), so that 

for any junction ∑I = 0

When using the ∑ notation, remember to get the signs of the currents 
correct. Call any current in positive, and any current out negative.

▲ Figure 15 Kirchhoff’s first law.

I2

I5

I1

I4

I3

and

E = IV∆t = I2R∆t =   V 2 _ 
R

   ∆t

These equations will allow you to calculate the energy converted in 
electrical heaters and lamps and so on. Applications that you may come 
across include heating calculations, and determining the consumption of 
energy in domestic and industrial situations.
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In words this can be written as

the sum of the currents into a junction equals the sum of the currents away from 
a junction 
or 
total charge flowing into a junction equals the total charge flowing away from the 
junction.

This important rule was first quoted by the Prussian physicist Gustav 
Kirchhoff in 1845. It is known as Kirchhoff’s first law.

It is equivalent to a statement of conservation of charge.

Kirchhoff devised a second law which is also a conservation rule this 
time of energy.

In any electric circuit there are sources of emf (often a cell or a battery 
of cells for dc) and sinks of pd (typically, lamps, heating coils, resistors, 
and thermistors). A general rule in physics is that energy is conserved. 
Electrical components have to obey this too. So, in any electrical circuit, the 
energy being converted into electrical energy (in the sources of emf) must 
be equal to the energy being transferred from electrical to internal, by the 
sinks of pd.

This is Kirchhoff’s second law equivalent to conservation of energy.

This second law applies to all closed circuits – both simple and complex.

In words, Kirchhoff’s second law can be written as

in a complete circuit loop, the sum of the emfs in the loop is equal to the sum of 
the potential differences in the loop 
or 
the sum of all variations of potential in a closed loop equals zero

In symbols

for any closed loop in a circuit ∑ε = ∑IR

R1

R3

R2 I2

E

D

I3

C

A

I1

B

F

G

ε

▲ Figure 16 Kirchhoff’s second law.

Look at the circuit in figure 16, it has parallel and series elements in it. A 
number of possible loops are drawn and analysed:

Loop GABCDEG travelling anticlockwise round the loop

This loop begins at the cell and goes around the circuit, through resistor 
R1 and resistor R2 finally ending at the cell again. In this loop there is one 
source of emf and two sinks of pd (ignoring the leads, which we assume 
have zero resistance). 213
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So 

ε (the emf of the cell) = I1R1 + I2R2 (the total pds aross the resistors)

The direction of loop travel and the current direction are in all cases 
the same. We give a positive sign to the currents when this is the 
case. The emf of the cell is driving in the same direction as the loop 
travel direction; it gets a positive sign as well. If the loop direction and 
the current or emf were to be opposed then they would be given a 
negative sign.

loop EFGE travelling clockwise round the loop

This loop goes first through resistor R3 and the loop direction is in the 
same direction as the conventional current. Next the loop goes through 
resistor R1 but this time the current direction and the loop are different 
so there has to be a negative sign. There is no source of emf in the loop 
so the Kirchhoff equation becomes

0 = I3R3 – I2R2

Kirchhoff’s first law can be applied at point G. The total current into 
point G is I2 + I3; the total out is I1. The application of the law is I1 = I2 + I3.

There are now three separate equations with three unknowns and these 
equations can be solved to work out the currents in each part of the 
circuit assuming that we know the value for the emf of the cell and the 
values of the resistances in the circuit.

By setting up a series of loops it is possible to work out the currents and 
pds for complicated resistor networks, more complicated than could be 
done using the resistor series and parallel rules alone.

Ideal and non-ideal meters
So far in this topic we have assumed (without mentioning it!) that 
the meters used in the circuits were ideal. Ideal meters have no 
effect on the circuits that they are measuring. We would always want 
this to be true but, unfortunately, the meters we use in real circuits 
in the laboratory are not so obliging and we need to know how to 
allow for this.

Ammeters are placed in series with components so the ammeter has 
the same current as the components. It is undesirable for the ammeter 
to change the current in a circuit but, if the ammeter has a resistance 
of its own, then this is what will happen. An ideal ammeter has zero 
resistance – clearly not attainable in practice as the coils or circuits inside 
the ammeter have resistance.

Voltmeters are placed in parallel with the device or parts of a circuit they 
are measuring. In an ideal world, the voltmeter will not require any 
energy for its coil to move (if it is a moving-coil type) or for its analogue 
to digital conversion (if it is a digital meter). The way to avoid current in 
the voltmeter is for the meter to have an infinite resistance – again, not 
an attainable situation in practice.

Some modern digital meters can get very close to these ideals of zero 
ohm for ammeters and infinite ohms for voltmeters. Digital meters are 
used more and more in modern science.
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Worked examples
1 Calculate the unknown branch current in the 

following junctions.

a) 

9A 5A

3AI

b) 

11A

5A

7A3A

I

Solution
a) Current into the junction = 9 + 5A

Current out of the junction = 3 + IA

I = 9 + 5 – 3 = 11 A out of the junction.

b) Current into the junction = I + 11 + 3 = I + 14A

Current out of the junction = 5 + 7 = 12A

I = 12 – 14 = –2 A, so the current I is directed 
away from the junction.

2 Calculate the currents in the circuit shown.

3.0 V

3.0 E

9.0 E

6.0 E

I1 I2

I3

Solution
(This circuit can be analysed using the resistors  
in series and parallel equations. It is given here  

to show the technique and to convince you that  
it works.)

3.0 V

3.0 E

junction A

loop 1

9.0 E
loop 2

6.0 E

I1 I2

I3

Current directions have been assigned and two 
loops 1 and 2 and junction A defined in the 
diagram.

For loop 1 

3 = 3I1 + 9I2 [equation 1]

(the emf in the loop is 3 V)

for loop 2

0 = 6I3 – 9I2 [equation 2]

(there is no source of emf in this loop, current I2 is 
in the opposite direction to the loop direction 0.

For junction A

I1 = I2 + I3

so

0 = 9I2 – 6I1 + 6I2

0 = 15I2 – 6I1

And from equation 1

6 = 6I1 + 18I2

Adding the equations

6 = 33I2

I2 = 0.18 A 

Substituting gives:

I1 = 0.45 A

and

I3 = 0.27 A
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  Nature of science
How times change!
Digital meters are a good way to get very close to 
the ideal meter. The resistance between the input 
terminals can be made to be very large (1012 Ω or 
more) for a voltmeter and to have a very small 
value for an ammeter. The meters themselves are 

easy to read without any judgements required 
about what the pointer indicates. It was not 
always like this.

An early form of meter was the hot-wire ammeter. 
This uses the heating effect of a current directly 
to increase the temperature of a metal wire (the 
current flows through the wire). There are a number 
of forms of the ammeter, but in the type shown 
here, a spring keeps the wire under tension. As the 
wire expands with the increase in temperature, 
any point on the wire moves to the right. A pivoted 
pointer is attached to the insulated thread. As the 
wire expands, the spring pulls the thread causing the 
pointer to rotate about the pivot; a reading of current 
can now be made. The scale is usually extremely 
non-linear.

spring

0

pivot

scale

resistance wire

meter terminals

path

thread

▲ Figure 17

Worked examples
1 A 250 Ω resistor is connected in series with a 

500 Ω resistor and a 6.0 V battery. 

a) Calculate the pd across the 250 Ω resistor.

b) Calculate the pd that will be measured across 
the 250 Ω resistor if a voltmeter of resistance 
1000 Ω is connected in parallel with it.

Solution
a) The pd across the 250 Ω resistor 

 =   Vin × R1 _ 
(R1 + R2)

     6 × 250 _ 
(250 + 500)

   = 2.0 V.

b) When the voltmeter is connected, the 
resistance of the parallel combination is

 R =   
R1R2 _ 

(R1 + R2)
   =   250 × 1000  __ 

1250
   = 200 Ω

 V =   200 × 6 _ 
 700

   = 1.7 V

2 An ammeter with a resistance of 5.0 Ω is 
connected in series with a 3.0 V cell and a 
lamp rated at 300 mA, 3 V. Calculate the 
current that the ammeter will measure.

Solution
Resistance of lamp =   V __ I   =   3

 ___ 0.3   = 10 Ω . Total 
resistance in circuit = 10 + 5 = 15 Ω. So current 
in circuit =   V __ R   =   3 __ 15   = 200 mA. This assumes that 
the resistance of the lamp does not vary between 
0.2 A and 0.3 A
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  Nature of science
Scientists need to balance their research into more 
and more efficient electric cells with the long-term 
risks associated with the disposal of the cells. Some 
modern cells have extremely poisonous contents. 
There will be serious consequences if these 

chemicals are allowed to enter the water supply 
or the food chain. Can we afford the risk of using 
these toxic substances, and what steps should the 
scientists take when carrying forward the research?

Understanding
 ➔ Cells
 ➔ Primary and secondary cells
 ➔ Terminal potential difference
 ➔ Electromotive force emf
 ➔ Internal resistance

5.3 Electric cells

  Applications and skills
 ➔ Investigating practical electric cells (primary 

and secondary)
 ➔ Describing the discharge characteristic of a 

simple cell (variation of terminal potential 
difference with time)

 ➔ Identifying the direction current flow required 
to recharge a cell

 ➔ Determining internal resistance experimentally 
 ➔ Solving problems involving emf, internal 

resistance, and other electrical quantities

Equation
 ➔ emf of a cell: ε = I(R + r)

Introduction
Electric currents can produce a chemical effect. This has great 
importance in chemical industries as it can be a method for extracting 
ores or purifying materials. However, in this course we do not investigate 
this aspect of the chemical effect. Our emphasis is on the use of an 
electric cell to store energy in a chemical form and then release it as 
electrical energy to perform work elsewhere.

Cells
Cells operate as direct-current (dc) devices meaning that the cell drives 
charge in one direction. The electron charge carriers leave the negative 
terminal of the cell. After passing around the circuit, the electrons re-
enter the cell at the positive terminal. The positive terminal has a higher 
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potential than the negative terminal – so electrons appear to gain energy 
(whereas positive charge carriers would appear to lose it).

The chemicals in the cell are reacting while current flows and as a result 
of this reaction the electrons gain energy and continue their journey 
around the circuit.

  Nature of science
Anodes and cathodes
You will meet a naming system for anode and 
cathode which seems different for other cases 
in physics. In fact it is consistent, but you need 
to think carefully about it. For example, in a 
cathode-ray tube where the electrons in the 
tube are emitted from a hot metal filament, the 
filament is called the cathode and is at a negative 
voltage. This appears to be the opposite notation 
from that used for the electric cell. The reason 
is that the notation refers to what is happening 
inside the cell, not to the external circuit. The 
chemical reaction in the cell leads to positive 

ions being generated at one of the electrodes  
and then flowing away into the bulk of the 
liquid. So as far as the interior of the cell is 
concerned this is an anode, because it is an 
(internal) source of positive ions. Of course, 
as far as the external circuit is concerned, the 
movement of positive charges away from this 
anode leaves it negative and the electrode 
will repel electrons in the external circuit. As 
external observers, we call this the negative 
terminal even though (as far as the interior of 
the cell is concerned) it is an anode.

Primary and secondary cells
Many of the portable devices we use today: torches, music players, 
computers, can operate with internal cells, either singly or in batteries. 
In some cases, the cells are used until they are exhausted and then 
thrown away. These are called primary cells. The original chemicals 
have completely reacted and been used up, and they cannot be 
recharged. Examples include AA cells (properly called dry cells) 
and button mercury cells as used in clocks and other small low-
current devices.

On the other hand, some devices use rechargeable cells so that 
when the chemical reactions have finished, the cells can be 
connected to a charger. Then the chemical reaction is reversed 
and the original chemicals form again. When as much of the 
re-conversion as is possible has been achieved, the cell is again 
available as a chemical energy store. Rechargeable cells are known 
as secondary cells.

There many varieties of cell, here are two examples of the chemistry of a 
primary cell and that of a secondary cell.

The Leclanché cell was invented by Georges Leclanché in 1886. It 
is a primary cell and is the basis of many domestic torch and radio 
batteries.
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- +
carbon rodzinc rod

porous pot (P)

ammonium chloride
solution

glass vessel

Leclanché cell lead-acid accumulator

mixture of carbon
and manganese
dioxide

-
+

negative
terminal

positive terminal

sulfuric
acid

insulating
case

lead
lead oxide

gas vents

(a) (b)

▲ Figure 1 Leclanché cell and lead-acid accumulator.

Figure 1(a) shows one practical arrangement of the cell. It consists of a 
zinc rod that forms the negative terminal. Inside the zinc is a paste of 
ammonium chloride separated from manganese dioxide (the cathode) by 
a porous membrane. In the centre of the manganese dioxide is a carbon 
rod that acts as the positive terminal for the cell.

Zinc atoms on the inside surface of the case oxidize to become positive 
ions. They then begin to move away from the inside of the case through 
the chloride paste leaving the case negatively charged. When the cell is 
connected to an external circuit, these electrons move around the circuit 
eventually reaching the carbon rod. A reaction inside the cell uses these 
electrons together with the components of the cell eventually forming 
the “waste products” of the cell, which include ammonia, manganese 
oxide, and manganese hydroxide.

Secondary cells are very important today. They include the lead–acid 
accumulator, together with more modern developments such as the 
nickel–cadmium (NiCd), nickel–metal-hydride (NiMH), and lithium ion 
cells. All these types can be recharged many times and even though they 
may have a high initial cost (compared to primary cells of an equivalent 
emf and capacity), the recharge is cheap so that, during the projected 
lifetime of the cell, the overall cost is lower than that of primary cells. 

Although the lead-acid accumulator is one of the earliest examples of 
a secondary cell, it remains important (“accumulator” is an old word 
that implies the accumulation or collection of energy into a store). 
It is capable of delivering the high currents needed to start internal 
combustion and diesel engines, and it is reliable in the long term 
to maintain the current to important computer servers if the mains 
supply fails.

The lead–acid cell (figure 1(b)) is slightly older than the Leclanché cell, 
and was invented in 1859 by Gaston Planté.

In its charged state the cell consists of two plates, one of metallic lead, 
the other of lead(IV) oxide (PbO2) immersed in a bath of dilute sulfuric 
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acid. During discharge when the cell is supplying current to an external 
circuit, the lead plate reacts with the acid to form lead(II) sulfate and the 
production of two free electrons. The liquid surrounding the plates loses 
acid and becomes more dilute. At the oxide plate, electrons are gained 
(from the external circuit) and lead(II) sulfate is formed, also with the 
removal of acid from the liquid. So the net result of discharging is that 
the plates convert to identical lead sulfates and the liquid surrounding 
the plates becomes more dilute.

Recharging reverses these changes: electrons are forced from the positive 
plate by an external charging circuit and forced onto the negative plate. 
At the negative plate, atomic lead forms, at the positive, lead oxide is 
created, which restores the cell to its original state. The charge–recharge 
cycle can be carried out many times providing that the cell is treated 
carefully. However, if lead or lead oxide fall off the plates, they can no 
longer be used in the process and will collect at the bottom of the cell 
container. In the worst case the lead will short out the plates and the cell 
will stop operating. If the cell is overcharged (when no more sulfate can 
be converted into lead and lead oxide) the charging current will begin to 
split the water in the cell into hydrogen and oxygen gas which are given 
off from the cell. The total amount of liquid in the cell will decrease, 
meaning that the plates may not be fully covered by the acid. These parts 
of the plates will then not take part in the reaction and the ability of the 
cell to store energy will decrease. 

Much industrial research effort is concentrated on the development of 
rechargeable cells. An important consideration for many manufacturers 
of electronic devices is the energy density for the battery (the energy 
stored per unit volume) as this often determines the overall design and 
mass of an electronic device. Also a larger energy density may well 
provide a longer lifetime for the device.

Capacity of a cell
Two cells with the same chemistry will generate the same electromotive 
force (emf) as each other. However if one of the cells has larger 
plates than the other and contains larger volumes of chemicals, then 
it will be able to supply energy for longer when both cells carry the 
same current. 

The capacity of a cell is the quantity used to measure the ability of a 
cell to release charge. If a cell is discharged at a high rate then it will not 
be long before the cell is exhausted or needs recharging, if the discharge 
current is low then the cell will supply energy for longer times. The 
capacity of a cell or battery is the constant current that it can supply 
for a given discharge. So, if a cell can supply a constant current of 2 A 
for 20 hours then it said to have a capacity of 40 amp-hours (abbreviated 
as 40 A h).

The implication is that this cell could supply 1 A for 40 hours, or  
0.1 A for 400 hours, or 10 A for 4 hours. However, practical cells do 
not necessarily discharge in such a linear way and this cell may be 
able to provide a small discharge current of a few milliamps for much 

Worked examples
1 Explain the difference 

between a primary and 
a secondary cell.

Solution 
A primary cell is one that 
can convert chemical 
energy to electrical energy 
until the chemicals in 
the cell are exhausted. 
Recharging the cell is not 
possible.

A secondary cell can 
be recharged and the 
chemicals in it are 
converted back to their 
original form so that 
electrical energy can be 
supplied by the cell again.

2 A cell has a capacity of 
1400 mA h. Calculate 
the number of hours 
for which it can supply 
a current of 1.8 mA. 

Solution
Cell capacity = current × 
time and therefore  
1400 = 1.8t. In this case  
t = 780 hours.
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longer than expected from the value of its capacity. Conversely, the 
cell may be able to discharge at 10 A for much less than 4 hours. An 
extreme example of this is the lead–acid batteries used to start cars and 
commercial vehicles. A typical car battery may have a capacity of  
100 A h. The current demand for starting the car on a cold winter’s  
day can easily approach 150 A. But the battery will only be able to turn 
the engine for a few minutes rather than the two-thirds of an hour we 
might expect.

  Investigate!
Discharge of a cell

 ● Some cells have high capacity, and studying 
the discharge of such a cell can take a long 
time. This is a good example of how electronic 
data collection (data-logging) can help an 
experimenter.

load
resistor

voltage sensor
and
data logger

▲ Figure 2

 ● The aim is to collect data to find how the 
terminal pd across the cell varies with time 
from the start of the discharge. The basic 
circuit is shown in figure 2. Use a new cell 
to provide the current so that the initial 
behaviour of the cell can be seen too.

 ● Many data loggers need to be “told” how 
often to take measurements (the sampling 
rate). You will need to make some judgements 
about the overall length of time for which 
the experiment is likely to operate. Suppose 
you have a 1.5 V cell rated at 1500 mA h 
(you can check the figure by checking the cell 
specification on the manufacturer’s website). It 
would seem reasonable that if the cell is going 
to supply a current of 250 mA, then it would 
discharge in a time of between 4–10 hours. You 
will need to set up the data logger accordingly 
with a suitable time between readings (the 
sampling interval). Do not, however, exceed 
the maximum discharge current of the cell.

 ● When the computer is set up, turn on the 
current in the discharge circuit and start the 
logging. Eventually the cell will have discharged 
and you can display the data as a graph. What 
are the important features of your graph?

 ● Test other types of cell too, at least one primary 
and one secondary cell. Are there differences 
in the way in which they discharge?

 ●  For at least one cell, towards the end of the 
discharge, switch off the discharge current 
while still continuing to monitor the terminal 
pd. Does the value of the pd stay the same 
or does it recover? When the discharge is 
resumed what happens to the pd?

Discharging cells

The results you obtain will depend on the types and qualities of the cells 
you test. A typical discharge curve looks like that in figure 3 on p222 in 
which the terminal potential difference of the cell is plotted against time 
since the discharge current began.

221

5 . 3  E L E C T R I C  C E L L S



0 20 40 60 80 100 120 140

0.9

1.0

1.1

1.2

1.3

time (minutes)

ce
ll e

m
f /

 V

end of discharge
(127 minutes)

midpoint voltage
(1.18 volts)

▲ Figure 3 Typical discharge–time graph for a cell.

Important features of this graph are that:

 ● The initial terminal pd is higher than the quoted emf (the value the 
manufacturer prints on the case), but the initial value quickly drops 
to the rated emf (approximately).

 ● For most of the discharge time the terminal pd remains more or less 
constant at or around the quoted emf. There is however sometimes a 
slow decline in the value of the terminal pd.

 ● As the cell approaches exhaustion, the terminal pd drops very rapidly 
to a low level.

 ● If the current is switched off, the terminal pd rises and can eventually 
reach the rated value again. However, when discharge is resumed, 
the terminal pd falls very quickly to the low value that it had before.

Other experiments are possible, particularly for rechargeable cells to 
see the effects of repeated discharge–charge cycles on the cell. Figure 4 
shows how the capacity of a Ni–Cd cell changes as cell is taken through 
more and more cycles.
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▲ Figure 4 Cycle life of a rechargeable cell.
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Recharging secondary cells
The clue to recharging a secondary cell is in the earlier descriptions 
of cell chemistry. The chemicals produce an excess of electrons at 
the negative terminal. During discharge these electrons then move 
through the external circuit transferring their energy as they go. When 
the electron arrives at the positive terminal, all of its energy will have 
been transferred to other forms and it will need to gain more from the 
chemical store in the cell.

To reverse the chemical processes we need to return energy to the 
cell using electrons as the agents, so that the chemical action can be 
reversed. When charging, the electrons need to travel in the reverse 
direction to that of the discharge current and you can imagine that the 
charger has to force the electrons the “wrong” way through the cell.

Part of a possible circuit to charge a 6-cell lead–acid battery is shown in 
figure 5. 

-

+
12–14 V dc

discharged battery

0–20 A

direction of
charge flow

+14 V

0 V

A

▲ Figure 5 Charging circuit for a cell.

The direction of the charging current is shown in the diagram. It is in 
the opposite direction to that of the cell when it is supplying energy. An 
input pd of 14 V is needed, notice the polarity of this input. The light-
emitting diode (LED) and its series resistor indicate that the circuit is 
switched on. The ammeter shows the progress of charging. When the 
battery is completely discharged, the charging current will be high, but 
as the charging level (and therefore the emf) of the battery rises, this 
current gradually falls. During the charging process the terminal voltage 
will be greater than the emf of the cell. At full charge the emf of the 
battery is 13.8 V. When the current in the meter is zero, the battery is 
fully charged.

Internal resistance and emf of a cell
The materials from which the cells are made have electrical resistance 
in just the same way as the metals in the external circuit. This internal 
resistance has an important effect on the total resistance and current in 
the circuit.
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▲ Figure 6

Figure 6(a) shows a simple model for a cell. Inside the dotted box is an 
“ideal” cell that has no resistance of its own. Also inside the box is a 
resistance symbol that represents the internal resistance of the cell. The 
two together make up our model for a real cell. The model assumes that 
the internal resistance is constant (for a practical cell it varies with the 
state of discharge) and that the emf is constant (which also varies with 
discharge current).

The model cell has an emf ε and an internal resistance r in series with an 
external resistance R (figure 6(b)). The current in the circuit is I.

We can apply Kirchhoff’s second law to this circuit:

the emf of the cell supplying energy to the circuit = ε
the sum of the pds = IR + Ir

So

ε = IR + Ir

If the pd across the external resistor is V, then 

ε = V + Ir

or

V = ε – Ir

It is important to realize that V, which is the pd across the external 
resistance, is equal to the terminal pd across the ideal cell and its 
internal resistance (in other words between A and B). The emf is 
the open circuit pd across the terminals of a power source – 
in other words, the terminal pd when no current is supplied. 
The pd between A and B is less than the emf unless the current in 
the circuit is zero. The difference between the emf and the terminal 
pd (the measured pd across the terminal of the cell) is sometimes 
referred to as the “lost pd” or the “lost volts”. These lost volts 
represent the energy required to drive the electron charge carriers 
through the cell itself. Once the energy has been used in the cell in 
this way, it cannot be available for conversion in the external circuit. 
You may have noticed that when a secondary cell is being charged, 
or any cell is discharging at a high current, the cell becomes warm. 
The energy required to raise the temperature of the cell has been 
converted in the internal resistance. 

TOK

Simple assumptions

The model of a cell with a 
fixed internal resistance and 
a constant emf is an example 
of modelling. In this case the 
model is a simple one that 
cannot be realized in practice. 
Another model we used earlier 
was to suggest that there are 
ideal ammeters with zero 
resistance and ideal voltmeters 
with infinite resistance. 

Scientists frequently begin 
with a very simple model of a 
system and then explore the 
possibilities that this model 
can offer in terms of analysis 
and behaviour. The next step 
is to make the model more 
complicated (but without 
being too intricate!) and to 
see how much complexity 
is needed before the model 
resembles the real system 
that is being modelled.

Do the simplifications 
and assumptions of ideal 
behaviour form a suitable 
basis for modelling?
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  Investigate!
Measuring the internal resistance of a fruit cell
The method given here works for any type of 
electric cell, but here we use a citrus fruit cell 
(orange, lemon, lime, etc.) or even a potato for 
the measurement. The ions in the flesh of the 
fruit or the potato react with two different metals 
to produce an emf. With an external circuit that 
only requires a small current, the fruit cell can 
discharge over surprisingly long times.

Cu Zn

V

A

lemon

▲ Figure 7

 ● To make the cell, take a strip of copper foil 
and a strip of zinc foil, both about 1 cm by 
5 cm and insert these, about 5 cm apart 
deep into the fruit. You may need to use a 
knife to make an incision unless the foil is 
stiff enough.

 ● Connect up the circuit shown in figure 7 using 
a suitable variable resistor.

 ● Measure the terminal pd across the fruit cell 
and the current in it for the largest range of pd 
you can manage.

Compare the equation 

V = ε – Ir

with the equation for a straight line

y = c + mx 

A plot of V on the y-axis against I on the x-axis 
should give a straight line with a gradient of –r 
and an intercept on the V-axis of ε.

 ● A set of results for a cell (not a fruit cell in this 
case) is shown together with the corresponding 
graph of V against I. The intercept for this 
graph is 1.25 V and the gradient is –2.4 V A–1 
giving an internal resistance value of 2.4 Ω.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

te
rm

in
al

 p
d/

V

0 0.1 0.30.2 0.4 0.60.5
current/A

Terminal pd / V Current / A

1.13 0.05

1.01 0.10

0.89 0.15

0.77 0.20

0.65 0.25

0.53 0.30

0.41 0.35

0.29 0.40

0.17 0.45

0.05 0.50

 ▲ Figure 8
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Worked example
1 A cell of emf 6.0 V and internal resistance 2.5 Ω 

is connected to a 7.5 Ω resistor.

Calculate:

a) the current in the cell

b) the terminal pd across the cell

c) the energy lost in the cell when charge 
flows for 10 s.

Solution 
a) Total resistance in the circuit is 10 Ω, so 

current in circuit =   6 __ 10   = 0.60 A

b) The terminal pd is the pd across cell = IR =  

0.6 × 7.5 = 4.5 V

c) In 10 s, 6 C flows through the cell and the 
energy lost in the cell is 1.5 J C–1. The energy 
lost is 9.0 J.

2 A battery is connected in series with an 
ammeter and a variable resistor R. When  
R = 6.0 Ω, the current in the ammeter is  
1.0 A. When R = 3.0 Ω, the current is 1.5 A. 
Calculate the emf and the internal resistance 
of the battery.

Solution 
Using 

V = ε – Ir

and knowing that V = IR gives two equations:

6 × 1 = ε – 1 × r

and

3 × 1.5 = ε – 1.5 × r

These can be solved simultaneously to give 
(6 – 4.5) = 0.5r or r = 3.0 Ω and ε = 9.0 V.

Power supplied by a cell
The total power supplied by a non-ideal cell is equal to the power 
delivered to the external circuit plus the power wasted in the cell. 
Algebraically,

P = I2 R + I2 r

using the notation used earlier.

The power delivered to the external resistance is

  ε2
 _ 

(R + r)2
   R

0
0

load resistance R
r

po
we

r d
el
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er

ed
to

 lo
ad
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▲ Figure 9 Power delivered to a resistor. 

Figure 9 shows how the power that is delivered to the external circuit 
varies with R. The peak of this curve is when r = R, in other words, 
when the internal resistance of the power supply is equal to the 
resistance of the external circuit. The load and the supply are “matched” 
when the resistances are equal in this way. This matching of supply and 
circuit is important in a number of areas of electronics. 

Worked example
A battery of emf 9.0 V  
and internal resistance  
3.0 Ω is connected to a  
load resistor of resistance 
6.0 Ω. Calculate the  
power delivered to the 
external load.

Solution 
Using the equation   ε2

 ______ 
(R + r)2   R 

leads to   92

 _____ 
(6+3)2   6 = 6.0 W
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5.4 Magnetic effects of electric currents 

  Nature of science
Sometimes visualization aids our understanding. 
Magnetic field lines are one of the best examples 
of this. Scientists began by visualizing the shape 
and strength of a magnetic field through the 

position and direction of the fictitious lines of force 
(or field lines). The image proved to be so powerful 
that the technique was subsequently used with 
electric and gravitational fields too.

Understanding
 ➔ Magnetic fields
 ➔ Magnetic force

  Applications and skills
 ➔ Sketching and interpreting magnetic field patterns
 ➔ Determining the direction of the magnetic field 

based on current direction
 ➔ Determining the direction of force on a charge 

moving in a magnetic field
 ➔ Determining the direction of force on a current-

carrying conductor in a magnetic field
 ➔ Solving problems involving magnetic forces, 

fields, current and charges

Equations
 ➔ force on a charge moving in a magnetic field:  

F = qvB sin θ
 ➔ force on a current-carrying conductor in a 

magnetic field: F = ILB sin θ

Introduction
Electromagnetism is the third effect observed when charge moves in a 
circuit – the electric current gives rise to a magnetic field. But it was not the 
observation of a magnetic effect arising from a current in a wire that began 
the ancient study of magnetism. Early navigators knew that some rocks are 
magnetic. As with the nature of electric charge, the true origins of magnetic 
effects remained obscure for many centuries. Only comparatively recently 
has an understanding of the microscopic aspects of materials allowed a 
full understanding of the origins of magnetism. As with electrostatics, 
scientists began by using the concept of the field to describe the behaviour 
of interacting magnets. However, magnetic fields differ fundamentally in 
character from electrostatic fields and are in some ways more complex.

Magnetic field patterns
The repulsion between the like poles of two bar magnets is familiar 
to us. The forces between magnets of even quite modest strength are 
impressive. Modern magnetic alloys can be used to produce tiny magnets 
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 Nature of science
Talking about poles
A word about notation: there is a real possibility 
of confusion when talking about magnetic 
poles. This partly arises from the origin of our 
observations of magnetism. When we write 
“magnetic north pole” what we really mean is 
“the magnetic pole that seeks the geographic 
north pole” (figure 1(a)). We often talk loosely 
about a magnetic north pole pointing to the 
north pole. Misunderstandings can occur here 
because we also know that like poles repel and 
unlike poles attract. So we end up with the 
situation that a magnetic north pole is attracted 
to the “geographic north pole” – which seems 
wrong in the context of two poles repelling. 
In this book we will talk about north-seeking 
poles meaning “geographic north-seeking” 
and south-seeking poles meaning “geographic 
south seeking”. On the diagrams, N will 
mean geographic north seeking, S will mean 
geographic south seeking.

Figure 1(b) shows the patterns for a single bar 
magnet and (c) and (d) two arrangements of a 
pair of bar magnets of equal strength.

S

N

(a)

N S

(b)

(d)

(c)

S N

N N

▲ Figure 1 Magnetic field patterns.

(less than 1 cm in diameter and a few millimetres thick) that can easily 
attract another ferromagnetic material through significant thicknesses of 
a non-magnetic substance.  

At the beginning of a study of magnetism, it is usual to describe the 
forces in terms of fields and field lines. You may have met this concept 
before. There is said to be a magnetic field at a point if a force acts on a 
magnetic pole (in practice, a pair of poles) at that point. Magnetic fields 
are visualized through the construction of field lines.

Magnetic field lines have very similar (but not identical) properties to 
those of the electric field lines in Sub-topic 5.1. In summary these are:

 ● Magnetic field lines are conventionally drawn from the north-
seeking pole to the south-seeking pole, they represent the direction 
in which a north-seeking pole at that point would move.

 ● The strength of the field is shown by the density of the field lines, 
closer lines mean a stronger field.

 ● The field lines never cross.

 ● The field lines act as though made from an elastic thread, they tend 
to be as short as possible.
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In the pairs, notice the characteristic field 
pattern when the two opposite poles are close 
(figure 1(b)) and when the two north-seeking 
poles are close (figure 1(c)). When two north-
seeking poles are close (or two south-seeking 
poles), there is a position where the field 

is zero between the magnets (called a null 
point). When two opposite poles are close, the 
field lines connect the two magnets. In this 
situation the magnets will be attracted, so this 
particular field pattern implies an attraction 
between poles.

 Investigate!
Observing field patterns of permanent magnets and electric currents

 ● There are a number of ways to carry out this 
experiment. They can involve the scattering of 
small iron filings, observation of suspensions 
of magnetized particles in a special liquid, or 
other techniques. This Investigate! is based on 
the iron-filing experiment but the details will 
be similar if you have access to other methods.

 ● Take a bar magnet and place a piece of rigid 
white card on top of it. You may need to 
support the card along its sides. Choose a non-
magnetic material for the support.

 ● Take some iron filings in a shaker (a pepper 
pot is ideal) and, from a height above the card 
of about 20 cm sprinkle filings onto the card. 
It is helpful to tap the card gently as the filings 
fall onto it.

 ● You should see the field pattern forming as the 
magnetic filings fall through the air and come 
under the influence of the magnetic field. 
Sketch or photograph the arrangement.

 ● The iron filings give no indication of field 
direction. The way to observe this is to use a 
plotting compass – a small magnetic compass 
a few centimetres in diameter – that indicates 
the direction to which a north-seeking 
pole sets itself. Place one or more of these 
compasses on the card and note the direction 
in which the north-seeking pole points.

 ● Repeat with two magnets in a number of 
configurations; try at least the two in figure 1.

 ● Electric currents also give rise to a magnetic 
field. However, currents small enough to be 
safe will only give weak fields, not strong 
enough to affect the filings as they fall.

 ● To improve the effect: cut a small hole in 
the centre of the card and run a long lead 
through it (the lead will need to be a few 
metres long). Loop the lead in the same 
direction through a number of times (about 
ten turns if possible). This trick enables one 
current to contribute many times to the same 
field pattern. You may need at least 25 A in 
total (2.5 A in the lead) to see an effect.

▲ Figure 2
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Magnetic field due to a current in conductors
The magnetic field pattern due to a current in a long straight wire is a 
circular pattern centred on the wire. This seems odd to anyone only used 
to the bar magnet pattern. Measurements show that the field is strong 
close to the wire but becomes weaker further away from it. This should 
be clear in your drawings of the long wire field pattern when the lines of 
force are drawn at increased spacing as you move further from the wire. 

point of arrow indicates current 
leaving page towards you

tail of arrow indicates current 
entering page away from you

lines of magnetic
field

south pole

north pole

▲ Figure 3 Magnetic field patterns around current-carrying conductors.

Your observations using the plotting compasses 
should have shown that the direction of the field 
depends on the direction of the current.

Using the conventional current (i.e. the direction 
that positive charges are moving in the wire) 
the relationship between the current and the 
magnetic field direction obeys a right-hand 
corkscrew rule relationship.

To remember this, hold your right hand with 
the fingers curled into the palm and the thumb 
extended away from the fingers (see figure 4). 
The thumb represents the direction of the 
conventional current and the fingers represent 
the direction of the field. Another way to think 
of the current–field relationship is in terms of a 

thumb points in direction
of conventional current

current flow

fingers curl around the conductor
(indicating the direction of magnetic field)

▲ Figure 4 Right-hand corkscrew rule.
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screwdriver being used to insert a screw. The screwdriver has to turn a 
right-handed screw clockwise to insert it and drive the screw forwards. 
The direction in which the imaginary screw moves is that of the 
conventional current, and the direction in which the screwdriver turns is 
that of the field.

Use whichever direction rule you prefer, but use it consistently and 
remember that the rule works for conventional current.

The strength of the magnetic field can be increased by increasing the 
current in the conductor.

The magnetic field due to the solenoid is familiar to you already. To 
understand how it arises, you need to imagine the long straight wire 
being coiled up into the solenoid shape taking its circular field with it 
as the coiling takes place. With current in the wire, the circular field is 
set up in each wire. This circular field adds together with fields from 
neighbouring turns in the solenoid. Figure 5 shows this; look closely at 
what happens close to the individual wires. The black lines show the 
field near the wires, the blue lines show how the fields begin to combine, 
the red line shows the combined field in the centre of the solenoid.

circular
field 

near turn

consecutive
turns on solenoid

fields add
together

▲ Figure 5 Building up the field pattern.

A field runs along the hollow centre of the solenoid and then outside 
around the solenoid (figure 3). Outside it is identical to the bar magnet 
pattern to the extent that we can assign north- and south-seeking poles 
to the solenoid. Again there is an easy way to remember this using an N 
and S to show the north-seeking and south-seeking poles. The arrows on 
the N and S show the current direction when looking into the solenoid 
from outside. If you look into the solenoid and the conventional current 
is anticlockwise at the end of the solenoid closer to you then that is the 
end that is north-seeking. If the current is clockwise then that is the 
south-seeking end.

The strength of the magnetic field in a solenoid can be increased by: 

 ● increasing the current in the wire

 ● increasing the number of turns per unit length of the solenoid

 ● adding an iron core inside the solenoid.

anticlockwise
current gives a

north seeking pole

clockwise
current gives a

south seeking pole

▲  Figure 6 Right hand corkscrew rule and 
pole direction.
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Worked example
Four long straight wires are placed perpendicular 
to the plane of the paper at the edges of a square.

The same current is in each wire in the direction 
shown in the diagram. Deduce the direction of  
the magnetic field at point P in the centre of  
the square.

P

Solution
The four field directions are shown in the 
diagram. The sum of these four vectors is another 
vector directed from point P to the left.

BA

D C

P

D

C
A

B

 Nature of science
But why permanent magnets?
We have said nothing about the puzzle of 
permanent magnets or the magnetism of the 
Earth (Figure 1(a)). The suggestion is that 
magnetism arises between charges when the 
charges move relative to each other. Can 
this idea be extended to help explain the 
reasons for permanent magnetism (known as 
ferromagnetism)? In fact, permanent magnetism 
is comparatively rare in the periodic table, only 
iron, nickel, and cobalt and alloys of these metals 
show it.

The reason is due to the arrangement of the 
electrons in the atoms of these substances. 
Electrons are now known to have the property of 
spin which can be imagined as an orbiting motion 
around the atom. In iron, cobalt and nickel, 
there is a particular arrangement that involves an 
unpaired electron. This is the atomic origin of the 
moving charge that is needed for a magnetic field 
to appear. 

The second reason why iron, nickel, and cobalt are 
strong permanent magnets is that neighbouring 
atoms can co-operate and line up the spins of their 
unpaired electrons in the same direction. So, many 
electrons are all spinning in the same direction and 
giving rise to a strong magnetic field.

Deep in the centre of the Earth it is thought that a 
liquid-like metallic core containing free electrons 
is rotating relative to the rest of the planet. Again, 
these are conditions that can lead to a magnetic 
field. In which direction do you predict that the 
electrons are moving? However, this phenomenon 
is not well understood and is still the subject of 
research interest. Why, for example, does the 
magnetic field of the Earth flip every few thousand 
years? There is much evidence for this including 
the magnetic “striping” in the undersea rocks of the 
mid-Atlantic ridge and in the anomalous magnetism 
found in some ancient cooking hearths of the 
aboriginal peoples of Australia.
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Forces on moving charges
Force between two current-carrying wires
We have used field ideas to begin our study of magnetic effects, but 
these conceal from us the underlying physics of magnetism. To begin this 
study we look at the interactions that arise between conductors when 
they are carrying electric current. 

(a)

foil strips

+ -

-

+

(b) (c)

current out of pagecurrent into pagecurrents in same directions

▲ Figure 7

Figure 7(a) shows two foil strips hanging vertically. The current 
directions in the foils can be the same or opposite directions. When the 
currents are in the same direction, the strips move together due to the 
force on one foil strip as it sits in the magnetic field of the other strip. 
When the currents are in opposing directions, the strips are seen to 
move apart.

You can set this experiment up for yourself by using two pieces of 
aluminium foil about 3 cm wide and about 70 cm long for each conductor. 
The power supply should be capable of providing up to 25 A so take care! 
Connections are made to the foils using crocodile (alligator) clips.
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The forces on the foil can be explained in terms of the interactions 
between the fields as shown in the figure 7(b). When the currents are 
in the same direction, the field lines from the foils combine to give a 
pattern in which field lines loop around both foils. The notation used 
to show the direction of conventional current in the foil is explained on 
the diagram. Look back at figure 1(d) which shows the field pattern for 
two bar magnets with the opposite poles close. You know that the bar 
magnets are attracted to each other in this situation. The field pattern 
for the foils is similar and also leads to attraction. Think of the field lines 
as trying to be as short as possible. They become shorter if the foils are 
able to move closer together. 

When the currents are in opposite directions, the field pattern changes 
(figure 7(c)). Now the field lines between the foils are close together 
and in the same direction thus representing a strong field. It seems 
reasonable that a strong magnetic field (like a strong electrostatic field) 
represents a large amount of stored energy. This energy can be reduced 
if the foils move apart allowing the field lines to separate too. Again, 
this has similarities to the bar magnet case but this time with like poles 
close together.

Force between a bar magnet field and a current-carrying wire
One extremely important case is the interaction between a uniform 
magnetic field and that produced by a current in a wire.

Again we can start with the field between two bar magnets with unlike 
poles close. In the centre of the region between the magnets, the field is 
uniform because the field lines are parallel and equally spaced.

S
N S + =

(a) (b)

force on wire

N

▲ Figure 8 The catapult field.

Suppose a wire carrying a current sits in this field. Figure 8(a) shows the 
arrangement and the directions of the uniform magnetic field and the 
field due to the current. A force acts downwards on the wire.

The effect can again be explained in terms of the interaction between 
the two magnetic fields. The circular field due to the wire adds to the 
uniform field due to the magnets to produce a more complicated field. 
This is shown in figure 8(b). Overall, the field is weaker below the 
wire than above it. Using our ideas of the field lines, it is clear that the 
system (the wire and the uniform field) can overcome this difference in 
field strength, either by attempting to move the wire downwards or by 
moving the magnets that cause the uniform field upwards. This effect 
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is sometimes called the catapult field because the field lines above 
the wire resemble the stretched elastic cord of a catapult just before the 
object in the catapult is fired.

This effect is of great importance to us. It is the basis for the conversion 
of electrical energy into kinetic energy. It is used in electric motors, 
loudspeakers, and other devices where we need to produce movement 
from an electrical power source. It is called the motor effect.

It is possible to predict the direction of motion of the wire by drawing 
the field lines on each occasion when required but this is tedious. There 
are a number of direction rules that are used to remember the direction 
of the force easily. One of the best known of these is due to the English 
physicist Fleming and is known as Fleming’s left-hand rule.

field along
F irst finger

left hand
current along
seCond finger

force (motion) 
along thuMb

B

I

F

▲ Figure 9 Fleming’s left-hand rule.

To use the rule, extend your left hand as shown in figure 9. Your  
first (index) finger points in the direction of the uniform magnetic 
field and your second finger points in the direction of the conventional 
current in the wire, then your thumb gives the direction of the force 
acting on the wire.

The motor effect
The explanation for the motor effect has been given so far in terms 
of field lines. This is, of course, not the complete story. We should be 
looking for explanations that involve interactions between individual 
charges, both those that produce the uniform magnetic field and those 
that arise from the current in the wire. Electrostatic effects (as their 
name implies) arise between charges that are not moving. Magnetic 
effects arise because the sets of charges that produce the fields are 
moving relative to each other and are said to be in different frames of 
reference. There have been no electrostatic effects because we have 
dealt with conductors in which there is an exact balance of positive and 
negative charges. Magnetism can be thought of as the residual effect that 
arises when charges are moving with respect to each other. 
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Worked example
Wires P and R are equidistant from wire Q.

wire P

I

wire Q

I

wire R

I

Each wire carries a current of the same magnitude 
and the currents are in the directions shown.

Describe the direction of the force acting on wire 
Q due to wires P and R.

Solution
Using the right-hand corkscrew rule, the field 
due to wire P at wire Q is out of the plane of the 
paper, and the field due to wire R at wire Q is also 
out of the plane of the paper.

Using Fleming’s left-hand rule, the force on wire 
Q is in the plane of the paper and to the left.

The magnitude of the magnetic force

 Investigate!
Force on a current-carrying conductor

C 0

magnets on steel yoke

balance

current carrying lead

l

▲ Figure 10

 ● This is an experiment that will give you an 
idea of the size of the magnetic force that acts 
on typical laboratory currents. If carried out 
carefully it will also allow you to see how the 
force varies with the length of the conductor 
and the size of the current.

 ● You will need some pairs of flat magnets 
(known as “magnadur” magnets, a sensitive 
top-pan balance, a power supply and a 
suitable long straight lead to carry the current.

 ● Arrange the apparatus as shown in the diagram.

 ● Zero the balance so that the weight of the 
magnets is removed from the balance reading.

 ● The experiment is in two parts:

 ■ First, vary the current in the wire and 
collect data for the force acting on the 
magnets, and therefore the balance, as 
a result. A trick to improve precision is 
to reverse the current in the wire and 
take balance readings for both directions. 
Then add the two together (ignoring 
the negative sign of one reading) to give 
double the answer. Draw a graph to 
display your data.

 ■ Second, use two pairs of magnets side-by-side 
to double the length of the field. Take care 
that the poles match, otherwise the forces 
will cancel out. This is not likely to work so 
well as you need to assume that the magnet 
pairs have the same strength. This will 
probably not be true. But, roughly speaking, 
does doubling the length of wire in the field 
double the force?
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The result of experiments like the one above is that the force acting on 
the wire due to the field is proportional to:

 ● the length (l) of the wire

 ● the current (I) in the wire.

This leads us to a definition of magnetic field strength rather different 
from that of electric field strength and gravitational field strength.

We cannot define the magnetic field strength in terms of

    force __  
a single quantity

  

because the force depends on two quantities: current and length. 

Instead we define

magnetic field strength

=   
force acting on a current element

    _____     
current in the element × length of the element

   

By “element” we mean a short section of a wire that carries a current. If 
a force F acts on the element of length l when the current in it is I, then 
the magnetic field strength B is defined by

B =   F _ 
Il

  

B

(a) (b)
F = BIl

l
B

F = BIl sinθ

l

θ

 
▲ Figure 11

The unit of magnetic field strength is the tesla, abbreviated T and the 
tesla is equivalent to the fundamental units kg s–2 A–1. When a 1 metre 
long current element is in a magnetic field and has a current of 1 A in it, 
if a magnetic force of 1 N acts on it, then the magnetic field strength is 
defined to be 1 T. The tesla can also be thought of as a shortened form of 
N A-1 m-1. The tesla turns out to be a very large unit indeed. The largest 
magnetic field strengths created in a laboratory are a few kT and the 
magnetic field of the Earth is roughly 10–4 T. The very largest fields are 
associated with some neutron stars. The field strength can be order of 
100 GT in such stars.

Having defined B we can go on to rearrange the equation to give the 
force that acts on a wire:

F = BIl

This applies when the field lines, the current and the wire are all at 90° to 
each other as they are when you use the Fleming left-hand rule. If this is not 
the case (see figure 11(b)) and the wire is at an angle θ to the lines then we 
need to take the appropriate component of I or l that is at 90° to the field.
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In terms of the way the angle is defined in figure 11(b), the equation 
becomes

F = BIl sin θ
This equation is written in terms of the current in the wire. Of course, 
the current is, as usual, the result of moving charge carriers. The 
equation can be changed to reflect this.

From Sub-topic 5.1 we know that the current I is given by 

I =   
Q

 _ t  

where Q is the charge that flows through the current element taking a 
time t to do it. 

Substituting

F = B  (   Q _ t   )  l sin θ

 = BQ  (   l _ t   )  sin θ

The term  (   l _ t   )  is the drift speed v of the charge carriers and making this 

substitution gives the expression

F = BQv sin θ
for the force acting on a charge Q moving at speed v at an angle θ to a 
magnetic field of strength B.

Notice the way that the angle θ is defined in the diagrams. It is the angle 
between the direction in which the charge is moving (or the current 
direction – the same thing) and the field lines. Don’t get this wrong and 
use cosine instead of sine in your calculations.

TOK

Why direction rules?

During this sub-topic we have 
introduced two direction 
rules: the corkscrew rule 
for magnetic fields around 
wires and Fleming’s rule for 
the motor effect. What is the 
status of these rules? Are 
they implicit in the way the 
universe operates, or are 
they simply indications that 
depend on the way we define 
current direction and other 
fundamental quantities in 
physics? To begin to answer 
this, consider what would 
have happened if Franklin had 
known that charge carriers 
in metals were electrons 
with a negative charge. What 
would this have changed (if 
anything)?

 Nature of science
The definition of the ampere
In Topic 1 you learnt that the ampere was defined in terms of the 
force between two current-carrying wires. You may have thought this 
odd both then and when the relationship between current and charge 
was developed earlier in this topic. Perhaps it is clearer now.

A precise measurement of charge is quite difficult. At one time it could 
only be achieved through chemical measurements of electrolysis – and 
the levels of precision were not great enough to give a good value at 
that time.

It is much easier to set up an experiment that measures the force 
between two wires. The experiment can be done to a high precision 
using a device called a current balance (as in the force Investigate! 
above) in which the magnetic force can be measured in terms of the 
gravitational force needed to cancel it out. This is rather like old-
fashioned kitchen scales where the quantity being measured is judged 
against a standard mass acted on by gravity.
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Worked example
1 When a charged particle of mass m, charge q 

moves at speed v in a uniform magnetic field 
then a magnetic force F acts on it. Deduce the 
force acting on a particle mass m of charge 2q 
and speed 2v travelling in the same direction 
in the same magnetic field.

Solution
The equation for the force is F = BQv sin θ 
In the equation, sin θ and B do not change but 
every other quantity does, so the force is 4F.

2 Electric currents of magnitude I and 3I are in 
wires 1 and 2 as shown.

wire 1

I 3I

wire 2

A force F acts on wire 2 due to the current in 
wire 1. Deduce the magnitude of the force on 
wire 1 due to the current in wire 2. 

Solution 
This problem can be solved by reference to 
Newton’s laws of motion, but an alternative is 
to consider the changes in magnetic field. If the 
magnetic field at wire 2 due to wire 1 is B then 
the magnetic field at wire 1 due to wire 2 is 3B. 
However, the current in wire 1 is one-third of that 
in wire 2.

So force at wire 1 due to wire 2 is 

F = 3B ×   I __ 3   × l = force in wire 2 due to wire 1. 

The forces are the same.

 Nature of science
Vectors and their products
You may have formed the view that vectors 
are just used for scale diagrams in physics. This 
is not the case, vectors come into their own in 
mathematical descriptions of magnetic force.

There is only one way to multiply scalars 
together: run a relay with four stages each of 
distance 100 m and the total distance travelled 
by the athletes is 400 m. Multiplying two scalars 
only gives another scalar.

Vectors, because of the added direction, can be 
multiplied together in two ways:

● to form a scalar product (sometimes called 
“dot” product) where, for example, force and 
displacement are multiplied together to give 
work done (a scalar) that has no direction. In 
vector notation this is written as F·s = W. The 
multiplication sign is the dot (hence the name) 
the vectors are written with a bold font, the 
scalar in ordinary font.

● to form a vector product (sometimes called 
“cross” product) where two vectors are 

multiplied together to give a third vector,  
thus a × b = c

The multiplication of qv and B to form the 
vector force F is a vector product. The charge q 
is a scalar but everything else in the equation 
is a vector. A mathematician would write

F = q (v × B)

to show that the vector velocity and the 
vector magnetic field strength are multiplied 
together. The order of v and B is important. 
There is a vector rule for the direction of 
F that is consistent with our observations 
earlier and the sin θ appears when the vector 
multiplication is worked out in terms of the 
separate components of the vector.

Vector notation turns out to be an essential 
language of physics, because it allows a concise 
notation and because it contains all the direction 
information within the equations rather than 
forcing us to use direction rules. However we do 
not pursue the full theory of vectors in IB Physics.
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Questions
1 (IB) Four point charges of equal magnitude, are 

held at the corners of a square as shown below.

2a

2a

+Q

−Q

+Q

P

−Q

The length of each side of the square is 2a and 
the sign of the charges is as shown. The point P 
is at the centre of the square.

a) (i)  Determine the magnitude of the electric 
field strength at point P due to one of 
the point charges.

 (ii)  On a copy of the diagram above, draw 
an arrow to represent the direction of 
the resultant electric field at point P.

 (iii)  Determine, in terms of Q, a and k, the 
magnitude of the electric field strength 
at point P. (7 marks)

2 (IB) Two point charges of magnitude +2Q and −Q 
are fixed at the positions shown below. Discuss 
the direction of the electric field due to the two 
charges between A and B. Suggest at which 
point the electric field is most likely to be zero.
 (3 marks)

A B
+2Q−Q + +

3 (IB) Two identical spherical conductors X and Y are 
mounted on insulated stands. X carries a charge of 
+6.0 nC and Y carries a charge of –2.0 nC.

+6.0 nC −2.0 nC

conductor X conductor Yinsulated stands

The electric force between them is + F (i.e. 
attractive). The spheres are touched together and 
are then returned to their original separation.

a) Calculate the charge on X and the charge on Y.

b) Calculate the value of the electric force 
between them after being returned to their 
original separation. (7 marks)

4 (IB) Two charged plastic spheres are separated by a 
distance d in a vertical insulating tube, as shown.

tube

d

spheres

The charge on each sphere is doubled. Friction 
with the walls of the tube is negligible.

Deduce the new separation of the spheres.

 (5 marks)

5 (IB)

 a)  Electric fields may be represented by lines 
of force. The diagram below shows some 
lines of force.

A B

 (i)  State whether the field strength at 
A and at B is constant, increasing or 
decreasing, when measured in the 
direction from A towards B.
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 (ii)  Explain why field lines can never touch 
or cross.

b) The diagram below shows two insulated 
metal spheres. Each sphere has the same 
positive charge.

++

 Copy the diagram and in the shaded area 
between the spheres, draw the electric field 
pattern due to the two spheres. (8 marks)

6 (IB) A lamp is at normal brightness when 
there is a potential difference of 12 V across its 
filament and a current in the filament of 0.50 A.

a) For the lamp at normal brightness, 
calculate:

 (i)   the power dissipated in the filament

 (ii) the resistance of the filament.

b) In order to measure the voltage–current 
(V–I) characteristics of the lamp, a student 
sets up the following electrical circuit.

12 V battery

State the correct positions of an ideal 
ammeter and an ideal voltmeter for the 
characteristics of the lamp to be measured.

c) The voltmeter and the ammeter are 
connected correctly in the previous circuit. 
Explain why the potential difference across 
the lamp

 (i) cannot be increased to 12 V

 (ii) cannot be reduced to zero.

d) An alternative circuit for measuring the V–I 
characteristic uses a potential divider.

 (i)  Draw a circuit that uses a potential 
divider to enable the V–I characteristics 
of the filament to be found.

 (ii)  Explain why this circuit enables the 
potential difference across the lamp to 
be reduced to 0 V. (13 marks)

7 (IB) The graph below shows the V–I 
characteristic for two 12 V filament lamps A 
and B.

0

12

0.5

lamp A
lamp B

0 1.0
current/A

po
te

nt
ia

l d
iff

er
en

ce
/V

a) (i)  Explain why the graphs indicate that 
these lamps do not obey Ohm’s law.

 (ii)  State and explain which lamp has the 
greater power dissipation for a potential 
difference of 12 V.

The two lamps are now connected in series 
with a 12 V battery as shown below.

12 V battery

lamp A lamp B

b) (i)    State how the current in lamp A 
compares with that in lamp B.

 (ii)  Use the V–I characteristics of the lamps 
to deduce the total current from the 
battery.

 (iii)  Compare the power dissipated  
by the two lamps. (11 marks)

241

Q U E S T I O N S

241



8 (IB)

 a)  Explain how the resistance of the filament 
in a filament lamp can be determined from 
the V–I characteristic of the lamp.

b) A filament lamp operates at maximum 
brightness when connected to a 6.0 V 
supply. At maximum brightness, the current 
in the filament is 120 mA.

 (i)  Calculate the resistance of the filament 
when it is operating at maximum 
brightness. 

 (ii)  You have available a 24 V supply and 
a collection of resistors of a suitable 
power rating and with different values 
of resistance. Calculate the resistance 
of the resistor that is required to be 
connected in series with the supply 
such that the voltage across the 
filament lamp will be 6.0 V. (4 marks)

9 (IB) The graph below shows the I–V characteristics 
for component X.

4

2

20-2-4-6-8 4 6 8
0

-2

-4

-6

6I/A 

V/V

The component X is now connected across 
the terminals of a battery of emf 6.0 V and 
negligible internal resistance.

a) Use the graph to determine:

 (i)   the current in component X

 (ii) the resistance of component X.

b) A resistor R of constant resistance 2.0 Ω is 
now connected in series with component X 
as shown below.

2.0 Ω

R

E

X

 (i)    Copy the graph in (a), and draw the I–V 
characteristics for the resistor R.

 (ii)  Determine the total potential 
difference E that must be applied across 
component X and across resistor R 
such that the current through X and 
R is 3.0 A. (7 marks)

10 (IB) A student is to measure the current–voltage 
(I–V) characteristics of a filament lamp. The 
following equipment and information are 
available.

Information

Battery emf = 3.0 V, negligible internal 
resistance

Filament lamp marked “3 V, 0.2 A”

Voltmeter resistance = 30 kΩ, reads 
values between 0.0 and 3.0 V

Ammeter resistance = 0.1 Ω, reads values 
between 0.0 and 0.5 A

Potentiometer resistance = 100 Ω
a) For the filament lamp operating at normal 

brightness, calculate:

 (i)   its resistance

 (ii) its power dissipation.

The student sets up the following incorrect circuit.

V

A

b) (i)   Explain why the lamp will not light.

 (ii)  State the approximate reading on the 
voltmeter. Explain your answer. 
 (6 marks)
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11 (IB) A particular filament lamp is rated at 12 V, 
6.0 mA. It just lights when the potential 
difference across the filament is 6.0 V.

A student sets up an electric circuit to measure 
the I–V characteristics of the filament lamp.

A

V

100 kΩ
12 V

S

In the circuit, shown below, the student has 
connected the voltmeter and the ammeter into 
the circuit incorrectly.

The battery has emf 12 V and negligible 
internal resistance. The ammeter has negligible 
resistance and the resistance of the voltmeter 
is 100 kΩ.

The maximum resistance of the variable resistor 
is 15 Ω.

a) Explain, without doing any calculations, 
whether there is a position of the slider S at 
which the lamp will be lit.

b) Estimate the maximum reading of the 
ammeter. (5 marks)

12 (IB) The graph below shows the current–voltage 
(I–V) characteristics of two different conductors 
X and Y.

0.0
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

Y X

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.013.0 14.0 15.0

V/V

I/A

a) (i)    State the value of the current for which 
the resistance of X is the same as the 
resistance of Y and determine the value 
of this resistance.

 (ii)  Describe and suggest an explanation for 
the I–V characteristic of conductor Y.

b) The two conductors X and Y are connected 
in series with a cell of negligible internal 
resistance. The current in the conductors 
is 0.20 A.

 Use the graph to determine:

 (i)    the resistance of Y for this value of 
current

 (ii) the emf of the cell. (8 marks)

13 (IB) A cell of electromotive force (emf) E and 
internal resistance r is connected in series with 
a resistor R, as shown below.

r

R

E

The cell supplies 8.1 × 103 J of energy when 
5.8 × 103 C of charge moves completely round 
the circuit. The current in the circuit  
is constant.

a) Calculate the emf E of the cell.

b) The resistor R has resistance 6.0 Ω. The 
potential difference between its terminals is 
1.2 V. Determine the internal resistance r of 
the cell.

c) Calculate the total energy transfer in R.

d) Describe, in terms of a simple model of 
electrical conduction, the mechanism by 
which the energy transfer in R  
takes place. (12 marks)

14 (IB) A battery is connected in series with a 
resistor R. The battery transfers 2000 C of 
charge completely round the circuit. During 
this process, 2500 J of energy is dissipated 
R and 1500 J is expended in the battery. 
Calculate the emf of the battery. (3 marks)
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15 (IB) A student connects a cell in series with 
a variable resistor and measures the terminal 
pd V of the cell for a series of currents I in the 
circuit. The data are shown in the table.

V/V I/mA
1.50 120
1.10 280
0.85 380
0.75 420
0.60 480
0.50 520

Use the data to determine the emf and internal 
resistance of the cell. (5 marks)

16 (IB) A battery is connected to a resistor as shown.

V 10 Ω6.0 V

When the switch is open the voltmeter reads 
12 V, when the switch is closed it reads 11.6 V.

a) Explain why the readings differ.

b)   (i) State the emf of the battery.

 (ii)  Calculate the internal resistance of the 
battery.

c) Calculate the power dissipated in the 
battery. (6 marks)

17 (IB) An electron enters a pair of electric and 
magnetic fields in a vacuum as shown in  
the diagram. 

+ BE
electron

region of magnetic field 

The electric field strength is 3.8 × 105 V m–1 
and the magnetic field strength is 2.5 × 10–2 
T. Calculate the speed of the electron if the 
net force acting on it due to the fields is zero.
 (3 marks)

18 (IB) A straight wire lies in a uniform magnetic 
field as shown.

 

θ

magnetic field 

current I

The current in the wire is I and the wire is at an 
angle of θ to the magnetic field. The force per 
unit length on the conductor is F. Determine 
the magnetic field strength. (2 marks)

19 (IB) A straight wire of length 0.75 m carries a 
current of 35 A. The wire is at right angles to a 
magnetic field of strength 0.058 T. Calculate the 
force on the wire. (2 marks)

20 (IB) An ion with a charge of +3.2 × 10–19 C and 
a mass of 2.7 × 10–26 kg is moving due south at 
a speed of 4.8 × 103 m s–1. It enters a uniform 
magnetic field of strength 4.6 × 10–4 T directed 
downwards towards the ground. Determine the 
force acting on the ion. (4 marks)
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OBJ TEXT_UND

6  CIRCULAR MOTION AND GRAVITATION
Introduction
Two apparently distinct areas of physics are 
linked in this topic: motion in a circle and the 
basic ideas of gravitation. But of course they are 
not distinct at all. The motion of a satellite about 
its planet involves both a consideration of the 

gravitational force and the mechanics of motion 
in a circle. Man cannot travel beyond the Earth 
without a knowledge of both these aspects of 
Physics.

6.1 Circular motion

OBJ TEXT_UND

 Applications and skills
 ➔ Identifying the forces providing the centripetal 

forces such as tension, friction, gravitational, 
electrical, or magnetic

 ➔ Solving problems involving centripetal force, 
centripetal acceleration, period, frequency, 
angular displacement, linear speed, and 
angular velocity

 ➔ Qualitatively and quantitatively describing 
examples of circular motion including cases  
of vertical and horizontal circular motion

Equations
 ➔ speed–angular speed relationship: v = ωr

 ➔ centripetal acceleration: a =    v  2  ____ r   =   4 π  2 r ________ 
 T  2 

  

 ➔ centripetal force: F =    mv  2  _______ r   = mω2r

Understanding
 ➔ Period, frequency, angular displacement, and 

angular velocity
 ➔ Centripetal force
 ➔ Centripetal acceleration

 Nature of science
The drive to develop ideas about circular motion 
came from observations of the universe. How was 
it that astronomical objects could move in circular 
or elliptical orbits? What kept them in place in their 
motion? Scientists were able to deduce that there 
must be a force acting radially inwards for every 
case of circular motion that is observed. Whether 
it is a bicycle going around a corner or a planet 
orbiting its star, the physics is the same.
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Moving in a circle
Most children take great delight in an object on a string whirling in a 
circle – though they may be less happy with the consequences when the 
string breaks and the object hits a window! Rides at a theme park and 
trains on a railway are yet more examples of movement in a circle. What 
is needed to keep something rotating at constant speed? 

The choice of term (as usual in physics!) is very deliberate. In circular 
motion we say that the “speed is constant” but not the “velocity is constant”. 

Velocity, as a vector quantity, has both magnitude and direction. The 
object on the string has a constant speed but the direction in which the 
object is moving is changing all the time. The velocity has a constant 
magnitude but a changing direction. If either of the two parts that make up 
a vector change, then the vector is no longer constant. Whenever velocity 
changes (even if it is only the direction) then the object is accelerated.  

Understanding the physics of this acceleration is the key to 
understanding circular motion. But before looking at how the 
acceleration arises we need a language to describe the motion.

Angular displacement
The angle moved around the circle by an object from where its circular 
motion starts is known as the angular displacement. Unlike the 
linear displacement used in Topic 2, angular displacement will not 
be considered to be a vector in IB Physics. Angular displacement is 
the angle through which the object moves and it can be measured in 
degrees (°) or in radians (rad). Radians are more commonly used than 
degrees in this branch of physics. If you have not met radians before, 
read about the differences between radians and degrees.

  Nature of science
Radians or degrees
Calculations of circular motion involve the use 
of angles. In any science you studied before 
starting this course you will almost certainly have 
measured all angles in degrees. 

1° (degree) is defined to be   1
 ___ 360   th of the way 

around a circle.

In some other areas of physics (including circular 
motion) there is an alternative measure of angle 
that is much more convenient, the radian. Radians 
are based on the geometry of the arc of a circle.

1 radian (abbreviated as rad) is defined as the 
angle equal to the circumference of an arc of a 
circle divided by the radius of the circle. In symbols

θ =   s _ r  

▲  Figure 2 Definition of radian.

s

r
θ

s
rθ =

Going around the circle once means travelling 
around the circumference; this is a distance of 
2πr. The angle θ in radians subtended by the 
whole circle is   2πr

 ___ r   = 2π rad.

So 360° = 2π = 6.28 rad

and 1 rad = 57.3°

▲  Figure 1 A fairground carousel.
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Angular speed
In Topic 2 we used the term speed to mean “linear speed”. When the 
motion is in a circle there is an alternative: angular speed, this is given 
the symbol ω (the lower-case Greek letter, omega).

average angular speed =   
angular displacement

   ____    
time for the angular displacement to take place

  

Figure 3 shows how things are defined and you will see that in symbols 
the definition becomes

ω =   θ _ t  

where θ is the angular displacement and t is the time taken for the 
angular displacement.

  Nature of science
Angular speed or angular velocity?
You may be wondering about the distinction 
between angular speed and angular velocity, and 
whether angular velocity is a vector similar to 
linear velocity.

The answer is that angular velocity is a vector but 
an unusual one. It has a magnitude equal to the 
angular speed, but its direction is surprising! The 
direction is along the axis of rotation, in other 

Sometimes, the radian numbers are left as 
fractions, so 

90° =   π _ 
2

    (   1 _ 
4

   round the circle ) , 
30° =   π _ 

6
    (   1 _ 

12
   round the circle )  

and so on.

To convert other values for yourself, use the 

equation   
angle in degree

  ___________ 360   =   
angle in radians

  ___________ 2π  
There are some similarities between the sine 
of an angle and the angle in radians. The two 
quantities are compared in this Nature of Science 
box which shows sin θ and θ in radians. Notice 
that, as θ becomes smaller, sin (θ) and θ become 
closer together. From angles of 10° down to 0, 
the differences between sin θ and θ are very small 
and in some calculations and proofs we treat sin θ 
and θ as being equal (this is known as “the small 
angle approximation”). For small angles cos θ 
approximates to zero radians.

To illustrate this, here are the values of sin θ and 
θ in radians for four angles: 90°, 45°, 10°, and 5°. 
Notice how similar the sine values and the radians 
are for 10° and 5°.
sin (90°) = 1.000;    π _ 

2
   rad = 1.571 rad

sin (45°) = 0.707;    π _ 
4

   rad = 0.785 rad

sin (10°) = 0.175;   π _ 
18

   rad = 0.174 rad

sin (5°) = 0.087;    π _ 
36

   rad = 0.087 rad

Finally, a practical point: Scientific and graphic 
calculators work happily in either degrees or 
radians (and sometimes in another type of angular 
measure known as “grad” too). But the calculator 
has to be “told” what to expect! Always check that 
your calculator is set to work in radians if that is 
what you want, or in degrees if those are the units 
you are using. You will lose calculation marks in 
an examination if you confuse the calculator!

▲  Figure 3 Angular speed.

θω, angular speed =          = t2 − t1

θ
t

time t1

θ

ω

time t2

direction
of angular
velocity vector

direction of
rotation

▲  Figure 4 Angular velocity direction.
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Period and frequency
The time taken for the object to go round the circle once is known as the 
periodic time or simply the period of the motion, it has the symbol T. 
In one period, the angular distance travelled is 2π rad. So, 

T =   2π _ ω  
When T is in seconds the units of ω are radians per second, abbreviated 
to rad s–1.

If you have already studied waves in this course, you might have met the 
idea of time period – the time for one cycle. Another quantity that is 
associated with T is frequency. Frequency is the number of times an object 
goes round a circle in unit time (usually taken to be 1 second), so one way 
to express the unit of frequency would be in “per second” or s–1. However, 
the unit of frequency is re-named after the 19th century physicist Heinrich 
Hertz and is abbreviated to Hz. There is a link between T and f so that:

T =   1 _ 
f
  

This leads to a link between ω and f

ω = 2πf

Linking angular and linear speeds
Sometimes we know the linear speed and need the angular speed or 
vice versa. 

The link is straightforward: When the circle has a radius r the 
circumference is 2πr, and T, is the time taken to go around once. So the 
linear speed of the object along the edge of the circle v is 

v =   2πr _ 
T

  

Worked example
A large clock on a building has a minute hand 
that is 4.2 m long.

Calculate:

a) the angular speed of the minute hand

b) the angular displacement, in radians, in the 
time periods

(i) 12 noon to 12.20

(ii) 12 noon to 14.30.

c) the linear speed of the tip of the minute hand.

Solution
a) The minute hand goes round once (2π rad) 

every hour.

One hour is 3600 s 

angular speed =   angular displacement
  __  

time taken
  

 =   2π _ 
3600

   = 0.001 75 rad s−1

b) (i) 20 minutes is   1 __ 3   of 2π, so   2π ___ 3   rad

(ii) 2.5 h is 2π × 2.5 = 5π rad

c) v = rω = 4.2 × 0.001 75 = 0.007 33 m s−1  
  = 7.3 mm s−1

words, through the centre of the circle around 
which the object is moving and perpendicular to 
the plane of the rotation. 

The direction follows a clockwise corkscrew 
rule so that in this example the direction of the 

angular velocity vector is into the plane of the 
paper.

In the IB course, only the angular speed – the 
scalar quantity – is used.
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Rearranging the equation gives

T =   2πr _ v  

We have just seen that

T =   2π _ ω  
so equating the two equations for T gives 

  2πr _ v   =   2π _ ω  
Cancelling the 2π and rearranging gives 

v = ωr

Notice that, in both this equation and in the earlier equation s = θr, the 
radius r multiplies the angular term to obtain the linear term. This is a 
consequence of the definition of the angular measure.

Centripetal acceleration
Earlier we showed that an object moving at a constant angular speed 
in a circle is being accelerated. Newton’s first law tells us that, for any 
object in which the direction of motion or the speed is changing, there 
must be an external force acting. In circular motion the direction is 
constantly changing and so the object accelerates and there must be a 
force acting on it to cause this to happen. In which direction do the force 
and the acceleration act, and what are their sizes?

The diagram shows two points P1 and P2 on the circle together with the 
velocity vectors vold and vnew at these points. The vectors are the same 
length as each other because the speed is constant. However, vold and vnew 
point in different directions because the object has moved round the circle 
by an angular distance ∆θ between P1 and P2. Acceleration is, as usual, 

  
change of velocity

  ___   
time taken for the change

  

The change in velocity is the change-of-velocity vector ∆v that has to be 
added to vold in order to make it become the same length and direction as 
vnew. Identify these vectors on the diagram.

▲  Figure 5 Proof of centripetal acceleration direction.

P1

P2

vold

voldvnew

$v

$v

vnew

2

vold

vnew

$v

2
$θ
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Notice that vold and vnew slide round the circle to meet. Where does the 
new vector ∆v point? The answer is: to the centre of the circle. This is an 
“averaging” process to find out what the difference is between vold and 
vnew half-way between the two points. 

This averaging can be taken further. The time, ∆t, to go between P1 and 
P2, and the linear distance around the circle between P1 and P2 (which is 
rθ) are related by

∆t =   r∆θ _ v  

Using some trigonometry on the diagram shows that 

  ∆v _ 
2

   = v sin (   ∆θ _ 
2

   ) 
The size of the average acceleration a that is directed towards the centre 
of the circle is

a =   ∆v _ ∆t
   =   

2v sin  (   ∆θ ___ 2   ) 
 _ 

  2r
 __ v     
∆θ ___ 2  

   

This can be written as

a =    v  
2

  _ r      
sin  (   ∆θ ___ 2   ) 

 _ 
  ∆θ ___ 2  

  

When ∆θ is very small, the ratio   
sin  (   ∆θ ___ 2   ) 

 ______ 
  ∆θ ___ 2  

   is almost exactly equal to 1 and 

so the instantaneous acceleration a when P1 and P2 are very close together is 

a =    v  2  _ r   = ω2r = vω directed to the centre of the circle.

This acceleration is at 90° to the velocity vector and it points inwards to 
the centre of the circle.

The force that acts to keep the object moving in a circle is called the 
centripetal force and this force leads to a centripetal acceleration. 
(The origin of the word centripetal comes from two Latin words centrum 
and petere – literally “to lead to the centre”.)

Centripetal force
Newton’s second law of motion in its simpler form tells us that F = ma 
using the usual symbols.

The second law applies to the force that provides the centripetal 
acceleration, so the magnitude of the force = m   v  2 

 __ r   = mω2r = mvω. The 
question we need to ask for each situation is: what force provides the 
centripetal force for that situation? The direction of this force must be 
along the radial line between the object and the centre of the circle.

  Nature of 
science

Linking it together
Notice that some of these 
equations have interesting 
links elsewhere: mvω is, for 
example, the magnitude 
of the linear momentum 
multiplied by ω. Try to be 
alert for these links as they 
will help you to piece your 
physics together.

  Investigate!
Investigating how F varies with m, v and r
This experiment tests the relationship

m     v  2  _ r   = Mg

 ●  To do this a bung is whirled in a horizontal 
circle with a weight hanging from one end of a 
string and mass (rubber bung) on the other end.
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 ● A paper clip is attached to the string below a 
glass tube. The clip is used to ensure that the 
radius of rotation of the bung is constant – the 
bung should be rotated at a speed so that the 
paper clip just stays below the glass tube. 

centripetal force apparatus

mass, m

r

glass tube

paper clip

string

weight (Mg)

▲  Figure 6 Centripetal force, mass, and speed.

 ●  The tension in the string is the same 
everywhere (whether below the glass tube or 
above in the horizontal part). This tension is 
F in the equation and is equal to Mg where M 
is the mass of the weight (hanging vertically).

 ●  Use a speed at which you can count the 
number of rotations of m in a particular time 
and from this work out the linear speed v of 
mass m. 

To verify the equation you need to test 
each variable against the others. There are 
a number of possible experiments in each of 
which one variable is held constant (a control 
variable), one is varied (the independent 
variable), and the third (the dependent variable) 
is measured. One example is:

Variation of v with r

 ●  In this experiment, m and M must be 
unchanged. Move the clip to change r, and for 
each value of r, measure v using the method 
given above.

 ●  Analysis: 

     v  2  _ r   = constant

 ●  A graph of v2 against r ought to be a straight line 
passing through the origin. Alternatively you 
could, for each experimental run, simply divide 
v2 by r and look critically at the answer (which 
should be the same each time) to see if the value 
is really constant. If going down this route, you 
ought to assess the errors in the experiment and 
put error limits on your    v  2 

 __ r   value. 

 ●  What are the other possible experimental tests?

 ●  In practice the string cannot rotate in the 
horizontal plane because of its own weight. 
How can you improve the experiment or the 
analysis to allow for this?

  Nature of science
Centripetal or centrifugal?
When discussing circular motion, you will almost 
certainly have heard the term “centrifugal force” – 
probably everywhere except in a physics laboratory! 
In this course we have spoken exclusively about 
“centripetal force”. Why are there two terms in use?

It should now be clear to you how circular motion 
arises: a force acts to the centre of the circle 
around which the object is moving. The alternative 
idea of centrifugal force comes from common 
experience. Imagine you are in a car going round a 
circle at high speed. You will undoubtedly feel as if 
you are being “flung outwards”. 

One way to explain this is to imagine the situation 
from the vantage point of a helicopter hovering 

real centripetal force
supplied by friction at tyres

direction of car

straight on direction
at this instant

car

▲  Figure 7 Centripetal forces in a car seen from above.
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stationary above the circle around which the 
car is moving. From the helicopter you will see 
the passenger attempting to go in a straight line 
(Newton’s first law), but the passenger is forced to 
move in a circle through friction forces between 
passenger and seat. If the passenger were sitting 
on a friction-less seat and not wearing a seat belt, 
then he or she will not get the “message” that the 
car is turning. The passenger continues to move in 
a straight line eventually meeting the door that is 
turning with the car. If there were no door, what 
direction will the passenger take?

Another way to explain this is to imagine yourself 
in the car as it rotates. This is a rotating frame of 
reference that is accelerating and as such cannot 
obey Newton’s laws of motion. You instinctively 
think that the rotating frame is actually stationary. 
Therefore your tendency to go in what you 
believe to be a straight line actually feels like an 
outward force away from the centre of the circle 
(remember the rest of the world now rotates 
round you, and your straight line is actually part 
of a circle). Think about a cup of coffee sitting on 
the floor of the car. If there is insufficient friction 
at the base of the cup, the cup will slide to the side 
of the car. In the inertial frame of reference (the 
Earth) the cup is trying to go in a straight line. 
In your rotating frame of reference you have to 
“invent” a force acting outwards from the centre 
of the circle to explain the motion of the cup.

centre of circle

direction of movement
observed by passenger 

force imagined
to act on cupcup

▲  Figure 8 Rotation forces.

There are many examples of changing a reference 
frame in physics: research the Foucault pendulum 
and perhaps go to see one of these fascinating 
pendulums in action. Look up what is meant by 
the Coriolis force and find out how it affects the 
motion of weather systems in the northern and 
southern hemispheres.

One of the tricks that physicists often use is to 
change reference frames – it’s all part of the nature 
of science to adopt alternative frames of reference 
to make explanations and theories more accessible.

One last tip: Don’t use explanations based on 
centrifugal force in an IB examination. The real 
force is centripetal; centrifugal force was invented 
to satisfy Newton’s second law in an accelerated 
frame of reference.

▲  Figure 9 Satellites in orbit.

Centripetal accelerations and forces in action
Satellites in orbit
Figure 9 shows satellites in a circular orbit around the Earth. Why do 
they follow these paths? Gravitational forces act between the centre of 
mass of the Earth and the centre of mass of the satellite. The direction of 
the force acting on the satellite is always towards the centre of the planet 
and it is the gravity that supplies the centripetal force. 

Amusement park rides
Many amusement park rides take their passengers in curved paths that 
are all or part of a circle. How does circular motion provide a thrill?  

In the type of ride shown in figure 10, the people are inside a drum that 
rotates about a vertical axis. When the rotation speed is large enough the 
people are forced to the sides of the drum and the floor drops away. The 
people are quite safe however because they are “held” against the inside 
of the drum as the reaction at the wall provides the centripetal force to 
keep them moving in the circle. The people in the ride feel the reaction 
between their spine and the wall. Friction between the rider and the 
wall prevents the rider from slipping down the wall.
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▲  Figure 10 The rotor in action.

Turning and banking
When a driver wants to make a car turn a corner, a resultant force must 
act towards the centre of the circle to provide a centripetal force. The car 
is in vertical equilibrium (the driving surface is horizontal) but not in 
horizontal equilibrium.

Turning on a horizontal road
For a horizontal road surface, the friction acting between the tyres and 
the road becomes the centripetal force. The friction force is related to 
the coefficient of friction and the normal reaction at the surface where 
friction occurs.

planelevation

direction

friction

reaction, R

centre of circle

mg, W

friction

▲  Figure 11 Car moving in a circle.

If the car is not to skid, the centripetal force required has to be less than 
the frictional force 

m    v  
2

  _ r   < µ
s
mg

where µ
s
 is the static coefficient of friction. Note that when the vehicle 

is already skidding the “less than” sign becomes an equality and the 
dynamic coefficient of friction should be used.

This rearranges to give a maximum speed of vmax =  √____ µdrg   for a circle of 
radius r.

Banking
Tracks for motor or cycle racing, and even ordinary roads for cars are 
sometimes banked (figures 12 and 13). The curve of the banked road 
surface is inclined at an angle so that the normal reaction force contributes 
to the centripetal force that is needed for the vehicle to go round the track 

weight

Reaction of
wall on rider

friction force

N
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at a particular speed. Bicycles and motorcycles can achieve the same effect 
on a level road surface by “leaning in” to the curve. Tyres do not need to 
provide so much friction on a banked track compared to a horizontal road; 
this reduces the risk of skidding and increases safety. 

Although you will not be asked to solve mathematical problems on this 
topic in your IB Physics examination, you do need to understand the 
principles that underpin banking. 

Figure 12 shows forces acting on a small sphere rolling round a track. 
This is simplified to a point object moving in a circle to remove the 
complications of two or four wheels. A horizontal centripetal force 
directed towards the centre of the circle is needed for the rotation. The 
other forces that act on the ball are the force normal to the surface 
(which is at the banking angle θ) and its weight acting vertically down. 
The vector sum of the horizontal components of the weight and the 
normal force must equal the centripetal force. 

Looking at this another way, if N is the normal force then the centripetal 
force is equal to 

N sin θ
The normal force resolved vertically is N cos θ and is, of course, equal 
and opposite to mg. So Fcentripetal =  (   mg

 ____ 
cos θ   )   sin θ = mg tan θ

Fcentripetal =    mv  2 
 ___ r    and therefore tan θ =    v  2 

 __ gr  

The banking angle is correct at a particular speed and radius. Notice that 
it does not depend on the mass of the vehicle so a banked road works for 
a cyclist and a car, provided that they are going at the same speed.

Some more examples of banking:

 ● Commercial airline pilots fly around a banked curve to change the 
direction of a passenger jet. If the angle is correct, the passengers will 
not feel the turn, simply a marginal increase in weight pressing down 
on their seat).

 ● Some high-speed trains tilt as they go around curves so that the 
passengers feel more comfortable.

Moving in a vertical circle
So far the examples have been of motion around a horizontal circle. 
People will queue for a long time to experience moderate fear on a 
fairground attraction like the rollercoaster in figure 14. The amount of 
thrill from the ride depends on its height, speed, and also the forces that 
act on the riders.

How is the horizontal situation modified when the circular motion of the 
mass is in a vertical plane?  

1 What are the forces acting when the motion is in a vertical circle?
Imagine a mass on the end of a string that is moving in a vertical circle at 
constant speed.

Look carefully at figure 15 and notice the way the tension in the string 
changes as the mass goes around.

friction centripetal force

normal reaction

weight

▲  Figure 13 Cycle velodrome.

▲  Figure 12 Forces in banking.

N
N 

co
s 
θ

N sin θ

mg

θ

θ
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▲  Figure 14 Theme park ride.

Begin with the case when the string is horizontal, at point A. The weight 
acts downwards and the tension in the string is the horizontal centripetal 
force towards the centre of the circle.

The mass continues to move upwards and reaches the top of the circle 
at B. At this point the tension in the string and the weight both act 
downwards. Thus:

Tdown + mg = m   v  2  _ r  

and therefore

Tdown = m   v  2  _ r   − mg

The weight of the mass combines with the tension to provide the 
centripetal force and so the tension required is less than the tension T 
when the string is horizontal.

At C, the bottom of the circle, the tension and the weight both act 
vertically but in opposite directions and so

Tup 
= m   v  2  _ r   + mg

At the bottom, the string tension must overcome weight and also 
provide the required centripetal force.

As the mass moves around the circle, the tension in the string varies 
continuously. It has a minimum value at the top of the circle and a 
maximum at the bottom. The bottom of the circle is the point where the 
string is most likely to break. If the maximum breaking tension of the 
string is Tbreak, then, for the string to remain intact,

Tbreak > m   v  2  _ r   + mg 

and the linear speed at the bottom of the circle must be less than 

 √____________
    r _ m   (Tbreak − mg)  

If this seems to you to be a very theoretical idea without much practical 
value, think about a car going over a bridge. If you assume that the 
shape of the bridge is part of a circle, then there is a radius of curvature 
r. What is the speed at which the car will lose contact with the bridge? 

▲  Figure 15 Forces in circular motion 
in a vertical plane. 

mg

T T

Tdown

Tup

mg

mg

mg

C

AD
A

B
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radius of
curvature

v

▲  Figure 16 Car going over a bridge.

This is the case considered above, where the object, in this case the car, 
is at the top of the circle. What is the “tension” (in this case the force 
between car and road) if the car wheels are to lose contact with the bridge? 
To answer this question, you might begin with a free-body diagram. You 
should be able to show that the car loses contact at a speed equal to  √__ gr  .

2 How does speed change when motion is in a vertical circle?
Not all circular motion in a vertical circle is at a constant speed. As 
a mass moves upwards it slows as kinetic energy is transferred to 
gravitational potential energy (if there is nothing to keep it moving 
at constant speed). At the top of the motion the mass must not stop 
moving or even go too slowly, because if it did then the string would lose 
its tension. The motion would no longer be in a circle.

The centripetal force Fc needed to maintain the motion is  
Fc = m    v  2 

 __ r   as usual, at the top of the circle, if Fc is supplied entirely by 
gravity then 

Fc = mg = m    v  2  _ r   

Just for an instant, the object is in free-fall.

The equation can be rearranged to give

vtop =  √__ gr  

and this is the minimum speed at the top of the circle for which the motion 
will still be circular. The minimum speed does not depend on mass.

Energy is conserved assuming that there are no losses (for example, 
to internal energy as a result of air resistance as the mass goes round). 
Equating the energies: 

kinetic energy at top + gravitational potential energy difference 
between top and bottom = kinetic energy at the bottom

and 

  1 _ 
2

   m  v  top   
2  + mg(2r) =   1 _ 

2
  m  v  bottom   2 

By substituting for both tensions, Tbottom  and Ttop, it is possible to 
show that 

Tbottom = Ttop + 6m

You can find this proof on the website.
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Worked examples
1 A hammer thrower in an athletics competition 

swings the hammer on its chain round 7.5 
times in 5.2 s before releasing it. The hammer 
describes a circle of radius 4.2 m and has a mass 
of 4.0 kg. Assume that the hammer is swung in a 
horizontal circle and that the chain is horizontal.

a) Calculate, for the rotation: 

(i) the average angular speed of the 
hammer

(ii) the average tension in the chain. 

b) Comment on the assumptions made in this 
question.

Solution
a) (i)  7.5 revolutions = 15π rad 

 angular speed =   15π _ 
5.2

   = 9.1 rad s−1

(ii) Tension in the chain = centripetal force 
required for rotation centripetal force  
= mrω2 = 4.0 × 4.2 × 9.12 = 1400 N

b) The thrower usually inclines the plane of the 
circle at about 45° to the horizontal in order 
to achieve maximum range. Even if the 
plane were horizontal, then the weight of 
the hammer would contribute to the system 
so that a component of the tension in the 
chain must allow for this. Both assumptions 
are unlikely.

Understanding
 ➔ Newton’s law of gravitation
 ➔ Gravitational field strength

6.2 Newton’s law of gravitation

  Applications and skills
 ➔ Describing the relationship between 

gravitational force and centripetal force
 ➔ Applying Newton’s law of gravitation to the 

motion of an object in circular orbit around a 
point mass

 ➔ Solving problems involving gravitational force, 
gravitational field strength, orbital speed, and 
orbital period

 ➔ Determining the resultant gravitational field 
strength due to two bodies

Equations
 ➔ Newton’s law of gravitation: F = G   Mm ______ 

 r  2 
  

 ➔ gravitational field strength: g =   F ____ m  

 ➔ gravitational field strength and the gravitational 
constant: g = G   M ____ 

 r  2 
  

  Nature of science
Newton’s insights into mechanics and gravitation 
led him to develop laws of motion and a law of 
gravitation. One of his motion laws and the law of 
gravitation are mathematical in nature, two of the 
motion laws are descriptive. None of these laws 
can be proved and there is no attempt in them to 
explain why the masses are accelerated under the 
influence of a force, or why two masses are attracted 
by the force of gravity. Newton’s ideas about motion 
have been subsequently modified by the work of 
Einstein. The questioning and insight that leads to the 
development of laws are fundamental to the nature of 
science.
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  Nature of science
Scientists from the past
Three of the great names from the history of 
astronomy and physics were Copernicus,  
Tycho Brahe, and Kepler. Their contributions 
were linked and ultimately led to the important 
gravitational work of Newton. Try to find out 
something about these astronomers. During the 
lifetimes of these scientists, science was carried 
out in a very different way from today.

The realization that the Earth orbits the Sun rather 
than the Sun orbiting the Earth was one of the 
great developments in scientific understanding. 

Galileo Galilei and other scientists of the 16th 
century overcame cultural, philosophical and 
religious prejudices, and some even suffered 
persecution for the scientific truths they had 
discovered. As we study the work of these pioneers 
we should remember that scientists in past times 
were not always as free as those today. 

Research the life of Galileo (we often drop the 
second name) and explore why he and others 
came into conflict with the Roman Catholic 
Church over their scientific beliefs.

▲ Figure 1 An astronomers’ portrait gallery.
Isaac Newton Galileo Galilei

Copernicus (Mikolaj Kopernik) Johannes KeplerTycho Brahe
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Gravitational field strength
Like electrostatics, gravity acts at a distance and is an example of a force 
that has an associated force field. Imagine two masses in deep space 
with no other masses close enough to influence them. One mass (call 
it A) is in the force field due to the second mass (B) and a force acts on 
A. B is in the gravitational field of A and also experiences a force. These 
two forces have an equal magnitude (even though the masses may be 
different) but act in opposite directions.

force on B due to Aforce on A due to B

A

B
▲ Figure 2 Gravitational forces between two masses.

If both masses are small, the size of a human, say, the force of gravity 
is extremely weak. Only when one of the masses is as large as a planet 
does the force become noticeable to us. However, whatever the size of 
the mass we need a way to measure the strength of the field to which it 
gives rise. Gravitational forces are the weakest of all the forces in nature 
and so require large amounts of mass for the force to be felt.

The strength of a gravitational field is defined using the idea of a small test 
mass. This test mass has to be so small that it does not disturb the field being 
measured. If the test mass is large then it will exert a force of its own on 
the mass that produces the field being measured. The test mass would then 
accelerate the other mass and alter the arrangement that is being measured.

The gravitational force that acts on the small test mass has both 
magnitude and direction. These are shown in the diagram. The test mass 
will accelerate in this direction if it is free to move.

Defining gravitational field strength
The concept of the small test mass leads to a definition of the strength of 
the gravitational field. 

If the mass of the test mass is m, and the field is producing a gravitational 
force of F on the test mass, then the gravitational field strength 
(given the symbol g) is defined as 

g =   F _ m  

The units of gravitational field strength are N kg–1.

Since F is a vector and m a scalar, it follows that g is a vector quantity 
and that its direction is that of F. 

A formal definition in words is that gravitational field strength at 
a point is the force per unit mass experienced by a small point 
mass placed at that point. This definition requires that the test mass 
is not just small but is also an (infinitesimally) small point in space. You 
might want to consider what the effect might be if the test mass has a 
shape and extends in space.

large mass M

small test
mass, m

force, F

gravitational
field strength = F

m

▲  Figure 3 Definition of gravitational field 
strength.
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So far the discussion has been limited to the gravitational field produced 
by one point mass. How does the situation change if there is more than 
one mass, excluding the test mass itself?  

Field strength is independent of the magnitude of the point test mass 
(we divided F by m to achieve this). So the vector field strengths can be 
added together (figure 4).

In IB Physics examinations you will only be asked to add the field 
strengths of masses that all lie on the same straight line. But even in 
two dimensions, the addition is straightforward using the ideas of vector 
addition by drawing or by calculation.

g and the acceleration due to gravity
Sometimes students are surprised that the symbol g is used for the 
gravitational field strength, they think there might be a risk of confusion 
with g the acceleration due to gravity! However this does not happen.

At the Earth’s surface (using Newton’s second law) 

acceleration due to gravity at the surface

=   force on a mass at the surface due to gravity
    ____   

size of the mass
  

So the acceleration =   F __ m   but   F __ m   is also the definition of gravitational field 
strength so the acceleration due to gravity = gravitational field strength = g.

The magnitude of the gravitational field strength (measured in N kg–1) is 
equal to the value of the acceleration due to gravity (measured in m s–2). 
You should be able to show that N kg–1 ≡ m s–2. (The symbol ≡ means “is 
equivalent to”.)

Newton’s law of gravitation – an inverse-square law
Isaac Newton (1642–1727) was a British scientist who consolidated the 
work of others and who added important insights of his own. During his 
life he contributed to the study of optics, mechanics and gravitation. One 
of his greatest triumphs was work on gravity that he developed using the 
data and ideas of the German astronomer Johannes Kepler and others 
about the motion of the planets.

Newton realized that the gravitational force F between two objects with 
masses M and m whose centres are separated by distance r is:

 ● always attractive

 ● proportional to   1 __ 
 r  2 

  

 ● proportional to M and m. 

This can be summed up in the equation

F ∝   Mm _ 
 r  2 

  

Laws that depend on   1 __ 
 r  2  

   are known as inverse-square. If the distance 

between the two masses is doubled without changing mass, then the 
force between the masses goes down to one-quarter of its original value.

To use this equation numerically a constant of proportionality is needed 
and is given the symbol G,

field strength A
4 units 

field strength B
3 units 

resultant g

resultant force 4−3 = 1 unit

g2

g1

▲  Figure 4 Adding field strengths 
vectorially.
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  Nature of science
A universal constant?
What does it mean to say that G is a universal 
gravitational constant? Newton did not know 
what the size of the constant was (as the value 
was determined over a hundred years later 
by Cavendish). In a sense, it did not matter. 
Newton realized that all objects are attracted to 
the Earth – the apocryphal story of him seeing 
a falling apple reminds us that he knew this. 

The insight that Newton had was to realize that 
the force of gravity went on beyond the apple 
tree and stretched up into the sky, to the Moon, 
and beyond. He realized that the Moon was 
falling continuously towards the Earth under 
the influence of gravity and because it was also 
moving “horizontally” it was in continuous orbit.

Worked examples
1 Calculate the force of attraction between  

an apple of mass 100 g and the Earth.  
Mass of Earth = 6.0 × 1024 kg.  
Radius of Earth = 6.4 Mm

Solution

F =   GMm _ 
 r  

2

 
   =   6.7 ×  10  –11  × 0.1 × 6.0 ×  10  24    ___  

  (6.4 ×  10  6 )  2    

 = 1.1 N

2 Calculate the force of attraction between  
a proton of mass 1.7 × 10–27 kg and an 
electron of mass 9.1 × 10–31 kg a when they 
are at a distance of 1.5 × 10–10 m apart.

Solution
F =    GMm _ 

 r  
2

 
  

 =   6.7 ×  10  –11  × 1.7 ×  10  –27  × 9.1 ×  10  –31     ____   
  (1.5 ×  10  –10 )   2     

 = 4.6 × 10–48 N

(Compare this with the electrostatic attraction 
of the electron and proton at this separation of 
about 10–8 N.)

F =   GMm _ 
 r  2 

  

G is known as the universal gravitational constant and it has an accepted 
value of 6.67 × 10–11 N m2 kg–2. Gravity is always attractive so if the distance 
is measured from the centre of mass M to mass m then the force on m due 
to M is towards M. In other words, the force is in the opposite direction to 
the direction in which the distance is measured. You may see some books 
where a negative sign is introduced to predict this direction. The IB Diploma 
Programme physics course does not attribute negative signs to attractive 
forces, the responsibility of keeping track of the force direction is with you.

Gravitational field strengths re-visited
Knowledge of Newton’s law of gravitation means that the definition of 
gravitational field strength can be taken further to help our study of real 
situations.

The field strength at a distance r from a point mass, M
The simplest case is that of a single point mass M placed, as usual, a long way 
from any other mass. In practice we say that the point mass is at an infinite 
distance from any other mass because if r is very large then   1 __ 

 r  2  
   is extremely 

small (mathematicians say that as r tends to infinity,   1 __ 
 r  2 
   tends to zero).
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As usual, the mass of our small test object is m. This means that the 
magnitude of the force F between the two masses M and m is

F =   GMm _ 
 r  2  

  

so that the gravitational field strength g is

g =   F _ m   =   GM _ 
 r  2 

  

As before, the direction is measured outwards from M but the force on 
the point mass is in the opposite direction towards M.  

The field strength at a distance r from the centre outside a sphere 
of mass M
It turns out that the answer for g outside a spherical planet is exactly the 
same as g for the point mass just quoted:

g =   GM _ 
 r  2 

  

If we are outside the sphere, all the mass acts as though it is a point mass of 
size M positioned at the centre of the sphere (the centre of mass). We only 
need one equation for both point masses and spheres. 

  Nature of science
And inside the Earth...?
Science is all about asking questions. Outside the 
Earth, the gravitational field strength varies as   1 __ 

 r  2 
  . But 

what happens to gravity inside the Earth? Is it zero? 
Is it a constant? Does it become larger and larger, 
reaching infinity, as we get closer to the centre? You 
might, at first sight, expect this from Newton’s law.

this part does
not contribute

this is the part that
accounts for gravity

tunnel

▲ Figure 5 Journey to the centre of the Earth.

In Journey to the centre of the Earth the novelist Jules 
Verne imagined going through a volcanic tunnel 
to the centre of the planet. Visualize his travellers 
halfway down the tunnel as they stand on the 
surface of a “smaller” Earth defined by their 
present distance from the centre. 

Two remarkable things happen: The first is that the 
contribution from the shell of Earth “above” the 
travellers makes no contribution to the gravitational 
field; all the different parts of the outer shell cancel 

out. The second thing that happens is that only 
the mass inside the “smaller” Earth contributes to 
the gravitational pull. The mass of this “smaller” 
Earth varies with r3 assuming a constant density 
for the Earth. Because the gravitational force varies 
with   1 __ 

 r  2 
  , together these give an overall dependence 

of r. The whole graph  for the variation of g for a 
planet (inside and out) is given in figure 6, g

s
 is the 

gravitational field strength at the surface
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▲  Figure 6 Gravitational field strength inside and outside the Earth.
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Worked examples
1 Calculate the gravitational 

field strength at the surface 
of the Moon.

(Mass of Moon  
= 7.3 × 1022 kg; radius of 
the Moon = 1.7 × 106 m)

Solution
g =   GM _ 

 r  2 
  

 =   6.7 × 10  –11  × 7.3 ×  10  22    ___  
   (1.7 ×  10  6 )  2    

 = 1.7 N kg–1

2 Calculate the gravitational 
field strength of the Sun at 
the position of the Earth.

(Mass of Sun = 2.0 × 1030 kg; 
Earth–Sun distance =  
1.5 × 1011 m.)

Solution
g =   GM _ 

 r  2 
  

 =   6.7 ×  10  –11  × 2.0 ×  10  30    ___  
  (1.5 ×  10  11 )  2    

= 6.0 mN kg–1

Linking orbits and gravity
The gravitational force of a planet provides the centripetal force to keep 
a satellite in orbit.

in orbit

cannon

hill
impact if Earth is flat

Earth

impact if Earth 
is a sphere

constant distance
from surface

▲ Figure 7 Newton’s cannon – how he thought about orbits. 

Newton had an insight into this too. He used the example of a cannon on 
a high mountain (figure 7). The cannon fires its cannonball horizontally 
and it accelerates vertically downwards. On a flat Earth, it will eventually 
hit the ground. Newton knew that the Earth was a sphere and that the 
curvature of the earth allowed the ball to travel further before hitting 
the ground.

He then imagined the ball being fired at larger and larger initial speeds. 
Eventually the shell will travel “horizontally” at such a high speed that 
the curvature of the Earth and the curve of the trajectory will be exactly 
the same. When this happens the distance between shell and surface is 
constant and the shell is in orbit around the Earth. 

What do you expect to happen to the trajectory of the cannon ball if it is 
fired at even greater speeds? To check your conclusions, find an applet 
on the Internet that will allow you to vary the firing speed of Newton’s 
cannon. A good starting point for the search is “applet Newton gun”.

This motion of a satellite around the Earth can be analysed by combining 
the ideas of centripetal force and gravitational attraction. The gravitational 
attraction FG provides the centripetal force Fc , so (ignoring signs)

Fc = FG =    mv  2  _ r   =   
 GM  E m _ 

 r  2 
  

where ME is the mass of the Earth, r is the distance from the satellite to the 
centre of the Earth, v is the linear speed of the satellite, and m is its mass.

These equations can be simplified to

v =  √____
   

 GM  E  _ r    

This equation predicts the speed of the satellite at a particular radius. 
Notice that the speed does not depend on the mass of the satellite. All 
satellites travelling round the Earth at the same distance above the 
surface have the same speed.

As an exercise, use the equations on page 250 to show that 

ω2 =   
 GM  E  _ 

 r  3 
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where ω is the angular speed, and that

T 2 =    4π  2  r  3  _ 
 GM  E 

  

where T is the orbital period (time for one orbit) of the satellite.  
This result: 

(orbital period of a satellite)2 ∝ (orbital radius)3

is known as Kepler’s third law. It is one of the three laws that he 
discovered when he analysed Tycho Brahe’s data.  

Worked examples
1 Calculate the orbital period of Jupiter about the 

Sun. Mass of Sun = 2.0 × 1030 kg;  
radius of Jupiter’s orbit = 7.8 × 1011 m)

Solution
T 2 =    4π  2  r  3  _ 

 GM  S 
  

T = 3.7 × 108 s (about 12 years)

2 The orbital time period of the Earth about the 
Sun is 3.2 × 107 s. Calculate the orbital period 
of Mars.

(radius of Earth orbit = 1.5 × 1011 m;   
radius of Mars orbit = 2.3 × 1011 m)

Solution

  
 T  M  2

  
 _ 

 T  E  
2
   
  =   

 r  M  3
  
 _ 

 r  E  
3
   
  

T
M
 = T

E
     √___

   
 r  M  3

  
 _ 

 r  E  
3
   
     = 6.1 × 107 s (about 1.9 years)

  Nature of science
What Newton knew …
Several decades before Newton began working on his ideas of 
gravitation, Kepler had used his own and others’ astronomical data to 
show that, for the planets, 

(radius of the orbit)3 ∝ (time period of orbit)2

This was an empirical result (meaning that it came from experimental 
data).

Newton was able to show that this proportionality arose from his 
own theory; this was a theoretical result (meaning that it came from a 
theory, not data).

Here are some data for the satellites of Jupiter. 

Moon Distance from centre 
of  Jupiter/103 km

Orbital period/ days

Io 420 1.8
Europa 670 3.6
Ganymede 1070 7.2
Callisto 1890 16.7

Use these data to show that

(radius of the orbit)3 ∝ (time period of orbit)2

Or, put another way, that   
 (radius of the orbit)  3 

  _______________  
 (time period of orbit)  2 

   is a constant.
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Questions
1 A particle P is moving in a circle with uniform 

speed. Draw a diagram to show the direction of 
the acceleration a and velocity v of the particle 
at one instant of time.

 

P

2 State what provides the centripetal force that 
causes a car to go round a bend. 

3 State the centripetal force that acts on a particle 
of mass m when it is travelling with linear 
speed v along the arc of a circle of radius r.

4 (IB) At time t = 0 a car moves off from rest in a 
straight line. Oil drips from the engine of the car 
with one drop every 0.80 s. The position of the 
oil drops on the road are drawn to scale on the 
grid below such that 1.0 cm represents 4.0 m. 
The grid starts at time t = 0.

 

Direction of motion

1.0 cm

a) (i)  State the feature of the diagram that 
indicates that the car accelerates at the 
start of the motion.

 (ii)  Determine the distance moved by the 
car during the first 5.6 s of its motion.

b) The car then turns a corner at constant 
speed. Passengers in the car who were 
sitting upright feel as if their upper bodies 
are being “thrown outwards”.

(i) Identify the force acting on the car, and 
its line of action, that enables the car to 
turn the corner.

(ii) Explain why the passengers feel as if 
they are being thrown outwards.

5 The Singapore Flyer is a large Ferris wheel  
of radius 85 m that rotates once every  
30 minutes.

a) Calculate the linear speed of a point on the 
rim of the wheel of the Flyer.

b)  (i)  Determine the fractional change in the 
weight of a passenger on the Flyer at 
the top of the ride.

(ii) Explain whether the passenger has a 
larger or smaller apparent weight at the 
top of the ride.

c) The capsules need to rotate to keep the 
floor of the cabin in the correct place. 

Calculate the angular speed of the capsule 
about its central axis.

6 The radius of the Earth is 6400 km. Determine 
the linear speed of a point on the ground at the 
following places on Earth:

a) Quito in Ecuador (14 minutes of arc south 
of the Equator)

b) Geneva in Switzerland (46° north of the 
Equator)

c) the South Pole.

7 A school bus of total mass 6500 kg is carrying 
some children to school. 

a) During the journey the bus needs to travel 
round in a horizontal curve of radius 150 m. 
The dynamic coefficient of friction between 
the tyres and the road surface is 0.7. 
Estimate the maximum speed at which the 
driver should attempt the turn.
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b) Later in the journey the driver needs to 
drive across a curved bridge with a radius of 
curvature of 75 m. Estimate the maximum 
speed if the bus is to remain in contact with 
the road.

8 A velodrome used for bicycle races has a 
banking angle that varies continuously from 0° 
to 60°. Explain how the racing cyclists use this 
variation in angle to their advantage in a race.

Data needed for these questions:

Radius of Earth = 6.4 Mm;  
Mass of Earth = 6.0 × 1024 kg;  
Mass of Moon = 7.3 × 1022 kg;  
Mass of Sun = 2.0 × 1030 kg;  
Earth–Moon distance = 3.8 × 108 m;  
Sun–Earth distance = 1.5 × 1011 m;  
G = 6.67 × 10–11 N m2 kg–2

9 Deduce how the radius R of the circular orbit of 
a planet around a star of mass ms relates to the 
period T of the orbit.

10 A satellite orbits the Earth at constant speed as 
shown below.

 

satellite

Earth

a) Explain why, although the speed of 
the satellite is constant, the satellite is 
accelerating. 

b) Discuss whether or not the gravitational 
force does work on the satellite.

11 Determine the distance from the centre of the 
Earth to the point at which the gravitational field 
strength of the Earth equals that of the Moon.

12 The ocean tides on the Earth are caused by the 
tidal attraction of the Moon and the Sun on the 
water in the oceans. 

a) Calculate the force that acts on 1 kg of 
water at the surface of the sea due its 
attraction by the 

(i) Moon

(ii) Sun.

b) Optional – difficult. Explain why there are 
two tides every day at many coastal points 
on the Earth. 

 [Hint: there are two parts to the answer, 
why a tide at all, and why two every day.]

 
13 There are two types of communication  

satellite. One type of communication satellite 
orbits over the poles at a distance from  
the centre of the Earth of 7400 km; the  
other type is geostationary with an orbital 
radius of 36 000 km. Geostationary satellites 
stay above one point on the equator whereas 
polar-orbit satellites have an orbital time of  
100 minutes. 

Calculate:

a) the gravitational field strength at the 
position of the polar-orbit satellite 

b) the angular speed of a satellite in 
geostationary orbit

c) the centripetal force acting on a 
geostationary satellite of mass 1.8 × 103 kg.
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  Nature of science
Unintentional discoveries
Physics is scattered with examples of experimenters 
making significant discoveries unintentionally. In 
the case of radioactivity the French physicist Henri 
Becquerel, in 1896, was investigating a possible 
link between X-rays and phosphorescence. He had 
stored a sample of uranium salt (which releases light 
over a period of time – having being exposed to light) 
in a drawer with a photographic plate (the forerunner 
to film) wrapped in an opaque covering. Becquerel 
discovered that the plate had become exposed 
even though it had been kept in the dark. Rather 

than ignore this unpredicted outcome, Becquerel 
sought an explanation and found other uranium salts 
produced the same result – suggesting that it was 
the uranium atom that was responsible. He went 
on to show that the emissions from uranium ionize 
gases but differ from X-rays in that they are deflected 
by electric and magnetic fields. For his work, 
which developed as the result of a lucky accident, 
Becquerel was awarded a share of the Nobel Prize for 
Physics in 1903 (with the Curies for their work also 
on radioactivity).

Understanding
 ➔ Discrete energy and discrete energy levels
 ➔ Transitions between energy levels
 ➔ Radioactive decay
 ➔ Alpha particles, beta particles, and gamma rays
 ➔ Half-life
 ➔ Constant decay probability
 ➔ Absorption characteristics of decay particles
 ➔ Background radiation

  Applications and skills
 ➔ Describing the emission and absorption spectra 

of common gases
 ➔ Solving problems involving atomic spectra, 

including calculating the wavelength of photons 
emitted during atomic transitions

 ➔ Completing decay equations for alpha and 
beta decay

 ➔ Determining the half-life of a nuclide from a 
decay curve

 ➔ Investigating half-life experimentally (or by 
simulation)

Equations
 ➔  Photon energy–frequency relationship: E = hf
 ➔  Planck relationship for wavelength: λ =   hc _____ E  

Introduction
In this topic we consider the composition of 
atoms. We look at extra-nuclear electrons and 
the nucleus and the particles of which the 
nucleus is composed. We see the vast array of 
particles that are now known to exist and how 

these particles can be classified and grouped.  
As is often the case, energy plays in important 
role in the atom and fundamental to this is the 
tendency for particles to be most stable when 
their energy is minimized.

7 ATOMIC, NUCLEAR, AND PARTICLE PHYSICS

7.1 Discrete energy and radioactivity
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Introduction
Although many texts take a historical tour of the development of atomic 
and nuclear physics, the IB Physics syllabus does not lend itself to such 
a treatment. Instead, there is a focus on the common aspects of the 
constituents of the atom. It is likely that you are already familiar with 
the structure of an atom as consisting of a positively charged nucleus 
surrounded by negatively charged electrons in fixed orbits. You are 
probably also be aware that the nucleus  consists of positively-charged 
protons and uncharged neutrons. We will take these aspects as read, but 
we will also revisit them throughout the sections of Topic 7 (and, for 
those students studying HL Physics, Topic 12 too).

Energy levels
Returning to the nuclear model of an atom, the orbiting electrons 
cannot occupy any possible orbit around the nucleus. Different orbits 
correspond to different amounts of energy, or energy levels, and the 
electrons are restricted to orbits with specific energies. Electrons change 
energy so that they can jump from one energy level to another, but 
they can only occupy allowed energy levels. Although you may ask 
“what makes an allowed orbit or allowed energy level?” it takes an 
understanding of the wave nature of electrons and quantum mechanics 
to attempt to explain this consistently. We return to this for HL students 
in Topic 12, but for now it is maybe better to accept that this is how 
nature operates.

Hydrogen is the simplest of all elements, with the hydrogen atom 
normally consisting of a proton bound to a single electron by the 
electromagnetic force (an attractive force between oppositely charged 
particles). There are other isotopes of hydrogen, with a nucleus 
including one or more neutrons. If a hydrogen atom completely loses 
the electron it becomes a positively-charged hydrogen ion. It is the 
single proton that defines this nucleus to be hydrogen – any atom with 
a single proton must be hydrogen. In the same way any atom having 
two protons is an isotope of helium, and any with three protons will be 
lithium, etc.

A common visualization of the atom is the “planetary model” in which 
the electron orbits the proton mimicking the Earth orbiting the Sun. 
Despite weaknesses in this model, it still gives a good introduction to 
energy levels in the atom. The energy levels for the hydrogen atom are 
shown in the table below:

Energy level (n) Energy/eV

1 −13.58 

2 −3.39

3 −1.51 

4 −0.85 

5 −0.54 

TOK

Assumptions in physics

Topic 5 showed that protons 
and electrons are charged. 
A bigger question is “why do 
charges behave in this way?” 
The simple answer to this 
is that we don’t know – we 
do know that some objects 
have a property that we call 
charge and that charges 
interact at a distance through 
an electromagnetic field. Yet 
we don’t know what charges 
are and what the difference 
between positive and negative 
actually is. This may seem a 
huge gap in our understanding. 
However, we use the same 
concept of the implied labelling 
of objects or properties – for 
example, when we ask the 
question “what is a chair?”, 
our answers will inevitably 
give us a description of a chair 
along the lines of “something 
we sit on”, “having four legs, 
it has a seat and back” etc. 
Therefore, what we have done 
is described the properties and 
characteristics of chairs – it 
remains the case that a chair 
is a chair. So, although we 
only have a fuzzy idea of what 
electrons and charges actually 
are, does this prevent us from 
developing effective theories 
that are based on poorly 
understood concepts?
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The energy levels are usually shown diagrammatically as in figure 1. 
This diagram shows the energy level and the energy of an electron 
that occupies this level. An electron in the ground state of the 
hydrogen atom must have exactly −13.58 eV of energy; one in 
the second energy level must have −3.39 eV, etc. An atom with an 
electron occupying an energy level higher than the ground state is said 
to be excited; so an electron in level 2 is in the first excited state, one 
in level 3 is in the second excited state, etc. The energy levels in atoms 
are said to be quantized – which means they must have discrete 
finite values. An electron in a hydrogen atom cannot have −5.92 eV 
or −10.21 eV or any other value between −13.58 and −3.39 eV; it 
must have one of the values in the table.

Transitions between energy levels
When an electron in the hydrogen atom jumps from the ground state 
to the first excited state it must gain some energy; this cannot be any 
randomly chosen amount of energy – it must be exactly the right amount. 
The electron needs to gain (−3.39) − (−13.58) = 10.19 eV of energy. 
The electron does not physically pass through the space between the two 
energy levels. Before gaining the energy it must have −13.58 eV and 
immediately after gaining the energy it must have −3.39 eV. The energy 
has to be transferred to the electron in one discrete amount; it cannot be 
gradually built up over time. 

The energy needed to excite an atom can come from absorption of light 
by the atom. In order to understand this we must consider light to be a 
packet or quantum called a photon – the rationale for this is discussed 
in Topic 12. The energy, E, carried by a photon is related to the frequency  
of the radiation by the equation E = hf where h is the Planck constant  
(= 6.63 ×  10  −34  J s) and f is the frequency in Hz. The wave equation  
c = f λ (where c is the speed of electromagnetic waves in a vacuum) also 
applies to the photons and, by combining the two equations, we can 
relate the energy to the wavelength E = hf = h  c __ λ   or λ = h  c __ E  . We have seen 
that an electron needs to absorb 10.19 eV in order to jump from the 
ground state to the first excited state. What, then, will be the wavelength 
of the electromagnetic radiation needed to do this?

First we need to convert 10.19 eV into joules. This is simply a matter  
of multiplying the energy in eV by the charge on an electron, so  
10.19 eV = 10.19 × 1.6 ×  10  −19  J ~ 1.6 ×  10  −18  J.

Now using λ = h  c __ E   we get λ = 6.63 ×  10  -34  J ×   3.00 ×  10  8 
 ________ 

1.6 × 10  -18  
   = 1.2 × 10-7 m 

or 120 nm.

This radiation in the ultraviolet part of the spectrum.

When an electron has been excited in this way it is likely to be quite unstable 
and will very quickly (in about a nanosecond) return to a lower energy level. 
In order to do this it must lose this same amount of energy. This means that a 
photon of energy 10.19 eV and wavelength 120 nm must be emitted by the 
atom. The electron will then jump to the lower energy level.

For the transition from the second energy level to the third to take place 
only 1.88 eV needs to be absorbed by the atom and 0.66 eV to jump from 
the third level to the fourth. When the electron is given the full 13.58 eV it 

Note

 ● The energies are given in units of 
electron volt (1 eV = 1.6 ×  10  −19  J). 
This is a very common unit (along 
with the multipliers keV and MeV) 
for atomic physics and it avoids 
having to use very small numbers. 
However, you might find that a 
question is set in joule.

 ● The energies are all negative 
values – this is because the 
potential energy of two objects is 
zero only when they are at infinite 
separation. Because there is an 
attractive force between a proton 
and an electron the electron has 
been moved from infinity until it 
is in its orbit. The proton–electron 
system has lost some energy and, 
since it was zero to start with, it is 
now negative.

 ● Energy level 1 is the lowest energy 
level – having the most negative 
and, therefore, smallest amount of 
energy. It is the most stable state 
and is called the ground state.

 ● n is known as the principal 
quantum number and we will 
return to its values in Topic 12.

▲  Figure 1 Energy level diagram for 
hydrogen.

0 ionization
n = 5
n = 4
n = 3

n = 2

n = 1

second excited state

first excited state

ground state

-0.54 eV-0.85 eV
-1.51 eV

-3.39 eV

-13.58 eV

269

7. 1  D I S C R E T E  E N E R G Y  A N D  R A D I O A C T I V I T Y



is completely removed from the nucleus (or taken to infinity) and the atom 
has become ionized. The energy supplied to the electron in the ground 
state to take it to infinity is called the (first) ionization energy.

Worked example
Singly-ionized helium (He+)is said to be 
“hydrogen-like” in that it only has one electron 
(although it has two protons and two neutrons). 
The energy levels differ from those of hydrogen as 
shown in the following table:

Energy level (n) Energy/eV

1 −54.4 

2 −13.6 

3 −6.0 

4 −3.4  

5 −2.2

a) Explain why the ground state has a much 
higher energy level than that of hydrogen 
(−13.6 eV).

b) (i)  Determine the frequency of the photon 
emitted by an electron transition from 
energy level 4 to energy level 2. 

 (ii)  State which region of the electromagnetic 
spectrum the emitted photon belongs to.

Solution
a) The hydrogen atom has a single proton in 

the nucleus but the helium ion has two. 
This means the attractive force between the 
nucleus and an electron is greater for the 
helium nucleus. The helium electron is more 
tightly bound to the nucleus and, therefore, 
requires more energy to remove it to infinity.

b) (i)  $E = (−13.6) − (−3.4) = −10.2 eV (the 
minus sign tells us that there is a loss of 
energy during the emission of photons).

 10.2 eV = 10.2 × 1.6 ×  10  −19  J  
 = 1.6 ×  10  −18  J

 E = hf ∴ f =   E _ 
h

   =   1.6 ×  10  -18   __  
6.63 ×  10  -34 

   

  = 2.4 ×  10  15  Hz

 (ii)  We have seen this energy for the hydrogen 
atom previously and so know that this 
frequency corresponds to ultraviolet. You 
can calculate the wavelength by dividing 
the speed of electromagnetic waves by your 
known frequency.

  Nature of science
Patterns in physics
You may have noticed that the calculation for 
the energy of photon emitted by the helium 
ion in the worked example above is identical 
to an energy value for the hydrogen atom. This 
sort of coincidence is not unusual in physics 
and suggests that there may be a link between 
the energy differences. In fact in 1888 the 
Swedish physicist Johannes Rydberg proposed 
a formula for “hydrogen-like” atoms: singly 

ionized helium, doubly ionized lithium, triply 
ionized beryllium, etc. based on observation of 
spectral line patterns emitted by these elements. 
Rydberg’s theory, based on his practical work, 
utilized the idea of “wave number” (the 
reciprocal of the wavelength) – this was of 
fundamental importance to the Danish physicist 
Niels Bohr in explaining quantization of energy 
levels in 1913. 

Emission spectra
When energy is supplied to a gas of atoms at low pressure the atoms 
emit electromagnetic radiation. In the laboratory the energy is usually 
supplied by an electrical discharge (an electrical current passing 
through the gas when a high voltage is set up between two electrodes 
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across the gas). If the radiation emitted by the gas is incident on the 
collimating slit of a spectrometer, it can then be dispersed by passing it 
though a diffraction grating or a glass prism (see figure 5). Observing 
the spectrum through a telescope, or projecting it onto a screen, will 
give a series of discrete lines similar to those shown in figure 2.

▲ Figure 2 Line emission spectra. 

▲ Figure 2 Line emission spectra.

Spectral lines appear in series in the different regions of the electromagnetic 
spectrum (infra-red, visible, and ultraviolet). Each series of lines is 
dependent on the energy level that the electrons fall to. In the case of 
hydrogen the series are named after the first person to discover them: in 
the Lyman series the electrons fall to the ground state (n = 1) – this series 
is in the ultraviolet region of the electromagnetic spectrum; in the Balmer 
series the electrons fall to the first excited level (n = 2) – this is in the visible 
region; the Paschen series relates to n = 3 and is in the infrared region.

Absorption spectra
The electrons in solids, liquids, and dense gases can also be excited – they 
tend to glow when heated to a high temperature. When the emitted light is 
observed it is seen to consist of a spectrum of bands of colours rather than 
lines. In the case of solids this will give a continuous spectrum in which the 
colours are merged into each other and so are not discrete. This is typical of 
matter in which the atoms are closely packed. The neighbouring atoms are 
very close and this causes the energy levels in the atoms to change value. 
When there are many atoms, the overall energy levels combine to form a 
series of very similar, but different, energies which makes up an energy band.

When the object emitting a continuous spectrum is surrounded by a cool 
gas, then the continuous spectrum is modified by the surrounding gas. The 
continuous spectrum is “streaked” by a number of dark lines. When a heated 
tungsten filament is viewed through hydrogen gas the absorption spectrum 

n = 1

electron transitions for the hydrogen atom

Lyman series

Balmer series

Paschen
series

Brackett
series

n = 2

n = 3

n = 4

n = 5
n = 6
n = 7

▲ Figure 3 Electron transitions for hydrogen.
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shown in the lower part of figure 4 can be seen. Further inspection shows 
that the black lines occur at exactly the same positions as the lines of the 
hydrogen emission spectrum. This pattern cannot simply be a coincidence.

Absorption occurs when an electron in an atom of the absorbing material 
absorbs a photon. The energy of this photon must be identical to the 
difference between the energy levels. The material removes photons of 
this frequency from the continuous range of energies emitted by the light 
source. Naturally, this will make the absorber’s atoms become unstable 
and they will revert to a lower energy level by emitting photons – these 
will include the absorbed frequencies but they will be emitted in random 
directions – and not necessarily in the original direction. This will reduce 
the intensity of those specific frequencies in the original direction giving 
the black lines seen crossing the continuous spectrum in figure 4.

Absorption spectra for sodium can be demonstrated with the apparatus 
shown in figure 5. A white light source emits light which is incident on 
a diffraction grating on the turntable of the spectrometer. A continuous 
spectrum is seen through the telescope or displayed on a computer 
monitor (using an appropriate sensor and software). A burner is 
used to heat sodium chloride (table salt). The black absorption lines 
of sodium should be detected in the yellow region of the continuous 
spectrum.

▲  Figure 4 Emission and absorption spectra 
for hydrogen.

▲  Figure 5 Demonstration of sodium absorption spectra.

flame with
table salt added

diffraction
grating

collimator
white light
source

telescope or sensor
linked to computer

spectrometerburner

  Nature of science
Fraunhofer lines

▲  Figure 6 Stamp commemorating the life and work 
of Fraunhofer.

The English scientist William Woolaston originally 
observed absorption lines in the Sun’s spectrum 
in 1802. However it was the German physicist, 
Joseph von Fraunhofer, who, in 1814, built a 
spectrometer and invented the diffraction grating 
with which he was able to observe and analyse 
these absorption lines – now known as Fraunhofer 
lines. These lines were the first lines in a spectrum 
to be observed. Fraunhofer labelled the most 
prominent of the lines as A–K. These lines 
provide astronomers with a means to study the 
composition of a star.
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Worked example
a) The element helium was first identified from 

the absorption spectrum of the Sun.

 (i)  Explain what is meant by the term 
absorption spectrum.

 (ii)  Outline how this spectrum may be 
experimentally observed.

b) One of the wavelengths in the absorption 
spectrum of helium occurs at 588 nm.

 (i)  Show that the energy of a photon of 
wavelength 588 nm is 3.38 ×  10  -19 J.

 (ii)  The diagram below represents some of 
the energy levels of the helium atom. Use 
the information in the diagram to explain 
how absorption at 588 nm arises.

 (iii)  Mark this transition on a copy of the 
energy level diagram below.

0

en
er

gy
/1

0-
19

 J

-1.59

-2.42

-3.00

-5.80

-7.64

Solution
a) (i)  An absorption spectrum consists of a 

continuous spectrum that has a number 
of absorption lines crossing it. These 
lines correspond to the frequencies of 
the light in the emission spectrum of the 
elements within the substance that is 
absorbing the light.

 (ii)  The light from the Sun can be projected 
onto a screen after passing through a 

diffraction grating or a prism in order to 
disperse it into its component wavelengths. 
This gives evidence about the elements in 
the gases in the outer part of the Sun.

b) (i)  E =   hc _ λ   =   6.63 ×  10  -34  × 3.00 ×  10  8    ___  
588 ×  10  -9 

  

 = 3.38 ×  10  -19  J

 (ii)  As this is absorption, the electron is 
being raised to a higher energy level. 
The difference between the levels must 
be equal to 3.38 ×  10  -19  J and so this is 
between (–5.80 ×  10  -19  J) and (–2.42 ×  
10  -19  J) levels, i.e.,  
(–2.42 ×  10  -19  J) – (–5.80 ×  10  -19  J)  
= (+)3.38 ×  10  -19  J

 

Note that the energy levels are given in joules 
and so there is no need to do a conversion 
from electronvolts in this question. 

 (iii)  The transition is marked in red.
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-1.59

-2.42

-3.00

-5.80

-7.64

 

Note that light from the Sun needs to be 
filtered and should not be observed directly 
through a telescope.

Radioactive decay
Radioactive decay is a naturally occurring process in which the nucleus 
of an unstable atom will spontaneously change into a different nuclear 
configuration by the emission of combinations of alpha particles, beta 
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particles, and gamma radiation. There are fewer than four hundred 
naturally occurring nuclides (nuclei with a particular number of protons 
and neutrons) but only about 60 of these are radioactive. The trend is 
for these nuclei to become more stable – although this may take a very 
long time. In radioactive decay the nuclide decaying is referred to as the 
parent and the nuclide(s) formed as the daughter(s).

As we have discussed, the nucleus contains protons and neutrons – these are 
jointly called nucleons. These are bound together by the strong nuclear force, 
which must overcome the electrostatic repulsion between the positively 
charged protons. The presence of the neutrons moderates this repulsion – 
the strong nuclear force (which has a very short range ≈  10  −15   m) acts 
equally on both the protons and neutrons. For the nuclei with few nucleons, 
having approximately equal numbers of protons and neutrons corresponds 
to nuclides being stable and not radioactive. As we will soon see, heavier 
nuclei need a greater proportion of neutrons in order to be stable.

  Nature of science
Nuclear radiation and safety
Many people are apprehensive about any 
exposure to radiation from radioactive sources. 
The danger from alpha particles is small unless 
the source is ingested into the body. Beta particles 
and gamma rays are much more penetrating and 
can cause radiation burns and long term damage 
to DNA. Any sources used in schools are very 
weak but should still be treated with respect. 
They should always be lifted with long tongs, 
never held near the eyes and should be kept in 
lead-lined boxes and stored in a locked container. 
During the 100 plus years since its discovery 
nuclear radiation has been studied extensively 

and can be safely controlled. Those working with 
radioactive sources use radiation monitoring 
devices to record exposure levels. Whenever 
there may be concerns about nuclear radiation, 
exposure is limited by:

 ●  distance – keeping as far away from a 
radiation source as possible 

 ●  shielding – placing absorbers between people 
and sources 

 ●  time – restricting the amount of time for 
which people are exposed.

Nuclide nomenclature 
This is a shorthand way of describing the composition of a nuclide. The 
element is described by its chemical symbol – H, He, Li, Be, B, etc. The 
structure of the nucleus is denoted by showing both the proton number Z 
(otherwise called the “atomic number”) and the nucleon number A (or 
“mass number”). This always takes the form:     Z  

A X so, for example, the 
isotopes of carbon, – carbon-12 and carbon-14, – are written as     6  

12 C and   
   6  
14 C. Carbon-12 has 6 protons and 12 nucleons and so it has 6 neutrons; 
carbon-14 has 6 protons and 14 nucleons making 8 neutrons. Isotopes 
are nuclides of the same element (and so have the same number of 
protons) having different numbers of neutrons.

Alpha (α) decay
In alpha-particle decay, an unstable nuclide emits a particle of the same 
configuration as a helium nucleus    2  

4 He (having two protons and two 
neutrons). Many nuclides of heavy elements decay primarily by alpha-
particle emission. 
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Examples:

      92  
238 U →    2  4 He +     90  

234 Th

      90  
234 Th →    2  4 He +     88  

230 Ra

As a consequence of the conservation of charge and mass–energy, the 
equation must balance so that there are equal numbers of protons and 
nucleons on either side of it.

The alpha particle is sometimes written as    2  
4 α instead of    2  

4 He.

Negative beta ( β  − ) decay
In negative beta-particle emission, an unstable nuclide emits an electron. 
The emission of a beta particle does not change the nucleon number of 
the parent nuclide. A neutron is converted to a proton and an electron 
is ejected. This decay occurs for those nuclides with too high a neutron–
proton ratio. The decay is accompanied by an electron antineutrino 
which we will discuss in Sub-topic 7.3. 

Examples:

      53  
131 I →    -1  

   0
  e +     54  

131 Xe +  _ ν 
      90  

234 Th →    -1  
   0

  e +     91  
234 Pa +  _ ν 

The negative beta particle is sometimes written as    -1  
   0

  β instead of     -1  
    0

  e.

Again, the equation must balance. The daughter nuclide has the same 
nucleon number as the parent but has one extra proton meaning that 
its proton number increases by 1. The antineutrino has no proton or 
nucleon number and is often written as     0  

 0  
_ ν .

Positron ( β  + ) decay
In positron or positive beta-particle emission, an unstable nuclide emits 
a positron. This is the antiparticle of the electron, having the same 
characteristics but a positive charge instead of a negative one. The 
emission of the positron does not change the nucleon number of the 
parent nuclide. A proton is converted to a neutron and a positron is 
ejected. This decay occurs for those nuclides with too high a proton–
neutron ratio. The decay is accompanied by an electron neutrino which, 
again, we will discuss in Sub-topic 7.3.

Examples:

      6  
11 C →    +1  

  0 e +     5  
11 B + ν

     11  
21 Na →    +1  

    0 e +    10  
 21 Ne + ν

The positron is sometimes written as    +1  
   0

  β instead of    +1  
   0

  e.

Again, the equation balances. The daughter nuclide has the same 
nucleon number as the parent but has one less proton, meaning that its 
proton number decreases by 1. The neutrino has no proton or nucleon 
number and is alternatively written as     0  

  0 ν.

Gamma ray emission
Gamma rays are high-energy photons often accompanying other decay 
mechanism. Having emitted an alpha or beta particle the daughter nucleus 
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is often left in an excited state. It stabilizes by emitting gamma photon(s) 
thus losing its excess energy.

Examples:

     27  
60 Co →    -1  

   0
  e +    28  

60  Ni  *  +  
_ ν  + γ

     28  
60  Ni  *  →    28  

60 Ni + γ
Here the cobalt-60 decays by beta emission into an excited nickel-60 
nuclide    28  

60  Ni  * . This is accompanied by a gamma photon. The nickel-60 
de-excites by emitting a second gamma photon (of different energy 
from the original photon). Gamma photons have no proton or 
nucleon number and are sometimes written as     0  

 0 γ.

If we had wished to summarize the cobalt decay in one equation we 
could write it as:

     27  
60 Co →    -1  

   0
  e +    28  

60 Ni +  _ ν  + 2γ
This tells us that overall there are two gamma photons emitted.

Worked examples
1 A nucleus of strontium-90 (    38  

90 Sr) decays into 
an isotope of yttrium (Y) by negative beta 
emission. Write down the nuclear equation for 
this decay.

Solution
This is a normal beta negative decay so the 
equation will be:

     38  
90 Sr →    -1  

   0
  e +    39  

90 Y +    0  0  
_ ν 

2 Under certain circumstances a nucleus can 
capture an electron from the innermost 
shell of electrons surrounding the nucleus. 

When the iron-55 (    26  
55 Fe) nucleus captures an 

electron in this way the nucleus changes into 
a manganese (Mn) nucleus. Write a nuclear 
equation to summarise this.

Solution
This is a case of balancing a nuclear equation 
with the electron being identical to a negative 
beta particle. The electron is present before the 
interaction and so appears on the left-hand side of 
the equation giving:

     26  
55 Fe +    -1  

   0
  e →    25  

55 Mn 

Half-life
Radioactive decay is a continuous but random process – there is no way of 
predicting which particular nucleus in a radioactive sample will decay next. 
However, statistically, with a large sample of nuclei it is highly probable 
that in a given time interval a predictable number of nuclei will decay, even 
if we do not know exactly which particular ones. We say that the nuclide 
has a constant probability of decay and this does not depend upon the 
size of the sample of a substance we have. Another way to look at this is in 
terms of half-life. The half-life is the time taken for half the total number 
of nuclei initially in a sample to decay or for the initial activity of a sample 
to fall by half. This varies significantly from nuclide to nuclide: the half-life 
of uranium-238 is 4.5 ×  10  9  years, while that of phosphorus-30 is  
2.5 minutes, and that of the artificially produced nuclide ununoctium-294 
is 5 milliseconds.
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The nucleus of an atom has a diameter of the order of  10  −15  m and is 
essentially isolated from its surroundings , as atoms themselves are 
separated by distances of about  10  -10  m. This means that the decay of 
a nucleus is independent of the physical state of the nuclide (whether 
it is solid, liquid, or gas or in a chemical compound) and the physical 
conditions – such as temperature and pressure. Only nuclear interactions 
such as a collision with a particle in a particle accelerator can influence 
the half-life of a nuclide.

Figure 7 shows how the parent nuclei decay during a time equal to 
four half-lives. During this time the percentage of the parent nuclide 
present has fallen to 6.25%. This graph shows an exponential decay – 
the shape of this decay curve is common to all radioactive isotopes. The 
curve approaches the time axis but never intercepts it (it is said to be 
“asymptotic”).
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▲ Figure 7 Radioactive half-life.

Consider a sample of radioactive material with  N  0  undecayed nuclei at 
time t = 0.

In one half-life this would become   
 N  0 

 __ 2  

In two half-lives it would become   
 N  0 

 __ 4  

In three half-lives it would be   
 N  0 

 __ 8  

And in four half-lives it would become   
 N  0 

 __ 16   (= 6.25% of  N  0 )

Alternatively you could take half to the power of four to give   (   1 __ 2   )   4  =   1 __ 16   
or 6.25%
At SL you will only be given calculations which have integral numbers 
of half-lives, those of you studying HL will see how we deal with non-
integral half-lives in Sub-topic 12.2.
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  Investigate!
Modelling radioactive decay
Different countries have varying regulations 
regarding the use of radioactive sources. It may be 
that you have the opportunity to investigate half-
life experimentally, for example, using a thorium 
generator or by the decay of protactinium. If this 
is possible there is merit, as always, in performing 
a real experiment. If this is not possible then 
you should use software or dice to simulate 
radioactive decay.

It is possible to carry out a very simple modelling 
experiment using 100 dice (but the more the 
merrier, if you have lots of time).

 ● Throw the dice and remove all those which 
show one.

▲  Figure 8 Dice can be used to model radioactive decay.

 ● Make a note of the number of dice that you 
have removed.

 ● Repeat this until you have just a few dice left.
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▲ Figure 9 Modelling radioactive decay using a spreadsheet.
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Measuring radioactive decay
For beta and gamma radiation the count rate near to a source is measured 
using a Geiger counter. Strictly, this should be called a Geiger–Müller  
(G–M) tube and counter. The G–M tube is a metal cylinder filled with 
a low-pressure gas. At one end of the tube is a thin mica window (that 
allows radiation to enter the tube). A high voltage is connected across the 
casing of the tube and the central electrode, as shown in figure 10. The 
beta or gamma radiation entering the tube ionizes the gas. The ions and 
electrons released are drawn to the electrodes, thus producing a pulse of 
current that can be measured by a counting circuit. Alpha particles will be 
absorbed by the window of a G–M tube but can be detected using a spark 
counter such as that shown in figure 11. A very high voltage is connected 
across the gauze on the top and a filament positioned a few millimetres 
under the gauze. When the alpha particles ionize the air a spark jumps 
between the gauze and the filament.

▲ Figure 10 Geiger–Müller tube.

insulator

to counting
circuit

central electrode

supply
- +

casing

gas at
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Background count
When a G–M tube is connected to its counter and switched on it will 
give a reading even when a source of radioactivity is not present. The 
device will be measuring the background count. If this is carried out 
over a a series of equal, short time intervals, the count for each interval 
will vary. However, when measurements are taken over periods of one 
minute several times, you should achieve a fairly constant value for your 
location. Radioactive material is found everywhere. Detectable amounts of 
radiation occur naturally in the air, rocks and soil, water, and vegetation. 
The count rate varies from place to place but the largest single source is 
from the radioactive gas radon that can accumulate in homes and in the 

 ● Record the remaining number of dice on a 
spreadsheet.

 ● Use the spreadsheet software to draw a line 
graph (or scatter chart) showing the number 
of dice remaining against the number of 
throws.

 ● Draw a trend line for the points.

 ● You will see that, with a small sample of just 100 
dice, there will be quite a large variation from 
point to point.

 ● If  several groups of students repeat this 
experiment you will be able to include error bars 
on your graph. 

 ● From the trend line you should calculate an 
average value for the half-life (see figure 9).

Note
 ● When you use a graph, in order 

to calculate the half-life, you 
should make at least three 
calculations and take the 
average of these. Students 
often halve a value and halve 
that again and again; as a 
consequence of doing this the 
changes are getting very small 
and will not be reliable. It is 
good practice to calculate three 
half-lives, starting from different 
values, before averaging as 
shown in figure 9.

 ● In the example shown the half-life 
consistently takes four throws 
the number of throws would be 
equivalent to a measurement of 
time in a real experiment with a 
decaying source.

 ● For clarity, the error bars have 
been omitted from this graph.

▲ Figure 11 Spark counter with alpha source.
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workplace. Figure 12 is a pie chart that shows the contribution of 
different sources of background radiation to the total. The sievert (Sv) 
is a radiation unit that takes the ionizing effects of different radiations 
into account. Most people absorb between 1.5 and 3.5 millisievert 
per year largely from background radiation. There are places where 
the background dose of radiation is in excess of 30 mSv  yr  −1 . However, 
there is no evidence of increased cancers or other health problems 
arising from these high natural levels. The sievert will not be examined 
on the IB Diploma Programme physics course.

Absorption of radiation
The different radioactive emissions interact with materials according 
to their ionizing ability. Alpha particles ionize gases very strongly, 
have a very short range in air and are absorbed by thin paper; this is 
because they are relatively massive and have a charge of +2e. Beta 
particles are poorer ionizers but have a range of several centimetres 
in air and require a few millimetres of aluminium to absorb them. 
They are much lighter than alpha particles and have a charge of –1e. 
Gamma rays, being electromagnetic waves, barely interact with matter 
and it takes many metres of air or several centimetres of lead to be 
able to absorb them. The apparatus shown in figure 13 is a simple 
arrangement for measuring the thickness of materials needed to 
absorb different types of radiation. The source is positioned opposite 
the window of the G–M tube so that as high a reading as possible is 
achieved. Different thicknesses of materials are then inserted between 
the source and the G–M tube until the count rate is brought back in 
line with the background count. When this happens, the absorption 
thickness of the named material is found. The following table 
summarizes the properties of α, β, and γ sources. The information 
represents “rule of thumb” values and there are exceptions to the 
suggested ranges.

▲ Figure 13 Apparatus to measure absorption of nuclear radiation.
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and weapons test
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background radiation
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▲  Figure 12 Sources of background 
radiation.
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Worked example
Actinium-227 (     89  

227 Ac), decays into thorium-227 
(     90  

227 Th). Thorium-227 has a half-life of 18 
days and undergoes α-decay to the nuclide 
radium-223. On a particular detector a sample 
of thorium-227 has an initial count rate of 32 
counts per second.

a) Define the terms (i) nuclide and (ii) half-life.

b) Copy and complete the following reaction 
equation.      89  

227 Ac →     90  
227 Th + ……… + ……… 

c) (i)  Draw a graph to show the variation 
with time t (for t = 0 to t = 72 days) 
of the number of nuclei in a sample of 
thorium-227

  (ii)  Determine, from your graph, the count 
rate of thorium after 30 days.

(iii)  Outline the experimental procedure to 
measure the count rate of thorium-227.

Solution
a) (i)  A nuclide is a nucleus with a particular 

number of protons and neutrons. 

(ii)  Half-life is the time for the count rate to 
halve in value OR the time for half the 
number of nuclei to decay into nuclei of 
another element.

b)  The proton number has increased by one so 
this must be negative beta decay.

       89  
227 Ac →     90  

227 Th +     -1  
   0

  e +    0  0   
_ ν 

c) (i)
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 (ii)  Marked on the graph in green – the 
activity is 10 units. There is likely to be a 
little tolerance on this type of question in an 
examination.

(iii)  You would not be expected to give great 
detail in this sort of question. You should 
include the following points:

 ● Use of a G–M tube as detector.

 ● Measuring the average background 
count rate in counts per second (this 
can be done by timing for 100 seconds 
with no source nearby). This should be 
done three times, averaged and divided 
by 100 to give the counts per second.

 ● Measuring the count rate three times 
with the source close to the detector.

 ● Correcting the count rate by subtracting 
the background count rate from the 
count rate with the source in position.

Emission Composition Range Ionizing ability

α a helium 
nucleus  
(2 protons and 
2 neutrons) 

low penetration, biggest mass and 
charge, absorbed by a few centimetres of 
air, skin or thin sheet of paper

very highly 
ionizing

β high energy 
electrons 

moderate penetration, most are absorbed 
by 25 cm of air, a few centimetres of body 
tissue or a few millimetres of metals such 
as aluminium

moderately 
highly ionizing

γ very high 
frequency 
electromagnetic 
radiation

highly penetrating, most photons are 
absorbed by a few cm of lead or several 
metres of concrete

few photons will be absorbed by human 
bodies

poorly ionizing – 
usually secondary 
ionization by 
electrons that the 
photons can eject 
from metals
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7.2 Nuclear reactions

  Nature of science
Predictions about nuclides
In 1869, the Russian chemist Dmitri Mendeleev 
took the atomic masses of chemical elements and 
arranged them into a periodic table. By studying his 
patterns, Mendeleev was able to predict missing 
elements; he left gaps in the table to be completed 
when the elements were discovered. Since the 
advent of the periodic table, patterns of atoms 
have allowed scientists to make predictions about 
the nuclides of which the elements are composed. 

For nuclear physicists the graph of proton number 
against neutron number tells them whether a 
nuclide is likely to be unstable and, if it is, by which 
mechanism it will decay. The graph of nuclear 
binding energy per nucleon against nucleon number 
tells them how much energy can be generated by a 
particular fission or fusion reaction. These patterns 
have taken the guesswork out of physics and have 
proved to be an invaluable tool.

Understanding
 ➔ The unified atomic mass unit
 ➔ Mass defect and nuclear binding energy
 ➔ Nuclear fission and nuclear fusion

  Applications and skills
 ➔ Solving problems involving mass defect and 

binding energy
 ➔ Solving problems involving the energy released 

in radioactive decay, nuclear fission, and 
nuclear fusion

 ➔ Sketching and interpreting the general shape 
of the curve of average binding energy per 
nucleon against nucleon number

Equations
 ➔  The mass–energy relationship: ∆  E = ∆m c  2 

Patterns for stability in nuclides
When a graph of the variation of the neutron number with proton 
number is plotted for the stable nuclei, a clear pattern is formed. This 
is known as the zone of stability. Nuclides lying within the zone 
are stable, while those outside it are unstable and will spontaneously 
decay into a nuclide tending towards the stability zone. In this 
way it is possible to predict the mechanism for the decay: α,  β  - ,  β  +  
(or electron capture).

Nuclides having low proton numbers are most stable when the neutron–
proton ratio is approximately one. In moving to heavier stable nuclides 
the neutron–proton ratio gradually increases with the heaviest stable 
nuclide, bismuth 209, having a ratio of 1.52.
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Figure 1 shows this plot of neutron number against proton number.
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▲ Figure 1 Graph of neutron number against proton number for some stable nuclides.

Unstable nuclides lying to the left of the zone of stability are neutron 
rich and decay by  β  -  emission. Those nuclides to the right of the zone 
of stability are proton rich and decay by  β  +  emission or else by electron 
capture (this is, as the name suggests, when a nucleus captures 
an electron and changes a proton into a neutron as a result – thus 
increasing the neutron–proton ratio). The heaviest nuclides are alpha 
emitters since emission of both two protons and two neutrons reduces 
the neutron–proton ratio and brings the overall mass down.

A second pattern that is seen to affect the stability of a nucleus is 
whether the number of protons and neutrons are even. Almost half 
the known stable nuclides have both even numbers of protons and 
neutrons, while only five of the stable nuclides have odd numbers of 
both protons and neutrons. The elements with even numbers of protons 
tend to be the most abundant in the universe. 

The third stability pattern is when either the number of protons or the 
number of neutrons is equal to one of the even numbers 2, 8, 20, 28, 
50, 82, or 126. Nuclides with proton numbers or neutron numbers equal 
to one of these magic numbers are usually stable. The nuclides, where 
both the proton number and the neutron number are magic numbers, 
are highly stable and highly abundant in the universe.

The unified atomic mass unit
The unified atomic mass unit (u) is a convenient unit for masses 
measured on an atomic scale. It is defined as one-twelfth of the 
rest mass of an unbound atom of carbon-12 in its nuclear and 
electronic ground state, having a value of 1.661 ×  10  −27  kg. Carbon 
was chosen because it is abundant  and present in many different 
compounds hence making it useful for precise measurements. With 
carbon-12 having six protons and six neutrons, this unit is the average 
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mass of nucleons and is, therefore, approximately equal to the mass of 
either a proton or a neutron.

In some areas of science (most notably chemistry) the term “unified 
atomic mass unit” has been replaced by the term “dalton” (Da). This 
is an alternative name for the same unit and is gaining in popularity 
among scientists. For the current IB Diploma Programme Physics 
syllabus the term “unified atomic mass unit” will be used.

Binding energy
As discussed in Sub-topic 7.1 the strong nuclear force acts between 
neighbouring nucleons within the nucleus. It has a very short range  
≈  10  −15  m or 1 fm. The stability of many nuclei provides evidence for the 
strong nuclear force. 

In order to completely dismantle a nucleus into all of its constituent 
nucleons work must be done to separate the nucleons and overcome the 
strong nuclear force acting between them. This work is known as the 
nuclear binding energy. 

Suppose we could reverse the process and construct a nucleus from 
a group of individual nucleons. We would expect there to be energy 
released as the strong nuclear force pulls them together. This would be 
equal to the nuclear binding energy needed to separate them. 

This implies that energy is needed to deconstruct a nucleus from 
nucleons and is given out when we construct a nucleus.

Mass defect and nuclear binding energy
Energy and mass are different aspects of the same quantity and are 
shown to be interchangeable through perhaps the most famous equation 
in physics (Einstein’s mass–energy relationship):

 E = m c  2 

where E is the energy, m the equivalent mass and c the speed of 
electromagnetic waves in a vacuum.

This equation has huge implications for physics on an atomic scale.

When work is done on a system so that its energy increases by an 
amount +∆E then its mass will increase by an amount +$m given by:

$m =   $E _ 
 c  2 

   

Alternatively when work is done by a system resulting in its energy 
decreasing by an amount -∆E then its mass will decrease by an amount 
-$m given by:

-$m =   -$E _ 
 c  2 

   

These relationships are universal but are only significant on an atomic 
scale. When energy is supplied to accelerate a rocket, there will be an 
increase in the mass of the rocket. In an exothermic chemical reaction 
there will be a decrease in the mass of the reactants. However, these 
are insignificant amounts and can be ignored without jeopardizing 
the calculations. It is only with atomic and nuclear changes that the 
percentage mass change becomes significant.

1   a free proton and a free neutron collide

2   the proton and neutron combine to form a
      deuteron with the binding energy being carried
      away bey a photon

3   a photon of energy greater than the binding
      energy of the deuteron is incident on the
      deuteron

4   the proton and neutron separate with their total
      kinetic energy being the difference between the
      photon energy and the binding energy needed to
      separate the proton and neutron

5   the free proton and neutron have a greater total
      rest mass than the deuteron

proton neutron

photon

photon
deuteron

deuteron

free proton
and neutron

deuteron

▲ Figure 2 Binding energy of a deuteron.
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It follows from Einstein’s relationship that the total mass of the individual 
nucleons making up a nucleus must be greater than the mass of that nucleus – 
since work needs to be done in order to break the nucleus into its 
component parts. This difference is known as the mass defect – which 
is the “mass equivalent” of the nuclear binding energy.

Mass and energy units for nuclear changes
We have seen in the last sub-topic that the electronvolt (eV) is 
commonly used as the unit of energy on the atomic and nuclear scale. 
Nuclear energy changes usually involve much more energy than that 
needed for electron energy changes and so MeV (= eV ×  10  6 ) is the 
usual multiplier. In the mass–energy relation E = m c  2 , when the energy 
is measured in MeV, the mass is often quoted in the unit MeV  c  −2 . This is 
not an SI unit but is very convenient in that it avoids having to convert 
to kg when the energy is in electronvolts. On this basis, the unified 
atomic mass unit can also be written as 931.5 MeV  c  −2 . To find the 
equivalent energy (in MeV) we simply have to multiply by c2!

Worked example
The nuclide     11  

24 Na decays into the stable nuclide     12  
24 Mg.

a) (i)  Identify this type of radioactive decay.

 (ii)  Use the data below to determine the 
rest mass in unified atomic mass units 
of the particle emitted in the decay of a 
sodium-24 nucleus    11  

24 Na.

 rest mass of    11  
24 Na = 23.990 96u

 rest mass of    12  
24 Mg = 23.985 04u

 energy released in  
 decay = 5.002 160 MeV

b) The isotope sodium-24 is radioactive but the 
isotope sodium-23 is stable. Suggest which of 
these isotopes has the greater nuclear binding 
energy.

Solution
a) (i)    This is an example of negative beta 

decay since the daughter product has 
an extra proton (a neutron has decayed 

into a proton and an electron – with 
the electron being emitted as a negative 
beta particle). 

(ii)  The energy released is equivalent to a 
mass of 5.002 160 MeV  c  −2 .

 1 u is equivalent to 931.5 MeV  c  −2 

  So the energy is equivalent to a mass 
of   5.002160

 _______ 931.5   = 0.005 37u

  The energy mass of the electron must 
therefore be 

  23.990 96u - (23.985 04u + 0.005 37u)  
= 0.000 55u

  This is consistent with the value for the 
mass of an electron (given as 0.000 549u 
in the IB Physics data booklet).

b) As sodium-24 has 24 nucleons and sodium-23 
has 23 nucleons, the total binding energy for 
sodium 24 is going to be greater than that of 
sodium 23.

Variation of nuclear binding energy per nucleon
The nuclear binding energy of large nuclei tends to be larger than that 
for smaller nuclei. This is because, with a greater number of nucleons, 
there are more opportunities for the strong force to act between 
nucleons. This means more energy is needed to dismantle a nucleus into 
its component nucleons. In order to compare nuclei it is usual to plot 
the average binding energy per nucleon of nuclides against the nucleon 
number as shown in figure 3.
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The average binding energy per nucleon is found by dividing the total 
binding energy for a nucleus by the number of nucleons in the nucleus. 
Although there is a general pattern, with most nuclides having a binding 
energy of around 8 MeV per nucleon, there are wide differences from 
this.

nucleon number

heavier nuclides
(e.g. U, Pu)

most stable
nuclides (e.g. Fe, Ni)

lighter nuclides
(e.g. H, He)
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▲ Figure 3 Plot of average binding energy per nucleon against the nucleon number.

On the left of the plot, those nuclides of low nucleon number, such as 
hydrogen-2 and helium, are less tightly bound than the more massive 
nuclides (hydrogen-1 or normal hydrogen consists of a single proton 
and has no nuclear binding energy). As we move to the central region 
of the plot we reach the maximum binding energy per nucleon with 
nuclides such as iron-58 and nickel-62. These nuclides, having the 
highest nuclear binding energies per nucleon, are the most stable nuclei 
and therefore are abundant in the universe. Further to the right than 
these nuclei, the pattern reverses and the heavier nuclei are less tightly 
bound than lighter ones. Towards the extreme right we reach the heavy 
elements of uranium and plutonium – in these the binding energy per 
nucleon is about 1 MeV less than those in the central region.

Nuclear fusion
The joining together (or fusing) of small nuclei to give larger ones 
releases energy. This is because the total nuclear binding energy of the 
fused nuclei is larger than the sum of total nuclear binding energies of 
the component nuclei. The difference in the binding energies between 
the fusing nuclei and the nucleus produced is emitted as the kinetic 
energy of the fusion products. 

Although it doesn’t actually happen in this way, it is useful to think 
of the energy being released as the difference between the energy 
emitted in constructing the fused nucleus and the energy required in 
deconstructing the two nuclei. 
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When two nuclei of masses  m  1  and  m  2  fuse to form a nucleus of mass  m  3  
the masses do not add up as we might expect and  m  1  +  m  2  >  m  3 

Since the total number of nucleons is conserved this means that  m  3   
has a smaller mass than the total for  m  1  +  m  2 . This loss of mass is 
emitted as the kinetic energy of the fusion products – in other words: 
∆E = (( m  1  +  m  2 ) -  m  3 ) c  

2 

Let’s look at an example:

A helium-4 nucleus is composed of two protons and two neutrons. Let 
us consider the mass defect of helium-4 compared with its constituent 
particles.

The mass of helium-4 nucleus = 4.002 602u

The mass of 2 (individual) protons = 2 × 1.007 276u = 2.014 552u

The mass of 2 (individual) neutrons = 2 × 1.008 665u = 2.017 33u

The total mass of all the individual nucleons = 4.031 882u

So the mass defect is 4.031 882u − 4.002 602u = 0.029 28u 

This is equivalent to an increased binding energy of 0.029 28 × 
931.5 MeV or 27.3 MeV – this energy is given out when the nucleus is 
formed from the individual nucleons. 

You can probably see that the potential for generating energy is 
immense, but being able to produce the conditions for fusion anywhere 
except in a star is a significant problem. Initially, the repulsion between 
the protons means that energy must be supplied to the system in order 
to allow the strong nuclear force to do its work. In reality, joining 
together two protons and two neutrons is not a simple task to achieve 
on Earth. It seems that Earth-based fusion reactions are more likely 
to occur between the nuclei of deuterium (hydrogen-2) and tritium 
(hydrogen-3).

Nuclear fission
The concept of nuclear fission is not quite as straight-forward as fusion – 
although fission has been used practically for over 70 years. If we are 
able to take a large nucleus and split it into two smaller ones, the binding 
energy per nucleon will increase as we move from the right-hand side to 
the centre of figure 3. This means that energy must be given out in the 
form of the kinetic energy of the fission products.

So, in nuclear fission, the energy released is equivalent to the difference 
between the energy needed to deconstruct a large nucleus and that 
emitted when two smaller nuclei are constructed from its components.

In terms of masses, the total mass of the two smaller nuclei will be less 
than that of the parent nucleus and the difference is emitted as the 
kinetic energy of the fission products. So we see that as  m  1  +  m  2  <  m  3  
then ∆E = ( m  3  - ( m  1  +  m  2 )) c  

2 

There are some nuclei that undergo fission spontaneously but these 
are largely nuclides of very high nucleon number made synthetically. 
Uranium-235 and uranium-238 do undergo spontaneous fission but 
this has a low probability of occurring. Uranium-236 however is not a 
common naturally occurring isotope of uranium but it does undergo 

TOK

The use of fission and fusion

In the last twenty years there 
has been a development in 
techniques to extract fossil 
fuels from locations that 
were not either physically or 
financially viable previously. 
Given the debate relating to 
nuclear energy, which is the 
more moral stance to take: 
to use nuclear fuel with its 
inherent dangers or to risk 
damage to landscapes and 
habitats when extracting 
fossil fuels?

287

7. 2  N U C L E A R  R E A C T I O N S



spontaneous fission. Uranium-236 can be produced from uranium-235 
when it absorbs a low energy neutron.

Uranium-236 then undergoes spontaneous fission to split into two lighter 
nuclides and at the same time emits two or three further neutrons:

     92  
235 U +    0  1 n →     92  

236 U →     56  
141 Ba +    36  

92 Kr +  3  0  
1 n

These isotopes of barium and krypton are just one of several possible 
pairs of fission products of uranium-236. 

  Nature of science
Fission chain reaction
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▲ Figure 4 Uranium chain reaction.

The use of nuclear fission in nuclear power 
stations is discussed in Topic 8. One of the 
key aspects of a continuous power production 
plant is that the nuclear fuel is able to fission 
in a controlled chain reaction. The neutrons 
produced in the reaction above must be capable 

of producing more nuclear fission events by 
encountering further uranium nuclei. When there 
is sufficient mass of uranium-235 the reaction 
becomes self-sustaining, producing a great deal 
of kinetic energy that can be transformed into 
electricity in the power station.

Worked example
a) Compare the process of nuclear fission with 

nuclear fusion.

b) Helium-4 (    2  
4 He) and a neutron are the 

products of a nuclear fusion reaction between 
deuterium (    1  

2 H) and tritium (    1  
3 H).

     1  
2 H +     1  

3 H →     2  
4 He +    0  1 n + energy

 The masses of these nuclides are as follows:

    1  2 H 2.014 102u

    1  3 H 3.016 050u

    2  4 He 4.002 603u

  Show that the energy liberated in each 
reaction is approximately 2.8 ×  10  -12  J.
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Solution
a) Nuclear fusion involves the joining together of 

light nuclei while nuclear fission involves the 
splitting up of a heavy nucleus. In each case the 
total nuclear binding energy of the product(s) is 
greater than that of the initial nuclei or nucleus. 
The difference in binding energy is emitted as the 
kinetic energy of the product(s). In relation to 
the plot of nuclear binding energy per nucleon 
against nucleon number, fission moves nuclei 
from the far right towards the centre whereas 
fusion moves nuclei from the far left towards the 
centre – both processes involve a move up the 
slopes towards higher values. 

b) To simplify the calculation you should break it down 
into several steps. Remember to include all of the steps – 
with so many significant figures, short cuts could cost 
you marks in an exam.

 Total mass on left-hand side of equation = 
2.014 102u + 3.016 050u = 5.030 152u

 Looking up the mass of the neutron in the 
data booklet (= 1.008 665u)

 Total mass on right-hand side of equation = 
4.002 603u + 1.008 665u = 5.011 268u

 Thus there is a loss of mass on the right-hand 
side (as the binding energy of the helium 
nucleus is higher than that of the deuterium 
and tritium nuclei)

 Mass difference (∆m) =  
5.030 152u − 5.011 268u = 0.018 884u

 As u = 931.5 MeV  c  −2 ,  
∆m = 0.018 884 × 931.5 MeV  c  −2   
= 17.59 MeV  c  −2 

 ∆E =   ∆m
 ___ 

 c  2 
   =17.59 MeV  

= 17.59 ×  10  6  × 1.60 ×  10  -19  J

 ∆E = 2.81 ×  10  -12  J

  Nature of science
Alternative nuclear binding energy plot
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▲  Figure 5 Alternative plot of binding energy per nucleon against 
the nucleon number.

It is quite usual to see the binding energy plot, 
shown in figure 3, drawn “upside down” as 
shown in figure 5. The reason for plotting this 
“inverted” graph is that when the nucleons 
are at infinite separation they have no mutual 
potential energy but, because the strong nuclear 
force attracts them, they lose energy as they 
become closer meaning that their potential energy 
becomes negative. This implies that the more 
stable nuclei are in a potential valley. Fission and 
fusion changes that bring about stability, will 
always move to lower (more negative) energies. 
This convention is consistent with gravitational 
and electrical potential energies which are 
discussed in Topic 10. In line with most text books 
at IB Diploma level we will continue to use the 
plot shown in figure 3.
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7.3 The structure of matter
Understanding

 ➔ Quarks, leptons, and their antiparticles
 ➔ Hadrons, baryons, and mesons
 ➔ The conservation laws of charge, baryon number, 

lepton number, and strangeness
 ➔ The nature and range of the strong nuclear force, 

weak nuclear force, and electromagnetic force

 ➔ Exchange particles
 ➔ Feynman diagrams
 ➔ Confinement
 ➔ The Higgs boson

  Applications and skills
 ➔ Describing the Rutherford–Geiger–Marsden 

experiment that led to the discovery of the nucleus
 ➔ Applying conservation laws in particle reactions
 ➔ Describing protons and neutrons in terms of quarks
 ➔ Comparing the interaction strengths of the 

fundamental forces, including gravity

 ➔ Describing the mediation of the fundamental 
forces through exchange particles

 ➔ Sketching and interpreting simple Feynman 
diagrams

 ➔ Describing why free quarks are not observed

Particle properties

Charge Quarks Baryon number Charge Leptons

  2 ___ 3   e u c t   1 ___ 3  -1 e μ τ
-   1 ___ 3   e d s b   1 ___ 3  0  υ  e  υ  μ  υ  τ 
All quarks have a strangeness number of 0 except the 

strange quark that has a strangeness number of –1
All leptons have a lepton number of 1 and 

antileptons have a lepton number of –1
Gravitational Weak Electromagnetic Strong

Particles 
experiencing All Quarks, leptons Charged Quarks, gluons

Particles 
mediating Graviton W+, W-,  Z  0 γ Gluons

  Nature of science
Symmetry and physics
Symmetry has played a major part in the 
development of particle physics. Mathematical 
symmetry has been responsible for the prediction 
of particles. By searching the bubble chamber 
tracks produced by cosmic rays or generated 
by particle accelerators many of the predicted 

particles have been found. Theoretical patterns 
have been very useful in developing our 
current understanding of particle physics and, 
increasingly, experiments are confirming that 
these patterns are valid even though their profound 
signification is yet to be determined.
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Introduction
At the end of the nineteenth century, physicists experimented with 
electrical discharges through gases at low pressure (see figure 1).

to vacuum pump

cathode rays

-
cathode

+
anode

fluorescence

high voltage

▲ Figure 1 Discharge tube.

In 1869, the German physicist, Johann Hittorf, observed a glow 
coming from the end of a discharge tube, opposite the cathode. He 
suggested that radiation was being emitted from the cathode and this 
caused the tube to fluoresce. The radiation causing the effect was 
later called a beam of “cathode rays”. Eight years later the British 
physicist, Sir Joseph Thomson, discovered that cathode rays could be 
deflected by both electric and magnetic fields. Thomson’s experiment 
showed that cathode rays were charged. After further experiments 
with hydrogen gas in the tube, Thomson concluded that cathode rays 
were beams of particles coming from atoms. With atoms being neutral, 
Thompson deduced that the atom must also carry positive charge. 
Figure 2 shows Thomson’s “plum pudding” or “current bun” model 
of the atom, consisting of a number of electrons buried in a cloud of 
positive charge.

Although Thomson’s model was short-lived, it was the first direct 
evidence that atoms have structure and are not the most elementary 
building blocks of matter as had been previously thought.

The scattering of alpha particles
In 1909, the German, Johannes Geiger, and the English–New 
Zealander, Ernest Marsden, were studying at Manchester University in 
England. Ernest Rutherford (another New Zealander) was supervising 
their research. The students were investigating the scattering of alpha 
particles by a thin gold foil. They used a microscope in a darkened 
room to detect flashes of light emitted when a alpha particles collided 
with a zinc sulfide screen surrounding the apparatus. Geiger and 
Marsden were expecting the alpha particles to be deflected by a very 
small amount as a result of the electrostatic effects of the charges in 
the atom. At Rutherford’s suggestion they moved their detector to 
the same side of the foil as the alpha source and were astonished to 
find that approximately one in every eight thousand alpha particles 
appeared to be reflected (or “back-scattered”) by the thin foil. With the 
alpha particles travelling at about 3% of the speed of light, reflection 
by electrons surrounded by a cloud of positive charge was unthinkable 
and Rutherford described the effect as:

▲  Figure 2 Thomson’s “plum pudding” model 
of the atom.

spherical cloud of
positive charge

-
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--
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-
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-
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scattered particles most particles
are undeflected
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α particles

circular
fluorescent screen

▲  Figure 3 The Rutherford–Geiger–Marsden 
apparatus.
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... quite the most incredible event that has ever happened to me 
in my life. It was almost as incredible as if you fired a 15-inch 
shell at a piece of tissue paper and it came back and hit you. On 
consideration, I realized that this scattering backward must be the 
result of a single collision, and when I made calculations I saw that 
it was impossible to get anything of that order of magnitude unless 
you took a system in which the greater part of the mass of the atom 
was concentrated in a minute nucleus. It was then that I had the 
idea of an atom with a minute massive centre, carrying a charge.

Rutherford proposed that, as the alpha particles carry a positive charge, 
back-scattering could only occur if the massive part of the atom was also 
positively charged (for the mechanics of this see Sub-topic 2.4). Thus the 
atom would consist of a small, dense positive nucleus with electrons well 
outside the nucleus. Rutherford’s calculations showed that the diameter 
of the nucleus would be of the order of  10  −15  m while that of the atom as 
a whole would be of the order of  10  −10  m; this meant that the atom was 
almost entirely empty space.

As will be discussed in Topic 12, for electrons to be able to occupy the orbits 
required by later models of the atom, a theory that contradicts classical 
physics is required. The electrons that are accelerating because of their 
circular motion should emit electromagnetic radiation and spiral into the 
nucleus. The consequence of this would be that all atoms should collapse 
to the size of the nucleus and matter could not exist. Since it is obvious that 
matter does exist, it is clear that Rutherford’s model is not the whole story.

nucleus

electron cloud

alpha particles

▲ Figure 4 Paths of several alpha particles in the scattering experiment.

The particle explosion
In 1928, the British physicist, Paul Dirac, predicted an antiparticle of the 
electron (the positron). Particles and their associated antiparticles have 

TOK

Physicists and knowing

“Now I know what the 
atom looks like.”

— a quote from Sir Ernest 
Rutherford, after publishing 
the results of his alpha 
scattering experiment.

When scientists devote time 
to investigating a specific 
area of research, they are 
often keen to publish their 
findings. Although peer 
appraisal is an important 
aspect of research there 
have been many instances 
in which a scientist adheres 
to one chosen model without 
being objective about 
the work of others. Many 
scientists pride themselves 
on their objectivity, but is it 
possible to be truly objective 
when those who are deemed 
to be successful are 
rewarded with prestigious 
awards and funding?
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identical rest mass but have reversed charges, spins, baryon numbers, 
lepton numbers, and strangeness (see later for these). The positron was 
discovered in cosmic rays by the American, Carl Anderson, in 1932. Cosmic 
rays consist mainly of high-energy protons and atomic nuclei ejected from 
the supernovae of massive stars. Anderson used a strong magnetic field 
to deflect the particles and found that their tracks were identical to those 
produced by electrons, but they curved in the opposite direction.

When an electron collides with a positron the two particles annihilate 
and their total mass is converted into a pair of photons of identical 
energy emitted at right angles to each other. The inverse of this process is 
called pair production. This is when a photon interacts with a nucleus 
and produces a particle and its antiparticle; for this event to occur the 
photon must have a minimum energy equal to the total rest mass of the 
particle and the antiparticle. 

1932 was a significant year in the development of our understanding 
of the atom with other developments in addition to the positron 
discovery. In 1930, Bothe and Becker, working in Germany, had found 
that an unknown particle was ejected when beryllium is bombarded 
by alpha particles. James Chadwick at Cambridge University proved 
experimentally that this particle was what we now know to be the 
neutron. 

In 1936, Anderson and his Ph.D. student Seth Neddermeyer at the 
California Institute of Technology went on to discover the muon, using 
cloud chamber measurements of cosmic rays. Although at the time they 
believed this particle to be the theoretically predicted pion, this was the 
start of the recognition that there were more particles than protons, 
neutrons, electrons and positrons.

The understanding that electrons had antiparticles suggested to Dirac 
that the same should be true for protons and, in 1955, the antiproton 
was discovered at the University of California, Berkeley by Emilio Segrè 
and Owen Chamberlain. In their experiment protons were accelerated to 
an energy of approximately 6 MeV before colliding with further protons 
in a stationary target. The reaction is summarized as:

 p + p → p + p + p +  
_ p 

Here p represents a proton and  
_ p  an antiproton. The kinetic energy of 

the colliding protons (left-hand side of the equation) is sufficient to 
produce a further proton and an antiproton – using E = m c  2 . 

We have encountered the neutrino and antineutrino in beta decay. 
According to the standard Big Bang model, these particles are thought to 
be the most numerous in the universe. The electron neutrino was 
first proposed in 1930 by the German physicist, Wolfgang Pauli, as 
an explanation of why electrons emitted in beta decay did not have 
quantized energies as is the case with alpha particles. Pauli suggested 
that a further particle additional to the electron should be emitted in 
beta decay so that energy and momentum are conserved. It was the 
Italian, Enrico Fermi, who named the particle “little neutral one” or 
neutrino and further developed Pauli’s theory. As the neutrino has no 
charge and almost no mass it interacts only minimally with matter and 
was not discovered experimentally until 1956.

▲  Figure 5 Electron and positron 
tracks in a cloud chamber.

non-ionizing photon
(leaving no track)

positron track

more energetic
electron-positron
pair track

electron track

scattered atomic
electron track
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By the end of the 1960s over 300 particles had been discovered and 
physicists were starting to classify them. A full theory explaining 
the structure of matter and the nature of the forces that hold 
particles together has become a major goal of scientific research. The 
current theory is that the universe is made up of a relatively small number 
of fundamental particles.

Classification of particles – the standard model
The Standard Model came about through a combination of experimental 
discoveries and theoretical developments. Although formulated towards 
the end of the twentieth century, it is supported by the experimental 
discoveries of the bottom quark in 1977, the top quark in 1995, the 
tau particle in 2001, and the Higgs boson in 2012. The Standard Model 
has been described as being the theory of (almost) everything. On the 
whole the model has been very successful, but it fails to fully incorporate 
relativistic gravitation or to predict the accelerating expansion of the 
universe. The model suggests that the only fundamental particles are 
leptons, quarks, and gauge bosons. All other particles are believed to 
consist of combinations of quarks and antiquarks.

Leptons
The leptons are members of the electron family and consist of the 
electron ( e  - ), the muon (µ), the tau (τ), their antiparticles plus three 
neutrinos associated with each of the particles and three neutrinos 
associated with the antiparticles. Electrons, muons, and taus are all 
negatively charged and their antiparticles are positively charged. 
Neutrinos and antineutrinos are electrically uncharged.  

The electron is known to have a mass of about   1
 ____ 1800  th of the mass of a 

proton, making it a very light particle. The muon is also light, having a 
mass of about 200 times that of the electron. The tau is heavier and has 
a mass similar to that of a proton. For reasons that will be shown later, 
each lepton is given a lepton number. Leptons have lepton number +1 
and antileptons −1.

Leptons Charge/e Lepton number (L)
Particle e µ τ −1 +1
Antiparticles  

_ e  _ µ  _ τ +1 −1
Neutrinos  ν  e  ν  µ  ν  τ  0 +1

Antineutrinos   
_ ν   e   

_ ν   µ   
_ ν   τ  0 −1

Quarks 
Speculation about the existence of quarks began after scattering 
experiments were performed with accelerated electrons at the Stanford 
Linear Accelerator Center (SLAC) at Stanford University in the USA 
between 1967 and 1973. The electrons were accelerated up to energies 
of 6 GeV before colliding with nuclei. In a similar way to alpha 
scattering, some of the electrons were scattered through large angles by 
the nucleons – which suggested that the nucleons are not of uniform 
density but have discrete charges within them. These experiments 
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supported the theories put forward independently by the Russian–
American physicist George Zweig and the American Murray Gell-Mann 
in 1964. Gell-Mann proposed that the charges within nucleons were 
grouped in threes and coined the term “quarks” (which he pronounced 
“qworks”) – in deference to a quote from Finnegan’s Wake by the Irish 
novelist James Joyce: 

‘Three quarks for Muster Mark! Sure he hasn't got much of a bark. 
And sure any he has it's all beside the mark.’

Zweig referred to quarks as “aces” and believed (incorrectly, as it turned 
out) there were four of them – as the aces in a pack of cards.

As with leptons there are six quarks and six antiquarks. The quarks are 
labelled by their “flavour” – which has no physical significance apart from 
identifying the quark. These flavours are called up (u), down (d), strange 
(s), charm (c), bottom (b), and top (t). Quarks each carry a charge of 
either +  2 __ 3   e or -  1 __ 3   e, and antiquarks each carry a charge of either -  2 __ 3   e 
or +  1 __ 3   e.

Often the e is omitted from charges and they are written as “relative 
charge” +  1 __ 3  , -  2 __ 3  , etc.

These quarks are split into three generations of increasing mass. The 
first generation contains the up and down quarks, which are the lightest 
quarks. The second contains the strange and charm quarks, and the third 
the bottom and top quarks – the heaviest quarks. The up, down, and 
strange quarks were the first to be discovered, with the up and down 
quarks combining to form nucleons. 

Quarks with charge +   2 ___ 3  e Quarks with charge -  1 ___ 3  e

u d
c s
t b

Antiquarks carry the opposite charge and are denoted by  
__ u ,  

_
 d ,  

_ c , etc.

Quark confinement
It is thought that quarks never exist on their own but exist in groups 
within hadrons. Hadrons are formed from a combination of two or 
three quarks (called mesons and baryons) – this is known as quark 
confinement. The theory that explains quark confinement is known 
as quantum chromodynamics (QCD) something that is not included 
in the IB Diploma Programme Physics syllabus. To hold the quarks 
in place they exchange gluons (the exchange particle for the strong 
nuclear force – see later in this sub-topic). Moving a quark away from its 
neighbours in the baryon or meson stores more energy in the interaction 
between the quarks and therefore requires increasing amounts of energy 
to increase their separation. If more and more energy is fed into the 
system, instead of breaking the force between quarks and separating 
them (which is what classical physics might suggest), more quarks are 
produced – this leaves the original quarks unchanged but creates a new 
meson or baryon by the mass–energy relationship E = m c  2 . ▲  Figure 7 Baryons and mesons.

Symbol Name Quark
content

p proton uud +1
p− antiproton uud -1

Electric
charge

−

Baryons qqq and antibaryons qqq
These are a few of the many types of baryons.

−−−

−−

n neutron udd 0V

lambda uds 0
Ω- omega sss -1

Symbol Name Quark
content

π+ pion +1
K- kaon

ud
-1

Electric
charge

−

Mesons qq
These are a few of the many types of mesons.

−

su−

ρ+ rho +1
B0 B-zero db 0
ηc eta-c 0

ud−
−

cc−

K0lambda J/Ψanti-proton

π+neutron

u

u s
s−

u u
d

d
d

d
d

c−
c

d−

π0

u
u−

u− u−

proton

u

d−

▲  Figure 6 Three quark and two quark hadrons.
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Hadrons
Hadrons are particles composed of quarks and include baryons (which are 
made up of three quarks) or mesons (which comprise of quark-antiquark 
pairs). The strong interaction (see later) acts on all hadrons but not on 
leptons while the weak interaction acts on both leptons and hadrons. 
Some particle physicists have hypothesized “pentaquarks” consisting of 
four quarks and one antiquarks – although experiments at the start of the 
century looked promising, these have yet to be confirmed experimentally.

In order to explain which particles can exist and to explain the outcome 
of observed interactions between particles, the quarks are assigned 
properties described by a numerical value. The quark is given a baryon 
number (B) of   1 __ 3   and for an antiquark the baryon number is −  1 __ 3  .

Strangeness (S) is a property that was initially defined to explain the 
behaviour of massive particles such as kaons and hyperons. These 
particles are created in pairs in collisions and were thought to be 
“strange” because they have a surprisingly long lifetime of  10  −10  s instead 
of the expected  10  −23  s. A strange quark has a strangeness of −1, and a 
strange antiquark has a strangeness of +1. This property of strangeness 
is conserved when strange particles are created but it is not conserved 
when they subsequently decay.

Figure 8 shows eight baryons each with a baryon number +1 and eight 
mesons each with baryon number 0. Gell-Mann used these diagrams as a 
means of organizing baryons and mesons. Particles on the same horizontal 
level have the same strangeness, while those on the same diagonal have 
the same charge. Using this system, Gell-Mann predicted the eta (η) 
particle in 1961, which was discovered experimentally a few months later. 
The name “Eightfold Way” refers to Noble Eightfold Path – a way towards 
enlightenment in Buddhism.

strangeness

charge -1 +10

-2

-1

0

Σ-

Ξ-

Σ+
Σ0

Ξ0

Λ

n p

strangeness

charge -1 +10

-1

0

+1

π-

K-

π+
π0

K0

K0 K+

η

▲  Figure 8 Example patterns for  
some baryons and mesons  
(The Eightfold Way).

  Nature of science
Symmetry and physics
In the same way that the periodic table gives the 
pattern of the elements based on their electron 
structure, the Standard Model gives the pattern for 
the fundamental particles in nature. It is believed that 
there are six leptons and six quarks and these occur 
in pairs. A further symmetry is seen by each particle 
having its own antiparticle (which will have the same 
rest mass as the particle but other properties such 
as charge and spin are reversed). When an electron 
collides with its antiparticle the positron, the two 
particles annihilate producing pairs of photons that 
travel in opposite directions (thereby conserving 
momentum and energy). It is not possible for 
annihilating particles to produce a single photon. ▲ Figure 9 Particle collisions shown in a bubble chamber.
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Examples of baryons
Protons and neutrons are important in atoms and you should know their 
quark composition and be able to work out that of their antiparticles. 
Since they are both baryons, they each consist of three quarks and have 
a baryon number +1. 

The proton consists of two up quarks and one down quark (uud), which 
means it has charge

  ( +  2 _ 
3

   +   2 _ 
3

   -   1 _ 
3

   )  = +1

The neutron consists of two down quarks and one up quark (ddu), 
which gives it a charge of

  ( -  1 _ 
3

   -   1 _ 
3

   +   2 _ 
3

   )  = 0

An antiproton has a baryon number of –1 and consists of two  
antiup quarks and one antidown quark ( 

__ u   
__ u  
_
 d ). This gives a charge  

of  ( -  2 __ 3   -   2 __ 3   +   1 __ 3   )  = -1 

You may wish to prove to yourself that the antineutron has a charge of 
zero (and baryon number of –1).

Since none of these particles has any strange quarks their strangeness is 0.

Examples of mesons 
In questions you will always be given the quark composition of mesons, 
so there is no need to try to remember these or the composition of any 
baryons apart from the proton and neutron.

A  π  +  meson is also called a positive pion and consists of an up quark and 
an antidown quark (u 

_
 d ). The positive pion has charge  ( +  2 __ 3   +   1 __ 3   )  = +1. 

As it is not a baryon, its baryon number is 0 and, as it has no strange 
quarks, its strangeness is 0 too.

A  K  +  meson or positive kaon is the lightest strange meson and consists of 
an up quark and an antistrange quark (u  

_ s ). The positive kaon has charge  
( +  2 __ 3   +   1 __ 3   )  = +1. Again, a meson is not a baryon and so it has baryon 
number 0. However, this particle does contain an antistrange quark and 
so it has strangeness of +1.

Conservation rules
When considering interactions between particles or their decay, the 
equivalence of mass and energy must be taken into account. Mass may 
become some form of energy and vice versa using the equation E = m c  2 .

In addition to the expected conservation of mass–energy and 
momentum, no interaction that disobeys the conservation of charge 
has ever been observed; the same is true for baryon number (B) and 
lepton number (L). All leptons have a lepton number of +1 and 
antileptons have a lepton number of −1. 

As mentioned before, the conservation rules for strangeness are different 
and we will consider them later.

You may be asked to decide whether an interaction or decay is feasible 
on the basis of the conservation rules.
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Worked examples
1 a)  Show that, when a proton collides with a 

negative pion ( 
__ u d), the collision products 

can be a neutron and an uncharged pion.

b) Deduce the quark composition of the 
uncharged pion.

Solution
a) The equation for the interaction is  

p +  π  -  → n +  π  0  
 Q: +1 − 1 →  0 + 0  ✓

 B: +1 + 0 → +1 + 0  ✓

 L: 0 + 0 → 0 + 0  ✓

  This interaction is possible on the basis of 
conservation of charge, baryon number 
and lepton number.  

b) Writing the equation in terms of quarks:

 uud +  
__ u d → ddu + ??

 ?? = u 
__ u  in order to balance this equation.

 This suggests that the neutral pion is very 
short lived – since the combination u 

__ u  
would mutually annihilate. In fact this 
particle has a lifetime of about 8 ×  10  -17  s 
and annihilates to form two gamma ray 
photons or, very occasionally, a gamma ray 
photon, an electron and a positron.

2 Explain whether a collision between two protons 
could produce two protons and a neutron.

Solution
Writing the equation for the baryons:

p + p → p + p + n 

Q: +1 + 1 → +1 + 1 + 0  ✓

L: 0 + 0 → 0 + 0 + 0  ✓ 

B: +1 + 1 → +1 + 1 + 1  ✗

So this interaction fails on the basis of 
baryon number.

Fundamental forces
Current theories suggest that there are just four fundamental forces in 
nature. In the very early universe, when the temperatures were very 
high, it is possible that at least three of these four forces originated as a 
single unified force.

The four fundamental forces are:

 ● The gravitational force is weak, has an infinite range and acts on 
all particles. It is always attractive and over astronomic distances it is 
the dominant force – on an atomic or sub-atomic scale it is negligible. 

 ● The electromagnetic force causes electric and magnetic effects 
such as the forces between electrical charges or bar magnets. Like 
gravity, the electromagnetic force has an infinite range but it is much 
stronger at short distances, holding atoms and molecules together. It 
can be attractive or repulsive and acts between all charged particles.

 ● The strong nuclear force or strong interaction is very strong, but 
has very short-range. It acts only over ranges of ≈  10  –15  m and acts 
between hadrons but not leptons. At this range the force is attractive 
but it becomes strongly repulsive at distances any smaller than this.

 ● The weak nuclear force or weak interaction is responsible for 
radioactive decay and neutrino interactions. Without the weak 
interaction stars could not undergo fusion and heavy nuclei could 
not be built up. It acts only over very short ranges of ≈  10  –18  m and 
acts between all particles.

As these four fundamental forces have different ranges it is impossible to 
generalize their relative strengths for all situations. The table below shows a 
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comparison of the effects that the four forces have on a pair of protons in a 
nucleus (since all four forces will act on protons at that range).

Force Range Relative strength Roles played by these forces in the universe

Gravitational ∞ 1 binding planets, solar system, sun, stars, 
galaxies, clusters of galaxies

Weak nuclear ≈  10  –18  m  10  24 (W+, W-): transmutation of elements (Wo): 
breaking up of stars (supernovae)

Electromagnetic ∞  10  35 binding atoms, creation of magnetic fields

Strong nuclear ≈  10  –15  m  10  37 binding atomic nuclei, fusion processes in stars

Exchange particles
A very successful model that has been used to explain the mechanism of 
the fundamental forces was suggested by the Japanese physicist, Hideki 
Yukawa, in 1935. Yukawa proposed that the force between a pair of 
particles is mediated (or transmitted) by particles called gauge bosons. 
The four fundamental forces have different ranges and a different boson 
is responsible for each force. The mass of the boson establishes the range 
of the force. The bosons carry the force between particles.  

Figure 10 shows how an electron can exchange a photon with a neighbouring 
electron, leading to electromagnetic repulsion. The exchange particle is said 
to be a “virtual” particle because it is not detected during the exchange. 
The exchange particle cannot be detected during its transfer between 
the particles because detection would mean that it would no longer be 
acting as the mediator of the force between the particles. The larger the 
rest mass of the exchange particle is, the lower the time it can be in flight 
without it being detected and, therefore, the lower the range of the force.

A

A

B A B

AB B

(a)

(b)

▲ Figure 11 Analogy of exchange particles.

▲  Figure 10 Exchange of virtual photon 
between two electrons.

- -
A B

electrons A and B
approach

- -
A B

electrons
separate

- -
A B

virtual photon
exchanged
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The simplest analogy to explain how a repulsive force can be produced by 
transfer of a particle is to picture what happens when a heavy ball is thrown 
backwards and forwards between people in two boats (see figure 11). The 
momentum changes as the ball is thrown and caught and to someone who 
cannot seen the ball travelling, a repulsive force seems to exist as they move 
apart. In order to explain the attractive force we need to imagine that a 
boomerang is being thrown between the people in the boats – in this case 
the change of momentum brings the boats together. To understand this more 
fully requires the use of the uncertainty principle discussed in Topic 12.

The table shows the exchange particles for the four fundamental forces.

Force Exchange particle Acts on

Gravitational gravitons (undiscovered) all particles

Weak nuclear  W  + ,  W  −  and  Z  0  bosons quarks and leptons

Electromagnetic photons electrically charged particles

Strong nuclear gluons (and mesons) quarks and gluons (and hadrons)

Feynman diagrams
These are graphical visualizations, developed by the American physicist 
Richard Feynman, that represent interactions between particles. These 
diagrams are sometimes known as “spacetime diagrams”. They have 
the time axis going upwards and the space or position axis to the right 
(although many particle physicists draw these axes with space going upwards and 
time to the right – so be careful when you are researching interactions). Straight 
lines represent particles and upwards arrows show particles moving 
forwards in time (downward arrows indicate an antiparticle – 
also moving forwards in time). Wavy or broken lines that have no 
arrows represent exchange particles. Points at which lines come together 
are called vertices (plural of vertex) and, at each vertex, conservation of 
charge, lepton number and baryon number must be applied. 

The electromagnetic force
Figure 12 shows a Feynman diagram for the electromagnetic force 
between two electrons. The exchange particle that gives rise to the 
force is the photon. Photons have no mass and this equates to the force 
having an infinite range.

This diagram shows two electrons moving closer and interacting by the 
exchange of a virtual photon before moving apart.

The strong force
This is the strongest of the forces and acts between quarks and, 
therefore, between nucleons. The exchange particles responsible are 
pions ( π  + ,  π  −  or  π  0 ). Figure 13 shows the Feynman diagram for the 
strong force between a proton and a neutron.

In this case a neutral pion is exchanged between the proton and the 
neutron that ties them together. In hadrons, the pion carries gluons 
between the quarks – the gluons are the exchange particles for the 
colour force acting between quarks (colour is not included on the IB 
Diploma Programme Physics syllabus and so questions will be 
limited to the exchange of mesons between hadrons).

▲  Figure 12 Feynman diagram of the 
electromagnetic force between two electrons.

first incident
electron

second incident
electron

electrons repel

tim
e

e-

e-

e-

e-

position

virtual photon γ

  Nature of science
Feynman diagrams and 
cloud chamber tracks
Don’t be confused by thinking 
that Feynman diagrams are like 
the pictures of cloud or bubble 
chamber interactions – they are 
not and they really should not 
be thought of as “spacetime” 
diagrams! The diagrams help 
theoretical physicists work out 
the probability of interactions 
occurring, but for the IB course we 
treat them as illustrations of the 
interactions between  complex 
particle events.

▲  Figure 13 Feynman diagram of the strong 
force between a proton and a neutron.

neutral pion (π0) is exchanged between a
proton (p) and a neutron (n) mediating the
strong nuclear force between these particles
in the nucleus

tim
e

n

n

p

p

position

π0
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Weak nuclear force
This is responsible for radioactive decay by beta emission. In negative 
beta decay a neutron decays to a proton. In this process a W boson is 
exchanged as a quark changes from down to up. The W boson then 
immediately decays into an electron and an electron antineutrino.  

The W and Z particles responsible for weak interactions are massive. The 
weak interaction is the only mechanism by which a quark can change 
into another quark, or a lepton into another lepton.

Conservation of strangeness
We are now in a position to discuss conservation of strangeness. The 
strange quark has a strangeness of −1 and particles containing a single 
strange quark will also have a strangeness of −1. The antistrange quark 
has a strangeness of +1 and particles containing a single antistrange 
quark will also have a strangeness of +1. One type of K0 (neutral kaon) 
has a strangeness of +1 and so it contains an antistrange quark. A particle 
containing two strange quarks would have a strangeness of −2 and one 
containing two antistrange quarks would have a strangeness of +2, etc.  

Strangeness is not conserved when strange particles decay 
through the weak interaction.

For example, strangeness is not conserved when a strange quark decays 
into an up quark.

Strangeness is conserved when there is a strong interaction.

This is why strange particles are always produced in pairs. If two particles 
interact to produce a strange particle then a strange antiparticle must 
also appear.

Figure 15 shows a stationary proton interacting through the strong 
interaction with a negative pion (short green line) at the bottom right-
hand side of the image. These particles create a neutral kaon ( K  0 ) and a 
second neutral particle called a lambda particle ( Λ  0 ). As these particles 
are neutral they produce no tracks in a bubble chamber (a device that 
forms trails of bubbles along the path of a charged particle). The  K  0  track 
is shown as a purple broken line and the  Λ  0  as a blue broken line. The 
reaction is given by:  

 p +  π  -  →  K  0  +  Λ  0 
There are no strange particles on the left-hand side of this equation. The  
K  0  has a strangeness of +1 so the  Λ  0  must have a strangeness of −1 for 
the reaction to be viable by the strong interaction. In terms of quarks the 
equation for the reaction is

 uud +  
__ u d → d 

_ s  + uds

Let’s check this to see that charge, lepton number, baryon number, and 
strangeness are conserved:

Q: left-hand side  ( +  2 __ 3   +   2 __ 3   -   1 __ 3   )  +  ( -  2 __ 3   -   1 __ 3   )  = 0 and  

right hand side  ( -  1 __ 3   +   1 __ 3   )  +  ( +  2 __ 3   -   1 __ 3   -   1 __ 3   )  = 0

As 0 = 0, charge is conserved.

L: as none of the particles are leptons, the lepton numbers on both sides 
are zero meaning lepton number is conserved.

A neutron decays into a proton by the emission
of an electron and an electron antineutrino
(shown with the arrow moving downwards
 because it is an antiparticle). The decay
is mediated by the negative W boson.

tim
e

p

n

position

W-
νe

e-

−

▲  Figure 14 Feynman diagrams for negative 
beta decay.

Note
The shorter the range of the exchange 
force the more massive the exchange 
particle – so the exchange particles 
for gravitation and the electromagnetic 
interaction (both of infinite range) 
must have zero rest masses. The weak 
interaction will have the heaviest 
boson because it range is the shortest; 
the strong interaction has an exchange 
particle of intermediate mass.

▲  Figure 15 Proton-pion interaction.
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B: left-hand side  ( +  1 __ 3   +   1 __ 3   +   1 __ 3   )  +  ( +  1 __ 3   +   1 __ 3   )  =   5 __ 3   and  

right hand side  ( +  1 __ 3   +   1 __ 3   )  +  ( +  1 __ 3   +   1 __ 3   +   1 __ 3   )  =   5 __ 3  

As   5 __ 3   =   5 __ 3  , baryon number is conserved (as it will always be if there are 
the same number of quarks on both sides of the equation.

S: there are no strange quarks on the left-hand side so the strangeness = 0;  
on the right-hand side there is one strange and one antistrange quark so 
the total strangeness = -1 + 1 = 0. So strangeness is also conserved.

With all four quantities conserved the interaction is viable.

The kaon subsequently decays into positive and negative pions and the 
lambda particle decays into a negative pion and a proton. As each of 
these decays is a weak interaction strangeness is not conserved.

These reactions are given by  K  0  →  π  +  +  π  -   
or in terms of quarks d 

_ s  → u 
_
 d  +  

__ u d  
and 
 Λ  0  →  π  -  + p  
or in terms of quarks uds →  __ u d + uud

Worked example
Draw Feynman diagrams to show the following 
interaction:

a) positive beta (positron) decay: p → n +  e  +  +  ν  e 
b) proton–electron collision: p +  e  -  → n +  ν  e 
c) the two types of neutron–electron neutrino 

collision: n +  ν  e  →  ν  e  + n and n +  ν  e  → p +  e  - 
Solution
a) 

tim
e

n

p

position

W+

e+

νe

▲  Figure 16 Feynman diagram for positive beta (positron) decay.

In this decay the proton decays into a neutron 
and emits a positron and electron neutrino. The 
decay is mediated by the positive W boson ( W  + ).

b) 

tim
e e-

n

p

position

W-

νe

▲  Figure 17 Feynman diagram for an proton–electron collision.

In this case the proton and the electron collide 
and produce a neutron and an electron neutrino. 
This interaction is mediated by the W− boson.

c) 

tim
e

n

n

position

Z0νe

νe

tim
e

p

n

e-

position

W+

νe

▲  Figure 18 Feynman diagrams for the two types of neutron-
electron neutrino collision.

The most likely collision between a neutron 
and an electron neutrino is one in which 
the  Z  0  boson mediates the collision and 
the neutrino effectively bounces off the 
electron – this is known as a neutral current 
interaction. The electron neutrino can 
occasionally also interact through the W 
boson by changing a neutron into a proton. 
These are the charged current interactions.

You should check each of 
these equations to show that 
charge, baryon number, and 
lepton number are conserved. 
Strangeness should not be 
conserved because each of the 
two interactions involves the 
weak nuclear force.
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The Higgs boson
The Standard Model has been very successful at tying together theory and 
experimental results. The original theory predicted that leptons and quarks 
should have zero mass – this clearly did not agree with the experimental 
results for leptons and bosons in which finite masses of the particles had 
been already measured. To solve this problem the British physicist Peter 
Higgs introduced a theory that explained the mass of particles including 
the W and Z bosons. By introducing the Higgs mechanism, the equations of 
the Standard Model were changed in such a way as to allow these particles 
to have mass. According to this theory, particles gain mass by interacting 
with the Higgs field that permeates all space. The theory about the Higgs 
mechanism could be tested experimentally because it predicted the 
existence of a new particle not previously seen. This particle, called the 
Higgs particle, is a boson-like force mediator; however, it does not, in 
this case, mediate any force. The mass of this particle is very large and, 
therefore, requires a great deal of energy to be produced. With the opening 
of the large hadron collider (LHC) at the European Centre for Nuclear 
Research (CERN) in Geneva, a particle accelerator became available that 
was capable of providing sufficient energy to produce the Higgs boson.

In July 2012, scientists both at CERN and Fermilab announced that 
they had established the existence of a “Higgs-like” boson and, by 
March 14 2013, this particle was tentatively confirmed to be positively 
charged and to have zero spin; these are two of the properties of a 
Higgs boson. The discovery of the Higgs boson leads to the adaptation 
of the diagram of the Standard Model as shown in figure 19.

▲  Figure 19 The Standard Model including the 
Higgs boson.

  Nature of science
International collaboration
The history of particle physics is one of 
international collaboration and the particle 
research facility at CERN is an excellent example 
of how the international science community 
can co-operate effectively. CERN is run by 20 
European member states with four nations 
waiting to join; in addition there are more than 
50 countries with agreements with CERN. The 

CERN website claims that half the world’s particle 
physicists and over ten thousand scientists from 
more than a hundred countries do research there. 
With funds at a premium it makes financial sense 
to pool resources and work internationally. In 
terms of international cooperation, the work 
undertaken by particle physicists has much in 
common with the ideals of the IB.
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Questions 
1 (IB) 

a) Light is emitted from a gas discharge 
tube. Outline briefly how the visible line 
spectrum of this light can be obtained.

The table below gives information relating to 
three of the wavelengths in the line spectrum 
of atomic hydrogen.

Wavelength /  10  –9  m Photon energy /  10  –19  J

1880 1.06

656 3.03

486 4.09

b) Deduce that the photon energy for the 
wavelength of 486 ×  10  –9  m is 4.09 ×  10  –19  J.

 The diagram below shows two of the energy 
levels of the hydrogen atom, using data from 
the table above. An electron transition between 
these levels is also shown.

-2.41 × 10-19 J

photon emitted,
wavelength = 656 nm

-5.44 × 10-19 J

 c)  (i)  On a copy of the diagram above, 
construct the other energy level needed 
to produce the energy changes shown 
in the table above.

 (ii)  Draw arrows to represent the energy 
changes for the two other wavelengths 
shown in the table above. 
 (9 marks)

2 (IB) Diagram 1 below shows part of the 
emission line spectrum of atomic hydrogen. 
The wavelengths of the principal lines in the 
visible region of the spectrum are shown.

-0.54
-0.85
-1.5

-3.4

-13.6

0
red (R) blue (B)

diagram 1 diagram 2

656 nm 486 nm 434 nm

violet (V)

energy/eV

wavelength

 Diagram 2 shows some of the principal energy 
levels of atomic hydrogen.

a)  Show, by calculation, that the energy of a 
photon of red light of wavelength 656 nm  
is 1.9 eV.

b)  On a copy of diagram 2, draw arrows to 
represent:

 (i)  the electron transition that gives rise  
to the red line (label this arrow R)

 (ii)  a possible electron transition that  
gives rise to the blue line (label this 
arrow B).

 (4 marks)

3 (IB) A nucleus of the isotope xenon, Xe-131, 
is produced when a nucleus of the radioactive 
isotope iodine I-131 decays.

a) Explain the term isotopes.

b)  Fill in the boxes on a copy of the equation 
below in order to complete the nuclear 
reaction equation for this decay.

        131 I →     54  
131 Xe + β- + 

c)  The activity A of a freshly prepared sample 
of the iodine isotope is 3.2 ×  10  5  Bq. The 
variation of the activity A with time t is 
shown below.

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 5 10 15 20 25 30 35 40 45
t/days

A/
10

5  B
q

  On a copy of this graph, draw a best-fit  
line for the data points.

d)  Use the graph to estimate the half-life 
of I-131.

 (8 marks)
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4 (IB) One isotope of potassium is potassium-42 
(  19  

42 K). Nuclei of this isotope undergo radioactive 
decay with a half-life of 12.5 hours to form 
nuclei of calcium.

 a)  Complete a copy of the nuclear reaction 
equation for this decay process.

     19  
42 K → 20Ca +

 b)  The graph below shows the variation with 
time of the number N of potassium-42 
nuclei in a particular sample.

  

0

N0

0 10 20 30 40 50 60 70
t/hours

N

N0
1
2

  The isotope of calcium formed in this decay 
is stable.

  On a copy of the graph above, draw a line 
to show the variation with time t of the 
number of calcium nuclei in the sample.

 c)  Use the graph in (c), or otherwise, to 
determine the time at which the ratio

   
number of calcium nuclei in sample

    ____    
number of potassium-42 nuclei in sample

  

 is equal to 7.0. 
 (7 marks)

5 (IB) 

 a) Explain what is meant by a nucleon.

   b)  Define what is meant by the binding energy 
of a nucleus.

 The plot below shows the variation with 
nucleon number of the binding energy per 
nucleon. 

nucleon number
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10

c)  With reference to the graph, explain why 
energy can be released in both the fission 
and the fusion processes.

 (5 marks)

6  (IB)

 a)   Use the following data to deduce that the 
binding energy per nucleon of the isotope     
2  
3 He is 2.2 MeV.

 nuclear mass of    2  
3 He = 3.016 03u

 mass of proton = 1.007 28u

 mass of neutron = 1.008 67u

b)  In the nuclear reaction  
    1  
2 H +    1  2 H →    2  3 He +     0  

1 n energy is released.

 (i)  State the name of this type  
of reaction.

 (ii)  Sketch the general form of the 
relationship between the binding 
energy per nucleon and the  
nucleon number.

 (iii)  With reference to your graph,  
explain why energy is released in  
the nuclear reaction above.

 (9 marks)

7 a)  Distinguish between nuclear fission and 
radioactive decay.

 b)   A nucleus of uranium-235 (     92  
235 U) may 

absorb a neutron and then undergo fission 
to produce nuclei of strontium-90 (    38  

90 Sr) 
and xenon-142 (     54  

142 Xe) and some neutrons. 

Q U E S T I O N S
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  The strontium-90 and the xenon-142 
nuclei both undergo radioactive decay with 
the emission of β– particles.

 (i)  Write down the nuclear equation for 
this fission reaction.

 (ii)  State the effect, if any, on the nucleon 
number and on the proton number of 
a nucleus when the nucleus undergoes 
β– decay.  
 (6 marks)

8 a)  A neutron collides with a nucleus of 
uranium-235 and the following reaction 
takes place.

      92  
235 U +    0  1 n →    37  

96 Rb +     55  
138 Cs + 2    0  

1 n

 State the name of this type of reaction.

 b)  Using the data below, calculate the energy, 
in MeV, that is released in the reaction.

 mass of     92  
235 U nucleus = 235.0439u

 mass of    37  
96 Rb nucleus = 95.9342u

 mass of     55  
138 Cs nucleus = 137.9112u

 mass of    0  
1 n nucleus = 1.0087u

c) Suggest the importance of the two 
neutrons released in the reaction.

d) The rest mass of each neutron accounts for 
about 2 MeV of the energy released in the 
reaction. Explain what accounts for the 
remainder of the energy released. 
 (9 marks)

9  The diagram below illustrates a proton decaying 
into a neutron by beta positive ( β  + ) decay.

 

neutron

proton

particle X

particle Y

β+ 

  State the name of:

a) the force involved in this decay

b) the particle X

c) the particle Y involved in the decay.  
 (3 marks)

10  a)  Possible particle reactions are given below. 
In each case apply the conservation laws 
to determine whether or not the reactions 
violate any of them.

(i)   µ  –  →  e  –  + γ
(ii)  p + n → p +  π  0 
(iii)  p →  π  +  +  π  – 

b) State the name of an exchange particle 
involved in the weak interaction.  
 (10 marks)

11 (IB) When a negative kaon ( K  – ) collides with a 
proton, a neutral kaon ( K  0 ), a positive kaon  
( K  + ) and a further particle (X) are produced.

 K  –  + p →  K  0  +  K  +  + X

The quark structure of kaons is shown in the table.

Particle Quark structure
 K   – s 

_ u 
 K   + u 

_ s 
 K   0 d 

_ s 

a) State the family of particles to which kaons 
belong.

b) State the quark structure of the proton.

c) The quark structure of particle X is sss. 
Show that the reaction is consistent with the 
theory that hadrons are composed of quarks.

 (4 marks)

12  The Feynman diagram below represents a  β  –  
decay via the weak interaction process. Time is 
shown as upwards. The wiggly line represents a 
virtual exchange particle.

 

e-

u

d

νe−

a)  State what is meant by virtual exchange 
particle.

b)  Determine whether the virtual particle in the 
process represented by the Feynman diagram 
is a  W  + , a  W  – , or a  Z  0  boson. 

 (4 marks)
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OBJ TEXT_UND

8  ENERGY PRODUCTION 
Introduction
In Topic 2 we looked at the principles behind 
the transfer of energy from one form to 
another. We now look in detail at sources 
that provide the energy we use every day. 
The provision of energy is a global issue. 
On the one hand, fossil fuel reserves are 
limited and these fuels can be a source of 
pollution and greenhouse gases, yet they are 
a convenient and energy-rich resource. The 

development of renewable energy sources 
continues but they are not yet at a point 
where they can provide all that we require. 
Political rhetoric and emotion often obscure 
scientific assessments about energy resources. 
Everyone – not just scientists – needs a clear 
understanding of the issues involved in order 
to make sound judgements about the future of 
our energy provision.

8.1 Energy sources
OBJ TEXT_UND

 Applications and skills
 ➔ Describing the basic features of fossil fuel 

power stations, nuclear power stations, wind 
generators, pumped storage hydroelectric 
systems, and solar power cells

 ➔ Describing the differences between 
photovoltaic cells and solar heating panels

 ➔ Solving problems relevant to energy 
transformations in the context of these 
generating systems

 ➔ Discussing safety issues and risks associated 
with the production of nuclear power

 ➔ Sketching and interpreting Sankey diagrams
 ➔ Solving specific energy and energy density 

problems

Equations
 ➔ power =    

energy
 __ 

time
  

 ➔ wind power equation =   1 ___ 2   Aρ v  3 

Understanding
 ➔ Primary energy sources
 ➔ Renewable and non-renewable energy sources
 ➔ Electricity as a secondary and versatile form  

of energy
 ➔ Sankey diagrams
 ➔ Specific energy and energy density of fuel 

sources

 Nature of science
We rely on our ability to harness energy. Our large-
scale production of electricity has revolutionized 
society. However, we increasingly recognize 
that such production comes at a price and that 
alternative sources are now required. There are 
elements of risk in our continued widespread 
use of fossil fuels: risk to the planet and risk to 
the supplies themselves. Society has to make 
important decisions about the future of energy 
supply on the planet.
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Primary and secondary energy
We use many different types of energy and energy source for our heating 
and cooking, transport, and for the myriad other tasks we undertake in 
our daily lives. There is a distinction between two basic types of energy 
source we use: primary sources and secondary sources.  

A primary source is one that has not been transformed or converted 
before use by the consumer, so a fossil fuel – coal, for example – burnt 
directly in a furnace to convert chemical potential energy into the 
internal energy of the water and surroundings is an example of a 
primary source. Another example is the kinetic energy in the wind 
that can be used to generate electricity (a secondary source) or to do 
mechanical work such as in a windmill (a device used, for example, to 
grind corn or to pump up water from underground). 

The definition of a secondary source of energy is one that results from 
the transformation of a primary source. The electrical energy we use 
is generated from the conversion of a primary source of energy. This 
makes electrical energy our most important secondary source. Another 
developing secondary source is hydrogen, although this is, at the 
moment, much less important than electricity. Hydrogen makes a useful 
fuel because it burns with oxygen releasing relatively large amounts 
of energy (you will know this if you have ever observed hydrogen 
exploding with oxygen in the lab). The product of this reaction (water) 
has the advantage that it is not a pollutant. However, hydrogen does not 
exist in large quantities in the atmosphere. So energy from a primary 
source would have to be used to form hydrogen from hydrocarbons, 
or by separating water into hydrogen and oxygen. The hydrogen could 
then be transported to wherever it is to be used as a source of energy. 

Renewable and non-renewable energy sources
The primary sources can themselves be further divided into two groups: 
renewable and non-renewable. Renewable sources, such as biomass, 
can be replenished in relatively short times (on the scale of a human 
lifetime), whereas others such as wind and water sources are continually 
generated from the Sun’s energy. Non-renewable sources, on the other 
hand, can be replaced but only over very long geological times.

A good way to classify renewable and non-renewable resources is by the 
rates at which they are being consumed and replaced. Coal and oil, both 
non-renewable, are produced when vegetable matter buried deep below 
ground is converted through the effects of pressure and high temperature. 
The time scale for production is hundreds of millions of years (the deposits 
of coal on Earth were formed from vegetation that lived and died during 
the Carboniferous geological period, roughly 300 million years ago). There 
are mechanisms active today that are beginning the process of creating fossil 
fuels in suitable wetland areas of the planet, but our present rate of usage of 
these fossil fuels is far greater than the rate at which they are being formed. 

On the other hand, renewable fuels such as biomass use biological 
materials such as trees that were only recently alive. Such sources 
can be grown to maturity relatively quickly and then used for energy 
conversion. The rate of usage of the fuels can be similar to the rate at 
which they are being grown.
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There are further advantages in the use of biomass and other renewable 
sources, where the material has been produced recently. When these 
renewable resources are converted, they will release carbon dioxide (one 
of the greenhouse gases) back into the atmosphere. But this is “new 
carbon” that was taken from the atmosphere and trapped in the biomass 
material relatively recently. The conversion of fossil fuels releases carbon 
dioxide into the atmosphere that was fixed in the fossil fuels hundreds 
of millions of years ago. The carbon dioxide content of the atmosphere 
was more than 150% greater in the Carboniferous period than it is today, 
and thus the burning of fossil fuels increases the overall amount of this 
greenhouse gas in the present-day atmosphere.

Types of energy sources
In Topic 2 there was a list of some of the important energies available 
to us. Some were mechanical in origin. Other energies were related 
to the properties of bulk materials and atomic nuclei. Of particular 
importance are the nuclear reactions, both fission and fusion, that you 
met in Topic 7.

Primary sources
The table below gives an indication of many of the primary sources that 
are used in the world today – although not all sources can be found in all 
locations. The use of geothermal energy, for example, requires that the 
geology of the location has hot rocks suitably placed below the surface.

Energy sources
source Energy form

Non-
renewable 
sources

Nuclear fuels uranium-235 nuclear
Fossil fuels crude oil

chemical potentialcoal
natural gas

Renewable sources Sun radiant (solar) 
water kinetic  
wind kinetic
biomass chemical potential
geothermal internal

Not all the primary sources in the table are necessarily used to provide 
electricity as a secondary source, it depends on local circumstances. A 
water wheel using flowing water in a river can be used to grind corn in a 
farming community rather than be harnessed to an electrical generator. 
A solar furnace may be used in an African village to boil water or to 
cook, while photovoltaic cells may produce the electrical energy required 
by the community. In some situations, this is often a better solution than 
that of changing all the solar energy to an electrical form that has to be 
reconverted subsequently. 

Some energy is always degraded into an internal form in a conversion. 
Nevertheless, many of the world’s primary sources are used to provide 
electricity using a power station where the secondary source output is in 
the form of electrical energy.



310

8 E N E R G Y  P R O D U C T I O N 

Primary energy use
Data for the present usage of various energy sources are readily available 
from various sources on the Internet. Figure 1 shows two examples of 
data released by the US Department of Energy.
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▲  Figure 1 Total world energy usage (US Energy Information Administration, report #DOE/EIA-0484 (2010)).

The first example (figure 1(a)) is a chart that shows the various energy 
sectors that account for the total world usage of energy sold on the open 
market in 2010. There are two units here that are common in energy 
data. When you carry out your own investigations of global energy usage, 
you will almost certainly come across these non-SI units. 

 ● The British Thermal Unit (BTU) is still used in energy resource work; 
it was historically very important. The BTU is defined as the energy 
required to raise one British pound of water (about 0.5 kg) through 
1 °F (a change of roughly 0.6 K) and is equivalent to about 1000 J.

 ● Mtoe stands for “million tonnes of oil equivalent”. One tonne of oil 
equivalent is the energy released when one tonne (1000 kg) of crude 
oil is burnt; this is roughly 42 GJ, leading to a value of 5 × 1020 J for 
2010 usage total.

The US chart uses an unusual multiplier – the energy total for 2010 is 
given as 500 quadrillion. The quadrillion is either 1015 or 1024 depending 
on the definition used. In this particular case it is 1015 and the total 
world energy usage in 2010 was about 5 × 1017 BTU, which also leads to 
about 5 × 1020 J.

The second chart (figure 1(b)) gives a projection from 1990 up to the 
year 2035 for world energy usage. Adding the various contributions to 
the total indicates that the US Department of Energy predicts a world 
total energy usage in 2035 of about 7.5 × 1020 J; a 50% increase on the 
2010 figure. One feature of this graph (in the light of the enhanced 
greenhouse effect that we shall discuss later) is that the relative 
proportions of the various energy sources do not appear to be changing 
greatly over the timescale of the prediction.
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 Investigate!
Where are we today?

 ● Textbooks are of necessity out-of-date! They 
represent the position on the day that part of the 
book was completed. So the examples here are to 
give you some insight into the type and quantity 
of data that are available to you. But they are 
not to be regarded either as the last word or 
information that you must memorize for the 
examination. All the resources shown here were 
accessed on the Internet without difficulty.

 ● You should search for the latest tables 
and graphs using the source information 
printed with the graphs. (This is known as a 
bibliographic reference and it is essential to 
quote this when you use other people’s data.) 

Search for the latest data and discuss it in 
class. Divide up the jobs so that students bring 
different pieces of data to the discussion. Ask 
yourselves: What are the trends now? Has the 
position changed significantly since this book 
was written?

 ● Science does not stand still, and this area of 
environmental science is moving as quickly as 
any other discipline. You need to have accurate 
data if you are to make informed judgments.

 ● Predictions are based on assumptions. They 
cannot predict  critical events that might alter 
the situation e.g. a disaster triggered by a 
tsunami.

Specific energy and energy density
Much of the extraction of fossil fuels involves hard and dangerous 
work in mines or on oilrigs whether at sea or on land. On the face of 
it, the effort and risk of mining fossil fuels does not seem to be justified 
when there are other sources of energy available. So why are fossil 
fuels still extracted? The answer becomes more obvious when we look 
at the energy available from the fossil fuel itself. There are two ways to 
measure this: specific energy and energy density.

The word “specific” has the clear scientific meaning of “per unit mass”, 
or (in SI) “per kg”. So, specific energy indicates the number of joules 
that can be released by each kilogram of the fuel. Typical values for 
a particular fuel can vary widely, coal, for example, has a different 
composition and density depending on where it comes from, and even 
depending on the location of the sample in the mining seam.  

Density is a familiar concept; it is the amount of quantity possessed by 
one cubic metre of a substance. Energy density is the number of joules 
that can be released from 1 m3 of a fuel.

Fuel Specific energy/
MJ kg–1

Energy density/
MJ m–3

Wood 16 1 × 104

Coal 20–60 (20-60) × 106

Gasoline (petrol) 45 35 × 106

Natural gas at atmospheric pressure 55 3.5 × 104

Uranium (nuclear fission) 8 × 107 1.5 × 1015

Deuterium/tritium (nuclear fusion) 3 × 108 6 × 1015

Water falling through 100 m in a 
hydroelectric plant 10–3 103
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The table shows comparisons between some common fuels (and in 
the case of fusion, the possible energy yields if fusion should become 
commercially viable). You should look at these and other values in detail 
for yourself. Notice the wide range of values that appear in this table. 
Explore data for other common fuels. As you learn about different fuels, 
find out data for their specific energy and energy density and add these 
values to your own table.

Worked examples
1 A fossil-fuel power station has an efficiency 

of 25% and generates 1200 MW of useful 
electrical power. The specific energy of the fossil 
fuel is 52 MJ kg–1. Calculate the mass of fuel 
consumed each second.

Solution
If 1200 MW of power is developed then, 
including the efficiency figure,   1200 × 100

 _________ 25   = 4800 
MW of energy needs to be supplied by the  
fossil fuel.

The specific energy is 52 MJ kg–1, so the mass of 
fuel required is   4800

 ____ 52   = 92 kg s–1. (That is roughly 
1 tonne every 10 s, or one railcar full of coal 
every 2 minutes.)

2 When a camping stove that burns gasoline 
(petrol) is used, 70% of the energy from the 
fuel reaches the cooking pot. The energy 
density of the gasoline is 35 GJ m–3. 

a) Calculate the volume of gasoline needed 
to raise the temperature of 1 litre of water 
from 10 °C to 100 °C. Assume that the heat 
capacity of the pot is negligible. The specific 
heat capacity of the water is 4.2 kJ kg–1 K–1.

b) Estimate the volume of fuel that a student 
should purchase for a weekend camping 
expedition.

Solution 
a) 1 litre of water has a mass of 1 kg so the 

energy required to heat the water is 4200 × 
1 × 90 which is 0.38 MJ.

Allowing for the inefficiency, 0.54 MJ of 
energy is required and this is a volume of fuel 
of   0.54 ×  10  6 

 ________ 
35 ×  10  9 

   = 1.6 × 10–4 m3 or about 200 ml.

b) Assume that 2 litres of water are required for 
each meal, and that there will be 5 cooked 
meals during the weekend. So 2 litres of fuel 
should be more than enough. 

Thermal power stations
A thermal power station is one in which a primary source of energy 
is converted first into internal energy and then to electrical energy. 
The primary fuel can include nuclear fuel, fossil fuel, biomass or 
other fuel that can produce internal energy. (In principle, a secondary 
source could be used to provide the initial internal energy, but this 
would not be sensible as it incurs substantial extra losses.) We will 
discuss the different types of primary conversion later. However, once 
the primary energy has been converted to internal energy, all thermal 
power stations use a common approach to the conversion of internal 
into electrical energy: the energy is used to heat water producing 
steam at high temperatures and high pressures. Figure 2 shows 
what happens.

Energy from the primary fuel heats water in a pressure vessel to create 
steam. This steam is superheated. This means that its temperature is 
well above the familiar 100 °C boiling point that we are used to at 
atmospheric pressure. To attain such high temperatures the steam has to 
be at high pressure, hundreds of times more than atmospheric pressure. 
At these high pressures the water in the vessel does not boil in the 
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way that is familiar to us, it goes straight into the steam phase without 
forming the bubbles in the liquid that you see in a cooking pot on a 
stove. However, we will continue to use the term “boiler” for the vessel 
where the water is converted to steam even though the idea of boiling is 
technically incorrect.

The high-pressure steam is then directed to a turbine. Turbines can 
be thought of as “reverse” fans where steam blows the blades around 
(whereas in a fan the blades turn to move the gas). There is usually 
more than one set of blades and each set is mounted on a common axle 
connected to an alternating current (ac) electricity generator. In the 
generator, the electrical energy is produced when coils of wire, turned 
by the turbine, rotate in a magnetic field. The energy that is generated 
is sent, via a network of electrical cables, to the consumers. You can 
find the details of the physics of electrical energy generation and its 
subsequent transmission in Topic 11.

There are really three energy transfers going on in this process: 
primary energy to the internal energy of water, this internal energy 
to the kinetic energy of the turbine, and kinetic energy of the 
turbine to electrical energy in the generator. It is easy to forget the 
kinetic energy phase and to say that the internal energy goes straight 
to electrical.

Of course, the original internal energy is produced in different ways in 
different types of thermal power station. In fossil and biomass stations, 
there is a straightforward combustion process where material is set alight 
and burnt. In nuclear stations, the process has to be more complicated. 
We shall look at the differences between stations in the initial conversion 
of the energy later.

▲ Figure 2 Energy conversions inside a power station.

kinetic energy
(rotation)

boiler

water

superheated steam
(internal energy)

turbines electricity generator

electrical energy

condenser

internal energy from primary source
transferred because of the temperature

difference between the source and the boiler
pylon

Tip
Do not confuse the roles of 
turbine and dynamo in a 
power station. The energy 
conversions they carry out are 
quite different.
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Sankey diagrams
Different types of thermal power station have different energy losses in 
their processes and different overall efficiencies. The Sankey diagram 
is a visual representation of the flow of the energy in a device or in a 
process (although in other subjects outside the sciences, the Sankey 
diagram is also used to show the flow of material).

There are some rules to remember about the Sankey diagram:

 ● Each energy source and loss in the process is represented by an arrow.

 ● The diagram is drawn to scale with the width of an arrow being 
proportional to the amount of energy it represents.

 ● The energy flow is drawn from left to right.

 ● When energy is lost from the system it moves to the top or bottom of 
the diagram.

 ● Power transfers as well as energy flows can be represented.

Here is an example to demonstrate the use of a Sankey diagram.
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▲ Figure 3 Sankey diagram for a lamp.

It shows the flows of energy that begin with the conversion of chemical 
energy from fossil fuels and end with light energy emitted from a 
filament lamp. The red arrows represent energy that is transferred from 
the system in the form of energy as a result of temperature differences. 
It is important to recognize that in any process where there is an energy 
transformation, this energy is “lost” and is no longer available to perform 
a useful job. This is degraded energy and there is always a loss of 
energy like this in all energy transfers.

Of the original primary energy (100% shown in blue at the bottom 
of the diagram), only 35% appears as useful secondary energy. The 
remaining 65% (shown in red) is lost to the surroundings in the process, 
shown by an arrow that points downwards off the chart. The secondary 
energy is then shown with the losses involved in the transmission and 
distribution of the electricity, and to losses in the house wiring. In the 
lamp itself, most of the energy (28% of the original) is transferred to 
the internal energy of the surroundings. Finally only 1% of the original 
primary energy is left as light energy for illumination. 
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Version 1–August 2006

Sources:
1) NRCan Energy Handbook–2005
2) Canadian wind energy association
3) Calculated value
4) Statistics Canada
5) Natural Resources Canada

uranium
8.423

export 7.615

hydro 1.201

0.813

0.341

natural gas
7.693,4

3.923

export 4.154

biomass & other 

imports
0.384

-0.703

coal 1.473,4
1.353

 export
 0.744

imports 2.594
export 4.454

4.103

imports
0.614

petroleum
5.963,4

distributed
electricity
2.013

electric
power
3.741

transmission
losses 0.173

import
0.094

1.021

0.0031

1.251

1.724

residential/
commercial
2.641

industrial
4.141,4

pipelines
0.194

transportation
2.361

non-fuel
0.903

0.011

0.474

2.341

0.501

0.881

0.014

0.0014

2.523

0.473

1.893

1.623

1.873
lost energy
4.273

useful energy
4.873

electrical system energy losses
1.823

0.773

1.161

0.081,2

0.141

0.181

0.184

0.434

0.011

0.861

0.261

0.111

export
0.124

Energy equivalents

In terms of energy equivalencies, 1 exajoule (EJ) is equal to:

     160 million barrels of oil

     energy consumed annually by 15 million average
  Canadian single detached homes

     energy produced annually by 14 Pickering-sized nuclear
         stations operating at nominal capacity.

      the energy produced annually by over 1400 square kilometres
  of state-of-the-art solar cells operating under nominal
  conditions, enough to cover the entire Toronto
  urbanized area.             

▲ Figure 4 The energy flow in Canada in 2003. The values are in exajoule. (http://ww2.nrcan.ge.ca/es/oerd).

A Sankey diagram is a useful way to visualize the energy consumption 
of nations. There are many examples of this available on the Internet. 
Figure 4 shows the energy flows associated with the Canadian economy. 
Look on the Internet and you will probably find the Sankey diagram for 
your own national energy demand.

  Nature of science
Sankey diagram in another context
Here is a completely different use of the Sankey 
diagram constructed in a historical context. It 
shows the progress of Napoleon’s army to and 
from his Russian campaign 1812–1813. The width 
of the strips gives the number of men in the army: 
brown in the journey to Moscow, black on the 
return. The graph below the diagram gives the 

average temperature experienced by the army 
on its return journey in Réaumur degrees. The 
Réaumur temperature scale is named after the 
French scientist who suggested a scale that had 
fixed points of 0 at the freezing point of water and 
80 at the boiling point of water.
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Worked examples
1 An electric kettle of rating 2.0 kW is switched 

on for 90 s. During this time 20 kJ of energy is 
lost to the surroundings from the kettle.

Draw a Sankey diagram for this energy 
transfer.

Solution
The energy supplied in 90 s is  
2 × 1000 × 90 = 180 kJ. 

20 000 J is lost to the surroundings; this is 11% of 
the total.

 

160 kJ
to heating water

180 kJ
supplied to kettle

20 kJ
to surroundings

2 In a petrol-powered car 34% of the energy in 
the fuel is converted into the kinetic energy 
of the car. Heating the exhaust gases accounts 
for 12% of the energy lost from the fuel. The 

remainder of the energy is wasted in the 
engine, the gearbox and the wheels.

Use these data to sketch a Sankey diagram for 
the car.

Solution
Of the 100% of the original fuel energy, 12% is lost 
in the exhaust, and 34% is useful energy. This leaves 
54% energy lost in the engine and the transmission.

A convenient way to draw the diagram is on 
squared paper. Use a convenient scale:  
10% ≡ 1 large square is a reasonable scale here.

1000 J as chemical 
energy

880 J as kinetic
energy in the engine

120 J
as exhaust

340 J useful energy
to move the car

540 J
wasted 
in moving 
all the 
engine
parts

▲ Figure 5 A Sankey diagram showing the change in size of Napoleon’s army during his Russian campaign.
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Primary sources used in power stations
This section compares the different ways in which the initial energy 
required by a thermal power station can be generated. 

Fossil fuels
Modern fossil-fuel power stations can be very large and can convert 
significant amounts of power. The largest in the world at the time of 
writing has a maximum power output of about 6 GW. 

The exact process required before the fuel is burnt differs slightly 
depending on the fuel used, whether coal, oil, or natural gas. The gas 
and oil can be burnt readily in a combustion chamber that is thermally 
connected to the boiler. In the case of coal, some pre-treatment is 
normally required. Often the coal is crushed into a fine powder before 
being blown into the furnace where it is burnt.

There are obvious disadvantages to the burning of fossil fuels. Some 
of these are environmental, but other disadvantages can be seen as a 
misuse of these special materials: 

 ● The materials have taken a very large time to accumulate and will not 
be replaced for equally long times. 

 ● The burning of the fuels releases into the atmosphere large quantities 
of carbon dioxide that have been locked in the coal, oil, and gas for 
millions of years. This has a major impact on the response of the 
atmospheric system to the radiation incident on it from the Sun (the 
greenhouse and enhanced greenhouse effects).

 ● Fossil fuels have significant uses in the chemical industry for the 
production of plastics, medicines, and other important products.  

 ● It makes sense to locate power stations as close as possible to places 
where fossil fuels are recovered; however, this is not always possible 
and, in some locations, large-scale transportation of the fuels is still 
required. A need for transport leads to an overall reduction in the 
efficiency of the process because energy has to be expended in moving 
the fuels to the power stations.

Nuclear fuel
Sub-topic 7.2 dealt with the principles that lie behind nuclear fission. It 
explained the origin of the energy released from the nucleus when fission 
occurs and showed you how to calculate the energy available per fission.

In this course we will only consider so-called “thermal fission reactors”, 
but there are other types in frequent use. A particularly common 
variety of the thermal reactors is the pressurized water reactor (PWR). 
Uranium-235 is the nuclide used in these reactors. As with all our other 
examples of power stations, the aim is to take the energy released in 
the nuclear fission and use this to create high-pressure steam to turn 
turbines connected to an electrical generator. However, the energy is not 
gained quite so easily as in the case of the fossil fuels.

Figure 6 shows a schematic of a PWR with the final output of steam 
to, and the return pipe from, the turbines on the right-hand side of the 
diagram. The remainder of the power station is as in figure 2 on p313.
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Fission product energy/MeV
fission fragments 160
decay of fission 
fragments 

21

emitted gamma 
rays  

7

emitted neutrons 5

Uranium is mined as an ore in various parts of the world, including 
Australia, Canada, and Kazakhstan (which together produce about 
60% of the world’s ore every year). The US, Russia, and parts of 
Africa also produce smaller amounts of uranium ore. About 99% 
of the ore as it comes directly from the ground is made up of 
uranium-238, with the remainder being U-235; it is the U-235 not 
U-238 that is required for the fission process. This means that an 
initial extraction process is required to boost the ratio of U-235 : 
U-238. The fuel needs to contain about 3% U-235 before it can be 
used in a reactor. This is because U-238 is a good absorber of neutrons 
and too much U-238 in the fuel will prevent the fission reaction 
becoming self-sustaining. The fuel with its boosted proportions of 
U-235 is said to be enriched. 

The enriched material is then formed into fuel rods – long cylinders 
of uranium that are inserted into the core of the reactor. Most of 
the energy (about 200 MeV or 3 × 10–11 J per fission) is released in 
the form of kinetic energy of the fission fragments and neutrons 
emitted during the fission. Immediately after emission, the neutrons 
are moving at very high speeds of the order of 104 km s–1. However, 
in order for them to be as effective as possible in causing further 
fissions to sustain the reaction they need to be  moving with kinetic 
energies much lower than this, of the order of 0.025 eV (with a speed 
of about 2 km s–1). This slower speed is typical of the speeds that 
neutrons have when they are in equilibrium with matter at about 
room temperatures. Neutrons with these typical speeds are known as 
thermal neutrons.

The requirement of removing the kinetic energy from the neutrons is not 
only that the neutrons can stimulate further fissions effectively, but that 
their energy can be efficiently transferred to the later stages of the power 
station. The removal of energy is achieved through the use of a moderator, 
so-called because it moderates (slows down) the speeds of the neutrons.

Typical moderators for the PWR type include water and carbon 
in the form of graphite. The transfer of energy is achieved when 
a fast-moving neutron strikes a moderator atom inelastically, 

▲ Figure 6 Basic features of a pressurised water reactor (PWR).
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transferring energy to the atom and losing energy itself. After a series 
of such collisions the neutron will have lost enough kinetic energy 
for it to be moving at thermal speeds and to have a high chance of 
causing further fission. 

A further problem is that U-238 is very effective at absorbing high-speed 
neutrons, so if the slowing down is carried out in the presence of the 
U-238 then few free neutrons will remain at the end of it. So reactor 
designers have moderators close to, but not part of, the fuel rods; the 
neutrons slow down in the presence of moderator but away from the 
U-238. The fuel rods and the moderating material are kept separate and 
neutrons move from one to the other at random. The reactor vessel and 
its contents are designed to facilitate this.

The criteria for a material to be a good moderator include not being 
a good absorber of neutrons (absorption would lower the reaction 
rate and possibly stop the reaction altogether) and being inert in the 
extreme conditions of the reactor. Some reactor types, for example, use 
deuterium (    1  

2 H) in the form of deuterium oxide (D2O, called “heavy 
water”) rather than graphite.

You should be able to recognize that the best moderator of all ought 
to be a hydrogen atom (a single proton in the nucleus) because the 
maximum energy can be transferred when a neutron strikes a proton. 
However, hydrogen is a very good absorber of neutrons and it cannot be 
used as a moderator in this way.

There is a need to regulate the power output from the reactor and to 
shut down its operation if necessary. This is achieved through the use 
of control rods. These are rods, often made of boron or some other 
element that absorbs neutrons very well, that can be lowered into 
the reactor. When the control rods are inserted a long way into the 
reactor, many neutrons are absorbed in the rods and fewer neutrons 
will be available for subsequent fissions; the rate of the reaction will 
drop. By raising and lowering the rods, the reactor operators can keep 
the energy output of the reactor (and therefore the power station) 
under control.

The last part of the nuclear power station that needs consideration 
is the mechanism for conveying the internal energy from inside the 
reactor to the turbines. This is known as the heat exchanger. The 
energy exchange cannot be carried out directly as in the fossil-fuel 
stations. There needs to be a closed-system heat exchanger that collects 
energy from the moderator and other hot regions of the reactor, and 
delivers it to the water. The turbine steam cannot be piped directly 
through the reactor vessel because there is a chance that radioactive 
material could be transferred outside the reactor vessel. Using a closed 
system prevents this.

The pressurized water reactor is given its name because it transfers the 
energy from moderator and fuel rods to the boiler using a closed water 
system under pressure. Water is not the only substance available for this. 
In the Advanced Gas-cooled Reactors (AGR) used in the UK, carbon 
dioxide gas is used rather than water, but the principle of transferring 
energy safely through a closed system is the same.



320

8 E N E R G Y  P R O D U C T I O N 

 Investigate!
Running your own reactor

 ● No schools are likely to have their own 
nuclear reactor for students to use! However 
you can still investigate the operation of a 
nuclear power station.

 ● There are a number of simulations available on 
the Internet that will give you virtual control of 
the station. A suitable starting point is to enter 
“nuclear reactor applet” into a search engine. 

Worked examples
1 When one uranium-235 nucleus undergoes 

fission, 3.2 × 10–11 J of energy is released. The 
density of uranium-235 is 1.9 × 104 kg m–3.

Calculate, for uranium-235: 

a) the specific energy

b) the energy density.

Solution
a) The mass of the atom is 235u (ignoring the 

mass of the electrons in the atom).

This is equivalent to a mass of  
1.7 × 10-27 × 235 = 4.0 × 10-25 kg.

So the specific energy of uranium-235 
is   3.2 ×  10  -11 

 ________ 
4.0 ×  10  -25 

   = 8.0 × 1013 J kg-1

b) 1 kg of uranium-235 has a volume of   1
 _______ 

1.9 ×  10  4 
    

≈ 5 ×  10  -5  m3. Therefore the energy density 

of pure uranium-235 = 8.0 × 1013 ÷ 5 × 10-5 
= 1.6 × 1018 J m–3

2 Explain what will happen in a pressured water 
reactor if the moderator is removed. 

Solution 
The role of the moderator is to remove kinetic 
energy from neutrons so that there is a high 
probability that further fissions will occur. When 
neutrons are moving at high speeds, there is a 
very high probability that uranium-238 nuclei 
will absorb them without fission occurring. So the 
removal of the moderator will mean that neutrons 
are no longer slowed down, and will be absorbed 
by U-238. The fission reaction will either stop or 
its rate will be reduced.

3 When a moving neutron strikes a stationary 
carbon-12 atom head-on, the neutron loses 
about 30% of its kinetic energy. Estimate the 
number of collisions that would be required for 
a 1 MeV neutron to be slowed down to 0.1 eV.

Solution 
After one collision the remaining kinetic energy of 
the neutron will be 0.7 × 1 MeV.

After two collisions the energy of the neutron will 
be 0.7 × 0.7 × 1 MeV 

= 0.72 × 1 MeV

  Nature of science
Fast breeder reactors  
A remarkable design for nuclear reactors comes 
with the development of the fast breeder reactor. 
Plutonium-239 (Pu-239) is the fissionable material 
in this case just as uranium-235 is used in PWRs. 
However, a blanket of uranium-238 surrounds the 
plutonium core. Uranium-238 does not easily fission 
and is a good absorber of neutrons (remember that 
its presence is undesirable in a PWR). This U-238 
absorbs neutrons lost from the reactor core and 
is transmuted into Pu-239 – the fuel of the fast 
breeder reactor! The reactor is making its own fuel 

and generating energy at the same time. It has 
been reported that, under the right conditions, a 
fast breeder reactor can produce 5 kg of fissionable 
plutonium for every 4 kg used in fission. This is a 
good way to convert the large stockpiles of virtually 
useless uranium-238 into something of value.

There are drawbacks of course: large amounts of 
high-level radioactive waste from the fast breeder 
reactor need to be dealt with and, in the wrong 
hands,  the plutonium can be used for nuclear 
weapons.
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Safety issues in nuclear power
There needs to be a range of safety measures provided at the site of a 
nuclear reactor to protect the work force, the community beyond the 
power station, and the environment. 

 ● The reactor vessel is made of thick steel to withstand the high 
temperatures and pressures present in the reactor. This has the benefit 
of also absorbing alpha and beta radiations together with some of the 
gamma rays and stray neutrons.

 ● The vessel itself is encased in layers of very thick reinforced concrete 
that also absorb neutrons and gamma rays.

 ● There are emergency safety mechanisms that operate quickly to shut 
the reactor down in the event of an accident.

 ● The fuel rods are inserted into and removed from the core using 
robots so that human operators do not come into contact with the 
spent fuel rods, which become highly radioactive during their time in 
the reactor.

The issue of the disposal of the waste produced in the nuclear industry 
is much debated in many parts of the world. Some of the waste will 
remain radioactive for a very long time – but, as you know from Topic 7, 
this implies that its activity will be quite low during this long period. 
There are however other problems involving the chemical toxicity of 
this waste material which mean that it is vital to keep it separate from 
biological material and thus the food chain. The technology required to 
achieve this is still developing.

At the end of the life of a reactor (of the order of 25–50 years at the 
moment), the reactor plant has to be decommissioned. This involves 
removing all the fuel rods and other high-activity waste products and 
enclosing the reactor vessel and its concrete shield in a larger shell of 
concrete. It is then necessary to leave the structure alone for up to a 
century to allow the activity of the structure to drop to a level similar to 
that of the local background. Such long-term treatment is expensive and 
it is important to factor these major costs into the price of the electricity 
as it is being produced during the lifetime of the power station.

After n collisions the energy of the neutron will be 
0.7n × 1 MeV.

So 0.7n = 0.1 × 10–6 , 

or n =   -7
 ______ 

 log  10  0.7
   = 45.2

So 46 collisions are required to reduce the 
neutron speed by this factor of 107.

(In practice, about 100 are required; you might 
want to consider why the actual number is larger 
than the estimate.)

TOK

Of all the scientific issues of 
our time, perhaps nuclear 
energy invokes the greatest 
emotional response in 
both scientists and non-
scientists alike. It is vital 
to carry out accurate risk 
assessments for all energy 
sources, not just nuclear. Is 
it possible we could forget 
the location of the waste 
sites in 50, 100, or 1000 
years? Are human errors 
part of the equation? How 
can such assessments be 
carried out in an emotionally 
charged debate?

  Nature of science
Society and nuclear power
The use of nuclear power has been growing 
throughout the world since the late 1940s. 
However, society has never been truly comfortable 

with its presence and use. There are many reasons 
for this, including a lack of public understanding 
of the fission process (both advantages and 
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Wind generators
Wind generators can be used successfully in many parts of the world. 
Even though the wind blows erratically at most locations, this can be 
countered by the provision of separate wind farms, each with large 
numbers of individual turbines all connected to the electrical power grid.

There are two principal designs of generator: horizontal-axis and 
vertical-axis. In both cases a rotor is mounted on an axle that is either 
horizontal or vertical, hence the names. The rotor is rotated by the wind 
and, through a gearbox, this turns an electrical generator. The electrical 
energy is fed either to a storage system (but this increases the expense) 
or to the electrical grid.

disadvantages), public reaction to accidents that 
have occurred periodically over the years, and a 
fear of radioactive materials. Major accidents have 
included the Chernobyl incident, the event at 
Three Mile Island, and the Fukushima accident of 
2011 that was triggered by a tsunami and possibly 
also an associated earthquake. 

At the time of writing there has been a 
withdrawal of approval for nuclear plans by 
some governments as a result of public opinion 
changes after the Fukushima accident. Continuing 
decisions about how we generate energy will be 
required by society as time goes on, and as our 
energy-generation technology improves.

When you debate these issues, ensure that you 

understand the scientific facts and statistics that 
surround the issue of nuclear power.  

It is important also to understand the meaning of 
risk, not just in the context of the nuclear power 
industry, but also in relation to things we do every 
day. Do some research for yourself. Find out the 
risks to your health of:

 ● living within 20 km of a nuclear power station

 ● flying once from Europe to a country on the 
Pacific Rim

 ● smoking 20 cigarettes every day

 ● driving 1000 km in a car.

Try to find numerical estimates of the risk, not just 
written statements.

▲ Figure 7 Wind turbine configurations.
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The horizontal-axis machine can be steered into the wind. The vertical-
axis type does not have to be steered into the wind and therefore its 
generator can be placed off-axis. 

It is possible to estimate the maximum power available from a 
horizontal-axis wind turbine of blade area A. In one second, the volume 
of air moving through the turbine is vA when the speed of the wind is v 
(figure 8).

The mass of air moving through the turbine every second is ρvA where ρ 
is the density of the air, and the kinetic energy of the air arriving at the 
turbine in one second is 

  1 __ 2   (mass) × (speed)2 =   1 __ 2   (ρvA)v 2 =   1 __ 2   ρAv 3

If a wind turbine has a blade radius r then the area A swept out by the 
blades is πr 2 and the maximum theoretical kinetic energy arriving at the 
turbine every second (and hence the maximum theoretical power) is

  1 __ 2   ρπr2 v3

This is a maximum theoretical value of the available power as there are a 
number of assumptions in the proof. In particular, it is assumed that 
all the kinetic energy of the wind can be used. Of course, the wind has 
to move out of the back of the turbine and so must have some kinetic 
energy remaining after being slowed down. Also, if the turbine is part 
of a wind farm then the presence of other nearby turbines disturbs the 
flow of the air and leads to a reduction in the energy from turbines at 
the rear of the array.

The turbine power equation suggests that a high wind speed and a long 
blade (large A or r) will give the best energy yields. However, increasing 
the radius of the blade also increases its mass and this means that the 
rotors will not rotate at low wind speeds. The blade radius has to be a 
compromise that depends on the exact location of the wind farm. 

Many wind farms are placed off-shore; the wind speeds are higher than 
over land. This is because the sea is relatively smooth compared with the 
buildings, hills and so on that are found on land. However, installation 
and subsequent maintenance for off-shore arrays are more expensive 
because of the access issues. 

Another ideal place for wind farms is at the top of a hill. The effect 
of the land shape is to constrict the flow of the wind into a more 
confined volume so that in consequence the wind speed rises as 
the air moves up the hill. Wind speeds therefore tend to be greater 
at the top of hills and, because the power output of the turbine 
is proportional to v3, even a small increase in average wind speed 
is advantageous.

Some people object to both on- and off-shore arrays on the grounds of 
visual pollution. There are also suggestions that wind farms compromise 
animal habitats in some places and that the turbines are noisy for those 
who live close by.

▲  Figure 8 Volume of air entering a 
wind turbine in one second.
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The factors for and against wind being used as an energy source are 
summarized in this table:

Advantages Disadvantages
No energy costs

No chemical pollution

Capital costs can be high but 
reduce with economies of scale

Easy to maintain on land; not so 
easy off-shore

Variable output on a daily or seasonal basis

Site availability can be limited in some 
countries

Noise pollution

Visual pollution 

Ecological impact

Worked examples
1 A wind turbine produces a power P at a 

particular wind speed. If the efficiency of the 
wind turbine remains constant, estimate the 
power produced by the turbine: 

a) when the wind speed doubles

b) when the radius of the blade length halves.

Solution 
The equation for the kinetic energy arriving at the 
wind turbine every second is   1 __ 2   ρπr2v3.

a) When the wind speed v doubles, v3 increases by 
a factor of 8, so the power output will  
be 8P.

b) When the radius of the blade halves, r2 will 
go down by a factor of 4 and (if nothing else 
changes) the output will be   P __ 4  .

2 A wind turbine with blades of length 25 m is 
situated in a region where the average wind 
speed is 11 m s–1. 

a) Calculate the maximum possible output of 
the wind turbine if the density of air is  
1.3 kg m-3.

b) Outline why your estimate will be the 
maximum possible output of the turbine.

Solution
a) Using the wind turbine equation:

  the kinetic energy arriving at the wind turbine 
every second is   1 __ 2  ρπr2v3,

  this will be the maximum power output and 
is   1 __ 2   × 1.3 × π × 252 × 113 = 1.7 MW.

b) Mechanical and electrical inefficiencies in the 
wind turbine have not been considered. The 
calculation assumes that all the kinetic energy 
of the wind can be utilized; this is not possible 
as some kinetic energy of the air will remain 
as it leaves the wind turbine.

Pumped storage
There are a number of ways in which water can be used as a primary 
energy resource. These include:

 ● pumped storage plants

 ● hydroelectric plants

 ● tidal barrage

 ● tidal flow systems

 ● wave energy.

All these sources use one of two methods:

 ● The gravitational potential energy of water held at a level above a 
reservoir is converted to electrical energy as the water is allowed to 
fall to the lower level (used in hydroelectric (figure 9(a)), pumped 
storage, and tidal barrage).
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 ● The kinetic energy of moving water is transferred to electrical energy 
as the water flows or as waves move (river or tidal flow or wave 
systems). Figure 9(b) shows a picture of the Canadian Beauharnois 
run-of-the-river power station on the St-Laurent river that can 
generate 1.9 GW of power.

In this topic we focus on the pumped storage system. 

The wind farms and nuclear power stations we have discussed so far are 
known as baseload stations. They run 24 hours a day, 7 days a week 
converting energy all the time. However, the demand that consumers 
make for energy is variable and cannot always be predicted. From time 
to time the demand exceeds the output of the baseload stations. Pumped 
storage is one way to make up for this deficit.

reservoirintake

access

power cable

surge chamber

powerplant chamber
transformer

main access
tunnel

discharge

▲ Figure 10 A pumped-storage generating station.

A pumped storage system (Figure 10) involves the use of two water 
reservoirs – sometimes a natural feature such as a lake, sometimes 
a man-made lake or an excavated cavern inside a mountain. These 
reservoirs are connected by pipes. When demand is high, water is 
allowed to run through the pipes from the upper reservoir to the lower 
via water turbines. When demand is low, and electrical energy is cheap, 
the turbines operate in reverse to pump water back from the lower to 
the upper reservoir.

Some pumped storage systems can go from zero to full output in tens 
of seconds. The larger systems take longer to come up to full power, 
however, substantial outputs are usually achieved in only a few minutes 
from switch on.

For a pumped storage system that operates through a height difference 
of :h, the gravitational potential energy available = mg:h where m 
is the mass of water that moves through the generator and g is the 
gravitational field strength.

So the maximum power P available from the water is equal to the rate at 
which energy is converted in the machine and is 

P =   m __ t  g:h = (  V __ t   ρ)g:h

▲  Figure 9 Water as a primary energy resource. 
(a) A hydroelectric plant in Thailand.  
(b) A run-of-the-river plant in Canada.

(a)

(b)
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where t is the time for mass m to move through the generator, V is the 
volume of water moving through the generator in time t and ρ is the 
density of the water. 

Worked examples
1 Water from a pumped storage system falls 

through a vertical distance of 260 m to a 
turbine at a rate of 600 kg s–1. The density of 
water is 1000 kg m–3. The overall efficiency of 
the system is 65%.

Calculate the power output of the system.

Solution
In one second the gravitational potential energy 
lost by the system is mg∆h = 600 × g × 260 =  
1.5 MJ.

The efficiency is 65%.

Output power = 1.5 ×106 ×   65 _ 
100

   = 0.99 MW

2 In a tidal barrage system water is retained behind 
a dam of height h. Show that the gravitational 
potential energy available from the water stored 
behind the dam is proportional to h2.

Solution
Assume that the cross-sectional area of the dam is 
A and that the cross-section is rectangular.

The volume of water held by the dam is Ah.

The mass of the water held by the dam is ρAh 
where ρ is the density of water.

When the dam empties completely the centre of 
mass of the water falls through a distance  
  h __ 2  (because the centre of mass is half way up the 
height of the dam).

The gravitational potential energy of the water is 
mgh = (ρAh) × g ×   h __ 2   =   1 __ 2   ρAh2.

Thus, gpe ∝ h2

Solar energy
Although most energy is ultimately derived from the Sun, two systems 
use photons emitted by the Sun directly in order to provide energy in 
both large- and small-scale installations.

Solar heating panels
Solar heating panels is a technique for heating water using the Sun’s 
energy.

solar panel

pump and
solar controller

hot water
storage cylinder

hot water,
underfloor heating,
and central heating

mains cold water feed

boiler

Sun

 
▲ Figure 11 Solar thermal-domestic hot water system.



8 . 1  E N E R G Y  S O U R C E S

327

A solar heating panel contains a pipe, embedded in a black plate, 
through which a glycol–water mixture is circulated by a pump (glycol 
has a low freezing point, necessary in cold countries). The liquid 
heats up as infra-red radiation falls on the panel. The pump circulates 
the liquid to the hot-water storage cylinder in the building. A heat-
exchanger system transfers the energy to the water in the storage 
cylinder. A pump is needed because the glycol–water mixture becomes 
less dense as it heats up and would therefore move to the top of the 
panel and not heat the water in the cylinder. A controller unit is 
required to prevent the system pumping hot water from the cylinder to 
the panel during the winter when the panel is cold.

Solar photovoltaic panels
The first solar “photocells” were developed around the middle of the 
nineteenth century by Alexandre-Edmond Becquerel (the father of 
Henri the discoverer of radioactivity). For a long time, the use of solar 
cells, based on the element selenium, was restricted to photography. 
With the advent of semiconductor technology, it was possible to 
produce photovoltaic cells (as they are properly called, abbreviated 
to PV) to power everything from calculators to satellites. In many 
parts of the world, solar panels are mounted on the roofs of houses. 
These panels not only supply energy to the house, but excess energy 
converted during sunny days is often sold to the local electricity 
supply company.

The photovoltaic materials in the panel convert electromagnetic 
radiation from the Sun into electrical energy. A full explanation of the 
way in which this happens goes beyond the IB syllabus, but a simplified 
explanation is as follows.

The photovoltaic cell consists of a single crystal of semiconductor 
that has been doped so that one face is p-type semiconductor and the 
opposite face is n-type. These terms n-type and p-type indicate the 
most significant charge carriers in the substance (electrons in n-type, 
positive “holes” – an absence of electrons – in p-type). Normally there 
is equilibrium between the charge carriers in both halves of the cell. 
However, when energy in the form of photons falls on the photovoltaic 
cell, then the equilibrium is disturbed, electrons are released and gain 
energy to move from the n-region to the p-region and hence around the 
external circuit. The electrons transfer this energy to the external circuit 
in the usual way and do useful work.  

One single cell has a small emf of about 1 V (this is determined by the 
nature of the semiconductor) and so banks of cells are manufactured in 
order to produce usable currents on both a domestic and commercial 
scale. Many cells connected in series would give large emfs but also large 
internal resistances; the compromise usually adopted is to connect the 
cells in a combination of both series and parallel.

The efficiencies of present-day solar cells are about 20% or a little 
higher. However, extensive research and development is being carried 
out in many countries and it is likely that these efficiencies will rise 
significantly over the next few years.

▲ Figure 12 A domestic photovoltaic panel system.

▲ Figure 14 Connecting photovoltaic cells together.

▲ Figure 13 Cross-section of a photovoltaic cell.

electrons to
external circuit light

p-type layer
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electron
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The advantages of both solar heating panels and photovoltaic cells 
are that maintenance costs are low, and that there are no fuel costs. 
Individual households can use them. Disadvantages include high initial 
cost, and the relatively large inefficiencies (so large areas of cells are 
needed). It goes without saying that the outputs of both types of cell are 
variable, and depend on both season and weather. We will look at the 
reasons for these variations in Sub-topic 8.2.

The mathematics of both photovoltaic cells and solar heating panels is 
straightforward. At a particular location and time of day, the Sun radiates 
a certain power per square metre I (also known as the intensity of the 
radiation) to the panels. Panels have an area A, so the power arriving at 
the surface of the panel will be IA. Panels have an efficiency η which is 
the fraction of the energy arriving that is converted into internal energy 
(of the liquid in the heating panels) or electrical energy (photovoltaics). 
So the total power converted by the panel is ηIA.

Worked examples
1 A house requires an average power of 4.0 kW in order to heat 

water. The average solar intensity at the Earth’s surface at the 
house is 650 W m–2. Calculate the minimum surface area of solar 
heating panels required to heat the water if the efficiency of 
conversion of the panel is 22%.

Solution
4000 W are required, each 1 m2 of panel can produce  
650 ×   22

 ___ 100   = 140 W

Area required =   4000
 ____ 140   

 = 28 m2

2 Identify the energy changes in photovoltaic cells and in solar 
heating panels.

Solution 
A solar heating cell absorbs radiant energy and converts it to the 
internal energy of the working fluid.

A photovoltaic cell absorbs photons and converts their energy to 
electrical energy.
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8.2 Thermal energy transfer
Understanding

 ➔ Conduction, convection, and thermal radiation
 ➔ Black-body radiation
 ➔ Albedo and emissivity
 ➔ Solar constant
 ➔ Greenhouse effect
 ➔ Energy balance in the surface–atmosphere 

system

 Applications and skills
 ➔ Sketching and interpreting graphs showing 

the variation of intensity with wavelength for 
bodies emitting thermal radiation at different 
temperatures

 ➔ Solving problems involving Stefan–Boltzmann 
and Wien’s laws

 ➔ Describing the effects of the Earth’s 
atmosphere on the mean surface temperature

 ➔ Solving albedo, emissivity, solar constant, and 
the average temperature of the Earth problems

Equations
 ➔ Stefan-Boltzmann equation: P = eσAT4

 ➔  Wien’s Law: λmax (metres) =    2.90 × 10-3
 ___ 

T(kelvin)
  

 ➔ intensity equation: I =    power
 __ 

A
  

 ➔  albedo =   total scattered power
  _____  

total incident power
  

  Nature of science
The study of the Earth’s climate illustrates the 
importance of modelling in science. The kinetic 
theory for an ideal gas is a good model for the way 
that real gases actually behave. Scientists model 
the Earth’s climate in an attempt to understand the 
implications of the release of greenhouse gases for 
global warming. 
The climate is a much more complex system 
than a simple gas. Issues for scientists include: 
the availability of data for the planet as a whole, 
and greater computing power means that more 
sophisticated models can be tested. Collaboration 
between research groups means that debate about 
the accuracy of the models can take place.

Introduction
We considered some of the energy resources in use today in Sub-topic 8.1. 
In the course of that sub-topic some of the pollution and atmospheric 
effects of the resources were mentioned. In this sub-topic we look  in 
more detail at the physics of the Earth’s atmosphere and the demands 
that our present need for energy are making on it. After a review of the 
ways in which energy is transferred due to differences in temperature, we 
discuss the Sun’s radiation and its effect on the atmosphere. Finally, we 
look at how changes in the atmosphere modify the climate.

Thermal energy transfer
Any object with a temperature above absolute zero possesses internal 
energy due to the motion of its atoms and molecules. The higher the 
temperature of the object, the greater the internal energy associated with 
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the molecules. Topic 3 showed that in a gas the macroscopic quantity 
that we call absolute temperature is equivalent to the average of the 
kinetic energy of the molecules. Given the opportunity, energy will 
spontaneously transfer from a region at a high temperature to a region at 
a low temperature. “Heat”, we say rather loosely, “flows from hot to cold”.

In this sub-topic we look at the ways in which energy can flow due 
to differences in temperature. There are three principal methods: 
conduction, convection, and thermal radiation. All are important to us 
both on an individual level and in global terms. 

Thermal conduction
There are similarities between electrical conduction and thermal 
conduction to the extent that this section is labelled thermal conduction 
for correctness. However, for the rest of our discussion we will use the 
term “conduction”, taking the word to mean thermal conduction.  

We all know something of practical conduction from everyday experience. 
Burning a hand on a camping stove, plunging a very hot metal into cold 
water which then boils, or melting ice in the hand all give experience of 
energy moving by conduction from a hot source to a cold sink.

warm water

good conductor

cool water
ice

▲ Figure 1 Laboratory conduction demonstrations.

Metals are good thermal conductors, just as they are also good electrical 
conductors. Poor thermal conductors such as glass or some plastics 
also conduct electricity poorly. This suggests that there are similarities 
between the mechanisms at work in both types of conduction. However, 
it should be noted that there are still considerable differences in scale 
between the very best metal conductors (copper, gold) and the worst 
metals (brass, aluminium). There are many lab experiments that you 
may have seen designed to help students recognize the different thermal 
properties of good and poor conductors.

hot cold

faster vibrating ions collide
with slower vibrating ions

free electrons transfer 
energy through the metal

atom electron

▲  Figure 2 How conduction occurs at an atomic level.
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In conduction processes, energy flows through the bulk of the material 
without any large-scale relative movement of the atoms that make up 
the solid. Conduction (electrical and thermal) is known as a transport 
phenomenon. Two mechanisms contribute to thermal conduction:

 ● Atomic vibration occurs in all solids, metal and non-metal alike. 
At all temperatures above 0 K, the ions in the solid have an internal 
energy. So they are vibrating about their average fixed position in the 
solid. The higher the temperature, the greater is the average energy, 
and therefore the higher their mean speed. Imagine a bar heated at 
one end and cooled at the other (see figure 2). At the hot end, the ions 
vibrate at a large amplitude and with a large average speed. At the cold 
end the amplitude is lower and the speed is smaller. At the position 
where the bar is heated the ions vibrate with increasing amplitude 
and collide with their nearest neighbours. This transfers internal 
energy and the amplitude of the neighbours will increase; this process 
continues until the bar reaches thermal equilibrium. In this case the 
energy supplied to each ion is equal to that transferred by the ion to its 
neighbours in the bar or the surroundings. Each region of the bar will 
now be at the same uniform temperature. 

 ● Conduction can occur in gases and liquids as well as solids, but, 
because the inter-atomic connections are weaker and the atoms 
(particularly in the gases) are farther apart in fluids, conduction 
is much less important in many gases and liquids than is convection.

 ● Although thermal conduction by atomic vibration is universal in solids, 
there are other conduction processes that vary in importance depending 
on the type of solid under discussion. As we saw in Topic 5, electrical 
conductors have a covalent (or metallic) bonding that releases free 
electrons into what is essentially an electron gas filling the whole of 
the interior of the solid. These free electrons are in thermal equilibrium 
with the positive ions that make up the atomic lattice of the solid. The 
electrons can interact with each other and the energy from the high-
temperature end of the solid “diffuses” along the solid by interactions 
between these electrons. When an electron interacts with an atom, 
then energy is transferred back into the atomic lattice to change 
the vibrational state of the atom. This free-electron mechanism for 
conduction depends critically on the numbers of free electrons available 
to the solid. Good electrical conductors, where there are many charge 
carriers (free electrons) available per unit volume, are likely also to 
be good thermal conductors. For example, in copper there is one free 
electron per atom. You should be able to use Avogadro’s number, the 
density of copper and its relative atomic mass, to show that there are 
8.4 × 1028 electrons in every cubic metre of copper.

  Nature of science
Thermal and electrical resistivity
Analogies are often used in science to aid our 
understanding of phenomena. Electrical and 
thermal conduction are closely linked and so it 
ought to be possible to transfer some ideas from 

one to the other. There is an analogy between 
thermal and electrical effects when thermal 
conduction is compared with electrical conduction 
for a wire of cross-section area A and length ∆l: 
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Thermal
The rate of transfer of internal energy Q is 
proportional to temperature gradient:

  ∆Q
 _ ∆t
   = -   A _ 

k
    (  ∆T _ ∆l

  ) 
where k is the thermal resistivity of the material.

Electrical
The rate of transfer of charge q (the current) is 
proportional to potential gradient:

  ∆Q
 _ ∆t
   = -  A _ ρ    (  ∆V _ ∆l

  ) 

where ρ is the electrical resistivity of the material. 

The thermal resistivity k of a material 
corresponds to the electrical resistivity ρ and 
the temperature gradient corresponds to the 
electric potential gradient. The rate at which 
both internal energy and charge are carried 
through the wire is related to the presence of 
free electrons in the metal. It is more than a 
coincidence of equations, physics at the atomic 
scale is involved. Are good electrical conductors 
also good thermal conductors? Compare the 
values of ρ and k for different metals.

Convection
Convection is the movement of groups of atoms or molecules within 
fluids (liquids and gases) that arises through variations in density. Unlike 
conduction, which involves the microscopic transfer of energy, convection 
is a bulk property. Convection cannot take place in solids. An understanding 
of convection is important in many areas of physics, astrophysics and 
geology. In some hot countries, houses are designed to take advantage of 
natural convection to cool down the house in hot weather.

glass fronted box

chimney

water

potassium
permanganate crystal(a) (b) (c)

candle

potassium
permanganate

▲ Figure 3 Convection currents.

Figure 3 shows three lab experiments that involve convection. In all three 
cases, energy is supplied to a fluid. Look at the glass-fronted box (a) first. 
A candle heats the air underneath a tube (a chimney) that leads out of the 
box. The air molecules immediately above the flame move further apart 
decreasing the air density in this region.  With a smaller density these 
molecules experience an upthrust and move up through the chimney.

This movement of air reduces the pressure slightly which pulls cooler 
air down the other chimney. Further heating of the air above the flame 
leads to a continuous current of cold air down the right-hand chimney 
and hot air up the left-hand tube. This is a convection current.
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Similar currents can be demonstrated in liquids. Figure 3(b) shows a small 
crystal of a soluble dye (potassium permanganate) placed at the bottom 
of a beaker of water. When the base of the beaker is heated gently near to 
the crystal, water at the base heats, expands, becomes less dense, and rises. 
This also leads to a convection current as in figure 3(c) where a glass tube, 
in the shape of a rectangle, again with a small soluble coloured crystal, can 
sustain a convection current that moves all around the tube.

This is the mechanism by which all the water heated in a saucepan on a 
stove eventually reaches a uniform temperature.

Examples of convection
There are many examples of convection in action. Figures 4 and 5 show 
examples from the natural world; there are many others. 

Sea breezes
If you live by an ocean you will have noticed that the direction of the 
breeze changes during a 24-hour period. During the day, breezes blow 
on-shore from the ocean, at night the direction is reversed and the 
breeze blows off-shore from the land to the sea. 

Convection effects explain this. During the day the land is warmer than 
the sea and warm air rises over the land mass, pulling in cooler air from 
above the ocean. At night the land cools down much more quickly than 
the sea (which has a temperature that varies much less) and now the 
warmer air rises from the sea so the wind blows off-shore. (You might 
like to use your knowledge of specific heat capacity to explain why the 
sea temperature varies much less than that of the land.)

A similar effect occurs in the front range of the Rocky Mountains in 
the USA. The east-facing hills warm up first and the high-pressure region 
on the plains means that the wind blows towards the mountains. Later in 
the day, the east-facing slopes cool down first and the effect is reversed.

Convection in the Earth
At the bottom of the Atlantic Ocean, and elsewhere on the planet, new 
crust is being created. This is due to convection effects that are occurring 
below the surface. The Earth’s core is at a high temperature and this 
drives convection effects in the part of the planet known as the upper 
mantle. Two convection currents operate and drive material in the same 
direction. Material is upwelling at the top of these currents to reach the 
surface of the Earth at the bottom of the ocean. This creates new land 
that is forcing the Americas, Europe, and Africa apart at the rate of a few 
centimetres every year. In other parts of the world convection currents 
are pulling material back down below the surface (subduction). These 
convection currents have, over time, given rise to the continental drift 
that has shaped the continents that we know today.

Why the winds blow
The complete theory of why and how the winds blow would occupy a large 
part of this book, but essentially the winds are driven by uneven heating of 
the Earth’s surface by the Sun. This differential heating can be due to many 
causes including geographical factors and the presence of cloud. However, 

warm air

day time

night time

warm air

cool air

cool air

▲ Figure 4 Sea breezes.
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▲  Figure 5 Convection currents in the Earth’s 
mantle.
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where the land or the sea heat up, the air just above them rises and creates 
an area of low pressure. Conversely, where the air is falling a high-pressure 
zone is set up. The air moves from the high- to the low-pressure area 
and this is what we call a wind. There is a further interaction of the wind 
velocity with the rotation of the Earth (through an effect known as the 
Coriolis force). This leads to rotation of the air masses such that air circulates 
clockwise around a high-pressure region in the northern hemisphere but 
anti-clockwise around a high-pressure area in the southern hemisphere.

  Nature of science
Modelling convection – using a scientific analogy
Faced with a hot cup of morning coffee and 
little time to drink it, most of us blow across the 
liquid surface to cool it more quickly. This causes 
a more rapid loss of energy than doing nothing 
and therefore the temperature of the liquid drops 
more quickly too. This is an example of forced 
convection – when the convection cooling is 
aided by a draught of air. Doing nothing and 
allowing the convection currents to set up by 
themselves is natural convection.

Newton stated an empirical law for cooling under 
conditions of forced convection. He suggested 
that the rate of change of the temperature of 
the cooling body   dθ __ 

dt
   was proportional to the 

temperature difference between the temperature 
of the cooling body θ and the temperature of the 
surroundings θs.

In symbols,

  dθ _ 
dt

   ∝ (θ - θs)

The key to understanding this equation is to 
realize that it is about the temperature difference 
between the hot object and its surroundings; we 
call this the temperature excess. Newton’s law of 
cooling leads to a half-life behaviour in just the 
same way that radioactive half-life follows from 
the radioactive equation

  dN _ 
dt

   ∝ N

where N is the number of radioactive atoms in  
a sample.

Using radioactivity as an analogy, there is 
a cooling half-life so that the time for the 
temperature excess over the surroundings to 
halve is always the same for a particular situation 
of hot object and surroundings.

This is another analogy that helps us to 
understand science by linking apparently different 
phenomena.

Worked examples
1 Explain the role played by convection in the flight of a hot-air 

balloon.

Solution
The air in the gas canopy is heated from below and as a result its 
temperature increases. The hot air in the balloon expands and 
its density decreases below that of the cold air outside the gas 
envelope. There is therefore an upward force on the balloon. If this 
exceeds the weight of the balloon (plus basket and occupants) then 
the balloon will accelerate upwards.

2 Suggest two reasons why covering the liquid surface of a cup 
of hot chocolate with marshmallows will slow down the loss of 
energy from the chocolate.
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Thermal radiation
Basics
Thermal radiation is the transfer of energy by means of electromagnetic 
radiation. Electromagnetic radiation is unique as a wave in that it does 
not need a medium in order to move (propagate). We receive energy 
from the Sun even though it has passed through about 150 million km 
of vacuum in order to reach us. Radiation therefore differs from 
conduction and convection, both of which require a bulk material to 
carry the energy from place to place.

Thermal radiation has its origins in the thermal motion of particles of 
matter. All atoms and molecules at a temperature greater than absolute 
zero are in motion. Atoms contain charged particles and when these 
charges are accelerated they emit photons. It is these photons that are 
the thermal radiation.

 Investigate!
Black and white surfaces

 ● Take two identical tin cans and cut out a lid 
for each one from polystyrene. Have a hole 
in each lid for a thermometer. Paint one can 
completely with matt black paint, paint the 
other shiny white.

wood block wood block

thermometer

black can white can

▲ Figure 6  Comparing emission of radiation from two surfaces.

 ● Fill both cans with the same volume of hot 
water at the same temperature, replace the 
lids and place the thermometers in the water.

 Keep the cans apart so that radiation from one 
is not incident on the other.

 ● Collect data to enable you to plot a graph 
to show how the temperature of the water 
in each can varies with time. This is called a 
cooling curve.

 ● You could also consider doing the experiment 
in reverse, beginning with cold water and 
using a radiant heater to provide energy for 
the cans. In this case, you must make sure 
that the heater is the same distance from the 
surface of each can and that the shiny can is 
unable to reflect radiation to the black one.

Solution
The marshmallows, having air trapped in them, are poor conductors 
so they allow only a small flow of energy through them. The upper 
surface of marshmallow will be at a lower temperature than the 
lower surface. This reduces the amount of convection occurring at 
the surface as the convection currents that are set up will not be so 
strongly driven as the differential densities will not be so great.
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  Nature of science
Radiator or not?  
In many parts of the world, houses need to 
be heated during part or all of the year. One 
way to achieve this is to circulate hot water 
from a boiler through a thin hollow panel 
often known as a “radiator”. But is this the 
appropriate term? 

The outside metal surface of the panel becomes 
hot because energy is conducted from the hot 
water through the metal.

The air near the surface of the panel becomes 
hotter and less dense; it rises, setting up a 
convection current in the room.

There is some thermal radiation from the surface 
but as its temperature is not very different from 
that of the room, the net radiation is quite low – 
certainly lower than the contributions from 
convection.

Should the radiator be called a radiator?

Making a saucepan
We all need pans to cook our food. What is the 
best strategy for designing a saucepan?

The pan will be placed on a flat hot surface 
heated either by flame or radiant energy from an 
electrically heated filament or plate. The energy 
conducts through the base and heats the contents 
of the saucepan. The base of the pan needs to be a 
good conductor to allow a large energy flux into the 
pan. The walls of the saucepan need to withstand 
the maximum temperature at which the pan will be 
used but should not lose energy if possible. Giving 
them a shiny silver finish helps this.

The handle of the pan needs to be a poor 
conductor so that the pan can be lifted easily and 
harmlessly. Don’t make it solid, make it strong 
and easy to hold but as thin as possible (think 
how electrical resistance varies with the shape and 
thickness of a conductor).

Conclusion: a good pan will have a thick copper 
base (a good conductor), sides, and handle of 
stainless steel (a poor conductor) and the overall 
finish will be polished and silvery. 

▲ Figure 7 A black-body enclosure.

dull black
cylinder

incident
ray

Experiments such as the one in Investigate! suggest that black surfaces 
are very good at radiating and absorbing energy. The opposite is true for 
white or shiny surfaces; they reflect energy rather than absorb it and are 
poor at radiating energy. This is why dispensers of hot drinks are often 
shiny – it helps them to retain the energy.

Black-body radiation
The simple experiments showed that black surfaces are good radiators 
and absorbers but poor reflectors of thermal energy. These poor 
reflectors lead to a concept that is important in the theory of thermal 
radiation: the black-body radiator. A black body is one that absorbs 
all the wavelengths of electromagnetic radiation that fall on it. Like the 
ideal gas that we use in gas theory, the black body is an idealization that 
cannot be realized in practice – although there are objects that are very 
close approximations to it.

One way to produce a very good approximation to a black body is to 
make a small hole in the wall of an enclosed container (a cavity) and 
to paint the interior of the container matt black. The container viewed 
through the hole will look very black inside.
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Some of the first experiments into the physics of the black body 
were made by Lummer and Pringsheim in 1899 using a porcelain 
enclosure made from fired clay. When such enclosures are heated to 
high temperatures, radiation emerges from the cavity. The radiation 
appears coloured depending on the temperature of the enclosure. 
At low temperatures the radiation is in the infra-red region, but as 
the temperature rises, the colour emitted is first red, then yellow, 
eventually becoming white if the temperature is high enough. The 
intensity of the radiation coming from the hole or cavity is higher 
when the cavity is at a higher temperature. The emission from the 
hole is not dependent on the material from which the cavity is made 
unlike the emission from the surface of a container.

This can be seen in the picture of the interior of a steel furnace (see 
figure 8). In the centre of the furnace at its very hottest point, the 
colour appears white, at the edges the colour is yellow. At the entrance 
to the furnace where the temperature is very much lower, the colour is 
a dull red.

colour and temperature/K 

1000

2000

2500

3200

3300

3400

3500

4500

4000

5000

▲ Figure 8 Interior of furnace.

The emission spectrum from a black body 
Although there is a predominant colour to the radiation emitted from a 
black-body radiator, this does not mean that only one wavelength emerges. 
To study the whole of the radiation that the black body emits, an instrument 
called a spectrometer is used. It measures the intensity of the radiation at a 
particular wavelength. Intensity is the power emitted per square metre.

As an equation this is written:

I =   P _ 
A

  

where I is the intensity, P is the power emitted, and A is the area on 
which the power is incident. The units of intensity are W m–2 or J s–1 m–2.

A typical intensity–wavelength graph is shown in figure 9 for a black 
body at the temperature of the visible surface of the Sun, about 6000 K. 
The Sun can be considered as a near-perfect black-body radiator. The 
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  Nature of 
science

The potter’s kiln  
A potter needs to know the 
temperature of the inside 
of a kiln while the clay is 
being “fired” to transform 
it into porcelain. Some 
potters simply look into the 
kiln through a small hole. 
They can tell by experience 
what the temperature is by 
seeing the radiating colour 
of the pots inside. Other 
potters use an instrument 
called a pyrometer. A 
tungsten filament is placed 
at the entrance to the kiln 
between the kiln interior 
and the potter’s eye. An 
electric current is supplied 
to the filament and this is 
increased until the filament 
disappears by merging 
into the background. At 
this point it is at the same 
temperature as the interior 
of the kiln. The filament 
system will have previously 
been calibrated so that the 
current required for the 
filament to disappear can 
be equated to the filament 
temperature. 
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gives a measure of temperature

λmax T = 2.898 × 10-3 m K

▲  Figure 9 Intensity against wavelength for a black body at the temperature 
of the Sun.

graph shows how the relative intensity of the radiation varies with the 
wavelength of the radiation at which the intensity is measured. 

There are a number of important features to this graph:

 ● There is a peak value at about 500 nm (somewhere between green 
and blue light to our eyes). (Is it a coincidence that the human eye 
has a maximum sensitivity in this region?)

 ● There are significant radiations at all visible wavelengths.

 ● There is a steep rise from zero intensity–notice  
that the line does not go through the origin.

 ● At large wavelengths, beyond the peak of the curve, the intensity falls 
to low levels and approaches zero asymptotically.

Figure 10 shows the graph when curves at other temperatures are added 
and this gives further perspectives on the emission curves.
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▲  Figure 10 Intensity against wavelength for black bodies at four temperatures.

This diagram shows four curves all at different temperatures. As before 
the units are arbitrary, meaning that the graph shows relative and not 
absolute changes between the curves at the four temperatures.
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This family of curves tells us that, as temperature increases:

 ● the overall intensity at each wavelength increases (because the curve 
is higher)

 ● the total power emitted per square metre increases (because the total 
area under the curve is greater)

 ● the curves skew towards shorter wavelengths (higher frequencies)

 ● the peak of the curve moves to shorter wavelengths.

The next step is to focus on the exact changes between these curves.

Wien’s displacement law
In 1893 Wilhelm Wien was able to deduce the way in which the shape 
of the graph depends on temperature. He showed that the height of the 
curve and the overall width depends on temperature alone. His full law 
allows predictions about the height of any point on the curve but we will 
only use it to predict the peak of the intensity curve.  

Wien’s displacement law states that the wavelength at which 
the intensity is a maximum λmax in metres is related to the absolute 
temperature of the black body T by

λmax = bT 

where b is known as Wien’s displacement constant. It has the value  
2.9 × 10–3 m K.

Stefan–Boltzmann law
The scientists Stefan and Boltzmann independently derived an equation 
that predicts the total power radiated from a black body at a particular 
temperature. The law applies across all the wavelengths that are radiated 
by the body. Stefan derived the law empirically in 1879 and Boltzmann 
produced the same law theoretically five years later.

The Stefan–Boltzmann law states that the total power P radiated by a 
black body is given by

P = σAT 4

where A is the total surface area of the black body and T is its absolute 
temperature. The constant, σ, is known as the Stefan–Boltzmann 
constant and has the value 5.7 × 10–8 W m–2 K–4.

The law refers to the power radiated by the object, but this is the same 
as the energy radiated per second. It is easy to show that the energy 
radiated each second  by one square metre of a black body is σT 4. This 
variant of the full law is known as Stefan’s law.

Grey bodies and emissivity
In practice objects can be very close to a black body in behaviour but 
not quite 100% perfect in the way they behave. They are often called 
grey objects to account for this. A grey object at a particular temperature 
will emit less energy per second than a perfect black body of the 

Tip
Notice that the unit for b is 
metre kelvin and must be 
written with a space between 
the symbols, take care not to 
write it as mK which means 
millikelvin and is something 
quite different!
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same dimensions at the same temperature. The quantity known as 
emissivity, e, is the measure of the ratio between these two powers:

e = 

Being a ratio, emissivity has no units. 

For a real material, the power emitted can be written as

P = eσAT 4

using the same symbols as before. A perfect black body has an emissivity 
value of 1. An object that completely reflects radiation without any 
absorption at all has an emissivity of 0. All real objects have an emissivity 
somewhere these two values. Typical values of emissivity for some 
substances are shown in the table. Emissivity values are a function of the 
wavelength of the radiation. It is surprising that snow and ice, although 
apparently white and reflective, are such effective emitters (and 
absorbers) in the infra-red. 

  
power emitted by a radiating object

     ________       
power emitted by a black body of the same dimensions at the same temperature

  

Material Emissivity
water 0.6–0.7
snow 0.9
ice 0.98
soil 0.4–0.95
coal 0.95

  Nature of science
Building a theory
By the end of the 19th century, the graph of 
radiation intensity emitted by a black body as a 
function of wavelength was well known. Wien’s 
equation fitted the experiments but only at short 
wavelengths. Rayleigh attempted to develop 
a new theory on the basis of classical physics. 
He suggested that charges oscillating inside 
the cavity produce standing electromagnetic 
waves as they bounce backwards  and forwards 
between the cavity walls. Standing waves that 
escape from the cavity produce the observed 
black-body spectrum. Rayleigh’s model fits 
the observations at long wavelengths but 
predicts an “ultraviolet catastrophe” of an 
infinitely large intensity at short wavelengths. 
Max Planck varied Rayleigh’s theory slightly. 
He proposed that the standing waves could 

not carry all possible energies but only certain 
quantities of energy E given by nhf where n is 
an integer, h is a constant (Planck’s constant) 
and f is the frequency of the allowed energy. 
Planck’s model fitted the experimental results  
at all wavelengths and thus, in 1900, a new 
branch of physics was born: quantum physics. 
Planck limited his theory to the space inside 
the cavity, he believed that the radiation was 
continuous outside.  

Later, Einstein proposed that the photons outside 
the cavity also had discrete amounts of energy. 
Planck was the scientific referee for Einstein’s 
paper and it is to Planck’s credit that he recognised 
the value of Einstein’s work and accepted the 
paper for publication even though it overturned 
some of this own ideas.

Worked examples
1 The Sun has a surface temperature of 5800 K 

and a radius of 7.0 × 108 m. Calculate 
the total energy radiated from the Sun in 
one hour.

Solution
P = σAT 4

Surface area of Sun = 4πr2 = 4 × 3.14 × (7×108)2

 = 6.2 × 1018
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Sun and the solar constant
The Sun emits very large amounts of energy as a result of its nuclear 
fusion reactions. Because the Earth is small and a long way from the Sun, 
only a small fraction of this arrives at the top of the Earth’s atmosphere. 
A black body at the temperature of the Sun has just under half of its 
radiation in our visible region, roughly the same amount in the infra-
red, and 10% in the ultraviolet. It is the overall difference between this 
incoming radiation and the radiation that is subsequently emitted from 
the Earth that determines the energy gained by the Earth from the Sun. 
This energy is used by plants in photosynthesis and it drives the changes 
in the world’s oceans and atmospheres; it is crucial to life on this planet.

The amount of energy that arrives at the top of the atmosphere is known 
as the solar constant. A precise definition is that the solar constant is the 
amount of solar radiation across all wavelengths that is incident in one second 
on one square metre at the mean distance of the Earth from the Sun on a plane 
perpendicular to the line joining the centre of the Sun and the centre of the Earth.

The energy from the Sun is spread over an imaginary sphere that has a 
radius equal to the Earth–Sun distance. The Earth is roughly 1.5 × 1011 m 
from the Sun and so the surface area of this sphere is 2.8 × 1023 m2.

The Sun emits 4 × 1026 J in one second. The energy incident in one 
second on one square metre at the distance of the Earth from the 
Sun is   4.0 ×  10  26 

 ________ 
2.8 ×  10  23 

    = 1400 J. The answer is quoted to 2 s.f., a reasonable 
precision for this estimate and represents about 5 × 10-10 of the entire 
output of the Sun. 

The value of the solar constant varies periodically for a number of reasons:

 ● The output of the Sun varies by about 0.1% during its principal 11-year 
sunspot cycle.

 ● The Earth’s orbit is elliptical with the Earth slightly closer to the Sun 
in January compared to July; this accounts for a difference of about 

So power = 5.7 × 10-8 × 6.2 × 1018 × 58004 

 = 4.0 × 1026 W

In one hour there are 3600 s, so the energy 
radiated in one hour is 1.4 × 1030 J.

2 A metal filament used as a pyrometer in a 
kiln has a length of 0.050 m and a radius of 
1.2 × 10–3 m. Determine the temperature of 
the filament at which it radiates a power  
of 48 W. 

Solution
The surface area of the filament is 2πrh = 
(2π × 1.2 ×10-3) × 0.050 = 3.8 × 10–4 m2 

So the power determines the temperature as

48 = 5.7 × 10-8 × 3.8 × 10–4 × T 4

T =   4 √___________________
     48  ___   

5.7 ×10-8 × 3.8 × 10-4
     = 1200 K.

3 A spherical black body has an absolute 
temperature T1 and surface area A. 
Its surroundings are kept at a lower 
temperature T2. 

Determine the net power lost by the body.

Solution
The power emitted by the body is; σAT1

4

the power absorbed from the surroundings 
is σAT2

4.

So the net power lost is σA(T1
4 - T2

4).

Note that this is not the same as

σA(T1 - T2)
4.

radiation 
from Sun

one square metre at
top of atmosphere

▲ Figure 11 Defining the solar constant.
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7% in the solar constant. (Note that this difference is not the reason 
for summer in the Southern Hemisphere – the seasons occur because 
the axis of rotation of the Earth is not perpendicular to the plane of its 
orbit around the Sun.)

 ● Other longer-period cycles are believed to occur in the Sun with 
periods ranging from roughly hundreds to thousands of years.

Energy balance in the Earth surface– 
atmosphere system
The solar constant is the power incident on the top of the atmosphere. 
It is not the power that arrives at ground level. As the radiation from 
the Sun enters and travels through the atmosphere, it is subject to 
losses that reduce the energy arriving at the Earth’s surface. Radiation 
is absorbed and also scattered by the atmosphere. The degree to which 
this absorption and scattering occurs depends on the position of the Sun 
in the sky at a particular place. When the Sun is lower in the sky (as at 
dawn and sunset), its radiation has to pass through a greater thickness 
of atmosphere and thus more scattering and absorption takes place. This 
gives rise to the colours in the sky at dawn and dusk.

Even when the energy arrives at ground level, it is not necessarily going 
to remain there. The surface of the Earth is not a black body and therefore 
it will reflect some of the energy back up towards the atmosphere. The 
extent to which a particular surface can reflect energy is known as its 
albedo (from the Latin word for “whiteness”). It is given the symbol a:

a =   
energy reflected by a given surface in a given time

     _____     
total energy incident on the surface in the same time

  

Like emissivity, albedo has no units, it varies from 0 for a surface that 
does not reflect any energy (a black body) to 1 for a surface that absorbs 
no radiation at all. Unless stated otherwise, the albedo in the Earth 
system is normally quoted for visible light (which as we saw earlier 
accounts for nearly a half of all radiation at the surface).

The average annual albedo for the whole Earth is about 0.35, meaning 
that on average about 35% of the Sun’s rays that reach the ground are 
reflected back into the atmosphere.

This figure of 0.35 is, however, very much an average because albedo 
varies depending on a number of factors:

 ● It varies daily and with the seasons, depending on the amount and 
type of cloud cover (thin clouds have albedo values of 0.3–0.4, thick 
cumulo-nimbus cloud can approach values of 0.9).

 ● It depends on the terrain and the material of the surface. The table 
gives typical albedo values for some common land and water surfaces.

The importance of albedo will be familiar to anyone who lives where 
snow is common in winter. Fresh snow has a high albedo and reflects 
most of the radiation that is incident on it – the snow will stay in 
place for a long time without melting if the temperature remains cold. 
However, sprinkle some earth or soot on the snow and, when the sun 
shines, the snow will soon disappear because the dark material on its 

Surface Albedo
Ocean 0.06
Fresh snow 0.85
Sea ice 0.60
Ice 0.90
Urban areas 0.15
Desert soils 0.40
Pine forest 0.15
Deciduous forest 0.25
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surface absorbs energy. The radiation provides the latent heat needed to 
melt the snow. Albedo effects help to explain why satellites (including 
the International Space Station) in orbit around the Earth can take 
pictures of the Earth’s cloud cover and surface in the visible spectrum.

Worked examples
1 Four habitats on the Earth are: forest, 

grassland (savannah), the sea, an ice cap.

Discuss which of these have the greatest and 
least albedo.

Solution 
A material with a high albedo reflects the incident 
visible radiation. Ice is a good reflector and 
consequently has a high albedo. On the other hand, 
the sea is a good absorber and has a low albedo. 

2 The data give details of a model of the energy 
balance of the Earth. Use the data to calculate 
the albedo of the Earth that is predicted by  
this model.

Data

Incident intensity from the Sun = 340 W m–2

Reflected intensity at surface = 100 W m–2

Radiated intensity from surface = 240 W m–2

Re-radiated intensity from  
atmosphere back to surface = 2 W m–2

Solution
The definition of albedo is clear.  

It is   
power reflected by a given surface

   ________________________   
total power incident on the surface

  

So in this case the value is   100
 ___ 340   = 0.29

The greenhouse effect and temperature balance
The Earth and the Moon are the same average distance from the Sun, 
yet the average temperature of the Moon is 255 K, while that of the 
Earth is about 290 K. The discrepancy is due to the Earth having an 
atmosphere while the Moon has none.

The difference is due to a phenomenon known as the greenhouse 
effect in which certain gases in the Earth’s atmosphere trap energy 
within the Earth system and produce a consequent rise in the average 
temperature of the Earth. The most important gases that cause the effect 
include carbon dioxide (CO2), water vapour (H2O), methane (CH4), and 
nitrous oxide (dinitrogen monoxide; N2O), all of which occur naturally 
in the atmosphere. Ozone (O3), which has natural and man-made 
sources, makes a contribution to the greenhouse effect.

It is important to distinguish between:

 ● the “natural” greenhouse effect that is due to the naturally occurring 
levels of the gases responsible, and

 ● the enhanced greenhouse effect in which increased concentrations of 
the gases, possibly occurring as a result of human-derived processes, 
lead to further increases in the Earth’s average temperature and 
therefore to climate change.

The principal gases in the atmosphere are nitrogen, N2, and oxygen, O2, 
(respectively, 70% and 20% by weight). Both of these gases are made up 
of tightly bound molecules and, because of this, do not absorb energy 
from sunlight. They make little contribution to the natural greenhouse 
effect. The 1% of the atmosphere that is made up of the CO2, H2O, CH4 
and N2O has a much greater effect. 
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  Nature of 
science

Other worlds, other 
atmospheres
The dynamic equilibrium in 
our climate has been very 
important for the evolution 
of life on Earth. Venus 
and Mars evolved very 
differently from Earth. 

Venus has similar 
dimensions to the Earth 
but is closer to the 
Sun with a very high 
albedo at about 0.76. It’s 
atmosphere is almost 
entirely carbon dioxide. 
In consequence, the surface 
temperature reaches a 
730 K and a runaway 
greenhouse effect acts. 
Venus and Mars  are clear 
reminders to us of the 
fragility of a planetary 
climate. 

The molecular structure of greenhouse-gas molecules means that they 
absorb ultraviolet and infra-red radiation from the Sun as it travels 
through the atmosphere. Visible light on the other hand is not so 
readily absorbed by these gases and passes through the atmosphere 
to be absorbed by the land and water at the surface. As a result the 
temperature of the surface rises. The Earth then re-radiates just like 
any other hot object. The temperature of the Earth’s surface is far lower 
than that of the Sun, so the wavelengths radiated from the Earth will 
peak in the long-wavelength infra-red. The absorbed radiation had, 
of course,  mostly been in the visible region of the electromagnetic 
spectrum. So, just as gases in the atmosphere absorbed the Sun’s infra-
red on the way in, now they absorb energy in the infra-red from the 
Earth on the way out. The atmosphere then re-radiates the energy yet 
again, this time in all directions meaning that some returns to Earth. 
This energy has been trapped in the system that consists of the surface 
of the Earth and the atmosphere.

The whole system is a dynamic equilibrium reaching a state where 
the total energy incident on the system from the Sun equals the 
energy total being radiated away by the Earth. In order to reach this 
state, the temperature of the Earth has to rise and, as it does so, the 
amount of energy it radiates must also rise by the Stefan–Boltzmann 
law. Eventually, the Earth’s temperature will be such that the balance 
of incoming and outgoing energies is attained. Of course, this balance 
was established over billions of years and was steadily changing as the 
composition of the atmosphere and the albedo changed with changes in 
vegetation, continental drift, and geological processes.

Why greenhouse gases absorb energy
Ultraviolet and long-wavelength infra-red radiations are absorbed by the 
atmosphere.

Photons in the ultraviolet region of the electromagnetic spectrum 
are energetic and have enough energy to break the bonds within the 
gas molecules. This leads to the production of ionic materials in the 
atmosphere. A good example is the reaction that leads to the production 
of ozone from the oxygen atoms formed when oxygen molecules are 
split apart by ultraviolet photons.

The energies of infra-red photons are much smaller than those of 
ultraviolet and are not sufficient to break molecules apart. When the 
frequency of a photon matches a vibrational state in a greenhouse gas 
molecule then an effect called resonance occurs. We will look in detail 
at the vibrational states and resonance in carbon dioxide, but similar 
effects occur in all the greenhouse gas molecules.

In a carbon dioxide molecule, the oxygen atoms at each end are attached 
by double bonds to the carbon in a linear arrangement. The bonds 
resemble springs in their behaviour.

The molecule has four vibrational modes as shown in figure 12. The 
first of these modes – a linear symmetric stretching does not cause 
infrared absorption, but the remaining three motions do. Each one has 
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a characteristic frequency. If the frequency of the radiation matches this, 
then the molecule will be stimulated into vibrating with the appropriate 
mode and the energy of the vibration will come from the incident 
radiation. This leads to vibrational absorption at wavelengths of 2.7 µm, 
4.3 µm and 15 µm.

These effects of these absorptions can be clearly seen in figure 13 
which shows part of the absorption spectrum of carbon dioxide. 
In this diagram a peak indicates a wavelength at which significant 
absorption occurs.

Modelling the climate balance
We said earlier that about 1400 J falls on each square metre of the 
upper atmosphere each second: the solar constant. We use the physics 
introduced in this topic to see what the consequences of this are for the 
Earth’s surface–atmospheric system.

The full 1400 J does not of course reach the surface. Of the total, about 
25% of the incident energy is reflected by the clouds and by particles in 
the atmosphere, about 25% is absorbed by the atmosphere, and about 
6% is reflected at the surface.

The incoming radiation falls on the portion of the Earth’s surface which 
is normal to the Sun’s radiation – i.e. a circle of area equal to π × (radius 
of Earth)2, as only one side of the Earth faces the Sun at any one time. 
However this radiation has to be averaged over the whole of the surface 
which is 4π × (radius of Earth)2. So the mean power arriving at each 
square metre is   1400

 ____ 4   = 350 W. 

The albedo now has to be taken into account to give an effective mean 
power at one square metre of the surface of 

(1 – a) × 350

For the average Earth value for a of about 0.3, the mean power absorbed 
by the surface per square metre is 245 W.

O C O equilibrium position

symmetric stretching

anti-symmetric stretching

bending 
modes

▲ Figure 12 Vibrational states in the carbon dioxide molecule.
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▲ Figure 13 Part of the absorption 
spectrum for carbon dioxide.
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The knowledge of this emitted power allows a prediction of the 
temperature of a black body T that will emit 245 W m–2. Using the 
Stefan–Boltzmann law:

245 = σT4

So T =   4 √_________
    245 _ 

5.67 × 10  -8 
     = 256 K

This is very close to the value for the Moon, which has no atmosphere. 
We need to investigate why the mean temperature of the Earth is about 
35 K higher than this. 

We made the assumption that the Earth emits 245 W m-2 and that 
this energy leaves the surface and the atmosphere completely. 
This would be true for an atmosphere that is completely transparent at 
all wavelengths, but Earth’s atmosphere is not transparent in this way. 

Figure 14 shows the relative intensity–wavelength graph for a black 
body at 256 K. As expected, the area under this curve is 245 W m–2 
and represents the predicted emission from the Earth. It shows the 
response of an atmosphere modelled as perfectly transparent at all 
wavelengths. (Technically, this graph shows the transmittance of the 
atmosphere as a function of wavelength, a value of 100% means that 
the particular wavelength is completely transmitted, 0 means that no 
energy is transmitted at this wavelength.) Not surprisingly all the black-
body radiation leaves the Earth because the transmittance is 1 for all 
wavelengths in this model.

In fact the atmosphere absorbs energy in the infra-red and ultraviolet 
regions. A simple, but slightly more realistic model for this absorption 
will leave the transmittance at 100% for the visible wavelengths and 
change the transmittance to 0 for the absorbed wavelengths. Figure 15 
shows how this leads to an increased surface temperature. 

When the transmittance graph is merged with the graph for black-
body radiation to give the overall emission from the Earth into space, 
the area under the overall emission curve will be less than 245 W m–2 
because the infra-red and ultraviolet wavelengths are now absorbed  
in the atmosphere and these energies are not lost (Figure 15(a)).  
This deficit will be re-radiated in all directions; so some returns to  
the surface.

In order to get the energy balance correct again, the temperature of the 
emission curve must be raised so that the area under the curve returns to 
245 W m–2. As the curve changes with the increase in temperature, the 
area under the curve increases too. The calculation of the temperature 
change required is difficult and not given here. However, for the emission 
from the surface to equal the incoming energy from the Sun, allowing 
for the absorption, the surface temperature must rise to about 290 K. 
The net effect is shown in Figure 15(b) with a shifted and raised emission 
curve compensating for the energy that cannot be transmitted through 
the atmosphere.

The suggestion that the atmosphere completely removes wavelengths 
above and below certain wavelengths is an over-simplification.  
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▲  Figure 14 Intensity and 
transmittance for a completely 
transparent atmosphere.
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▲ Figure 15 Intensity and transmittance 
for an atmosphere opaque to infra-red 
and ultraviolet radiation.
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The energy balance of the Earth
The surface–atmosphere energy balance system is very complex; 
figure 17 is a recent diagram showing the basic interactions and you 
should study it carefully. 

▲ Figure 17 Factors that make up the energy balance of the Earth (after Stephens and others. 
2012. An update on earth’s energy balance in light of the latest global observations.  
Nature Geoscience.).
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▲ Figure 16 Transmittance of the atmosphere in the infra-red.
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Figure 16 shows the complicated transmittance pattern in the infrared 
and indicates which absorbing molecules are responsible for which 
regions of absorption.
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Global warming
There is little doubt that climate change is occurring on the planet. 
We are seeing a significant warming that may lead to many changes 
to the sea level and in the climate in many parts of the world. The 
fact that there is change should not surprise us. We have recently 
(in geological terms) been through several Ice Ages and we are 
thought to be in an interstadial phase at the moment (interstadial 
means “between Ice Ages”). In the seventeenth century a “Little Ice 
Age” covered much of northern Europe and North America. The 
River Thames regularly froze and the citizens held fairs on the ice. 
In 1608, the Dutch painter Hendrick Avercamp painted a winter 
landscape showing the typical extent and thickness of the ice in 
Holland (figure 18).

▲  Figure 18 Winter landscape with skaters (1608), Hendrick Avercamp. 

Many models have been suggested to explain global warming, they include:

 ● changes in the composition of the atmosphere (and specifically the 
greenhouse gases) leading to an enhanced greenhouse effect

 ● increased solar flare activity

 ● cyclic changes in the Earth’s orbit

 ● volcanic activity.

Most scientists now accept that this warming is due to the burning of 
fossil fuels, which has gone on at increasing levels since the industrial 
revolution in the eighteenth century. There is evidence for this. The 
table below shows some of the changes in the principal greenhouse 
gases over the past 250 years.

Gas Pre-1750 
concentration

Recent 
concentration

% increase since 
1750

Carbon dioxide 280 ppm 390 ppm 40
Methane 700 ppb 1800 ppb 160
Nitrous oxide 270 ppb 320 ppb 20
Ozone 25 ppb 34 ppb 40

ppm = parts per million; ppb = parts per billion
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The recent values in this table have been collected directly in a number 
of parts of the world (there is a well-respected long-term study of the 
variation of carbon dioxide in Hawaii where recently the carbon dioxide 
levels exceeded 400 ppm for the first time for many thousands of 
years). The values quoted for pre-1750 are determined from a number 
of sources:

 ● Analysis of Antarctic ice cores. Cores are extracted from the ice in the 
Antarctic and these yield data for the composition of the atmosphere 
during the era when the snow originally fell on the continent. Cores 
can give data for times up to 400 000 years ago.

 ● Analysis of tree rings. Tree rings yield data for the temperature and 
length of the seasons and the rainfall going back sometimes hundreds 
of years.

 ● Analysis of water levels in sedimentary records from lake beds can be 
used to identify historical changes in water levels.

An enhanced greenhouse effect results from changes to the 
concentration of the greenhouse gases: as the amounts of these 
gases increase, more absorption occurs both when energy enters 
the system and also when the surface re-radiates. For example, in 
the transmittance–wavelength graph for a particular gas, when the 
concentration of the gas rises, the absorption peaks will increase too. The 
surface will need to increase its temperature in order to emit sufficient 
energy at sea level so that emission of energy by Earth from the top of 
the atmosphere will equal the incoming energy from the Sun.

Global warming is likely to lead to other mechanisms that will 
themselves make global warming increase at a greater rate:

 ● the ice and snow cover at the poles will melt, this will decrease 
the average albedo of Earth and increase the rate at which heat is 
absorbed by the surface.

 ● a higher water temperature in the oceans will reduce the extent to 
which CO2 is dissolved in seawater leading to a further increase in 
atmospheric concentration of the gas.

Other human-related mechanisms such as deforestation can also drive 
global warming as the amount of carbon fixed in the plants is reduced.

This is a problem that has to be addressed at both an international 
and an individual level. The world needs greater efficiency in power 
production and a major review of fuel usage. We should encourage 
the use of non-fossil-fuel methods. As individuals we need to be aware 
of our personal impact on the planet, we should be conscious of our 
carbon footprint. Nations can capture and store carbon dioxide, and 
agree to increase the use of combined heating and power systems. What 
everyone agrees is that doing nothing is not an option.

  Nature of 
science

An international 
perspective
There have been a number 
of international attempts 
to reach agreements over 
the ways forward for 
the planet. These have 
included:

 ● The Kyoto Protocol 
was originally adopted 
by many (but not all) 
countries in 1997 and 
later extended in 2012.

 ● The Intergovernmental 
Panel on Climate Change.

 ● Asia–Pacific Partnership 
on Clean Development 
and Climate. 

 ● The various other United 
Nations Conventions 
on Climate Change, e.g. 
Cancùn, 2010.

Do some research on the 
Internet to find what is 
presently agreed between 
governments.
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Questions
1 (IB)

a) A reactor produces 24 MW of power. The 
efficiency of the reactor is 32%. In the 
fission of one uranium-235 nucleus  
3.2 × 10–11 J of energy is released.

 Determine the mass of uranium-235 that 
undergoes fission in one year in this reactor.

b) During its normal operation, the following 
set of reactions takes place in the reactor.

     0  
1 n +     92  

238 U →     92  
239 U

      92  
239 U →     93  

239 Np +    -1  
 0

  e +  _ v 

         93  
239 Np →     94  

239 Pu +    -1  
 0

  e +  _ v 

 Comment on the international implications 
of the product of these reactions.

2 (IB)

The diagram shows a pumped storage power 
station used for the generation of electrical energy.

 

tank

pipe

turbine

lake

310 m

Water stored in the tank falls through a pipe to 
a lake through a turbine that is connected to an 
electricity generator. 

The tank is 50 m deep and has a uniform area 
of 5.0 × 104 m2. The height from the bottom of 
the tank to the turbine is 310 m. 

The density of water is 1.0 × 103 kg m–3.

a) Show that the maximum energy that can be 
delivered to the turbine by the falling water 
is about 8 × 1012 J.

b) The flow rate of water in the pipe is  
400 m3 s–1. Calculate the power delivered  
by the falling water.

3 (IB)

The energy losses in a pumped storage power 
station are shown in the following table.

Source of energy loss Percentage loss of energy

friction and turbulence of 
water in pipe 27

friction in turbine and ac 
generator 15

electrical heating losses 5

a) Calculate the overall efficiency of the 
conversion of the gravitational potential 
energy of water in the tank into electrical 
energy.

b) Sketch a Sankey diagram to represent the 
energy conversion in the power station.

4 (IB)

A nuclear power station uses uranium-235  
(U-235) as fuel. 

a) Outline:

 (i)  the processes and energy changes 
that occur through which the internal 
energy of the working fluid is increased

 (ii)  the role of the heat exchanger of 
the reactor and the turbine in the 
generation of electrical energy.

b) Identify one process in the power station 
where energy is degraded.

5 (IB)

The intensity of the Sun’s radiation at the position 
of the Earth is approximately 1400 W m–2.

Suggest why the average power received per 
unit area of the Earth is 350 W m–2.

350
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6 (IB)

The diagram shows a radiation entering or 
leaving the Earth’s surface for a simplified model 
of the energy balance at the Earth’s surface.

Earth’s surface TE

atmosphere TA = 242 K

transmitted through
atmosphere 245 W m-2

radiated by
atmosphere
0.700 σT4Aradiated by Earth’s

surface = σT4
E

a) State the emissivity of the atmosphere.

b) Determine the intensity of the radiation 
radiated by the atmosphere towards the 
Earth’s surface. 

c) Calculate TE.

7 a)  Outline a mechanism by which part of the 
radiation radiated by the Earth’s surface 
is absorbed by greenhouse gases in the 
atmosphere. Go on to suggest why the 
incoming solar radiation is not affected by 
the mechanism you outlined.

b)  Carbon dioxide (CO2) is a greenhouse 
gas. State one source and one sink (that 
removes CO2) of this gas.

8 (IB)

The graph shows part of the absorption 
spectrum of nitrogen oxide (N2O) in which 
the intensity of absorbed radiation A is plotted 
against frequency f.

2 3 4 5

A/
ar

bi
tra

ry
 u

ni
ts

f/×1013 Hz

a) State the region of the electromagnetic 
spectrum to which the resonant frequency 
of nitrogen oxide belongs.

b)  Using your answer to (a), explain why 
nitrogen oxide is classified as a greenhouse 
gas.

9 (IB)

The diagram shows a simple energy balance 
climate model in which the atmosphere and 
the surface of Earth are treated as two bodies 
each at constant temperature. The surface 
of the Earth receives both solar radiation 
and radiation emitted from the atmosphere. 
Assume that the Earth’s surface and the 
atmosphere behave as black bodies.

Earth’s surface

242 K

288 K

atmosphere

atmospheric radiation solar radiation

e = 0.720

a  = 0.280

344 W m-2

Data for this model:

average temperature of the atmosphere of 
Earth = 242 K

emissivity e of the atmosphere of Earth = 0.720

average albedo a of the atmosphere of  
Earth = 0.280

solar intensity at top of atmosphere = 344 W m–2

average temperature of the surface of  
Earth = 288 K

a) Use the data to determine:

(i) the power radiated per unit area of the 
atmosphere

(ii)  the solar power absorbed per unit area 
at the surface of the Earth.
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b) It is suggested that, if the production of 
greenhouse gases were to stay at its  
present level, then the temperature of  
the Earth’s atmosphere would eventually 
rise by 6 K.

 Calculate the power per unit area that 
would then be

(i) radiated by the atmosphere

(ii) absorbed by the Earth’s surface.

c) Estimate the increase in temperature of the 
Earth’s surface.

10 (IB)

It has been estimated that doubling the amount 
of carbon dioxide in the Earth’s atmosphere 
changes the albedo of the Earth by 0.01. 
Estimate the change in the intensity being 
reflected by the Earth into space that will result 
from this doubling. State why your answer is 
an estimate.

Average intensity received at Earth from the 
Sun = 340 W m–2 

Average albedo = 0.30
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9  WAVE PHENOMENA (AHL)
Introduction
In this topic we develop many of the concepts 
introduced in Topic 4. In general, a more 
mathematical approach is taken and we consider 

the usefulness of modelling using a spreadsheet – 
both for graphing and developing relationships 
through iteration.

9.1 Simple harmonic motion

OBJ TEXT_UND

 Applications and skills
 ➔ Solving problems involving acceleration, 

velocity and displacement during simple 
harmonic motion, both graphically and 
algebraically

 ➔ Describing the interchange of kinetic and 
potential energy during simple harmonic 
motion

 ➔ Solving problems involving energy transfer 
during simple harmonic motion, both 
graphically and algebraically

Equations
 ➔ angular velocity–period equation: ω =    2π _ 

T
  

 ➔ defining equation for shm: a = - ω  2 x
 ➔ displacement–time equations: x =  x  0  sin ωt;  

x =  x  0  cos ωt
 ➔ velocity–time equations: v = ω x  0  cos ωt;  

v = -ω x  0  sin ωt

 ➔ velocity-displacement equation:  
v = ±ω  √_______

  (   x  0   2  -  x  2  )   
 ➔ kinetic energy equation:  E  K  =   1 ___ 2   m ω  2   (   x  0   2  -  x  2  )  
 ➔ total energy equation:  E  T  =   1 ___ 2   m ω  2    x  0   2 

 ➔ period of simple pendulum: T = 2π √__
   l ___ g    

 ➔ period of mass–spring: T = 2π √__
   m ____ k    

 Nature of science
The importance of SHM
The equation for simple harmonic motion (SHM) 
can be solved analytically and numerically. 
Physicists use such solutions to help them to 
visualize the behaviour of the oscillator. The use of 
the equations is very powerful as any oscillation 
can be described in terms of a combination of 
harmonic oscillators using Fourier synthesis. 
The modelling of oscillators has applications in 
virtually all areas of physics including mechanics, 
electricity, waves and quantum physics. In 
this sub-topic we will model SHM using a 
simple spreadsheet and see how powerful this 
interpretation can be.

Understanding
 ➔ The defining equation of SHM
 ➔ Energy changes

353353



Introduction
In this sub-topic we treat SHM more mathematically but restrict 
ourselves to two systems – the simple pendulum and of a mass 
oscillating on a spring. Each of these systems is isochronous and is 
usually lightly damped; this means that a large number of oscillations 
occur before the energy in the system is transferred to the internal 
energy of the system and the surrounding air.

Angular speed or frequency (ω)
In Sub-topic 6.1 we considered the angular speed ω in relation to circular 
motion; it is the rate of change of angle with time and is also called 
angular frequency. It is measured in radians per second (rad s-1). This 
quantity is important when we deal with simple harmonic motion because 
there is a very close relationship between circular motion and SHM. This 
relationship can be demonstrated using the apparatus shown in figure 1.

A metal sphere is mounted on a turntable that rotates at a constant angular 
speed. A simple pendulum is arranged so that it is in line with the sphere 
and oscillates with the same periodic time as that of the turntable – a little 
trial and error should give a good result here. The pendulum and the 
turntable are illuminated by a light that is projected onto a screen. The 
shadows projected, onto the screen, of the circular motion of the sphere and 
oscillatory motion of the pendulum show these motions to be identical.

Circular motion and SHM 
In mathematical terms the demonstration in figure 1 is equivalent 
to projecting the two-dimensional motion of a point onto the 
single dimension of a line. Imagine a point P rotating around the 
perimeter of a circle with a constant angular speed ω. The radius 
of the circle r joins P with the centre of the circle O. At time t = 0 
the radius is horizontal and at time t it has moved through an angle 
θ radians. For constant angular speed ω =   θ _ t  , rearranging this gives θ = 
ωt. Projecting P onto the y-axis gives the vertical component of r as 
r sin θ. Projecting P onto the x-axis gives the horizontal component 
of r as r cos θ. The variation of the vertical component with time or 
angle is shown on the right of figure 2 and takes the form of a sine 
curve. Because the rate of rotation is constant, the angle θ or ωt is 
proportional to time. If we drew a graph of y against t the quantities 
2π and π would be replaced by T and   T __ 2   respectively.

y = r sinθ

π 2π ωt
θ = ωt

x = r cosθ

y y

x

r

r

0
0

P

-r

  Figure 2 Projection of circular motion on to a vertical line.

The equations of the projections are y =  y  0  sin ωt and x =  x  0  cos ωt.

  Figure 1 Comparison of SHM and circular 
motion.

screen

turntable
metal sphere

light source
drive belt
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Here  y  0  and  x  0  are the maximum values of y and x, which in this case are 
identical to r. These are the amplitudes of the motion.

You may remember from Sub-topic 4.1 that in SHM the displacement, 
velocity and acceleration all vary sinusoidally with time. Thus, the 
projection of circular motion on the vertical or horizontal takes the same 
shape as SHM. This is very useful in analysing SHM.

The relationship between displacement, velocity,  
and acceleration
In Sub-topic 4.1 we saw that, starting from the displacement–time 
curve, we could derive the velocity–time and acceleration–time curves 
from the gradients. This can be done graphically, but another technique 
is to differentiate the equations with respect to time (differentiation is 
equivalent to finding the gradient). 

We have seen from the comparison with circular motion that the 
displacement takes the form: x =  x  0  sin ωt or x =  x  0  cos ωt depending on 
when we start timing. It really doesn’t matter whether the projection is onto 
the x-axis or the y-axis – therefore we can use x and y interchangeably.

Let’s start with x =  x  0  sin ωt 

This means that the velocity is given by v  ( =   dx
 __ 

dt
   )  =  x  0  ω cos ωt, where  x  0  

is the amplitude and ω the angular frequency.

The maximum value that cosine can take is 1 so the maximum velocity 
is  v  0  =  x  0  ω thus making the equation for the velocity at time t become 
v =  v  0  cos ωt

We know that the acceleration will be the gradient of a velocity–time 
graph so we have

a =   dv
 __ 

dt
   = - v  0 ω sin ωt = - x  0   ω  2  sin ωt 

As for cosine, the maximum value that sine can take is 1 so  
 a  0  =  v  0  ω =  x  0   ω  2  giving a = - a  0  sin ωt

Comparing the equations x =  x  0  sin ωt and a = - x  0   ω  2  sin ωt we can see a 
common factor of  x  0  sin ωt

meaning that 

a = - ω  2  x
This may remind you, in Sub-topic 4.1, we saw that a = -kx for SHM.

So the constant k must actually be  ω  2  (the angular frequency squared). 
We will look at the significance of  ω  2  very soon.

In examinations, you can be asked to find maximum values for velocity and 
acceleration – this makes the calculations easier because the maximum of 
sine and cosine are each 1 and, therefore, we don’t need to include the sine 
or cosine term in our calculations. Thus the maximum velocity will be 
 v  0  =  x  0  ω and the magnitude of the maximum acceleration will be  a  0  =  x  0   ω  2  
(the direction of  a  0  will be opposite that of  x  0 ).

Modelling SHM with a spreadsheet
Much can be learned about SHM by using a spreadsheet to graph it. 
Figure 3 is a screen shot of part of a spreadsheet set up for this purpose 

Note
 ● You will meet differential 

calculus in your Mathematics 
or Mathematics Studies 
course. This is not the 
place to teach you to 
differentiate – you will 
not be expected use 
calculus on your IB Physics 
course. However, for 
students studying physics, 
engineering and allied 
subjects at a higher level, 
calculus will form a major 
aspect of your course. In this 
case, we will differentiate the 
equations, but it is the results 
that are important not the 
method of obtaining them.
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  Figure 3 Spreadsheet for SHM.
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−4.55
−4.92
−4.99
−4.73
−4.18
−3.37
−2.34
−1.17

     0.08
     1.33
     2.49
    3.49
     4.27
    4.79

  5.0
     4.89
     4.48
    3.78
    2.24
     1.73
     0.50
−0.75
−1.96
−3.05
−3.94
−4.58
−4.94
−4.98
−4.71
−4.14
−3.31
−2.27

     6.30
    6.10
     5.52
     4.58
     3.36
     1.93
     0.37
−1.21
−2.71
−4.05
−5.12
−5.87
−6.26
−6.24
−5.84
−5.06
−3.96
−2.62
−1.11
     0.48
     2.03
     3.45
     4.66
     5.57
    6.13
     6.30
     6.07
     5.46
     4.51
     3.27
     1.83
     0.26
−1.31
−2.81
−4.13
−5.18
−5.91
−6.27
−6.23
−5.79
−5.00
−3.88
−2.52
−1.00

     0.58
    2.13
     3.54
     4.73
     5.62

     0.00
 −1.98
−3.83
−5.45
−6.71
 −7.56
 −7.92
 −7.79
−7.16
−6.09
−4.62
−2.87
−0.93

      1.06
      2.99
     4.73
     6.17

      7.22
      7.81
      7.92
      7.52
     6.64
     5.35
     3.72
     1.85
−0.13
−2.11
−3.95
−5.54
−6.78
 −7.60
 −7.93
 −7.76
 −7.11
 −6.00
−4.51
−2.74
−0.84

     1.20
     3.11
     4.84
     6.25
      7.28
      7.84
      7.90
      7.47
     6.57
     5.25
     3.60

time/s
A

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

displacement/m velocity/m s−1 acceleration/m s−2
E F G H I J K L M N O P QB C D

t/s

t/s

t/s

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

(as before this uses Microsoft Excel but other spreadsheets will have 
similar functions). Column A contains incremental times starting from 
zero (cell H1 is copied into A2 – this means that the starting time can 
be changed). Cell H2 determines the time increments (in this case 
0.2 s) by adding the contents of H2 to each previous cell; the times can 
be increased down the column. The formula in cell A3, in this case, 
is =A2+$H$2 and the formula in cell A4 is =A3+$H$2, etc.
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The times generated, together with chosen values of  x  0  and ω, are used to 
generate the displacement, velocity and time curves. The values for  x  0  and 
ω are inserted into cells J1 and J2 respectively – these can then be changed 
at will. The equation for the displacement, x =  x  0  sin ωt is converted into 
the formula =$J$1*SIN(A2*$J$2), which is copied into column B. The 
equation for the velocity, v =  x  0  ω cos ωt is converted into the formula 
=$J$1*$J$2*COS(A2*$J$2) which is copied into column C. Finally, the 
equation for the acceleration, a = - x  0   ω  2  sin ωt, is converted into the 
formula =(-1)*$J$1*($J$2)^2*SIN(A2*$J$2) and is copied into column D.

To produce the curves shown in figure 3, you now need to: 

 ● insert a scatter chart

 ● choose the data series

 ● do a little formatting to improve the size and position of the chart 
and label the axes, etc.

The SHM equation and  ω  2 
Re-visiting the equation a = - ω  2  x discussed earlier in this sub-topic, 
we see that it fits the definition of SHM (motion in which the 
acceleration is proportional to the displacement from a fixed 
point and is always directed towards that fixed point). The 
equation is the defining equation for SHM.

The sinusoidal graphs provide the solutions to this equation with respect 
to time. This may seem strange because there is no apparent time factor 
in a = - ω  2  x. This is where  ω  2  comes in. We saw with circular motion 
that ω represents the angular speed. Therefore  ω  2  is simply the square of 
this measured in rad2 s−2.  ω  2  has dimensions equivalent to   (   1

 ____ time   )   2 .
In circular motion we defined ω as being    ∆θ __ ∆t   or simply   θ __ t   when it is 
constant. For a complete revolution the angle will be 2π radians and the 
time will be the periodic time T. This means that ω =   2π ___ T   or, alternatively, 
ω = 2πf; comparing this equation with f =   1 __ T   explains why we can call ω 
the angular frequency.

Worked example
An object performs SHM with a period of 0.40 s 
and has amplitude of 0.20 m. The displacement is 
zero at time zero. Calculate:

a) the maximum velocity 

b) the magnitude of the velocity after 0.10 s 

c) the maximum acceleration of the object.

Solution
a)  v  0  =  x  0  ω =  x  0  ×   2π _ 

T
  

  v  0  = 0.20 ×   2π _ 
0.40

   = 3.1 m s−1

b) As the displacement is zero at time zero this 
must be a sine or negative sine wave. Thus the 
velocity will be a cosine or negative cosine. 

We are only asked to find the magnitude of 
the velocity so it doesn’t matter which of the 
cosine curves the motion really takes.

Using v =  x  0  ω cos ωt 

ωt =   2πt _ 
T

   =   
(2π × 0.10)

  __ 
0.40

   ≈   π _ 
2

   rad

So v = 0.20 ×   2π _ 
0.40

   × cos   π _ 
2

   = 0

This could have been done without the full 
calculation once we had decided that it was a 
cosine. 0.10 s represents the time for a quarter 
of a period (0.40 s); the value of any cosine at 
a quarter of a period (or   π __ 2   radian) is zero.

c)  a  0  =  x  0   ω  2  = 0.20 ×   (   2π _ 
0.40

   )   2  ≈ 49 m s−1

Note
We have used a spreadsheet to 
show the solutions to the SHM 
equation. Later we will discuss 
how we can actually solve the 
SHM equation using iteration.
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The velocity equation
The derivation of the SHM equation is for reference and you don’t need to 
reproduce it – following it through, however, will help you to understand 
what is going on.

We have already seen that v =  x  0  ω cos ωt and x =  x  0  sin ωt  
and you may know that  sin  2  θ +  cos  2  θ = 1.

This means that cos θ = ± √
________

 1-  sin  2  θ   (don’t forget that squaring either 
the positive or negative cosine will give (+) cos  2  θ. This means that ± 
must be included in the square root of this.

So v = ± x  0 ω  √________
 1-  sin  2  ωt  

But sin ωt =   x __  x  0 
   so  sin  2  ωt =   (   x __  x  0 

   )   2 
v = ± x  0  ω  √_______

 1-   (   x _  x  0 
   )   2    = ±ω  √___________

    x  0   
2  -   x  0   

2    (   x _  x  0 
   )   2    = ±ω  √______

   x  0   
2  -  x  2    

The equation v = ±ω √______
   x  0   

2  -  x  2    is useful for finding the velocity at a 
particular position when you know the amplitude and period (or frequency 
or angular frequency) – you don’t need to know the time being considered.

Worked example
An object oscillates simple harmonically with 
frequency 60 Hz and amplitude 25 mm. Calculate 
the velocity at a displacement of 8 mm.

Solution
ω = 2πf = 120π (there is no need to calculate the 
value here but do not leave π in the answer in an 
examination. 

v  = ±ω  √______
   x  0   

2  -  x  2    

= ±120π  √
____________________

     ( 25 ×  10  -3  )   2 -   ( 8 ×  10  -3  )   2    
= ±8.9 m s−1

Note
 ● ± tells us that the object could be going in 

either of the two opposite directions.

 ● Don’t forget   x  0   
2  -  x  2  ≠   (  x  0  - x )   2 ; it is a 

common mistake for students to equate these 
two expressions.

Simple harmonic systems
1. The simple pendulum
The simple pendulum represents a straightforward system that oscillates 
with SHM when its amplitude is small. When the pendulum bob (the 
mass suspended on the string) is displaced from the rest position there 
is a component of the bob’s weight that tends to restore the bob to its 
normal rest or equilibrium position. A condition of a system oscillating 
simple harmonically is that there is a restoring force that is proportional 
to the displacement from the equilibrium position – this is, in effect, tying 
in with the equation defining SHM because F = ma and a = - ω  2  x this 
means that F = -m ω  2  x.

Figure 4 shows the forces acting on a pendulum bob. The bob is in 
equilibrium along the radius when the tension in the string  F  t  equals 
the component of the weight in line with the string (=mgcosθ). The 
component of the weight perpendicular to this is not in equilibrium and 
provides the restoring force.  Figure 4 Restoring force for simple pendulum.

θ

θ

l

Ft m
mg sin θ

mg cos θ
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So the restoring force must be equal to the mass multiplied by the 
acceleration according to Newton’s second law of motion:

mg sin θ = ma

For a small angle sin θ ≈ θ ≈   x _ 
l
  

rearranging gives -m  (   g _ 
l
   )  x = ma

(The minus sign is because the displacement (to the right) is in the 
opposite direction to the acceleration (to the left) in figure 4.

Cancelling m

a = -  (   g _ 
l
   )  x

this compares with the defining equation for SHM a = - ω  2  x leading to

 ω  2  =   
g
 _ 

l
  

As the periodic time for SHM is given by T =   2π _ ω  , this shows that T = 2π √__
   l _ g    .

  Investigate!
1 Experimenting with the simple pendulum: 

 ● attach a piece of thread of length about 
2 metres to a pendulum bob (a lump of 
modelling clay would do for this)

 ● suspend the thread through a split cork to 
provide a stable point of suspension

 ● align a pin mounted in another piece 
of modelling clay with the rest position 
of the bob – to act as a reference point 
(sometimes called a fiducial marker)

 ● set the bob oscillating through a small 
angle and start timing as the bob passes the 
fiducial marker (you should consider why 
your measurements are likely to be more 
reliable when the bob is moving at its fastest)

 ● time thirty oscillations (remember that each 
oscillation is from A to C and back to A)

 ● measure the length of the thread from the 
point of suspension to the centre of mass 
of the bob (take this to be the centre of 
the bob)

 ● repeat the procedure and find an average 
period for the pendulum

bob

ruler

l

split cork

G-clamp

timer

clamp

C

θθ < 10°

B

A

Note
 ● The period of a simple 

pendulum is independent 
of the mass of the 
pendulum.

 ● The period of a simple 
pendulum is independent 
of the amplitude of the 
pendulum.

 ● l is the length of the 
pendulum from the point of 
suspension to the centre of 
mass of the bob.

 ● The equation only applies to 
small oscillations (swings 
making angle of less than 
10° with the rest position).
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 ● repeat your measurements for a range of 
lengths

 ● first plot a graph of periodic time T against 
length l 

 ● referring to the simple pendulum equation 
you may see that this graph should not be 
linear – what should you plot in order to 
linearize your results?

 ● how can you use the graph to calculate a 
value for the acceleration of freefall g?

 ● don’t forget to do an error analysis and 
compare your result with the accepted 
value of g.

2 Use of iteration

Making use of the powerful iterative 
functionality of a spreadsheet can be a 
valuable learning aid. With iteration a 
graphical investigation is possible from 
basic principles and basic equations without 
knowing the solution and without advanced 
mathematics.

 ● you will need to set up a worksheet 
with the headings time, displacement, 
acceleration, change in velocity, velocity 
and change in displacement

 ● you now need to set up the initial 
conditions:

1. choose a time increment for the 
iteration (make it fairly large until your 
spreadsheet is working well)

2. start your time column at zero and 
decide how long you want to run the 
iteration for (make this, say, 10 time 
increments initially)

3. choose an amplitude value for your 
oscillation 

4. set the initial displacement value equal 
to the amplitude

5. choose a constant (k or ω2)

6. set the initial velocity to be zero
 ● the acceleration will always be -k 

multiplied by the displacement

 ● because acceleration is the change 
in velocity divided by your time 

increment the change in velocity will 
be the acceleration multiplied by the 
time increment – when you add this 
to your previous velocity you will 
get the new velocity (actually it’s the 
average velocity through the time 
increment) 

 ● because velocity is the change in 
displacement divided by the time increment, 
you can find the change in displacement by 
multiplying your current velocity value by 
your chosen time increment

 ● the new value of the displacement will be 
the previous value added to the change in 
displacement

 ● This now feeds back into finding the next 
value of the acceleration and the cycle 
repeats and you generate your data for 
which you can plot displacement-time, 
velocity-time and acceleration-time graphs 
(a example of the spreadsheet is included 
on the website).

The following flow chart illustrates the iteration:

Subscripts n represent the current value of a 
variable and n + 1 the next value; at each loop 
the next value always replaces the previous one.

noenough
increments ?

finish

yes

n = 0
choose ∆t, tn, xn, k
υn = 0

  ∆υ = an+1 × ∆t
υn+1 = υn + ∆υ

  ∆x = υn+1 × ∆t
xn+1 = xn + ∆x

an+1 = -k × xn

n         n+1

360

9 WAV E  P H E N O M E N A  ( A H L )



2. Mass–spring system
We have focused on a simple pendulum as being a very good 
approximation to SHM. A second system which also behaves well and 
gives largely undamped oscillations is a mass–spring system. We will 
consider a mass being oscillated horizontally by a spring (see figure 5); 
this is more straightforward than taking account of including the effects 
of gravity experienced in vertical motion. We will assume that the 
friction between the mass and the base is negligible. The mass, therefore, 
exchanges elastic potential energy (when it is fully extended and 
compressed) with kinetic energy (as it passes through the equilibrium 
position).

relaxed spring

initial position
of left edge

base

mass extended spring

restoring force

initial position
of left edge

position of left edge
when spring extended

x

base

mass

  Figure 5 Restoring force for mass-spring system.

When a spring (having spring constant k) is extended by x from its 
equilibrium position there will be a restoring force acting on the 
mass given by F = -kx (the force is in the opposite direction to the 
extension).

Using Newton’s second law 

ma = -kx

which can be written as

a = -  (   k _ m   )  x
this compares with the defining equation for SHM

a = - ω  2 x

 ω  2  =  (   k _ m   ) 
As the periodic time for SHM is given by

T =   2π _ ω  
this shows that

T = 2π  √__
   m _ 

k
    

When the spring is compressed the quantity x represents the compression 
of the spring. When the mass is to the left of the equilibrium position 
the compression is positive but the restoring force will be negative. This, 
therefore, leads to the same outcomes as for extensions.

Note
 ● The period of the 

mass-spring system is 
independent of amplitude 
(for small oscillations).

 ● The period of the 
mass-spring system 
is independent of the 
acceleration of gravity.
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Energy in SHM systems 
We have seen that, in a simple pendulum, there is energy interchange 
between gravitational potential and kinetic; in a horizontal mass–spring 
system the interchange is between elastic potential and kinetic energy. 
Because each system involves kinetic energy we will focus on this form 
of energy and bear in mind that the potential energy will always be the 
difference between the total energy and the kinetic energy at a particular 
time. The total energy will be equal to the maximum kinetic energy.

From Topic 2 we know that the kinetic energy of an object of mass m, 
moving at velocity v, is given by

 E  K  =   1 _ 
2

   m v  2 

We also know that the equation for the velocity at a particular 
position is

v = ±ω √______
   x  0   

2  -  x  2   

Combining these equations gives the kinetic energy at displacement x:

 E  K  =   1 _ 
2

   m  ω  2   (   x  0   
2  -  x  2  ) 

This tells us that the maximum kinetic energy will be given by

 E  Kmax  =   1 _ 
2

   m  ω  2    x  0   
2 

and this must be the total energy (when the potential energy is zero) so 
we can say

 E  T  =   1 _ 
2

   m  ω  2    x  0   
2 

The potential energy at any position will be the difference between the 
total energy and the kinetic energy 

so

 E  P  =  E  T  -  E  K  =   1 _ 
2

   m  ω  2    x  0   
2  -   1 _ 

2
   m  ω  2   (   x  0   

2  -  x  2  )  =   1 _ 
2

   m  ω  2   x  2 

Figure 6 illustrates the variation with displacement of energy: the 
green line shows the total energy, the red the potential energy and the 
blue the kinetic energy. At any position the total energy is the sum of 
the kinetic energy and the potential energy – as we would expect. 

Worked example
The mass–spring system is used 
in many common accelerometer 
designs. A mass is suspended by a 
pair of springs which displaces when 
acceleration occurs. An accelerometer 
contains a mass of 0.080 kg coupled 
to a spring with spring constant of 
4.0 kN m-1. The amplitude of the 
mass is 20 mm. Calculate:

a) the maximum acceleration 

b) the natural frequency of the mass.

Solution
a) a = -  (   k _ m   )  x 

 a = -  (   4.0 ×  10  3  _ 
0.08

   )   20 × 10-3 

 = 1000 m s−2

b) T = 2π √__
   m _ 

k
     so f =   1 _ 

T
   

  =   1 _ 
2π     √__

   k _ m    

f =   1 _ 
2π    √________

   4.0 ×  10  3  _ 
0.08

     = 36 Hz 

0.200

0.400

0.600

0.800

1.200

en
er

gy
/J

1.000

0.000
−0.30 −0.20 −0.10 0.10 0.20 0.300.00

displacement/m

  Figure 6 Variation of energy with displacement.

362

9 WAV E  P H E N O M E N A  ( A H L )



The variation of the potential energy and kinetic energy with displacement 
are both parabolas. With all the quantities in the total energy equation being 
constant, the total energy is, of course, constant for an undamped system.

In addition to looking at the variation of energy with displacement we 
should consider the variation of energy with time. Again, let us start 
with the kinetic energy.

The velocity varies with time according to the equation

v =  x  0  ω cos ωt

so the kinetic energy will be

 E  K  =   1 _ 
2

   m v  2  =   1 _ 
2

   m( x  0  ω cos ωt )  2 

or

 E  K  =   1 _ 
2

   m  x  0   
2   ω  2   cos  2  ωt

When the cosine term equals 1, this gives the maximum kinetic energy. 
The maximum kinetic energy occurs when the potential energy is zero 
and so is numerically equal to the total energy at that instant.

 E  T  =   1 _ 
2

    m x  0   
2   ω  2 

The potential energy will be the difference between the total energy and 
the kinetic energy so

 E  P  =  E  T  -  E  K  

 =   1 _ 
2

    m x  0   
2   ω  2  -   1 _ 

2
    m x  0   

2   ω  2  co s  2  ωt 

 =   1 _ 
2

    m x  0   
2   ω  2  si n  2  ωt

This relationships are shown on figure 7.

The green line represents the total energy, the red curve the potential 
energy and the blue curve the kinetic energy.

Note
 ● The total energy is always 

the sum of the kinetic and 
potential energies.

 ● The graphs (unlike sine 
and cosine) never become 
negative.

 ● The period of the energy 
change is half that of the 
variation with time of 
displacement, velocity, or 
acceleration.

 ● The frequency of the energy 
change is twice that of 
the variation with time of 
displacement, velocity, or 
acceleration.

en
er

gy
/J

2.00.0 4.0 6.0 8.0 10.0 12.0

0.60

0.80

0.40

1.00

0.20

0.00

1.20

time/s

  Figure 7 Graph showing variation of energy with time.
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Introduction
In Sub-topic 4.4 we introduced diffraction and saw that when a wave 
passes through an aperture it spreads into the geometric shadow 
region. We also saw that the diffraction pattern consists of a series of 
bright and dark fringes. We will now consider the diffraction pattern 
in more detail. 

Graph of intensity against angle
Figure 1 shows a single-slit diffraction pattern together with a graph of 
the variation of the intensity of the diffraction pattern with the angle 
measured from the straight-through position.

θ1, θ2, and θ3 are the angles with the straight-through position made by 
the minima. 

  Nature of science
Development of theories
That rays “travel in straight lines” is one of the first 
theories of optics that students encounter. It comes as a 
surprise when this theory cannot explain the diffraction 
seen at the edges of shadows cast by small objects 
illuminated using point sources. Although partial 
shadows can be explained by considering light sources 
to be extended, this cannot account for the diffraction 
from a point source. The wave theory of diffraction and 
how diffraction can be explained in terms of wavefront 
propagation from secondary sources is a good example 
of how theories have been developed in order to explain 
a wider variety of phenomena.

Understanding
 ➔ The nature of single-slit diffraction

9.2 Single-slit diffraction

  Applications and skills
 ➔ Describing the effect of slit width on the 

diffraction pattern
 ➔ Determining the position of first interference 

minimum
 ➔ Qualitatively describing single-slit diffraction 

patterns produced from white light and from a 
range of monochromatic light frequencies

Equations
 ➔ angle between first minimum and central 

maximum θ =   λ  ____ a   

  Figure 1 Variation of intensity with 
angle for a diffraction pattern.

0

central
maximum

Io

5% Io

angle

intensity

θ1 θ2 θ3θ3 θ2 θ1

Note
 ● The central maximum has twice the angular width of 

the secondary maxima (each of these have the same 
angular width).

 ● The intensity falls off quite significantly from the 
principal maximum to the secondary maxima – 
the intensity of the first secondary maximum is 
approximately 5% of that of the principal maximum, 

the second is about 2% and the third is about 1% 
(figure 1 is not drawn to scale – the secondary maxima 
are all larger than a scale-diagram would show).

 ● No light reaches the centre of the minima but, in going 
towards the maxima, the intensity gradually increases 
– it is very difficult to decide the exact positions of the 
maxima and minima.

 ● The intensity is proportional to the square of the amplitude.
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The single-slit equation
Returning to the work of Sub-topic 4.4 we saw how waves can 
superpose to give constructive interference (when they meet in phase) 
or destructive interference (when they meet anti-phase).

(b)(a)

towards first
minimum

path difference = a sinθ

top of slit

single slit

bottom of
slit

incident
plane waves a θ θ

θ
a

wavefront

 Figure 2 Deriving the single slit equation.

Figure 2(a) shows a single-slit of width a. Each point on the wavefront 
within the slit behaves as a source of waves. These waves interfere when 
they meet beyond the slit. For the two waves coming from the edges 
of the slit making an angle θ with the straight through, there is a path 
difference of a sin θ. Waves from a point halfway along the slit will have 
a path difference of   a __ 2   sin θ from the waves coming from each of the 
edges. When this path difference equals half a wavelength, the waves 
from halfway along the slit will interfere destructively with the waves 
coming from the bottom edge of the slit. It follows that for each point in 
the bottom half of the slit there will be a point in the top half of the slit 
at a distance   a __ 2   sin θ from it. This means that when   a __ 2   sin θ =   λ  __ 2  , there is 
destructive interference between a wave coming from a point in the upper 
half of the slit and an equivalent wave from the lower half of the slit.

Because we are dealing with small angles we can approximate sin θ to θ 
and, by cancelling the factor of two, we arrive at the equation

θ =   λ  _ a  

The position of other minima (shown in figure 1) will be given by θ =   nλ ___ a   
(where n = 2, 3, 4, ...) but you will not be examined on this relationship.

TOK

Small angle approximation

We say that diffraction is 
most effective when the 
aperature is of the same order 
of magnitude as the width of 
the slit; we can demonstrate 
this effectively using a ripple 
tank. In the equation θ =   λ ____ a   
if we make λ ≈ a, then θ 
= 1 radian (or 57.3°) or, if 
you avoid the small angle 
approximation, sin θ = 1 
and θ = 90°. Examine how 
closely diffraction in a ripple 
tanks agrees with small angle 
approximation prediction. 
With poor agreement (as this 
should show) why do we 
continue to use the equation 
θ =   λ ____ a  ?

Note
 ● This is the equation for the angle of the first minimum. 

 ● It follows from the equation θ =   nλ _____ a   that the minima are not actually separated 
by equal distances. However, for values of θ that are less than about 10°, it is 
a good approximation to consider the minima to be equally spaced.

 ● The principal or central maximum occurs because the pairs of waves from the 
top and bottom halves of the slit will travel the same distance and have no 
path difference.

 ● The angular width of the principal maximum (from first minimum on one side 
to first minimum on the other) is 2θ.

365

9 . 2  S I N G L E - S L I T  D I F F R A C T I O N



Single slit with monochromatic and white light
Figure 3 shows two images of the light emerging from a single-
slit. The upper image is obtained using monochromatic (one 
frequency) green light and the lower image is obtained using white 
light. Both the angular width of the central maximum and the 
angular separation of successive secondary maxima depend on 
the wavelength of the light – this is the reason why the secondary 
maxima produced by the diffraction of white light are coloured. You 
will see that, for the secondary maxima, the blue light is less deviated 
than the other colours as it has the shortest wavelength. The edges 
of the principal maximum are coloured rather than pure white. This 
is because the principal maxima for the colours at the blue end of 
the visible spectrum are less spread than the colours at the red end; 
the edges are therefore a combination of red, orange, and yellow and 
have an orange hue.

Worked example
a) Explain, by reference to waves, the diffraction 

of light at a single slit.

b) Light from a helium–neon laser passes through 
a narrow slit and is incident on a screen 3.5 m 
from the slit. The graph below shows the 
variation with distance x along the screen of 
intensity I of the light on the screen. 

x/mm

I

1050−5−10

(i)  The wavelength of the light emitted by the 
laser is 630 nm. Determine the width of 
the slit.

(ii)  State two changes to the intensity 
distribution of the central maximum 
when the single slit is replaced by one of 
greater width.

Solution
a) The wavefront within the slit behaves as a series 

of point sources which spread circular wave fronts 
from them. These secondary waves superpose 
in front of the slit and the superposition of the 
waves produces the diffraction pattern.

b) (i)  In this case the graph is drawn for distance 
not angle, so we need to calculate the 
angle θ in order to be able to use θ =   λ __ a  . 

θ =   s __ D   =   3.0 ×  10  -3 
 ________ 3.5   

= 0.86 ×  10  −3  rad with s being the 
distance from the centre of the principal 
maximum to the first minimum. It is 
more reliable to measure 2θ from the first 
minimum on one side of the principal 
maximum to the first minimum on the 
other side of the principal maximum. D is 
the distance from the slit to the screen.

a =   λ __ θ   =   630 ×  10  -9 
 _________ 

0.86 ×  10  -3 
   

= 0.73 ×  10  −3  m or 0.73 mm

(ii)  With a wider slit more light is able to pass 
through. This will result in an increase in 
the intensity of the beam and so the peaks 
will all be higher. 

a in the equation θ =   λ __ a   increases but λ 
remains constant; the angle θ will decrease 
which means the principal maximum will 
become narrower and the minima will 
move closer together.

  Figure 3 Single slit with 
monochromatic and white light.
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  Investigate!
Diffraction at a single slit

 ● Using a laser pointer, shine the light on the 
gap between the jaws of a pair of digital or 
vernier callipers (forming a slit) and project it 
onto a white screen. The screen needs to be 
at least 3 m from the callipers.

 ● Adjust the callipers so that the image is clear.

 ● Measure the separation, s, of the first minima 
on the screen using a metre ruler.

  Figure 4 Investigating laser light passing through slit.

D

s

screen
callipers

laser
2θ

 ● Measure the distance between the callipers 
and the screen, D, using a tape-measure.

 ● Calculate the wavelength of the light using  
λ ≈ aθ as we know that 2θ ≈   s _ 

D
  

 ● Both the dependence of the width of the 
central maximum and the separation of the 
maxima on the wavelength of light can be 
investigated by using laser pointers with 
different colours.

 ● Research the wavelength ranges of the laser 
light and then suggest how you could modify 
the experiment to check the calibration of the 
callipers at small jaw separation.

We will return to diffraction when we look at 
resolution in Sub-topic 9.4.

  Nature of science
Thin film interference
The observation of colour is not simply a question 
of colour pigmentation. Certain mollusc and 
beetle “shells”, butterfly wings, and the feathers 
of hummingbirds and kingfishers can produce 
beautiful colours as a result of thin film interference 
known as “iridescence”. The observed colour 
changes depend on the angle of illumination or 
viewing, and are caused by multiple reflections from 
the surfaces of films with thicknesses similar to the 
wavelength of light. These natural aesthetics require 
the analysis of the physics of interference.

Understanding
 ➔ Young’s double-slit experiment
 ➔ Modulation of two-slit interference pattern by 

one-slit diffraction effect
 ➔ Multiple slit and diffraction grating interference 

patterns
 ➔ Thin film interference

9.3 Interference
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  Applications and skills
 ➔ Qualitatively describing two-slit interference 

patterns, including modulation by one-slit 
diffraction effect

 ➔ Investigating Young’s double-slit experimentally
 ➔ Sketching and interpreting intensity graphs of 

double-slit interference patterns
 ➔ Solving problems involving the diffraction 

grating equation
 ➔ Describing conditions necessary for constructive 

and destructive interference from thin films, 
including phase change at interface and effect of 
refractive index

 ➔ Solving problems involving interference from 
thin films

Equations
fringe separation for double slit: s =   λD ______ d  
diffraction grating equation: nλ = d sinθ
light reflection by parallel-sided thin film: 
constructive interference 2dn = (m +   1 ___ 2  )λ
destructive interference 2dn = mλ



Introduction
In Sub-topic 4.4 we considered interference of the waves emitted by two 
coherent sources. We saw that interference is a property of all waves, and 
we considered the equal fringe spacing in the Young double-slit experiment. 
In this sub-topic we focus on the intensity variation in a double-slit 
experiment and see how interference is achieved using multiple slits. We 
then look at a second way of achieving interference, using division of 
amplitude instead of division of wavefront as with double-slit interference.

Intensity variation with the double-slit
Figure 1 shows the image of the light from a helium–neon laser that 
has passed through a double slit. The alternate red and dark fringes 
are equally spaced as we saw in Sub-topic 4.4. However, looking at the 
image closely we see that there are extra dark regions.

 Figure 1 Double-slit diffraction pattern for light from He–Ne laser.

We know from Sub-topic 9.2 that a single slit produces a diffraction pattern 
with a very intense principal maximum and much less intense secondary 
maxima. A double slit is, of course, two single slits so each of the slits 
produces a diffraction pattern and the waves from the two slits interfere. 
The two effects mean that the intensity of the interference pattern is not 
constant, but is modified by the diffraction pattern to produce the intensity. 

Figure 2(a) below shows how the relative intensity would vary for a double-
slit interference pattern without any modification due to diffraction. By using 
relative intensity we avoid the need to think about the actual intensity values 
and units. Figure 2(b) shows the variation of relative intensity with angle 
for a single slit. Figure 2(c) shows the superposition of the two effects so that 
the single-slit diffraction pattern behaves as the envelope of the interference 
pattern. Shaping a pattern in this way is called modulation and is important in 
the theory of AM (amplitude modulation) radio. You will note that the fringe 
spacing does not change between figures 2(a) and (c) but that the bright 
fringes occurring between 11° and 14° in figure 2(a) are reduced to a much 
lower intensity. An interference maximum coinciding with a diffraction 
minimum is suppressed and does not appear in the overall pattern.

We saw in Sub-topic 4.4 that the fringe separation s for light of 
wavelength λ is given by

s =   λD _ 
d
  

where D is the distance from the double slit to the screen and d 
is the separation of the slits. The value of s used in this equation is 
for the interference pattern not the modulated pattern caused by 
diffraction.
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0
angle from straight through position/°

relative intensity

relative intensity

(b)

5 10 15 2020 15 10 5

0
angle from straight through position/°

(a)

5 10 15 2020 15 10 5

0
angle from straight through position/°

relative intensity
(c)

5 10 15 2020 15 10 5

 Figure 2 Combination of diffraction and interference.

Multiple-slit interference
We have now seen the interference patterns produced both by a single 
slit and a double slit. What happens if there are more than two slits? 
The answer is that the bright fringes, which come from constructive 
interference of the light waves from different slits, remain in the same 
positions as for a double slit but the pattern becomes sharper. The bright 
fringes are narrower and their intensity is proportional to the square of 
the number of slits. Why is this?

At the centre of the principal maximum the waves reaching the screen 
from all of the slits are in phase and so it is very bright here. By moving 
to a position close to the centre of this maximum the path difference 
between the light from two adjacent slits has changed by such a small 
amount that it hardly affects the interference and so it is still bright. Slits 
further away from each other will have more likelihood of a greater path 
difference and therefore meeting out of phase. 
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Imagine having three slits: at the principal maximum the path difference 
between the waves will be small as their paths are nearly parallel. Each 
of the three wave trains will meet nearly in phase at positions around 
the principal maximum peak, which makes it fairly wide.  

Now imagine having 100 slits: for every slit there will a second 
slit somewhere that transmits a wave with a half wavelength path 
difference from the first. When the waves interfere at a position  
close to the centre of the maximum, destructive interference occurs 
and reduces the overall intensity. This will be true for the waves 
coming from the two slits adjacent to this pair, the two next to 
those and so on. Increasing the number of slits will give destructive 
interference close to the centre of the maxima – this reduces the 
width of the central maximum (and the other maxima too). The  
extra energy that is needed to increase the intensity of the maxima 
must come from the regions that are now darker, so the maxima are 
more intense. 

The mathematics of modulation of waves is quite complex and for the 
purpose of the IB Physics course you will simply need to recognize that 
the modulation is happening and remember the effect of increasing the 
number of slits. 

Figure 3 shows the interference patterns obtained when red laser light 
passes through various numbers of slits of identical width. Figures 3 
and 4 show that the single-slit diffraction pattern always acts as an 
envelope for the multiple-slit interference patterns.

 Figure 3 The effect of increasing the number of slits on an interference pattern.

In figure 4 the relative intensities have been drawn the same size in 
order to show the increased sharpness; however, for two, three, and five 
slits the actual intensities are in the ratio 1 : 9 : 25.
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The diffraction grating
A diffraction grating is a natural consequence of the effect on the 
interference pattern when the number of slits is increased. Diffraction 
gratings are used to produce optical spectra. A grating contains a large 
number of parallel, equally spaced slits or “lines” (normally etched 
in glass or plastic) – typically there are 600 lines per millimetre (see 
figure 5). When light is incident on a grating it produces interference 
maxima at angles θ given by

nλ = d sinθ
The spacing between the slits is small, which makes the angle θ large for a 
fixed wavelength of light and n. This means that we cannot use the small 
angle approximation for relating the wavelength to the position of the 
maxima as we did for a double-slit. Figure 6 shows a section of a diffraction 
grating in which three consecutive slits deviate the incident waves towards 
a maximum. The slits are so narrow and the screen is so far away from the 
grating that the angles made by the diffracted waves are virtually identical. 
Providing the path difference between waves coming from the same part of 
successive slits is an integral number of wavelengths, the waves will reach 
the screen in phase and give a maximum. In the case of a diffraction grating 
the distance d is taken as the length of both the transparent and opaque 
sections of the slit (they are taken to be of equal width). From figure 6 we 
see that the path difference between those waves coming from A and B and 
the path between waves coming B and C will each be d sin θ. This means 

 Figure 4 The effect of increasing the number of slits on variation of intensity.

single slit

angle from straight through position/°
20 15 10 5 5 10 15 200

three slits

angle from straight through position/°
20 15 10 5 5 10 15 200

double slit

angle from straight through position/°
20 15 10 5 5 10 15 200

five slits

angle from straight through position/°
20 15 10 5 5 10 15 200

relative intensity

relative intensity relative intensity

relative intensity

 Figure 5 Diffraction grating.

white light
source

diffraction grating

portion of grating light diffracted
at θ to normal

A

d
θ

θ

θ

B

C

  Figure 6 Deriving the diffraction 
grating equation.
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that nλ = d sin θ (where n is the “order” of the maximum and is zero for the 
central maximum, 1 for the first maximum on each side of the centre, etc.).

We can see that the angular positions of the interference maxima 
depend on the grating spacing, d. The shape of the diffraction envelope, 
however, is determined by the width of the clear spaces (as for a 
single slit). The maxima must lie within the envelope of the single slit 
diffraction pattern if they are to be relatively intense; this sets an upper 
limit on how wide the transparent portions of the grating can be.

One of the uses of a diffraction grating is to disperse white light into 
its component colours: this is because different wavelengths produce 
maxima at different angles. Figure 7 shows that light of greater 
wavelength (for any given order) is deviated by a larger angle. This is in 
line with what we would predict from using nλ = d sin θ. Each successive 
visible spectrum repeats the order of the colours of the previous one but 
becomes less intense and more spread out.

Grating spacing and number of lines per mm
It is usual for the “number of lines per mm” or (N) to be quoted for 
a diffraction grating, rather than the spacing. N must be converted 
into d in order to use the diffraction grating equation nλ = d sin θ. 
This is straightforward because d =   1 __ N   but N must first be converted to 
the number of lines per metre by multiplying by 1000 before taking 
the reciprocal. 

  Nature of science
Appropriate wavelengths for effective 
dispersion
For a diffraction grating to produce an observable 
pattern, the grating spacing must be comparable 
to the wavelength of the waves. The wavelength 
of visible light is between approximately 
400–700 nm. A grating with 600 lines per mm 
has a spacing of approximately 2000 nm or four 
times the wavelength of green light. This spacing 
produces very clear images.

The wavelengths of low-energy X-rays is 
around 10-10 m or 0.1 nm. The 600 lines per 
millimetre optical grating will not produce any 
observable maximum ... therefore, what will 
diffract X-rays? The spacing of ions in crystals is 
of the same order of magnitude as X-rays and the 
regular lattice shape of a crystal can perform the 
same task with X-rays as a diffraction grating does 
with visible light. The diffracted patterns are now 
commonly detected with charge-coupled device 
(CCD) detectors.

  Figure 7 Dispersing white light with a 
diffraction grating.

Worked example
A diffraction grating having 600 lines per 
millimetre is illuminated with a parallel beam 
of monochromatic light, which is normal to the 
grating. This produces a second-order maximum 
which is observed at 42.5° to the straight-
through direction. Calculate the wavelength of 
the light.

Solution
N = 6.00 ×  10  5  lines per metre.

d =   1 __ N   =   1
 ________ 

6.00 ×  10  5 
   = 1.67 ×  10  -6  m.

nλ = d sin θ so λ =   dsin θ ____ n   =   1.67 ×  10  -6  × sin 42.5
  ________________ 2   (don’t 

forget to have your calculator in degrees)

λ = 5.64 ×  10  -7  = 564 nm (all data is given to 
three significant figures so the answer should also 
be to this precision).
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Interference by division of amplitude
It was mentioned in the introduction to this sub-topic that there are two 
ways of providing coherent sources that are able to interfere. Young’s double 
slit and multiple slits all derive their interfering waves by taking waves from 
different parts of the same wavefront. Because the interfering waves have 
all come from the same wavefront they will be in phase with each other. 
Wherever the waves meet they will interfere and a fringe pattern can be 
obtained anywhere in front of the sources (the slits). Since this interference 
can be found anywhere the fringes are said to be “non-localized”.

Division of amplitude is a method of achieving interference using two 
waves that have come from the same point on a wavefront. Each wave 
has a portion of the amplitude of the original wave. In order to achieve 
interference by division of amplitude, the source of light must come 
from a much bigger source than the slit used for division of wavefront 
interference. The image produced will, however, be “localized” to one 
place instead of being found anywhere in front of the sources. 

Thin film interference
Figure 9 shows a wave incident at an angle θ to the normal to the 
surface of a film of transparent material (such as low-density oil or 
detergent) having refractive index n. This diagram is not drawn to scale  

  Nature of science
Using a spectrometer
A spectrometer is a useful, if expensive, piece of 
laboratory equipment that allows the wavelengths 
of light emitted by sources to be analysed. The 
instrument consists of a collimator, turntable 
and telescope. A diffraction grating or other light 
disperser is placed on the turntable, which is 
carefully levelled. The collimator uses lenses to 
produce a parallel beam of light from a source – 
this light beam is then incident on the grating that 
disperses it. The end of the collimator furthest 
from the grating has a vertical adjustable slit 
that serves as the source – when we talk about 
spectral lines we infer that a spectrometer is being 

used because the “lines” are the dispersed images 
of the collimator slit. Before measurements are 
made the telescope is focused on the collimator 
slit – this means that the dispersed light will also 
be in focus. It is usual for sources that are said to 
be “monochromatic” to actually emit a variety of 
different wavelengths. By using the spectrometer, 
the angle θ in the diffraction grating equation can 
be measured. This is usually done by measuring 
the angle between the two first-order images on 
either side of the straight-through position i.e. 2θ. 
With a knowledge of the grating spacing d, the 
wavelength λ can be determined.

  Figure 8 Key features of a spectrometer.

θ

turntable

angular scale

diffraction grating

light source

telescope
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– θ and t are both very small so that incident wave is effectively normal 
to the surface. The incident wave partially reflects at the top surface 
of the film and partially refracts into the film. This refracted wave, on 
reaching the lower surface of the film, again partially reflects (remaining 
in the film) and partially refracts into the air below the film. This process 
can occur several times for the same incident wave.

  Figure 9 Interference at parallel-sided thin film.
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Waves reflected by the film (you 
may be tested on this in IB Physics 
examinations)
In this case A has been reflected from 
the top surface of the film and, because 
the reflection is at an optically denser 
medium, there is a phase change of π 
radian (equivalent to half a wavelength). 
The wave B travels an optical distance of 
2tn before it refracts back into the air. Thus 
the optical path difference between A and 
B will be 2tn. If there had been no phase 
change then this optical distance would 
equal mλ for constructive interference. 
However, because of A’s phase change at 
the top surface the overall effect will be 
destructive interference. 

Thus for the light reflecting from the film 
when

2tn = mλ 

there will be destructive interference and 
when 

2tn = (m +   1 ___ 2  )λ
 there will be constructive interference.

  Nature of science 
Coating of lenses
When light is incident on a lens some of it will 
be reflected and some transmitted. The reflected 
light is effectively wasted, reducing the intensity 
of any image formed (by the eye using corrective 
lenses, in a camera or in a telescope). By coating 
the lens with a transparent material of quarter 
of a wavelength thickness, the light reflected by 
the coating and the light reflected by the lens 
can be made to interfere destructively and thus 
eliminate the reflection altogether. Magnesium 
fluoride is often used for the coating and is 
optically denser than air but less dense than 

glass (having a refractive index of 1.38). When 
it is used to coat a lens the waves reflecting 
from both the magnesium fluoride and the 
glass will undergo a phase change of π radian 
... so the phase changes effectively cancel each 
other out. The optical path difference between 
the waves will be equal to the refractive index 
of magnesium fluoride multiplied by twice 
the thickness of the coating. For destructive 
interference the optical path difference is 2nt =   λ __ 2   
so the thickness of the coating is given by t =   λ __ 4n  .  
With white light there will be a range of 

Waves transmitted through the film (you will not be tested on this in  
IB Physics examinations)

If the film is thin and θ is small the (geometrical) path difference between waves that 
have passed through the film (i.e. between A' and B' or between B' and C') will be very 
nearly 2t, in other words B' travels an extra 2t compared with A'. Because the waves 
are travelling in a material of refractive index n, the waves will slow down and the 
wavelength becomes shorter. This means that, compared with travelling in air, they 
will take longer to pass through the film. This is equivalent to them travelling through a 
thicker film at their normal speed. The optical path difference will, therefore, be 2tn. If 
this distance is equal to mλ where m = 0, 1, 2 etc. (we are using m to avoid confusion 
with the refractive index n) then there will be constructive interference. If the optical 
path difference is equal to an odd number of half wavelengths, (m +   1 ___ 2   )λ,  then there 
will be destructive interference.
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Worked example
a) Name the wave phenomenon that is 

responsible for the formation of regions of 
different colour when white light is reflected 
from a thin film of oil floating on water.

b) A film of oil of refractive index 1.45 floats on 
a layer of water of refractive index 1.33 and is 
illuminated by white light at normal incidence.

oil

illumination

air

water

When viewed at near normal incidence a 
particular region of the film looks red, with an 
average wavelength of about 650 nm. 

(i) Explain the significance of the refractive 
indices of oil and water with regard to 
observing the red colour.

(ii) Calculate the minimum film thickness.

Solution
a) Although there is reflection involved, the 

colours come about because of interference.

b) (i)  n is the refractive index of the oil. Because 
the waves are travelling in oil, they move 
more slowly than they would do in air and 
so the effective path difference between 
the waves reflected at the air–oil interface 
and the waves at the oil–water interface 
is longer by a factor of 1.45. The wave 
reflected at the air–oil interface undergoes a 
phase change equivalent to   λ __ 2   (oil is denser 
than air). The waves reflected at the oil–
water interface undergo no phase change 
on reflection at the less dense medium. So 
for the bright constructive red interference 
2tn = (m +   1 __ 2  )λ 

if m = 0,

2tn =   λ _ 
2

   or λ = 4tn

(ii) t =   650 _ 
(4 × 1.45)

   = 110 nm

  Nature of science 
Vertical soap films
Figure 10 shows the colours of light transmitted by 
a vertical soap film. Over a few seconds the film 
drains and becomes thinner at the top and thicker 
at the bottom. When the film is illuminated with 
white light, the reflected light appears as a series 
of horizontal coloured bands. The bands move 
downwards as the film drains and the top becomes 
thinner. The top of the film appears black just 
before the film breaks. It has now become too 
thin for there to be a path difference between the 
waves coming from the two surfaces of the film. 
The phase change that occurs for the light reflected 
by the surface of the film closest to the source 
means that, for all colours, there is cancellation 
and so no light can be seen.   Figure 10 Thin film interference in a vertical soap film.

wavelengths and so it is impossible to match 
the thickness of the coating to all of these 
wavelengths. If the thickness is matched to green 
light, then red and blue will still be reflected 
giving the lens the appearance of being magenta 

(= red + blue). By using multiple layers of a 
material of low refractive index and one of 
higher refractive index, it is possible to reduce 
the amount of light reflected to as little as 0.1% 
for a chosen wavelength.
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9.4 Resolution
Understanding

 ➔ The size of a diffracting aperture
 ➔ The resolution of simple monochromatic  

two-source systems

  Applications and skills
 ➔ Solving problems involving the Rayleigh 

criterion for light emitted by two sources 
diffracted at a single slit

 ➔ Describing diffraction grating resolution

Equations
 ➔ Rayleigh’s criterion: θ = 1.22   λ ____ b  
 ➔ resolvance of a diffraction grating:  

R =   λ _______ △λ   = mN

TOK

The aesthetics of physics

The colour in the soap film makes a beautiful image. Does physics need to rely 
upon the arts to be aesthetic? Herman Bondi the Anglo-Austrian mathematician 
and cosmologist implied that Einstein believed otherwise when he wrote:

“What I remember most clearly was that when I put down a suggestion that 
seemed to me cogent and reasonable, Einstein did not in the least contest 
this, but he only said, ‘Oh, how ugly.’ As soon as an equation seemed to 
him to be ugly, he really rather lost interest in it and could not understand 
why somebody else was willing to spend much time on it. He was quite 
convinced that beauty was a guiding principle in the search for important 
results in theoretical physics.” 

— H. Bondi

How does a mathematical equation convey beauty? Is the beauty in the 
mathematics itself or what the mathematics represents?
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  Nature of science
How far apart are atoms?
When we view objects, we are limited by the 
wavelength of the light used to make an observation 
– shorter wavelengths such as X-rays, gamma 
rays and fast-moving electrons will improve the 
resolution that is achievable. However, even using 
the shortest wavelengths obtainable does not allow 
us to locate the exact position of objects on the 

atomic and sub-atomic scale. The process of making 
an observation using these waves disturbs the 
system and increases the uncertainty with which 
we can locate an object. Heisenberg’s uncertainty 
principle places a limit on how close we can be to 
finding the exact position of objects on the quantum 
scale.



Introduction
Resolution is the ability of an imaging system to be able to 
produce two separate distinguishable images of two separate 
objects. The imaging system could be an observer’s eye, a camera, a 
radio telescope, etc. Whether objects can be resolved will depend on the 
wavelength coming from the objects, how close they are to each other 
and how far away they are from the observer.

Diffraction and resolution
We have seen that when light passes through an aperture a diffraction 
pattern is formed. For an optical system the aperture could be the pupil 
of the observer’s eye or the objective lens of a telescope. When there 
are two sources of light two diffraction patterns will be formed by the 
system. 

How close can these patterns be for us to still recognize that there are 
two sources? 

Two objects observed through an aperture will produce two diffracted 
images which may or may not overlap. In the late nineteenth century 
the English physicist, John William Strutt, 3rd Baron Rayleigh, proposed 
what is now known as the Rayleigh criterion for resolution of images. 
This states that two sources are resolved if the principal maximum 
from one diffraction pattern is no closer than the first minimum 
of the other pattern.

The limit to resolution is when the principal maximum of the diffraction 
pattern from one source lies on the first minimum diffraction pattern 
from the second source (and vice versa). Diffracted images further apart 
than this limit will be resolved and those closer will be unresolved.

Figure 1 shows the diffraction intensity patterns produced by two objects 
the same distance apart but viewed through a circular aperture from 
different distances. The variation of intensity with angle for each of the 
diffraction patterns is shown below the image. According to the Rayleigh 
criterion, the uppermost pair of images are fully resolved because the 
principal maximum of each diffraction pattern lies further from the other 
than the first minimum. The central images are just resolved since the 
principal maximum of one diffraction pattern is at the same position as 
the first minimum of the second diffraction pattern. The bottom images 
are unresolved as the principal maximum of one diffraction pattern lies 
closer to the second pattern than its first minimum.

  Nature of science
Other criteria for resolution?
Rayleigh’s criterion is not the only one used 
in optics. Many astronomers believe that they 
can resolve better than Rayleigh predicts. 
C M Sparrow developed another criterion for 
telescopes that leads to an angular separation 

at resolution about half that of Rayleigh. His 
criterion is that the two diffraction patterns when 
added together give a constant amplitude in the 
regions of the two central maxima.

▲  Figure 1 Diffraction intensity 
patterns of two objects viewed 
through a circular aperture.

images fully resolved

images just resolved

images unresolved
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Resolution equation
For single slits we saw in Sub-topic 9.2 that the first minimum occurs 
when the angle with the straight-through position is given by θ =   λ __ a   
where λ is the wavelength of the waves and b is the slit width. With a 
circular aperture the equation is modified by a factor of 1.22, but derivation 
of this factor is beyond the scope of the IB Physics course. So we have 

θ =1.22   λ __ a   

in this case a is the diameter of the circular aperture (or very commonly 
the diameter of the lens or mirror forming the image).

The pupil of the eye has a diameter of about 3 mm and, taking visible 
light to have a wavelength in the order of 6 × 10−7 m, the minimum 
angle of resolution for the eye is θ =   1.22 × 6 × 10-7

  ___________ 
3 × 10-3   ≈ 2 × 10-4 rad. 

Optical defects in the eye mean that this limit is probably a little small.

The primary mirror of the Hubble Space Telescope has a diameter of 2.4 m. 
For this telescope, the minimum angle of resolution is θ =   1.22 × 6 × 10-7

  ___________ 2.4   ≈ 
3 ×10-7 rad. This is a factor of about a thousand smaller than that 
achieved by the unaided eye – which means that the Hubble Space 
Telescope is much better at resolving images. As this telescope is in 
orbit above the atmosphere, it avoids the atmospheric distortion which 
degrades images achieved by Earth-based telescopes. These concepts are 
covered in more detail in Option C (Imaging).

Worked example
A student observes two distant point sources of light. The wavelength 
of each source is 550 nm. The angular separation between these two 
sources is 2.5 × 10–4 radians subtended at the pupil of a student’s eye.  

a) State the Rayleigh criterion for the two images on the retina to be 
just resolved.

b) Estimate the diameter of the circular aperture of the eye if the two 
images are just to be resolved.

Solution
a) The images will be just resolved when the diffraction pattern from 

one of the point sources has its central maximum at the same 
position as the first minimum of the diffraction pattern of the 
other point source.  

b) θ = 1.22   λ __ 
b
   = >b = 1.22   λ __ θ   =   1.22 × 550 × 10-9

  _____________ 
2.5 × 10-4   

    = 2.7 × 10−3 m ≈ 3 mm

  Nature of science
Diffraction and the satellite dish
When radiation is emitted from a transmitting 
satellite dish the waves diffract from the 
dish. The diameter of the dish behaves as 
an aperture. The angle θ made by the first 

minimum with the straight-through is related to 
diameter b by the equation 

θ = 1.22   λ _ 
b
  

Note
 ● You may wish to support 

your answer by drawing 
the two intensity–angle 
curves if you think your 
answer may not be clear.

 ● It is common for 
students to miss out the 
word “diffraction” in their 
answers – this is crucial 
to score all marks.
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Resolvance of diffraction gratings
We have seen that diffraction gratings are used to disperse light of different 
colours. Such gratings are usually used with spectrometers to allow the 
angular dispersion for each of the colours to be measured. When using a 
spectrometer, knowing the number of lines per millimetre on the diffraction 
grating and measuring the angles that the wavelengths of light are deviated 
through allows the wavelengths of the colours to be determined. We 
have seen that there is a limit to how close two objects can be before their 
diffraction images are indistinguishable – the same is true of the different 
wavelengths that can be resolved using a particular diffraction grating.

When we previously looked at interference patterns for multiple slits in 
Sub-topic 9.3, we saw that increasing the number of slits improves the 
sharpness of the maxima formed. Figure 3 shows that, when light of 
the same wavelength is viewed from the same distance x, the angular 
dispersion θD for the principal maximum with the double slit is larger 
than angular dispersion θG for the diffraction grating. A sharper principal 
maximum is one with less angular dispersion. With wider maxima there 
is more overlap of images from different sources and lower resolution.

Using this argument we see that, when beams of light are incident on a 
diffraction grating, a wider beam covers more lines (a greater number of 
slits) and will produce sharper images and better resolution.

The resolvance R for a diffraction grating (or other device used to 
separate the wavelengths of light such a multiple slits) is defined as 
the ratio of the wavelength λ of the light to the smallest difference in 
wavelength that can be resolved by the grating :λ.

The resolvance is also equal to Nm where N is the total number of slits 
illuminated by the incident beam and m is the order of the diffraction. 

R =   λ _ :λ   = Nm

The larger the resolvance, the better a device can resolve.

When the wavelength increases so does the angle 
through which the waves become diffracted. This 
means that the diffracted beam now covers a 
larger area. However, increasing the diameter of 
a dish narrows the beam and it covers a smaller 
area. In satellite communications the footprint is 
the portion of the Earth’s surface over which the 
satellite dish delivers a specified amount of signal 
power. The footprint will be less than the region 
covered by the principal maximum because the 
signal will be too weak to be useful at the edges 
of the principal maximum. Figure 2 shows the 
footprint of a communications satellite.

 ● Small values of the dish diameter will give a 
large footprint but the intensity may be quite 
low since the energy is spread over a large area. 

 ● The footprint of a satellite has social 
and political implications ranging from 
unwarranted observation to sharing television 
programmes.

satellite

footprint

▲  Figure 2 Satellite footprint.

▲  Figure 3 Angular dispersion of principal 
maximum for diffraction grating compared 
with a double-slit.

X

double-slit angular dispersion
of principal maximum

diffraction grating angular dispersion
of principal maximum

X

θD

θG

379

9 . 4  R E S O L U T I O N



  Nature of science
Resolution in a CCD
Charge-coupled devices (CCDs) were originally 
developed for use in computer memory devices 
but, today, appear in all digital cameras and 
smartphones. When you buy a camera or phone 
you will no doubt be interested in the number of 
pixels that it has. The pixel is a picture element 
and, for example, a 20 megapixel camera will 
have 2 × 107 pixels on its CCD. The resolution of 
a CCD depends on both the number of pixels and 
their size when compared to the projected image. 
The smaller the camera, the more convenient it 
is to carry, and (at present) cameras with pixels 
of dimensions as small as 2.7 µm × 2.7 µm are 
mass-produced. In general CCD images are 
resolved better with larger numbers of smaller 
pixels. Figure 4 shows two images of the words 

“IB Physics” – the top uses a small number of 
large pixels, while the lower one is far better 
resolved by using a large number of small pixels. 
The upper image is said to be “pixellated”.

IB Physics
▲  Figure 4 Images with a small number of large pixels and a large 

number of small pixels.

Worked example
Two lines in the emission spectrum of sodium 
have wavelengths of 589.0 nm and 589.6 nm 
respectively. Calculate the number of lines per 
millimetre needed in a diffraction grating if the 
lines are to be resolved in the second-order 
spectrum with a beam of width 0.10 mm.

Solution
R =   λ ___ △λ   =   589.0

 _____ 0.6   (both values are in nanometres so 

this factor cancels)

You would be equally justified in using 589.6 (or 
589.3 – the mean value) in the numerator here.

R = 981.7 (no units)

Thus 981.7 = Nm = N × 2
∴ N = 498.8 lines

This is in a beam of width 0.10 × 10−3 m so, in  
1 mm, there needs to be 4988 ≈ 5000 lines.

Since diffraction gratings are not normally made 
with 4988 lines mm−1, the sensible choice is to use 
one with 5000 lines mm−1!
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9.5 The Doppler effect

  Nature of science
From water waves to the expansion of 
the universe
In his 1842 paper, Über das farbige Licht der 
Doppelsterne (Concerning the coloured light of 
the double stars), Doppler used the analogy of the 
measurement of the frequency of water waves to 
reason that the effect that bears his name should 
apply to all waves. Three years later, Buys Ballot 
verified Doppler’s hypothesis for sound using 
stationary and moving groups of trumpeters. During 
his lifetime Doppler’s hypothesis had no practical 
application; one hundred years on it has far-
reaching implications for cosmology, meteorology 
and medicine.

Understanding
 ➔ The Doppler effect for sound waves and  

light waves

  Applications and skills
 ➔ Sketching and interpreting the Doppler effect 

when there is relative motion between source 
and observer

 ➔ Describing situations where the Doppler effect 
can be utilized

 ➔ Solving problems involving the change in 
frequency or wavelength observed due to the 
Doppler effect to determine the velocity of the 
source/observer

Equations
Doppler equation 

 ➔ for a moving source: 

 f ′ = f  (   v __ 
v ±  u  s 

   ) 
 ➔ for a moving observer: 

 f ′ = f  (   v ±  u  o 
 __ v   ) 

 ➔ for electromagnetic radiation: 

   :f _ 
f
   =   :λ _ λ   ≈   v _ c  

Introduction
When there is relative motion between a source of waves and an 
observer, the observed frequency of the waves is different to the 
frequency of the source of waves. The apparent change in pitch of 
an approaching vehicle engine and a sounding siren are common 
examples of this effect. The Doppler effect has wide-ranging 
implications in both atomic physics and astronomy.

The Doppler effect with sound waves
Although we use general equations for this effect, we build up the 
equations under different conditions before combining them. In the 
following derivations (that need not be learned but will help you to 
understand the equations and how to answer questions on this topic) the 
letter s refers to the source of the waves (the object giving out the sound) 
and the letter o refers to the observer; f will always be the frequency of 
the source and  f   ’  the apparent frequency as measured by the observer. 

Note
It is only the component 
of the wave in the source–
observer direction that 
is used; perpendicular 
components of the motion 
do not alter the apparent 
frequency of the wave.
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1. Moving source and stationary observer

BA
us

S S'
us
f

v
f

v
f

▲ Figure 1 The Doppler effect for a moving source and stationary observer.

At time t = 0 the source is at position S and it emits a wave that travels 
outwards in all directions, with a velocity v as shown in figure 1. At 
time t = T (i.e. one period later) the wave will have moved a distance 
equivalent to one wavelength or (using v = f λ) a distance =   v _ 

f
   to reach 

positions A and B. When the source is moving to the right with a 
velocity us, in time T it will have travelled to S’, a distance  u  s T(=    u  s  __ 

f
  ). To 

a stationary observer positioned at B it will appear that the previously 
emitted crest has reached B but the source that emitted it has moved 
forwards and now is at S’. Therefore, to the observer at B, the apparent 
wavelength (λ’) is the distance S’B =   v _ 

f
   -   

 u  s 
 __ 

f 
  

∴ λ’ =   v -  u  s  _ 
f
  

Thus, the wavelength appears to be squashed to a smaller value. This 
means that the observer at B will hear a sound of a higher frequency 
than would be heard from a stationary source – the sound waves travel 
at speed v (which is unchanged by the motion of the source) so

f ’ =   v _ λ’
   = f   (    v _ v -  u  s 

   ) 
To an observer at A the wavelength would have appeared to be stretched 
to a longer value given by S’A meaning that

λ’ =   v +  u  s  _ 
f
  

and the observed frequency would be lower than that of a stationary 
source, meaning that

f ’ =   v _ λ’
   = f   (   v _ v +  u  s 

   ) 
The two equations for f ’ can be combined into a single equation

f ’ = f   (   v _ 
v ±  u  s 

   ) 
in which the ± sign is changed to - for a source moving towards a  
stationary observer and to + for a source moving away from a 
stationary observer.

2. Moving observer and stationary source
In this case the source remains stationary but the observer at B moves 
towards the source with a velocity  u  o . The source emits crests at a 
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frequency f but the observer, moving towards the source, encounters 
the crests more often, in other words at a higher frequency f ’. Relative 
to the observer, the waves are travelling with a velocity v +  u  o  and the 
frequency is f ’. The wavelength of the crests does not appear to have 
changed and will be λ =   v _ 

f
  . The wave equation (v = f λ) applied by the 

observer becomes v +  u  o  = f ’   v _ 
f
   meaning that the frequency measured by 

the observer will be

f ’ = f   (   v +  u  o  _ v   ) 
When the observer moves away from the source the wave speed appears 
to be v -  u  o  and so

f ’ = f   (   v -  u  o  _ v   ) 
Again the two equations for f ’ can be combined into a single equation

f ’ = f   (   v ±  u  o  _ v   ) 
in which the ± sign is changed to - for an observer moving away 
from a stationary source and to + for an observer moving towards a 
stationary source.

Worked example
A stationary loudspeaker emits sound of frequency of 2.00 kHz. 
A student attaches the loudspeaker to a string and swings the 
loudspeaker in a horizontal circle at a speed of 15 m s–1. The speed of 
sound in air is 330 m s–1.

An observer listens to the sound at a close, but safe, distance from the 
student.

a) Explain why the sound heard by the observer changes regularly.

b) Determine the maximum frequency of the sound heard by the 
observer.

Solution
a) As the loudspeaker approaches the observer, the frequency 

appears higher than the stationary frequency because the 
apparent wavelength is shorter – meaning that the wavefronts 
are compressed. As it moves away from the observer, the 
frequency appears lower than the stationary frequency 
because the apparent wavelength is stretched. The overall 
effect is, therefore, a continuous rise and fall of pitch heard by 
the observer.  

b) The maximum observed frequency occurs when the speaker is 
approaching the observer so: 

 f ’ = f  (    v
 _____ v -  u  s 

   )  = 2000  (   330
 _______ 330 - 15   )  = 2100 Hz (this is 2 s.f. precision in 

line with 15 m s–1)
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The Doppler effect with light
The Doppler effect occurs not only with sound but also with light 
(and other electromagnetic waves); in which case the frequency and 
colour of the light differs from that emitted by the source. There is a 
significant difference in the application of Doppler effect for sound 
and light waves. Sound is a mechanical wave and requires a medium 
through which to travel; electromagnetic waves need no medium. 
Additionally, one of the assumptions or postulates of special relativity 
is that the velocity of light waves is constant in all inertial reference 
frames – this means that, when measured by an observer who is 
not accelerating, the observer will measure the speed of light to be 
3.00 × 108 m s-1 irrespective of whether the observer moves towards 
the source or away from it and, therefore, it is impossible to distinguish 
between the motion of a source and an observer. This is not true for 
sound waves, as we have seen.

Although the Doppler effect equations for light and sound are 
derived on completely different principles, providing the speed of 
the source (or observer) is much less than the speed of light, the 
equations give approximately the correct results for light or sound. 
The quantities us and uo in the Doppler equations for sound have no 
significance for light, and so we need to deal with the relative velocity 
v between the source and observer. Thus, in either of the equations

f ’ = f   (   v _ 
v ±  u  s 

   ) 
or

f ’ = f   (   v ±  u  o  _ v   ) 
the wave speed is that of electromagnetic waves (c) and one of the 
velocities  u  s  or  u  o  is made zero while the other is replaced by the 
relative velocity v.

The first of these equations becomes

f ’ = f   (   c _ c + v   )  = f   (   1 _ 
1 +   v _ c  

   )  = f    ( 1 +   v _ c   )   -1
 

This can be expanded using the binomial theorem to approximate to

f ’ = f   ( 1 -   v _ c   )  ≈ f - f   v _ c  

(ignoring all the terms after the second in the expansion). 

This can be written as

f - f ’≈ f   v _ c  

or

∆f ≈ f   v _ c  

This equation is equivalent to 

:λ ≈ λ   v _ c  

Note
 ● Substituting values into 

the second equation will 
give the same resulting 
relationship – you 
may like to try this but 
remember you do not 
need to know any of 
these derivations. 

 ● The equation is only 
valid when c ≫ v and 
so cannot usually be 
used with sound (where 
the wave speed is ≈ 
300 m s–1 – unless 
the source or observer 
is moving much more 
slowly than this speed).
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Worked example
As the Sun rotates, light waves received on 
Earth from opposite ends of a diameter show 
equal but opposite Doppler shifts. The speed 
of the edge of the Sun relative to the Earth is 
1.90 km s-1. What wavelength shift should be 
expected in the helium line having wavelength 
587.5618 nm?

Solution
Using :f = f   v _ c   this is equivalent to :λ ≈ λ   v _ c  .  

1.90 km s−1 = 1.90 × 103 m s−1

:λ = 587.5618 ×   1.90 ×  10  3 
 ________ 

3.00 ×  10  8 
   = 0.003 7 nm

Since one edge will approach the Earth – 
the shift from this edge will be a decrease 
in wavelength (blue shift) and that of the 
other edge (receding) will be an increase in 
wavelength (red shift).  

  Nature of science
Applications of the Doppler effect
1. Astronomy
The Doppler effect is of particular interest 
in astronomy – it has been used to provide 
evidence about the motion of the objects 
throughout the universe. 

The Doppler effect was originally studied in the 
visible part of the electromagnetic spectrum. Today, 
it is applied to the entire electromagnetic spectrum. 
Astronomers use Doppler shifts to calculate the 
speeds of stars and galaxies with respect to the 
Earth. When an astronomical body emits light 
there is a characteristic spectrum that corresponds 
to emissions from the elements in the body. By 
comparing the position of the spectral lines for 
these elements with those emitted by the same 
elements on the Earth, it can be seen that the lines 
remain in the same position relative to each other 
but shifted either to longer or shorter wavelengths 
(corresponding to lower or higher frequencies). 
Figure 2 shows an unshifted absorption spectrum 
imaged from an Earth-bound source together with 
the same spectral lines from distant astronomical 
objects. The middle image is red-shifted indicating 
that the source is moving away from the Earth. The 
lower image is blue-shifted showing the source to 
be local to the Earth and moving towards us.

Frequency or wavelength shifts can occur 
for reasons other than relative motion. 
Electromagnetic waves moving close to an object 
with a very strong gravitational field can be 
red-shifted – this, unsurprisingly, is known as 

gravitational red-shift and is discussed further in 
Option A. The cosmological red-shift arises from 
the expansion of space following the Big Bang 
and is what we currently detect as the cosmic 
microwave background radiation (this is further 
discussed in Option D).

2. Radar
Radar is an acronym for “radio detection and 
ranging”. Although it was developed for tracking 
aircraft during the Second World War, the 
technique has wide-ranging uses today, including:

 ● weather forecasting

 ● ground-penetrating radar for locating 
geological and archaeological artefacts

 ● providing bearings

 ● radar astronomy

▲ Figure 2 The Doppler shifted absorption spectra.

unshifted

redshifted

blueshifted
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 ● use in salvaging

 ● collision avoidance at sea and in the air.

▲  Figure 3 Radar screen used in weather forecasting.

Radar astronomy differs from radio astronomy 
as it can only be used for Moon and planets close 
to the Earth. This depends on microwaves being 
transmitted to the object which then reflects 
them back to the Earth for detection. In order to 
use the Doppler equations, we must recognize 
that the moving object first of all behaves as a 
moving observer and then, when it reflects the 
microwaves, behaves as a moving source.

This means, for microwave sensing, the equation 
:f ≈ f   v _ c   is adapted to become :f ≈ 2f   v _ c  .

3. Measuring the rate of blood flow
The Doppler effect can be used to measure 
the speed of blood flow in blood vessels in the 
body. In this case ultrasound (i.e. longitudinal 
mechanical waves of frequency above 

approximately 20 kHz) is transmitted towards 
a blood vessel. The change in frequency of the 
beam reflected by a blood cell is detected by the 
receiver. The speed of sound and ultrasound is 
around 1500 m s–1 in body tissue so the equation 
:f ≈ f   v _ c   is appropriate for blood cells moving at 
speeds of little more than 1 m s–1. As the blood 
does not flow in the direction of the transmitter–
receiver, there needs to be a factor that will give 
the necessary component of the blood velocity in 
a direction parallel to the transmitter – receiver. 
As with radar, there will need to be a factor of 
two included in the equation – the shift is being 
caused by the echo from a moving reflector. As 
can be seen from figure 4, the equation for the 
rate of blood flow will be :f ≈ 2f   v cos θ _____ c  .

The Doppler effect flowmeter may be used in 
preference to “in-line” flowmeters because it is 
non-invasive and its presence does not affect the 
rate of flow of fluids. The fact that it will remain 
outside the vessel that is carrying the fluid 
means it will not suffer corrosion from contact 
with the fluid. 

Worked example
Microwaves of wavelength 150 mm are transmitted 
from a source to an aircraft approaching the source. 
The shift in frequency of the reflected microwaves 
is 5.00 kHz. Calculate the speed of the aircraft 
relative to the source. 

Solution
The data gives a wavelength and a change of 
frequency so we need to find the frequency of the 
microwaves.

Using 

c = f λ gives f =   c __ λ   =   3.00 ×  10  8 
 ________ 

150 ×  10  -3 
   = 2.00 ×  10  9  Hz.

Using the Doppler shift equation for radar 

:f ≈ 2f   v _ c   =>v ≈   :fc
 ___ 

2f
   =   5.00 ×  10  3  × 3.00 ×  10  8 

  _________________  
2 × 2.00 ×  10  9 

     
= 375 m  s  −1 

▲  Figure 4 The Doppler effect used to measure the speed of 
blood cells.

blood cells

v direction of
blood flow

blood vessel

ultrasound beam

θ

transmitter–receiver
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Questions 
1 (IB) 

The variation with displacement x of the 
acceleration a of a vibrating object is shown 
below.

 

0.4 0.60.20−0.2−0.4−0.6

x/mm

1000

−1000

−2000

−3000

2000

3000 a/m s−2

a) State and explain two reasons why the 
graph indicates that the object is executing 
simple harmonic motion. 

b) Use data from the graph to show that the 
frequency of oscillation is 350 Hz. 

c) State the amplitude of the vibrations. 

(9 marks)

2 (IB) 
a)  A pendulum consists of a bob that is 

suspended from a rigid support by a 
light inextensible string. The pendulum 
bob is moved to one side and then 
released. The sketch graph shows how 
the displacement of the pendulum bob 
undergoing simple harmonic motion 
varies with time over one time period.

0 0

displacement

time

 Copy the sketch graph and on it clearly label

(i)    a point at which the acceleration of the 
pendulum bob is a maximum. 

(ii) a point at which the speed of the 
pendulum bob is a maximum. 

b) Explain why the magnitude of the tension in 
the string at the midpoint of the oscillation is 
greater than the weight of the pendulum bob. 

c) The pendulum bob is moved to one side 
until its centre is 25 mm above its rest 
position and then released.

point of suspension
rigid support

0.80 m

25 mm

pendulum bob

(i)    Show that the speed of the pendulum 
bob at the midpoint of the oscillation is 
0.70 m s–1. 

(ii) The mass of the pendulum bob is 0.057 kg. 
The centre of the pendulum bob is 0.80 m 
below the support. Calculate the 
magnitude of the tension in the string 
when the pendulum bob is vertically 
below the point of suspension. 

(10 marks)
3 (IB) 

a)  A particle of mass m attached to a light 
spring is executing simple harmonic motion 
in a horizontal direction.

 State the condition (relating to the net force 
acting on the particle) that is necessary for it 
to execute simple harmonic motion. 

b) The graph shows how the kinetic energy  E  K  of 
the particle in (a) varies with the displacement 
x of the particle from equilibrium.

0.07

0.05

0.04

0.03

0.02

0.01

0.05
0.04

0.03
0.02

0.01

x/m

EK/J

−0.01
−0.02

−0.03
−0.04

−0.05

0.06

0
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(i)    On a copy of the axes above, sketch 
a graph to show how the potential 
energy of the particle varies with the 
displacement x. 

(ii) The mass of the particle is 0.30 kg. Use data 
from the graph to show that the frequency 
f of oscillation of the particle is 2.0 Hz. 

(8 marks)

4 (IB) 
a)  Describe what is meant by the diffraction  

of light. 

b) A parallel beam of monochromatic light 
from a laser is incident on a narrow slit. 
The diffracted light emerging from the slit is 
incident on a screen.

parallel light
wavelength 620 nm

screen

1.9 m

C

slit

0.40 mm

 The centre of the diffraction pattern produced 
on the screen is at C. Sketch a graph to show 
how the intensity I of the light on the screen 
varies with the distance d from C. 

c)  The slit width is 0.40 mm and it is 1.9 m 
from the screen. The wavelength of the 
light is 620 nm. Determine the width of the 
central maximum on the screen.  

(8 marks)

5 (IB) 
Plane wavefronts of monochromatic light are 
incident on a narrow, rectangular slit whose 
width b is comparable to the wavelength λ of 
the light. After passing through the slit, the 
light is brought to a focus on a screen.

The line XY, normal to the plane of the slit, is 
drawn from the centre of the slit to the screen. 
The points P and Q are the first points of 
minimum intensity as measured from point Y.

The diagram also shows two rays of light 
incident on the screen at point P. Ray ZP leaves 
one edge of the slit and ray XP leaves the centre 
of the slit. 

Z

Y

Q

P

W

X
b

ϕ

slit screen

The angle ϕ is small.

a) On a copy of the diagram, label the half 
angular width θ of the central maximum of 
the diffraction pattern. 

b) State and explain an expression, in terms of 
λ, for the path difference ZW between the 
rays ZP and XP. 

c) Deduce that the half angular width θ is 
given by the expression

θ =   λ _ 
b
   

d) In a certain demonstration of single slit 
diffraction, λ = 450 nm, b = 0.15 mm and 
the screen is a long way from the slits.

Calculate the angular width of the central 
maximum of the diffraction pattern on the 
screen. 

(8 marks)

6 (IB) 
Monochromatic parallel light is incident on two 
slits of equal width and close together. After 
passing through the slits, the light is brought to a 
focus on a screen. The diagram below shows the 
intensity distribution of the light on the screen.

distance along the screen

I

A B

a) Light from the same source is incident on 
many slits of the same width as the widths 
of the slits above. On a copy of the diagram, 
draw a possible new intensity distribution 
of the light between the points A and B on 
the screen. 
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 A parallel beam of light of wavelength 
450 nm is incident at right angles on a 
diffraction grating. The slit spacing of the 
diffraction grating is 1.25 × 10–6 m.

b) Determine the angle between the central 
maximum and first order principal 
maximum formed by the grating. 

(4 marks)

7 (IB) 
Light of wavelength 590 nm is incident 
normally on a diffraction grating, as shown 
below.

light wavelength
590 nm

first order

zero order

first order

grating 6.0 × 105

lines per metre

The grating has 6.0 ×  10  5  lines per metre.

a) Determine the total number of orders of 
diffracted light, including the zero order, 
that can be observed.  

b) The incident light is replaced by a beam of 
light consisting of two wavelengths, 590 nm 
and 589 nm.

 State two observable differences between 
a first-order spectrum and a second-order 
spectrum of the diffracted light. 

(6 marks)

8 (IB) 
Monochromatic light is incident on a thin film 
of transparent plastic as shown below.

monochromatic
light

BA

C

film

The plastic film is in air.

Light is partially reflected at both surface A and 
surface B of the film.

a) State the phase change that occurs when 
light is reflected from

(i) surface A

(ii) surface B. 

The light incident on the plastic has a 
wavelength of 620 nm. The refractive index of 
the plastic is 1.4.

b) Calculate the minimum thickness of the 
film needed for the  
light reflected from surface A and surface B 
to undergo destructive interference. 

(5 marks)

9 (IB)

The two point sources A and B emit light of 
the same frequency. The light is incident on 
a rectangular narrow slit and, after passing 
through the slit, is brought to a focus on the 
screen.

slit

screen

point
sources

A

B

a) B is covered. Sketch a graph to show how 
the intensity I of the light from A varies 
with distance along the screen. Label the 
curve you have drawn A.  

b) B is now uncovered. The images of A  
and B on the screen are just resolved.  
Using your axes, sketch a graph to show 
how the intensity I of the light from B 
varies with distance along the screen.  
Label this curve B.  

c) The bright star Sirius A is accompanied by a 
much fainter star, Sirius B. The mean distance 
of the stars from Earth is 8.1 × 1016 m. Under 
ideal atmospheric conditions, a telescope with 
an objective lens of diameter 25 cm can just 
resolve the stars as two separate images.

 Assuming that the average wavelength 
emitted by the stars is 500 nm, estimate the 
apparent, linear separation of the two stars.  

 (6 marks)
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10 (IB)

a) Explain what is meant by the term 
resolvance with regards to a diffraction 
grating. 

b) A grating with a resolvance of 2000 is used 
in an attempt to separate the red lines in 
the spectra of hydrogen and deuterium.

(i)     The incident beam has a width of 0.2 mm. 
For the first order spectrum, how many 
lines per mm must the grating have?

(ii) Explain whether or not the grating is 
capable of resolving the hydrogen lines 
which have wavelengths 656.3 nm and 
656.1 nm.  

(6 marks)

11 A source of sound approaches a stationary 
observer. The speed of the emitted sound 
and its wavelength, measured at the source, 
are v and λ respectively. Compare the wave 
speed and wavelength, as measured by the 
observer, with v and λ . Explain your  
answers. (4 marks)

12 The sound emitted by a car’s horn has 
frequency f, as measured by the driver. An 
observer moves towards the stationary car at 
constant speed and measures the frequency of 
the sound to be f ’.

a) Explain, using a diagram, any difference 
between f  ’and f.  

b) The frequency f is 3.00 × 102 Hz. An 
observer moves towards the stationary  
car at a constant speed of 15.0 m s–1. 
Calculate the observed frequency f ’ of  
the sound. The speed of sound in air is  
3.30 × 102 m s-1.  

(5 marks)

13 (IB) 
The wavelength diagram shown below 
represents three lines in the emission spectrum 
sample of calcium in a laboratory.

wavelength

A B C

A distant star is known to be moving directly 
away from the Earth at a speed of 0.1c. The 
light emitted from the star contains the 
emission spectra of calcium. Copy the diagram 
and sketch the emission spectrum of the 
star as observed in the laboratory. Label the 
lines that correspond to A, B, and C with the 
letters A*, B*, and C*. Numerical values of the 
wavelengths are not required.  (3 marks)
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  Nature of science
Our everyday experience of forces is that they 
are direct and observable. They act directly on 
objects and the response of the object is calculable. 
Acceptance of the field concept means acceptance 
of action at a distance. One object can influence 

another without the need for contact between them. 
The paradigm shift from one world view to another 
is difficult. It took a significant effort in the history 
of science and demands a leap in conceptual 
understanding from physicists.

Understanding
 ➔ Gravitational fields 
 ➔ Electrostatic fields 
 ➔ Electric potential and gravitational potential
 ➔ Field lines
 ➔ Equipotential surfaces

  Applications and skills
 ➔ Representing sources of mass and charge, 

lines of electric and gravitational force, and 
field patterns using an appropriate symbolism

 ➔ Mapping fields using potential
 ➔ Describing the connection between 

equipotential surfaces and field lines

Equations
 ➔ work–electric potential equation: W = Q:Ve

 ➔ work–gravitational potential equation: W = m:Vg

Introduction
Earlier in the book you were introduced to 
gravitation and electrostatics. At that stage, 
these were treated as separate sets of ideas, 
but there are strong similarities between the 

concepts in both topics. In this topic we are 
going to discuss these similarities and develop 
the concepts of gravitation and electrostatics 
in parallel. 

10.1 Describing fields



The parts of this chapter devoted to electric fields have a blue background 
or a blue line in the margin; the sections dealing with gravity have a 
green background or a green line in the margin. You can concentrate on 
one type of field by sticking to one colour.

Before we introduce new ideas, here is a review of those ideas that we 
considered in the earlier topics.

Fields
A field is said to exist when one object can exert a force on another 
object at a distance.

Electric fields Gravity fields

An electrostatic force exists between 
two charged objects.

There are two types of charge: 
 ● negative, corresponding to a 

surplus of electrons in the object

 ● positive, corresponding to a deficit 
of electrons in the object.

When the two objects have the same 
sign of charge, then the force between 
them is repulsive.

When the objects have opposite signs, 
then the force between them is attractive.

A gravitational force exists between two 
objects that both have mass.

A gravitational field is associated with 
each mass. Any other mass in this field 
has a gravitational field acting on it.

Gravity is always an attractive force. 
Repulsion between masses is never 
observed.

All electric charges give rise to an electric 
field. An electrostatic force acts on a charge 
that is in the field of another charge.

Field strength
Electric fields Gravity fields

The definition of field strength is similar in both types of field. It arises from a “thought experiment” involving the 
measurement of force acting on a test object. Near the surface of the Earth, the gravitational field strength is  
9.8 N kg-1 and, on a clear day, the electric field strength is about 100 N C-1. Both fields point downwards. In both 
gravity and electrostatics there is a problem with carrying out the measurement of field strength practically. The 
presence of a test object will distort and alter the field in which it is placed since the test object carries its own 
field.

electric field strength =   force acting on positive test charge
  ___________________________________________________  magnitude of test charge  

The direction of the field is the same as the direction 
of the force acting on a positive charge. We have to 
pay particular attention to direction in electrostatics 
because of the presence of two signs of charge.

gravitational field strength =    force acting on test mass
  _____________________________________  magnitude of test mass  

Gravitational force is always attractive. This means that 
the direction of field strength is always towards the 
mass that gives rise to the field.

The unit of electric field strength is N C–1. The unit of gravitational field strength is N kg–1.

  Nature of science
Scalar and vector fields
Strictly, the fields here are 
vector fields as the forces have 
magnitude and direction. Other 
fields are different in that the 
quantities they represent only 
have magnitude – they are 
scalar fields. The temperature 
associated with each point 
around a camp fire is an 
example of a scalar field.

  Nature of science
Action-at-a-distance
The action-at-a-distance 
envisaged here is imagined 
to act simultaneously even 
though it does not. Topic 12 
teaches you that contemporary 
models of physics explain 
interactions using the concept 
of exchange particles that have a 
finite (and calculable) lifetime.
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Energy ideas so far 
Electric fields Gravity fields

Potential difference
In Topic 5 electric potential difference 
was used in electrostatics and current 
electricity as a measure of energy transfer.

V =   W _ 
Q

  

Potential energy
In Topic 2 gravitational potential energy 
was used as the measure of energy 
transfer when a mass m is moved in a 
gravitational field.

:EP = mg:h

V is the electric potential difference and 
W is the work done on a positive test 
charge of size Q.

Where :EP is the change in gravitational 
potential energy, m is the mass, g is 
the gravitational field strength, and :h 
is the change in vertical height. :EP is 
measured in joules.

V is measured in volts, which is 
equivalent to joule coulomb–1.

This equation applies when g is 
effectively constant over the height 
change being considered. Remember 
that g has to be the local value of 
the field strength – near the Earth’s 
surface 9.8 N kg–1 is the value to use, 
but further out a smaller value would 
be required.

The electric potential difference refers to work done per unit charge, gravitational 
potential energy refers to work done = ( force (weight) × distance moved). 

Now read on ...
The recap of earlier work at the start of this topic should have 
reminded you of the similarities and differences between gravitational 
and electric fields.

The differences include:

 ● Gravity is most noticeable when masses are very large – the size of 
planets, stars, and galaxies.

 ● Electric forces largely control the behaviour of atoms and molecules 
but, because there is usually a complete balance between numbers of 
positive and negative charges, the effects are not easily noticed over 
large distances.

 ● Gravitational forces on the other hand are perceived to act over 
astronomical distances.

Despite these differences, the two fields share an approach that 
allows the study of one to inform the other. Studying the two types 
of field in parallel will help you understand the links. If you need to 
concentrate on either gravity or electric fields, look at the relevant 
background colour or line in the margin.
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  Investigate!
Field between parallel plates

 ● A small piece of foil that has been charged can 
be used to detect the presence of an electric field.

 ● The detector is made from a rod of insulator – 
a plastic ruler or strip of polythene are ideal. 
Attached to the rod is a small strip of foil: 
thin aluminium or gold foil or “Dutch” metal 
are suitable. The dimensions of the foil need 
to be about 4 cm × 1 cm and the foil can be 
attached to the rod using adhesive tape.

 ● Set up two vertical parallel metal plates 
connected to the terminals of a power supply 
that can deliver about 1 kV to the plates. Take 
care when carrying out this experiment (use 
the protective resistor in series with the supply 
if necessary). Begin with the plates separated 
by a distance about one-third of the length of 
their smaller side.

 ● Touch the foil briefly to one of the plates. This 
will charge the foil. You should now see the 
foil bend away from the plate it touched. 

 ● The angle of bend in the foil indicates the 
strength of the electric field. Explore the space 
between the plates and outside them too. 
Notice where the field starts to become weaker 
as the detector moves outside the plate region. 
Does the force indicated by the detector vary 
inside the plate region or is it constant?

 ● Turn off the supply and change the spacing 
between the plates. Does having a larger 

separation produce a larger or a smaller 
field?

 ● Change the pd between the plates. Does this 
affect the strength of the field?

 ● An alternative way to carry out the 
experiment is to use a candle flame in the 
space between the plates. What do you notice 
about the shape of the flame when the field is 
turned on? Can you explain this in terms of 
the charged ions in the flame?

 ● The foil detector itself can also be used to explore 
the field around a charged metal sphere such as 
the dome of a van der Graaf generator.

foil detector

charged plate

high voltage
power supply

-
-
-
-
-
-
-
-
-

+
+
++++ +
+
+
+
+
+

+-

▲ Figure 1 Electric field detector.

If an object in a field has the relevant field property (mass for 
gravity, charge for electricity, etc.), then it will be influenced by the 
field. In a Topic 5 Investigate!, small particles (semolina grains) were 
suspended in a fluid. This experiment gives an impression of the field 
shape between charged parallel plates and other arrangements of 
charge. However the experiments are tricky to carry out and give no 
quantitative data. Here is another qualitative experiment that gives 
more insight into the behaviour of electrostatic fields.

Field lines
Field lines help us to visualize the shapes of electric fields that arise from 
static charges. They also aid the study of the magnetic fields associated 
with moving charges. Magnetic fields and their consequences are 
discussed further in Topic 11.
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+ + + + + ++

- - - - - --
▲  Figure 2 Electric field line pattern for 

parallel plates.

  Investigate!
Measuring potentials in two dimensions

 ● This experiment gives a valuable insight into the way potential 
varies between two charged parallel plates.

 ● You need a sheet of a paper that has a uniform graphite coating 
on one side, one type is called “Teledeltos” paper. In addition, you 
will need a 6 V power supply (domestic batteries are suitable), two 
strips of copper foil, and two bulldog clips. Finally, you will need a 
high-resistance voltmeter (a digital meter or an oscilloscope will be 
suitable) and connecting leads.

Experiments such as this suggest that the field between two parallel 
plates:

 ● is uniform in the region between the plates

 ● becomes weaker at the edges (these are known as edge effects) 
as the field changes from the between-the-plates value to the 
outside-the-plates value (often zero). You should be able to use 
the properties of the field lines from Topic 5 to explain why there 
can be no abrupt change in field strength.

A close study of the field shows field lines like those in figure 2. 
At the edge, the field lines curve outwards as the field gradually 
weakens from the large value between the plates to the much 
weaker field well away from them. For the purposes of this 
course, you should assume that this curving begins at the end of 
the plate (although in reality it begins a little way in as you may 
have seen in your experiment with the field detector).

Try to predict the way in which the shape of the field lines might 
change if a small conductive sphere is introduced in the middle of the 
space between the two plates. Look back at some of the field pattern 
results from Topic 5 and decide how the field detector used here 
would respond to the fields there.

Sometimes you will see or hear the field lines called “lines of force”. 
It is easy to see why. The field detector shows that forces act on 
charges in a field. The lines of force originate at positive charge (by 
definition) and end at negative charge as indicated by the arrow 
attached to the line. If the line is curved, the tangent at a given point 
gives the direction of the electric force on a positive charge. The 
density of the lines (how close they are) shows the strength of the 
force.

Linking field lines with electric potential
The Investigate! indicates that the strength of the electric field depends 
on the potential difference between them. Another experiment will 
allow you to investigate this in more detail.
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 ● Connect the circuit shown in the diagram. Take particular care 
with the connections between the copper strips and the paper. 
One way to improve these is to paint the connection between 
copper and paper using a liquid consisting of a colloidal suspension 
of graphite in water.

 ● Press the voltage probe onto the paper. There should be a potential 
difference between the lead and the 0 V strip.

 ● Choose a suitable value for the voltage (say 3 V) and explore 
the region between the copper strips. Mark a number of 
points where the voltage is 3 V and draw on the paper joining 
the points up. Repeat for other values of voltage. Is there a 
consistent pattern to a line that represents a particular voltage?

 ● Try other configurations of plates. One important arrangement is a 
point charge, which can be simulated with a single point at 6 V 
and a circle of copper foil outside it at 0 V. One way to create the 
point is to use a sewing needle or drawing pin (thumb tack). You 
will need the colloidal graphite to make a good connection 
between the point and the paper. 

 ● An alternative way to carry out the experiment, this time in three-
dimensions, is to use the same circuit with a tank of copper(II) 
sulfate solution and copper plates.

+1.5 V

+3.0 V

+4.5 V

-3.0 V

-1.5 V

-4.5 V

+6.0 V0 V

0 V-6.0 V

+ + + + ++

- - - - --

▲ Figure 4 Lines of equal potential.

The lines of equal potential difference between two parallel plates 
drawn in this experiment resemble those shown in figure 4. These 
lines are called equipotentials because they represent points on the 
two-dimensional paper where the voltage is always the same. When a 
charge moves from one point to another along an equipotential line, 
no work is done. 

Figure 4 also shows the electric field lines between the plates. 
You will see a simple relationship between the field lines and the 
equipotentials. The angle between them is always 90°. If you know 
either the shape of the equipotential lines or the shape of the field 
lines then you can deduce the shape of the other. The same applies to 
the relationship between rays and wavefronts in optics.

Tip
Think about why the field line 
and the equipotential must be 
at 90° to each other. As a hint, 
remember the definition of 
work done in terms of force and 
distance moved from Topic 2.

voltage probe
at end of flying lead

voltmeter

6 V
cells

0 V

▲ Figure 3 Equipotentials in two-dimensions.
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You will have noticed that the word “difference” has disappeared and 
that we are using the plain word “potential”. As long as we always 
refer to some agreed reference point (in this case the 0 V copper 
strip on the paper), the absolute values of potential measured on the 
voltmeter are identical to the values of potential difference measured 
across the terminals of the meter. 

To illustrate this, the parallel-plate equipotentials in figure 4 are 
re-labelled on different sides of the diagram taking a different point 
in the circuit to be zero. You will see that the potential differences 
are unchanged, but the change of reference position shifts all the 
potential values by a fixed amount. This definition of a reference 
position for potential will be considered in the next sub-topic.

+

+

+

+

+

+

+

+

+

-

-

-

-

-

-

-

-

-

▲ Figure 5 Equipotentials in three dimensions.

The conducting-paper experiment is two-dimensional. The foil detector 
allowed you to explore a three-dimensional field. The equipotentials 
between the charged plates in three dimensions are in the form of 
sheets parallel to the plates themselves always at 90° to the field lines. 
So another consequence of extending to three dimensions is that it is 
possible to have equipotential surfaces and even volumes. An example 
of this is a solid conductor: if there is a potential difference between 
any part of the conductor and another, then charge will flow until the 
potential difference has become zero. All parts of the conductor must 
therefore be at the same potential as each other – the whole conductor 
is an equipotential volume. Consequently the field lines must emerge 
from the volume at 90° – whatever shape it is.

In summary, equipotential surfaces or volumes:

 ● link points having the same potential

 ● are regions where charges can move without work being done on 
or by the charge

 ● are cut by field lines at 90° 
 ● should be referred to a zero of potential

 ● do not have direction (potential, like any energy, is a scalar 
quantity)

 ● can never cross or meet another equipotential that has a  
different value.

Tip
Calculate the change in 
potential going from -4.5 V to 
-3.0 V as well as from +1.5 V 
to +3.0 V. In both cases, we go 
from a low potential point to a 
higher potential point so the 
potential difference should be 
positive and the same in both 
cases (+1.5 V). Remember 
differences are calculated from 
final state minus initial state.
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Equipotentials and field lines in other situations
Figure 6 shows the equipotentials and electric field lines for a number 
of common situations. 

(a)

+ --

(b)

+ -

(a) Field due to a single point charge
Earlier we looked at the field due to a single point charge.
In the case of a positive charge, the field lines radiate out from the 
point and the field in this case is called a radial field. For a negative 
charge the only change is that the arrows now point inwards to  
the charge. 

What are the equipotentials for this case? The key lies in the 90° 
relationship between field line and equipotential. 

Figure 6(a) shows the arrangement of equipotentials around a 
single point charge. They are a series of concentric shells centred on 
the point charge. This arrangement is shown as a two-dimensional 
arrangement, but it is important always to think in three dimensions. 
Two-dimensional diagrams are however easier to draw and perfectly 
acceptable in an examination.

outer conductor

inner conductor
(d)

equipotential

+ + + + +

-

+ +
(e)

equipotentials

▲ Figure 6 Equipotentials around charge arrangements.

(c)

-80 V

-90 V
-100 V
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Field and equipotential in gravitation
We did not use the concept of gravitational field lines in Topic 6. 
However, field lines can be used to describe gravitational fields. The 
concepts of field lines and equipotentials transfer over to gravity 
without difficulty.

Although there is no easy experiment that can make the gravitational 
field lines visible (unlike magnetic or electric field lines), the direction 
can be determined simply by hanging a weight on a piece of string! 
The direction of the string gives the local direction of the field 
pointing towards the centre of the planet.

The arrangement of gravitational field lines that surround a point 
mass or a spherical planet is similar to the pattern for electric field 
lines around a negative point charge. Again, the field is radial for 
both cases with the field lines directed towards the mass – because 
gravitational force can only be attractive.

All that has been written about equipotentials in electric fields also 
applies to gravitational equipotentials. Imagine a mass positioned 
at a vertical height above the Earth’s surface, say 10 m. If the mass 
moves to another location which is also 10 m above the surface, then 
no work has to be done (other than against the non-conservative 
forces of friction) to move it. The mass begins and ends its journey on 
the same equipotential and no work has been transferred. These two 
points lie on the surface of a sphere whose centre is at the centre of 
the planet. 

(b) Field due to two point charges of the same and opposite sign
These arrangements bear some similarities to the magnetic field patterns 
in the space between two bar magnets; they demonstrate the use of the 
rules for the electric field lines.

(c) Field due to a charged sphere
A hollow or solid conducting sphere is at a single potential.The field 
outside the sphere is identical to that of a point charge of the same 
magnitude placed at the centre of the sphere. This time however, 
there are no field lines inside the sphere. 

(d) Field due to a co-axial conductor
Co-axial conductors are commonly used in the leads that connect a 
domestic satellite dish to a TV. There is a central conductor with an 
earthed cylinder outside it, separated and spaced by an insulator. The 
symmetry of the arrangement is different from that of a sphere and so 
the symmetry of field pattern changes too.

(e) Field between a point charge and a charged plate
The key to this diagram is to remember that the field lines are radial 
to the point charge when very close to it and the lines must be at 90° 
to the surface of the plate.

▲  Figure 7 Field lines and equipotentials around 
a planet.
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▲ Figure 8 Contour map (contour lines have been removed for clarity).

There is another way to interpret gravitational equipotentials and 
field lines. It is possible that you regularly use equipotentials without 
even realizing it!

The contour lines on this map are equipotentials. If you walk along 
a contour line then your vertical height does not change, and you 
will neither gain nor lose gravitational potential energy. Mountain 
walkers have to be experts in using contour maps, not just to know 
where they are, but to choose where it is safe to go. Looking across 
the contours where they are closest together gives the line of steepest 
descent. This gives the direction of the gravitational field down the 
slope at that point.

Just as for electric fields, a gravitational field is uniform and directed 
downwards at 90° normal to the surface when close to the surface of 
the object.

line of steepest 
descent
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Worked examples
1 An electrostatic device has electric field lines 

as shown in the diagram.

Draw the diagram and add to it five possible 
equipotential lines for the arrangement.

Solution
The equipotential lines must always meet the field 
lines at 90°. One possible line is a vertical line in 
the centre of the diagram. On each side of this the 
lines must bend to meet the lines appropriately.

2 The diagram shows electric equipotential 
lines for an electric field. The values of the 
equipotential are shown. Explain where the 
electric field strength has its greatest magnitude.

10 V

20 V

30 V

40 V

50 V

Solution
The work done in moving between equipotentials 
is the same between each equipotential. The 
work done is equal to force × distance. So the force 
on a test charge is greatest where the distance 
between lines is least. This is in the region around 
the base of the 20 V equipotential. Providing 
that potential change is the same between 
neighbouring equipotential lines, then the closer 
the equipotential lines are to each other, the 
stronger the electric field strength will be.

Potential at a point
Gravitational potential
So far the terms potential and potential difference have been used almost 
interchangeably by saying that potential needs a reference point. But 
this needs clarification. We need to define potential carefully for both 
gravitation and electrostatics and, in particular, we need to decide on 
the reference point we will use for our zero.

It is easier to begin with gravity:

Gravitational potential difference is the work done in moving 
a unit mass (1 kg in our unit system) between two points.

To calculate the change in gravitational potential of an object when it 
leaves one point and arrives at another, we need to know both the 
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gravitational energy needed to achieve the move and also the mass 
of the object. Then the change in the gravitational potential of the 

arrival point relative to the departure point is   
work done to move the object

   _____________________  
mass of the object

  .

In symbols 

:V
g
 =   W _ m  

where :V
g
 is the change in gravitational potential, W is the work 

done, and m is the mass of the object. The unit of gravitational 
potential is joule kilogram–1 (J kg –1). You can expect to use MJ kg –1 for 
changes in potentials on a planetary scale.

What makes a good zero reference for potential? One obvious 
reference point could be the surface of the oceans. When travel is 
based only on Earth this is a reasonable reference to choose. We 
refer to heights as being above or below sea level so that Mount 
Everest is 8848 m asl (above sea level). Despite being an appropriate 
local zero of potential for Earth-based activities, sea level is not 
good enough as soon as astronauts leave the Earth. It makes no 
sense to refer planet Mars to the Earth sea level – we need another 
measure.

The reference point that makes most sense – although it might seem 
implausible on first meeting – is “infinity”. Infinity is not a real place, 
it is in our imagination, but that does not prevent it from having some 
interesting and useful properties!

Gravitational potential is defined to be zero at infinity.

Newton’s law of gravitation tells us that the force of attraction F 
between two point masses is inversely proportional to the square of 
their separation r

F ∝   1 _ 
r2

  

The definition of gravitational potential reflects the fact that there 
is no interaction between two masses when they are separated by 
this imaginary infinite distance. Newton’s law predicts that if the 
separation between two masses increases by one thousand times, then 
the attractive force goes down by a factor of one million. So if r is 
very large, then the force becomes very small indeed. At “infinity” we 
know that the force is zero even though we cannot go there to check. 

Now we can study what happens as the two masses begin to 
approach each other from this infinite separation. Imagine that 
you are one of the masses and that the second mass (originally at 
infinite distance) is moved a little closer to you. This mass is now 
gravitationally attracted to you (and vice versa). Work would now 
need to be done on the system to push the mass away from you 
against the force of attraction back to its original infinitely distant 
starting point.

Energy has to be added to the system to return the mass to infinity. 
On arrival at infinity the mass will have returned to zero potential 
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(because it is at infinity) and therefore whenever the masses are closer 
than infinity, the system of the two masses has a negative potential. 
The more closely they approach each other, the more negative the 
stored energy becomes because we have to put increasing amounts 
of energy back into the system to return the masses to an infinite 
separation (figure 9).

Gravitational potential at a point is defined to be equal to the 
work done per unit mass (kilogram) in moving a test mass 

from infinity to the point in question.

+10J kg-1

+20J kg-1

0J kg-1

+30J kg-1

1 m

2 m

3 m

0 40 Mm

10 Mm
8.0 Mm

-1 × 107J kg-1

∞ 

-4 × 107J kg-1
-5 × 107J kg-1

-6.3 × 107J kg-1

▲ Figure 9 School lab and the Earth.

On the Earth, sea level corresponds to a gravitational potential of 
–6.25 × 107 J kg –1. (We will calculate this in the next section.) Near 
the surface, raising one kilogram through one metre from sea level 
requires 9.8 (N) × 1 (m) of energy, in other words, about 10 J of 
energy for each kilogram raised. So the potential becomes more 
positive by 10 J kg –1 for each metre raised. You could label the wall of 
your school laboratory in potential values!

Comparing the gravitational potential at sea level with the 
gravitational potential at the top of Mount Everest shows that the 
potential at the top of the mountain is 86 710 J kg –1 greater than at 
sea level. This makes the gravitational potential at the top of Everest 
equal to –6.24 × 107 J kg –1. Not apparently a large change, but then 
infinity is a good deal further away! 

If we know the change in potential, then we can use it to calculate 
the total gravitational potential energy required for a change 
in height. For a mountaineer and kit of total mass 120 kg, the 
gravitational potential energy required to scale Mount Everest is 
about 107 J (that is 86 710 J kg –1 × 120 kg) starting at sea level.

Tip
At infinity, the gravitational 
potential is maximum 
and equal to zero, by the 
convention. At separations 
less than this the masses 
are bound to each other 
gravitationally and so have 
negative gravitational 
potential.
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Returning to the idea of our contour maps, we could re-label all the 
contours changing the values from heights in metres to potentials 
in joule kg –1. The shape would be the same. Instead of knowing the 
difference in height, we now know the amount of energy that will be 
used or released when each kilogram of the mass moves from one place 
on the map to another.

Electrical potential
The situation needs to be modified for electric potential. Again, the 
zero of potential is defined to be at infinity and the change in electric 
potential :Ve is defined to be

:Ve =   
work done in moving charge between two points

    ____   
magnitude of charge

   =   W _ 
Q

  

The energy stored in the system per unit charge is what we call the 
potential of the system.

If we have two charges of opposite sign then they attract each other, 
and the situation is exactly the same as in gravitation. In other words, 
when the charges are some finite distance apart, energy is required to 
move them to infinite separation. As the charges separate, the electric 
potential will gradually climb to zero.

The situation changes when the two charges have the same sign: now 
both charges repel each other.

Imagine two negative charges held at some finite distance apart. 
Energy was stored in the system when the charges were brought 
together from infinity. If they are released, the two charges will fly 
apart (to infinity where the repulsive force becomes zero). The system 
does work on the charges. There must have been a positive amount 
of energy stored in the system before the charges were allowed to 
separate. The potential is still defined to be zero at infinity, but this 
time as one charge is moved from infinity towards the other charge, 
the overall value of the potential rises above the zero level to become 
positive. Work has been done on the charge.

The electric potential at a point is the work done in bringing a 
unit positive test charge from infinity to the point.

Tip
These charges are not bound 
to each other. They have a high 
electric potential energy. When 
returned to infinity they will 
have zero electric potential 
energy and this value is a 
minimum. 

Tip
Don’t forget there are three 
separate points in this 
definition:

 work done in moving unit 
charge

 the test charge is positive

 the test charge moves from 
infinity to the point
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  Nature of science
Electric charge is invisible to our senses, yet we 
accept its existence. We are aware of it through 
the force laws that it obeys and via the field 
properties that we assign to it. In the same way, 
the motion of planets and satellites on a larger 
scale also requires that scientists develop ways 
to visualize and then report their theories to  
non-scientists. 

Understanding
 ➔ Potential and potential energy
 ➔ Potential gradient 
 ➔ Potential difference
 ➔ Escape speed
 ➔ Orbital motion, orbital speed, and orbital energy
 ➔ Forces and inverse-square law behaviour

10.2 Fields at work

  Applications and skills
 ➔ Determining the potential energy of a point 

mass and the potential energy of a point charge
 ➔ Solving problems involving potential energy
 ➔ Determining the potential inside a charged sphere
 ➔ Solving problems involving the speed required 

for an object to go into orbit around a planet and 
for an object to escape the gravitational field of 
a planet

 ➔ Solving problems involving orbital energy of 
charged particles in circular orbital motion and 
masses in circular orbital motion

 ➔ Solving problems involving forces on charges 
and masses in radial and uniform fields

Equations
 ➔ potential energy 

equations: Ve =    kQ
 _____ r  Vg = –    GM ______ r  

 ➔ field strength 
equations: E = –   ∆Ve _______ ∆r

  g = –   ∆Vg
 _______ ∆r
  

 ➔ relation between 
field strength and 
potential:

Ep = qVe

 =    kQq
 _______ r  

Ep = mVg

 = –   GMm ________ r  

 ➔ force laws: FE = k   
q1 q2 ________ 

r2  FG = G   
m1 m2 __________ 

r2  

 ➔ escape speed: vesc =  √___
   2GM ________ r    

 ➔ orbital speed: vorbit =  √__
   GM ______ r    

Introduction
In the second part of this topic we look at the underlying mathematics of 
fields and how it applies to gravitational and electric fields.

Parts of this chapter devoted to electric fields have a blue background or 
margin line; the sections dealing with gravity have a green background 
or margin line. You can concentrate on one type of field by sticking to  
one colour.
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Forces and inverse-square law behaviour

Electric fields Gravity fields

Both fields obey an inverse-square law in which the force between two objects is inversely proportional to the distance 
between them squared.

In a vacuum:

FE = +    kq1 q2 __ 
r2

  

where FE is the force between two point charges q1 and q2 and r is the 
distance between them. This is known as Coulomb’s law.

The constant k in the equation is 
     1 __ 

4πε0

  

where ε0 is known as the permittivity of a vacuum or the permittivity of 
free space.

If the field is in a medium other than a vacuum then the ε0 in the equation 
is replaced by ε, the permittivity of the medium.

The sign in the equation is positive. The sign of the overall result of a 
calculation indicates the direction in which the force acts. Negative 
indicates attraction between the charges; positive indicates repulsion.

FG =    Gm1 m2 __ 
r2

  

where FG is the force between two point 
masses m1 and m2 and r is the distance 
between them. This is known as Newton’s law 
of gravitation.

The constant in the equation is G known as the 
universal gravitational constant.

The value of G is a universal constant.

Tip
Charges q1 and q2 can be positive or 
negative. A positive force FE indicates a 
repulsive force. 

A negative force FE indicates an attractive 
force.

The masses m1 and m2 are always positive, 
and so in this notation a positive force FG 
always indicates an attractive force. 

We saw in Topic 5 that, close to any surface, the field is uniform. The 
argument was that, locally, the surface appears flat and that there is 
cancellation of the components of field parallel to the surface due to 
each charge. This leaves only components perpendicular to the surface 
to contribute to the field. 

The electric fields between parallel plates or the gravitational or electric 
fields close to a curved surface are uniform and are useful in developing 
ideas about fields.

  Nature of science
Inverse-square laws
Both fields obey the inverse-square law in which 
the force depends on   1

 _______ 
distance2   . Sub-topic 4.4 

showed how the inverse-square law also arises 
in the context of radiation from the geometry 
of space.

The value of n in   1 __ r n   has been tested a number of 
times since the inverse-square law behaviour of 
electric and gravitational fields was suggested, 
and n is known to be very close to 2 (for 
Coulomb’s law, within 10-16 of 2)

One consequence of a force law being inverse-
square is that the force between the charges or 
masses becomes weaker as the distance increases, 
but never becomes zero at any real distance. We 
said earlier that the force was zero when the objects 
were separated by an infinite distance. There is no 
actual infinity point in space, but there is one in 
our imagination. We use infinity as a useful concept 
for our energy ideas. In one sense, infinity can 
be pushed further away as the instruments that 
measure field strength become more precise!
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  Investigate!
Charged parallel plates

 ● This experiment illustrates how the field 
strength and other factors are connected 
for parallel plates and will help you to 
understand these factors.

 ● Set up a pair of parallel plates, a 5 kV power 
supply, a well-insulated flying lead, and a 
coulombmeter (a meter that will measure 
charge directly in coulombs) as shown in the 
circuit. Later you will need to replace the 
parallel plates with ones that have different 
areas. You will also need to record the 
distance between the plates.

 ● Set and record a suitable voltage V on the 
power supply. Your teacher will tell you the 
value to use. Take great care at all times with 
the high voltages used in this experiment.

 ● Measure and record the distance d between 
the parallel plates.

 ● Touch the flying lead to the right-hand plate 
briefly and then remove it from the plate. 
This charges the plates. 

 ● Zero the coulombmeter and then touch its 
probe to the right-hand plate that you just 
charged. Record the reading Q on the meter. 
You may wish to repeat this measurement as 
a check.

 ● Change the distance between the plates without 
changing the setting on the power supply.

 ● Repeat the measurements of distance apart 
and charge stored. Don’t forget to switch off 
the power supply before you measure the 
separation of the plates.

 ● Carry out another experiment where the 
power supply emf and the plate separation 
are unchanged but plates of different areas 
are used. Record the plate areas.

 ● Carry out another experiment where the 
emf V of the power supply is changed but the 
plate area and distance are not changed.

 ● Plot your results as Q versus V, Q versus A, 
and Q versus d. where Q is the charge on the 
plates, V is the potential of the plate, A is the 
area of the plates, and d is the separation of 
the plates.

+
+
+
+
+

-
-
-
-
-

-
-
-
-

+
+
+
+

plate

d

area A

charge Q

power supply

coulomb meter

flying lead
0 V

0 V

V

+-

▲  Figure 1 How the charge stored on parallel plates varies.

The results of the experiment show that 

 ● Q ∝ V
 ● Q ∝ A

 ● Q ∝   1 _ 
d
  .

These results can be expressed as

Q ∝   VA _ 
d
  

The constant in the equation turns out to be ε0; in principle careful 
measurements in this experiment could provide this answer too.

So

Q = ε0   
VA _ 
d
  

where

ε0 = 8.854 × 10-12 m-3 kg-1 s4 A2.

+

+

+

+

+

+

-

-

-

-

-

-

+

+Q F

V

d

-

▲  Figure 2 Field strength between 
parallel plates.
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Electric field strength and  
potential gradient
The uniform electric field between two charged plates provides us with 
another way to think about electric field strength.

In Topic 5 (page 177) we mentioned that electric field strength could 
be measured as the change in potential divided by the change in 
distance (we call this the potential gradient). We can now show that 
this result is correct.

In figure 2, a positive charge that has a size Q is in a field between two 
charged plates. This field has a strength E and the force F that acts on 
the charge is therefore (from the definition of electric field strength 
given in Sub-topic 5.1) 

F = EQ

It is easy to determine the work done by the field on the charge when 
the charge is moved at constant speed because the field is uniform and 
the force is constant. As usual, the work done is force × distance moved 
and the lines of force are in the same direction as the distance moved 
so there is no component of distance to worry about

Work done = EQ × x

where x is the distance moved.

When the charge goes from one plate to the other the distance moved 
is d. The work done on the charge is EQd.

The potential difference V between the plates is (see Topic 5.1) 

V =   
work done in moving a charge

   ___  
magnitude of charge

  

So

V =   work done _ 
Q

   =   
EQd

 _ 
Q

  

leading to

E =   V _ 
d
  

This shows that electric field strength can be written and calculated in 
two ways:

 ●   
force acting on charge

  ______________  
magnitude of charge

  , this gives the unit N C–1

 ●   
potential change

 ___________ 
distance moved

  , this gives the unit V m–1.

So as well as two equations, there are two possible units for electric 
field strength and both are correct.

Writing the equations in full for the uniform field between parallel plates

E =   V _ 
d
   =   F _ 

Q
  

In practice, it is easier to measure a potential difference with a 
voltmeter in the laboratory than to measure a force. This is why an 
electric field strength is commonly expressed in volt metre-1.
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Worked examples
1 A pair of parallel plates with a potential 

difference between them of 5.0 kV are 
separated by 120 mm. Calculate: 

a) the electric field strength between the plates

b) the electric force acting on a doubly 
ionized oxygen ion between the plates.

Solution 
a) E =   V __ 

d
   =   5000

 ____ 0.12   = 4.2 × 104 V m–1

b) The charge of the ion is 2 e = +3.2 × 10–19 C.

F = QE = 3.2 × 10–19 × 4.2 × 104 = 1.34×10–14 N

The force is directed towards the negative plate.

2 A pair of parallel plates are separated by 80 mm. 
A droplet with a charge of 11.2 × 10–19 C is in 
the field. 

a) Calculate the potential difference required 
to produce a force of 3.6 × 10–14 N on the 
droplet.

b) The plates are now moved closer to each 
other with no change to the potential 
difference. The force on the droplet 
changes to 1.4 × 10–13 N. Calculate the 
new separation of the plates.

Solution
a) E =   F _ 

Q
   =   3.6 × 10–14

 __  
11.2 ×10–19

   = 3.2 × 10–4 N C –1

V = Ed = 3.2 × 104 × 0.080 = 2600 V

b) The force changes by a factor of  

  1.4 ×10–13

 ________ 
3.6 × 10–14   = 3.9  

The separation decreases by this factor, to  

  80
 ___ 3.9   = 21 mm.

Electric field strength and  
surface charge density
The expression

Q = ε0   
VA _ 
d
  

rearranges to 

  
Q

 _ 
A

   = ε0   
V _ 
d
  

  Q __ A   is σ, the surface charge density on the plate. We say that for the 
uniform field between the plates, the electric field strength E can be 
written as   V __ 

d
  .

So between the plates 

E =   σ _ ε0
  

Remember, this equation is for the field between two parallel plates. 
Each plate contributes half the field, so the electric field E close to the 
surface of any conductor is equal to 

E =   σ _ 
2ε0

  

where σ is the charge per unit area on the surface and ε0 has its usual 
meaning.

This is dimensionally correct because the units of σ are C m–2 and the 

units of ε0 are C2 N–1 m–2,   σ __ ε0
   is   C m–2

 _______ 
C2 N–1 m–2   which simplifies to N C–1, the 

same units as for E.

You will be given this equation in an examination if you need to use it.

Tip
Generally, the term gradient 
refers to a change per unit of 
distance. The term rate refers to 
a change per unit to time.

(Sometimes gradient is used a 
word for slope)
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Graphical interpretations of electric field 
strength and potential
Figure 3(a) is a reminder of the field pattern between charged parallel plates.

The equipotentials are equally spaced. Figure 3(b) shows the data from 
measurements of the potential at a series of points between the plates 
plotted as a graph of potential against distance from the zero potential 
plate. It is a straight line because the electric field is uniform. A graph of 
electric field strength against distance from the 0 V plate is a straight line 
parallel to the distance axis (Figure 3(c)).

The gradient of the potential–distance graph is    
change in V

 ________ 
change in x

   and because it is 
a straight line, this is equal to   V __ 

d
  , in other words, E.

This leads to:

E, electric field strength = – potential gradient = –   
∆Ve _ ∆x

  

(∆, as usual, stands for “change in”).

The minus sign that appears in the equation needs an explanation. It 
means that the direction of the vector electric field is always opposite 
to the variation of the potential (∆Ve) of a positive charge. So, travel in 
the opposite direction to that of the field means moving to a position of 
higher potential and thus a positive gain in potential. In Figure 3(a) the 
motion of the positive charge is to the left, ∆Ve is negative (final state 
minus initial state: 0 V - 12 V); so, according to the equation, E will be 
positive and this tells us that the motion is in the direction of the field. 
In other words, going upstream in the field (against the field) means going 
to higher potential so a gain in potential (positive change in ∆Ve). Going 
downstream, ∆Ve is negative and E is positive (product of two minus 
signs) indicating the motion is in the direction of field.

You may be wondering whether the argument changes if the moving 
charge is an electron. If an electron moves from 0 V towards the 12 V 
plate (a position of higher potential) its potential energy is reduced 
because the potential energy change ∆Ep is given by e∆V as usual but 
here e is negative and ∆V is positive. The electron will accelerate in this 
direction if free to do so gaining kinetic energy from the field at the 
expense of the electrical potential energy.

In numerical terms (figures 3(b) and (c)), the gradient   ∆V
 ___ ∆x
   is +200 V m-1 

and so the electric field strength is -200 N C-1.

The equation E = –   ∆V
 ___ ∆x
   can be re-written as E × ∆x = –∆V, and in this 

form has a graphical interpretation.

A graph of force against distance for a constant force is shown in 
figure 4(a). The work done when this force moves an object through a 
distance ∆r is equal to the area under the graph. In symbols 

F × ∆r = W

When an electric force varies with distance then the work done is 
still the area under the graph (Figure 4(b)). Electric field strength 
(Figure 4(c)) is the force per unit charge, and so the area under a graph of 
electric field strength against distance is equal to the work done per unit 
charge – in other words the change in potential.
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▲  Figure 4 Work done and work done per unit charge.
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▲ Figure 3 Electric field strength and potential.
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Figure 4(c) shows the variation of electric field strength against distance 
for a single point positive charge – this is an inverse-square variation. 
Two areas are shown on this graph, one area (A) that shows the potential 
change between r1 and r2, the other (B) shows the potential at r3 – in this 
case the area included goes all the way to infinity.

The equation 

E = –   
∆Ve _ ∆r

  

can be written in calculus form as

E = –   dVe _ 
dr

  

This new form can be used to take the equation for the field strength

E =   
kQ

 _ 
r2

   

Q here is the charge creating the field (not a charge that would react to 
the field) and show that Ve is given by 

Ve =   
Q
 _ 

4πε0r
   or   

kQ
 _ r  

using the constant k =   1 _ 
4πε0

  .

This is the expression for the potential V at a distance r from a point charge. 
It predicts that the closer we are to a (positive) charge, the greater (more 
positive) is the potential. Conversely, the closer we are to a negative charge, 
the more negative is the potential. These predictions correspond to the 
conclusions we reached when we considered figure 3.

Potential is the work done in moving a positive unit charge (from 
infinity) to a particular point, so the work required to move a charge 
of size q from infinity to the point will be: Ve × q. This is the potential 
energy that charge q possesses due to its position in the field that is 
giving rise to the potential.

If a charge q is in a field that arises from another single point charge Q 
then its potential energy Ep = qVe, or

Ep =   
kqQ

 _ r   =   
qQ
 _ 

4πε0r
  

Graphs of field strength and potential against distance for the field due  
to a single positive point charge are shown in figure 5.

∆V = area
    = E ∆r (∆r small)
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field E = -      (∆r small)∆V
∆r

E

▲  Figure 5 Electric field strength and 
potential against distance for a positive  
point charge.

Worked examples
1 Two parallel metal plates have a potential 

difference between them of 1500 V and are 
separated by 0.25 m. Calculate the electric 
field strength between the plates.

Solution
Electric field strength =   

potential difference 
  __  

 separation
  

     =   1500 _ 
0.25

   = 6 kV m–1 (or kN C–1)

2 A point charge has a magnitude of –0.48 nC. 
Calculate the potential 1.5 m from this charge.

Solution
Ve =   

Q
 _ 

4πε0 r
  

Substituting

Ve =   – 0.48 × 10–9
  __  

4πε0 × 1.5
   = 2.9 V

Tip
Notice the relative shapes of the curves:   1 ____ 

r2   
is more sharply curving than the   1 ___ r   of the 
potential. Notice also the links between the 
two graphs.
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Potential inside a hollow conducting charged sphere
So far we have considered point charges and the parallel–plate 
arrangement in detail. Now we turn to another important charge 
configuration: the hollow conducting charged sphere.

Outside a charged conducting sphere, the field is indistinguishable from 
that of the point charge. The argument is that because the field lines 
leave the surface of the sphere at 90° these lines must be radial, so an 
observer outside the sphere cannot distinguish between a charged sphere 
and a point charge with the same magnitude of charge placed at the 
centre of the sphere. 

The field inside the sphere
Because the sphere is a conductor, all the surplus charge must reside on 
the outside of the sphere. This follows because: 

 ● the charges will move until they are as far apart as possible

 ● the charges will move until they are all in equilibrium (which in 
practice means that they have to be equidistant on the surface).

To find the field strength inside the conductor we need to compute the 
force that acts on a positive test charge Q placed anywhere inside the 
conductor. 

We choose a point inside the conductor at random and place our test 
charge there. This is shown in figure 6. The next step is to find the force 
acting on this test charge. To make this easier we consider two cones that 
meet at the test charge. These cones have the same solid angle at the 
apex. One of these cones is large and the other is small. The test charge 
is close to the conductor surface on the side of the small cone but not so 
close on the side of the large cone.

Call the distance from the test charge to the sphere rs for the small cone 
and rl for the large cone. The cone radii are xs and xl for the small and 
large cones respectively.

The surface charge density on the cone is σ and is the same over the 
whole sphere.

Therefore 

For the small cone For the large cone

Area of the end of the cone πxs
2 πxl

2

Charge on the end of the cone σπxs
2 σπxl

2

Distance of area from test charge  r  s  r  l 

Force on test charge due to area
  
kQσπxs

2

 __ 
rs

2
    

kQσπxl
2

 __ 
rl

2
  

Directed away 
from the surface

Directed away 
from the surface

The geometry of the cones is such that 

tan  (   θ _ 
2

   )  =   
xs _ rs

   =   
xl _ rl

  

surface of charge
conducting sphere

σ cm-2, surface
charge density

+Q

2xl

2xs

rl

rs

θ

θ

▲  Figure 6 Field inside a charged conductor.

  Nature of science
Linking electrostatics  
and gravity
The conclusion reached here 
arises because of the inverse- 
square law. It also applies to a 
hollow planet. We can show, in a 
similar way, that the gravitational 
field strength is zero. This 
helps us later to show how the 
gravitational field strength varies 
inside a solid planet of uniform 
density.
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and therefore

  
kQσπxs

2

 _ 
rs

2
   is equal to   

kQσπxl
2

 _ 
rl

2
  

The forces acting on the test charge due to the two charge areas are 
equal in size and opposite in direction. Remarkably, they completely 
cancel out leaving no net force due to these two areas of charge. 

We chose the angle of the cones arbitrarily so this result applies for any 
angle we could have chosen. Similarly, we chose the position for the test 
charge at random. Therefore this proof must apply for any pair of cones 
and any test point inside the sphere. There is therefore no net force on 
the test charge anywhere inside the sphere and consequently there is no 
electric field either. This proof relies on the inverse-square law and the 
fact that the area of the ends of the cones also depends on the (distance of 
the test charge from the area)2.

Because the electric field is zero the potential inside the sphere must be a 
constant since the gradient   ∆V

 ___ ∆r
   is zero inside the sphere. V being constant 

must mean that ∆V is zero so no work is required to move a charge at 
constant speed inside the charged sphere. The potential inside is equal to 
the potential at the surface of the sphere.

So we can now plot both the electric field strength and the electric 
potential for a charged conducting sphere and these graphs are shown in 
figure 7.

  Nature of science
Potential and potential energy
The connection between field strength and 
potential gradient is universal and applies to all 
fields based on an inverse-square law. It tells us 
about the fundamental relationship between force 
and the work the force does and it tells us this in a 
way that is independent of the mass (or the charge) 
of the test object that is moved into the field. Thus, 
field strength is a concept that represents force 
but with the mass or charge term of the test object 

removed. Of course, the mass or charge element 
that gives rise to the field in the first place is still 
important and remains in E and g.
So 

Mass/charge  
independent

Mass/charge  
dependent

Field strength ↔ force
Potential ↔ potential energy

E

0

0

1
r2

V

r

r

1
r

▲  Figure 7 Field and potential inside and 
outside the conductor.

Gravitational potential
Gravitation
As with electric fields 

 g = –   
∆Vg

 _ ∆r
  

where g is the gravitational field strength, Vg is the gravitational 
potential, and r is distance.

For the case of the field due to a single point mass M with a point mass m 
a distance r from it, the potential Vg at r is

 Vg = –   GM _ r  
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The potential energy of m at r from mass M is

 Ep = mVg = –   GMm _ r  

These equations lead to graphs similar to those for electric fields, which 
are illustrated in figure 8(a).

The forces are always attractive for gravity and we saw that this has the 
consequence that the potential is always negative with a maximum of 
zero at infinity. The graphs in figure 8 are plotted to reflect this. 

The graphs should be shown in three-dimensions, but are plotted in 
two dimensions for clarity. When thinking of the plotted surface of this 
negative   1 __ r   potential in 3-D, treat it as a potential well (figure 8(b)). This 
well will trap any particle that has insufficient kinetic energy to escape 
the mass. Later when we discuss how spacecraft leave the Earth you 
can imagine that a spaceship without enough energy can only climb up 
so far. From this point the spaceship can circle around the mass (that is 
orbit the mass), but climb no higher.

gravitational field strength

distance
(a)

(b)

1
r2

gravitational potential

distance

1
r

▲  Figure 8 Gravitational field strength and 
potential variation with distance.

Worked examples
1 At a point X the gravitational potential is –8 J kg–1. At a point Y 

the gravitational potential is –3 J kg–1. Calculate the change in 
gravitational potential energy when a mass of size 4 kg moves 
from X to Y.

Solution 
A change in potential is calculated from final state minus initial 
state so change here is (–3) – (–8) = +5 J kg–1. So energy required is 
+20 J, moving from a lower point in the potential well to a higher 
point (climbing toward infinity where the value is maximum and 
equal to zero).

2 Which diagram shows the gravitational equipotential surfaces due 
to two spheres of equal mass?

 

A.

C.

B.

D.

Solution
The spheres attract and so the gravitational field lines joining them 
resemble the pattern between two unlike charges (this pattern is 
similar to that in A). The equipotential surfaces must cut these field 
lines at 90° so the best fit to the appropriate pattern is C.

3 Calculate the potential at the surface of the Earth. The radius of 
the Earth is 6.4 Mm and the mass of the Earth is 6.0 × 1024 kg.
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outside Earth

inside Earth

g

distance from
centre of EarthrE

outside Earth

▲  Figure 9 Gravitational field inside the Earth.

  Nature of science
Delivering the mail!
The acceleration g′ is always 
directed toward the centre of 
Earth and is proportional to 
r. So a vehicle inside a tunnel 
drilled right through the Earth 
will perform simple harmonic 
motion if friction is neglected 
(see Topic 9). The vehicle will 
stop momentarily when arriving 
at the antipode 84 minutes after 
release. This is also the period of a 
satellite that goes round the Earth 
in low-earth orbit (technically, just 
skimming the surface).

Get the timing right and mail 
bags could be exchanged at the 
surface!

A chordal tunnel dug between 
Vancouver and Montreal or 
between New York and Rio de 
Janeiro or between London 
and Johannesburg (not passing 
through the center of the 
Earth) also allows the mail to 
be delivered. Use some of the 
ideas and equations in Topic 9 
to assess the engineering issues 
with this plan! 

Solution
Vg = –   GM _ r  

Vg = –   6.7 × 10–11 × 6.0 × 1024
   ___  

6.4 × 106
    

   = –6.3 × 107 J kg–1

Potential inside a planet
In a charged conducting sphere the mobile charges move to the outside 
of the sphere and this results in zero field inside. This is not the same for 
the gravitational field of a solid massive sphere (“massive” in this context 
means “having mass” not “having a large mass”). 

This case was mentioned in Topic 6 in the context of a tunnel drilled 
from the surface to the centre of the Earth. The essential physics is that 
if we are at some intermediate depth between surface and centre we can 
think of the Earth as having two parts: the solid sphere beneath our feet 
and the spherical shell “above our head”.

The inner solid sphere, a miniature Earth with a smaller radius, behaves 
as a normal Earth but with a different gravitational field strength given by 

g′ =   
G × reduced mass of the Earth

  ___________________  
radius of small Earth2   

The outer spherical shell does not give rise to a gravitational field. The 
argument is similar to that which we used to prove that the electric field 
inside a charged conductor was zero.

The reduced mass of the Earth is equal to   4 __ 3   πρr  ′  3  where ρ is the density of 
the Earth (assumed constant), so 

 g ′ =   
4πGρ r  ′  _ 

3
  

where r’ is the reduced radius of the “small Earth”

The gravitational field is proportional to the distance from the centre of 
the Earth until we reach the surface. This is an unexpected result. The 
inverse-square law actually gives rise to a linear relationship – because 
the   1 __ 

r2   behaviour of the force cancels with the r3 variation of the mass of 
the reduced Earth.

Leaving the Earth
Picture a spacecraft stationary on its launch pad. A space launch from 
Earth may put a satellite into Earth orbit. Or it may be a mission to explore 
a region far away from Earth requiring the craft to escape Earth’s gravity 
and eventually come under the influence of other planets and stars.

What minimum energy is needed to allow the craft to escape the Earth?

Orbiting
In Topic 6 there are some basic ideas about circular orbits of a satellite 
about a planet. We showed that the linear orbital speed v of a satellite 
about a planet is 

vorbit =  √____
   GM _ r    
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and that the orbital time T for this orbit is

Torbit =  √_____
   4π2r3
 _ 

GM
    

here M is the mass of the planet and r is the radius of the orbit.

Worked example
Calculate the orbital time for a 
satellite in polar orbit.

Solution
The orbital time for these 
satellites is obtained by using the 
appropriate value for r in the T 
equation. The radius of the orbit 
is the orbital height (100 km) 
plus the radius of the Earth  
(6.4 Mm), so r = 6.5 × 106 m.

 T =  √_______________
    

4 × π2 × (6.5 × 106)3

  __________________  
6.67 × 10–11 × 6.0 × 1024     

 = 5200 s (about 87 min)

▲  Figure 10 Polar and geostationary orbits (not to scale) and the track of a 
geosynchronous orbit.

(b)

rotation of Earth

polar axis

geostationary
orbit

(a)

polar orbit

Although satellites can be put into orbits of any radius (provided that 
the radius is not so great that a nearby astronomical body can disturb it), 
there are two types of orbit that are of particular importance.

The polar orbit is used for satellites close to the Earth’s surface (close 
in this context means about 100 km above the surface). The orbit is 
called “polar” because the satellites in this orbit are often put into orbit 
over the poles. Imagine you are viewing the Earth and the orbiting 
satellites from some way away in space. You will see the satellite 
orbiting in one plane (intersecting the centre of the Earth) with Earth 
rotating beneath it. In the course of 24 hours, the satellite will view 
every point on the Earth.

For the orbital radius of a polar orbit, the linear speed of the satellite is 
7800 m s–1 or 28 000 km per hour.

Geosynchronous satellites orbit at much greater distances from 
the Earth and have orbital times equal to one sidereal day which is 
roughly 24 hours. This means that the geosynchronous satellite can 
be made to stay in the same area of sky and typically follows a figure-
of-eight orbit above a region of the planet. A typical track in the 
southern hemisphere is shown in figure 10(b). This track shows where 
the satellite is overhead during the 24 hour cycle. Because the plane 
of the orbit coincides with the centre of the Earth but is not through 
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the Equator, the overhead position wanders. To see this, use a globe 
imagining the satellite going around its orbit as the Earth rotates below 
it at the same rate.

A geostationary orbit on the other hand is a special case of the 
geosynchronous orbit. In this case the satellite is placed in orbit above 
the plane of the Equator and will not appear to move if viewed from 
the surface. This has the advantage that a receiving antenna (aerial) 
or satellite dish on Earth also does not have to track the transmitting 
antenna on the satellite. A TV satellite dish pointing towards the 
south (equator) in the northern hemisphere will be always aligned 
with the geostationary satellite. These satellites are generally used for 
communication purposes and for collecting whole-disk images of the 
Earth for weather forecasting purposes.

Escaping the Earth
The total energy of a satellite is made up of the gravitational potential 
energy and the kinetic energy (ignoring any energy transferred to the 
internal energy of the atmosphere by the satellite). To escape from the 
surface of the Earth, work must be done on the satellite to take it to 
infinity. For an unpowered projectile this is simply equal to the kinetic 
energy – meaning that the total of the (negative) gravitational potential 
energy and the (positive) kinetic energy must add up to zero. Thus to 
reach infinity

gravitational potential energy + kinetic energy = 0

and therefore

–   GME mS _ 
RE

   +   1 _ 
2

   mS v  E  
2
   = 0

where RE is the distance of the satellite from the centre of the Earth, 
vE is the escape speed, and ME and ms are the masses of the Earth and 
the satellite respectively. The gravitational potential energy is negative 
because this is a bound system. Kinetic energy is always positive. (It is 
important to keep track of the signs in this proof.)

Worked examples
a) A geostationary satellite has a orbital time of 

24 hours. Calculate the distance of the orbit 
from the surface of the Earth.

b) Calculate the gravitational field strength at the 
orbital radius of a geostationary satellite.

Solution
a) 24 hours is 86 400 s.

Rearranging the orbital time equation 

r =   3 √______
   T 2 GM _ 

4π2
    

r =   3 √____________________________
      86 4002 × 6.67 × 10–11 × 6.0 × 1024
    ____  

4π2
      

   = 42 × 106 m = 42 000 km

This is (42 000 − 6400) = 36 000 km above the 
surface (the subtraction is to find the distance 
from the surface).

b)

g =   
GME _ 

(rE + r)2
    

  =   6.7× 10–11 × 6.0 × 1024
   ___  

(4.2 × 107)2
    

  = 0.23 N kg–1
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To escape the Earth’s gravitational field completely the total energy of 
the satellite must be (at least) zero. For the case where it is exactly zero 
(for the satellite to just reach infinity) 

vE =  √_____
   

2GME _ 
RE

    

=  √____
 2gRE  

where g is the gravitational field strength at the surface. This speed must 
be about 11 200 m s–1 (400 00 km hour –1) for something to escape.

It is important to be clear about the true meaning of escape speed. This 
is the speed at which an unpowered object, something like a bullet, would 
have to be travelling to leave the Earth from the surface. In theory, a 
rocket with enough fuel can leave the Earth at any speed. All that is 
required is to supply the 63 MJ for each kilogram of the mass of the 
rocket (the gravitational potential of the Earth’s field at the surface is 
– 62.5 MJ kg –1). However, in practice it is best to reach the escape speed 
as soon as possible.

Similarly, if a spacecraft begins its journey from a parking orbit, then less 
fuel will be required from there because part of the energy has already 
been supplied to reach the orbit. 

The graph of potential against distance helps here. The graph in figure 11 
shows the variation in gravitational potential from the Earth to the 
Moon. Before takeoff, a spacecraft sits in a potential well on the Earth’s 
surface. When the rockets are fired the spacecraft gains speed and moves 
away from the Earth. It needs enough energy to reach the maximum 
of the potential at point L (this is known as the Lagrangian point and it 
is also the point where the gravitational field strengths of the Earth and 
Moon are equal and opposite). Once at L the spacecraft can fall down the 
potential hill to arrive at the Moon.

Orbit shapes
We have now identified two speeds: orbital speed close to the surface 
(7.8 km s–1) and the escape speed (11.2 km s–1). At speeds between these 
values the spacecraft will achieve different orbits. These are shown in 
figure 12.

v > 11.2 km s-1

hyperbola

v = 11.2 km s-1

parabola
v  = 7.8 km s-1

circle

7.8 km s-1< v < 11.2 km s-1

ellipse

▲  Figure 12 Orbital shapes of satellites.

Earth
Moon

distance0

gravitational
potential

-0.77 mJ kg-1L

-63 mJ kg-1

▲  Figure 11 Gravitational potential between the 
Earth and the Moon (not to scale).
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 ● At speeds less than 7.8 km s–1 the craft will return to Earth.

 ● At a speed of 7.8 km s–1 the craft will have a circular path.

 ● At speeds between 7.8 km s–1 and 11.2 km s–1 the orbit will be  
an ellipse.

 ● At a speed of 11.2 km s–1 the craft will escape following a  
parabolic path. 

 ● At speeds greater than 11.2 km s–1 the craft will escape the Earth 
along a hyperbolic path. (It will not however necessarily escape the 
Sun and leave the Solar System.)

You will only have to consider circular orbits for the examination.

  Nature of science
Using the Earth’s rotation and the planets
Rotation
Many launch sites for rockets are close to the 
Equator. This is because the Equator is where the 
linear speed of the Earth’s surface is greatest. This 
equatorial velocity is about 500 m s–1 from west to 
east meaning that a rocket taking off to the east 
has to attain a relative speed of 11.2 – 0.5 = 
10.7 km s–1, a significant saving in fuel.

Slingshots
Another technique much used in missions to 
distant planets is to use “slingshot” techniques 
in which a spacecraft is attracted towards a 
planet and then swings around it to shoot off in 
a different direction possibly at a greater speed. 
The interaction is effectively a collision between 
the craft and the planet in which momentum is 
conserved but the craft gains some energy from 
the orbital energy of the planet.

The spacecraft Voyager 2 was launched in 1977 
and in the course of its journey has passed Jupiter, 
Saturn, Uranus, and Neptune, using each planet 
to change its trajectory achieving a “Grand Tour” 
of the planets. The spacecraft is still travelling and 
is now a considerable distance from Earth (it has 
its own Twitterfeed if you wish to know where 

it is today). It is expected to lose all its electrical 
energy sometime in 2025 and will then continue, 
powered down, through space carrying messages 
from the people of Earth to any other life form 
that may encounter it.

Gases in the atmosphere
The Earth’s atmosphere only contains small 
amounts of the lighter gases such as hydrogen 
and helium. All gases in the atmosphere are at the 
same average temperature T and thus have the 
same mean kinetic energy  

__
 E K for the molecules 

(because, from Topic 3,  
__
 E K ∝ T).

Kinetic energy is   1 __ 2   mv2, therefore the mean speed 
of the molecules of a particular element with mass 
m is proportional to   1

 ___  √
__ m    . Calculations show that 

the lightest gases in the atmosphere have mean 
speeds that are close to (but less than) escape 
speed. But even so, the very fastest of these 
molecules can escape the atmosphere so that 
eventually almost all the light gases disappear. 
The Moon has no atmosphere, because its 
escape speed is lower than that of the Earth and 
ultimately almost all its gas molecules leave after 
release. The low-density atmosphere of Mars is 
slowly leaking away into space.

Charges moving in magnetic and electric fields
Charges moving in magnetic fields
We saw in Topic 5 that a force acts on a charge moving in a magnetic field.

In Figure 13 an electron moves to the right into a uniform magnetic  
field in which the field lines are oriented at 90° to the direction in which 
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the electron moves (the field lines are out of the plane of the paper in 
the figure).

current

conventional

current

force

force

force

-

-

magnetic field out

of plane of peper

magnetic field out

of plane of peper

magnetic field out of plane of peper

current

-

-

▲  Figure 13 Force acting on an electron in a uniform magnetic field.

Fleming’s left-hand rule predicts the effect on the electron. The force will 
be at right angles to both the velocity and the direction of the magnetic 
field. In using Fleming’s rule, remember that it applies to conventional 
current, and that here the electron is moving to the right – so the 
conventional current is initially to the left.

The electron accelerates in response to the force, and its direction of 
motion must change. The direction of this change is such that the 
electron will still travel at right angles to the field and the magnetic force 
will continue to be at right angles to the electron’s new direction. This is 
exactly the condition required for the electron to move in a circle. The 
magnetic force acting on the electron is providing the centripetal force 
for the electron. As the electron continues in a circle so the magnetic 
force direction alters as shown in figure 13.

The force acting on the electron depends on its charge q, its speed v, and 
the magnetic field strength B. The centripetal force will lead to a circular 
orbit of radius r and

  
mev

2

 _ r   = Bqv

So the radius of the circle is (written in a number of ways)

r =   
mev _ 
Bq

   =   
p
 _ 

Bq
   =   

  ( 2meEk
 )     

1 _ 
2
  
 
 _ 

Bq
  

where p is the momentum and me is the mass of the electron. It 
is possible to use observations of this electron motion to measure 
the specific charge on the electron. This is the charge per unit mass 
measured in C kg–1. A fine-beam tube is used in which a beam of 

▲  Figure 14 Electrons moving in a circle 
demonstrated in a fine-beam tube.

420

10 F I E L D S  ( A H L )



electrons is fired through a gas at very low pressure (which means 
that the electrons do not collide with too many gas atoms). When a 
uniform magnetic field is applied at right angles to the beam direction, 
the electrons move in a circle and their path is shown by the emission 
of visible light from atoms excited by collisions with electrons along the 
path.

The electrons of mass me are accelerated using a potential difference V 
before entering the field. Their energy is

  1 _ 
2

   me v
2 = qV

So

v =  √____
   

2qV
 _ me

    

which with 

v =   
Bqr

 _ me
   gives

  
q
 _ me
   =   2V _ 

B2r2
  

In a case where the electron beam is moving into a magnetic field that is 
not at 90° to the beam direction, then it is necessary to take components 
of the electron velocity both perpendicular to the field and parallel to 
it. The perpendicular component leads to a circular motion exactly as 
before. The only difference will be that 

r =   
mev sin θ _ 

Bq
  

where θ is the angle between the field direction and the beam direction. 
So the radius of the circle will be smaller than the perpendicular case.

The parallel component of velocity does not lead to a circular motion. 
The electrons will continue to move at the component speed (v cos θ) in 
this direction. The overall result is that as the beam enters the field it will 
begin to move in a helical path.

Large particle accelerators can use magnetic fields to steer the charged 
particles as they are accelerated to higher and higher speeds. The 
acceleration is carried out using electric fields.

Charges moving in electric fields
The situation is different for electrons moving into the uniform electric  
field produced by a pair of charged parallel plates.

parabolic path

= V
dE

+V

d

X

0 V

- - -

▲  Figure 16 Motion of an electron in a uniform electric field.

y

xz

helical path

B

+q+
θ

▲  Figure 15 A positively-charged particle moving 
in a magnetic field not at 90° to its direction 
of motion.
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The force on the electron now acts parallel to the field lines. In the case 
shown in the figure 16 the electron is accelerated vertically. Because the 
force is constant in both magnitude and direction (uniform field) the 
acceleration will also be constant. Mechanics equations from Topic 2 are 
used to analyse the situation:

E =   V __ 
d
    as usual for a uniform field, and 

avertical =   F _ me
   =   

qE
 _ me
   =   

qV
 _ 

med
  

where me is the mass of the electron.

There is no horizontal acceleration and the horizontal component of the 
velocity does not change. The time t taken to travel between the plates 
of length x is therefore

t =   x _ vhorizontal
  

So the vertical component of the velocity as the electron leaves the 
plates is (using v = u + at)

vvertical = avertical × t =   
qV

 _ 
med

   ×   x _ vhorizontal
  

To obtain the final speed with which the electron leaves the field,  
it is necessary to combine the two components in the usual way as 

 √____________
  v 2vertical + v 2horizonta  l 

The deflection s of the electron while in the field is proportional to  
t2  ( s =   1 __ 2   at2 ) . This form is equivalent to the equation for a parabola,  
so the trajectory of the electron is parabolic not circular unlike the case 
with a magnetic field. This derivation ignores the effects of gravity on  
the electron. Is this justified?

Charge moving in magnetic and electric fields
Despite the fact that magnetic fields lead to circular orbits and electric 
fields lead to parabolic trajectories, it is possible to use them in a 
particular configuration to do a useful job. The trick is to combine the 
magnetic and electric fields at right angles to each other.

FE

FB
B

+

-

-
+

-E

▲  Figure 17 Crossed electric and magnetic fields can cancel out.
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For the arrangement shown in the diagram, the electric force is vertically 
upwards and the magnetic force is downwards. When these forces are 
equal then there will be no net force acting on the charged particle.

For this to be the case

FE = FB ;  qE = Bqv

leading to

v =   E _ 
B

  

This means that for a particular ratio of E : B there is one speed at which 
the forces will be balanced. Charged particles travelling more slowly 
than this speed will have a larger electric force than magnetic force, 
and the net force will be upwards on the diagram. For faster electrons 
the magnetic force will be larger and the electron will be deflected 
downwards. This provides a way to filter the speeds of charged particles 
and the arrangement is known as a velocity selector. 

  Nature of science
Bainbridge mass spectrometer
The Bainbridge mass spectrometer is a good example of a number 
of aspects of electric and magnetic fields being brought together to 
perform a useful job.

There are two parts to the instrument: a velocity selector with crossed 
electric and magnetic fields and a deflection chamber with just a 
magnetic field (in this diagram, into the paper). It is left as an exercise 
for the reader to see that the motion of equally charged ions of the 
same speed but different mass travel in circles of different radii in 
the deflection chamber. The ions arrive at the photographic plate 
or electronic sensor at different positions and, by measuring these 
positions, their mass (and relative abundance) can be determined.

+

‒ magnetic field into paperpositive ionsgas

vacuum

cathode
‒

anode
+

path of ion with
smaller m

q

photographic plate
or electronic sensor

velocity selector deflection chamber

ion
source

▲  Figure 18 Bainbridge mass spectrometer.

423

10 . 2  F I E L D S  A T  W O R K



▲  Figure 19 Relationships between field quantities.

Potential energy =
potential ×quantity

Force =  field
strength × quantity

Field  strength = 
force ÷ quantity

Potential = potential
energy ÷ quantity

POTENTIAL ENERGYFORCE

POTENTIALFIELD STRENGTH

        Potential = area
     under field
  strength-distance
graph

Potential energy =
  area under
     force- distance
        graph

Quantity = charge or mass

Field strength
 = - gradient of
      potential-distance
           graph

                   Force =  - gradient
            of potential
        energy- distance
    graph

Eg = GMm
r

Ee = kQq
r
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      dr

force = - gradient

ŕ r

E E

   g = GM
r

Ve = kQ
r

F = GMm
r2

F = kQq
r2

energy = area
under graph

ŕ r

F

E

g = GM
r2

= kQ
r2

V =  area
under graph

r1 r
ǵ

g

ǵ

r1 r

V
= - dV

      dr

E

Concept map for field theory
Figure 19 gives a visual summary of all the relationships presented in 
this topic. It applies to both gravitational and electric fields. Both sets 
of equations are represented on it. The diagram shows the cycle of 
force  field strength  potential  potential energy  force and 
the relationships between them.

Comparison of gravitational and electric fields
The table below sets out some of the important similarities between electric 
and gravitational forces and summarizes the contents of Topics 5, 6, and 10.
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Electric Gravitational

Force law F =   
Qq

 __ 
4πε0 r2

    (Coulomb’s law) F =   GMm __ 
r2

    (Newton’s law)

Field strength Modification when not in a 
vacuum

Replace ε0 with ε No change

Definition E =   F _ q  g =   F _ m  

Unit N C–1 or V m–1 N kg–1 or m s–2

Distance r from a point object E =   Q __ 
4πε0 r2

   g =   GM _ 
r2

  

At r from centre of sphere  
of radius R, r ≥ R

E =   Q __ 
4πε0 r2

   g’ =   GM _ 
r2

  

At r from centre of sphere of 
radius R, r < R E = 0 g ′=     

4πGρr ′ __ 
3

  

Potential Definition Electric potential energy per 
unit charge

Gravitational potential 
energy per unit mass

Unit V ≡ J C–1 J kg–1

For two point charges or 
masses

Vp =   Q __ 4πε0 r  Vg=  –    GM _ r  

Differences

value at infinity:

Attractive: zero and 
maximum

Repulsive: zero and 
minimum

● Between charges
● Attractive and repulsive 

depending on charge sign

● Between masses 
● Only attractive

Constant in force law   1 __ 
4πε0

   (= Coulomb constant k) G
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Questions
1 (IB) The mass of Earth is ME and the radius 

of Earth is RE. At the surface of Earth the 
gravitational field strength is g. 

A spherical planet of uniform density has a 
mass of 3 ME and a radius 2 RE. Calculate the 
gravitational field strength at the surface of  
the planet. (1 mark)

2 (IB) A spacecraft travels away from a planet in a 
straight line with its rockets switched off. At one 
instant the speed of the spacecraft is 5400 m s–1 
when the time t = 0. When t = 600 s, the speed 
is 5100 m s–1. Calculate the average gravitational 
field strength acting on the spacecraft during 
this time interval. (1 mark)

3 (IB) 

 a)  State, in terms of electrons, the difference 
between a conductor and an insulator. 

b) Suggest why there must be an electric field 
inside a current-carrying conductor. 

c) The magnitude of the electric field strength 
inside a conductor is 55 N C–1. Calculate the 
force on a free electron in the conductor. 

d) The electric force between two point 
charges is a fundamental force that 
applies to charges whereas gravity is the 
gravitational force that applies to two 
masses. State one similarity between these 
two forces and two other differences. 

e) The force on a mass of 1.0 kg falling freely 
near the surface of Jupiter is 25 N. The 
radius of Jupiter is 7.0 × 107 m.

   (i)  State the value of the magnitude of the 
gravitational field strength at the surface 
of Jupiter. 

 (ii) Calculate the mass of Jupiter. 

 (13 marks)

4 An astronaut in orbit around Earth is said to be 
“weightless”. Explain why this is.

5 (IB) This question is about the gravitational 
field of Mars.

a) Define the gravitational potential energy of a 
mass at a point. 

b) The graph shows the variation of the 
gravitational potential V with distance r 
from the centre of Mars. R is the radius of 
Mars which is 3.3 Mm. (Values of V inside 
the planet are not shown.)

0 1 2 3
r/R

V/
M

J k
g-

1

4 5 6 7

-12.0
-11.0
-10.0
-9.0
-8.0
-7.0
-6.0
-5.0
-4.0
-3.0
-2.0
-1.0

0.0

-13.0

A rocket of mass 12 Mg lifts off from the surface 
of Mars.

   (i)  Calculate the change in gravitational 
potential energy of the rocket at a 
distance 4R from the centre of Mars. 

 (ii)  Determine the magnitude of the 
gravitational field strength at a distance 
4R from the centre of Mars. 

c) Determine the magnitude of the 
gravitational field strength at the surface  
of Mars. 

d) The gravitational potential at the surface of 
Earth is –63 MJ kg–1. Without any further 
calculation, compare the escape speed 
required to leave the surface of Earth with 
that of the escape speed required to leave 
the surface of Mars. 

 (10 marks)

6 (IB) A small sphere X of mass M is placed a 
distance d from a point mass. The gravitational 
force on sphere X is 90 N. Sphere X is removed 
and a second sphere Y of mass 4M is placed a 
distance 3d from the same point mass. Calculate 
the gravitational force on sphere Y. 
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  Nature of science
Much of the physics in this sub-topic was 
discovered through painstaking experimentation 
by a handful of scientists. Pre-eminent among 
them was Michael Faraday who observed currents 
induced in a coil when magnetic fields were varied 
nearby. These observations led him to the laws of 
electromagnetic induction that we use in our large-
scale generation of electrical energy.

Understandings
 ➔ Electromotive force (emf)
 ➔ Magnetic flux and magnetic flux linkage
 ➔ Faraday’s law of induction
 ➔ Lenz’s law

  Applications and skills
 ➔ Describing the production of an induced emf by 

a changing magnetic flux and within a uniform 
magnetic field

 ➔ Solving problems involving magnetic flux, 
magnetic flux linkage, and Faraday’s law

 ➔ Explaining Lenz’s law through the conservation 
of energy

Equations
 ➔ Flux: Φ = BA cosθ
 ➔ Faraday's / Neumann's equation: ε = -N   :Φ _ ∆t

  

 ➔ emf induced in moving rod: ε = Bvl
 ➔ in side of coil with N turns: ε = BvlN

Introduction
The physics of electromagnetic induction has 
profound implications for the way we generate 
electrical energy and therefore for the way we 
live. Every year throughout the world about 
1020 J of energy are converted into an electrical 
form using electromagnetism. This vast 

conversion of energy enables us to feed our 
ever-growing appetite for technologies that 
require electricity. It also raises considerable 
issues about the sustainability of the energy 
sources used for the conversion.

11  ELECTROMAGNETIC INDUCTION  
(AHL)

11.1 Electromagnetic induction
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Inducing an emf 
In Topic 5 we saw that when an electric charge moves in a 
magnetic field, then a force acts on the charge (and therefore 
on the conductor in which it is moving). In a reverse sense, a 
movement or change in a magnetic field relative to a stationary 
charge gives rise to an electric current. This phenomenon is called 
electromagnetic induction.

  Investigate!
Making a current

 ● Begin with a magnet and a coil or a solenoid 
of wire. Arrange the coil horizontally and 
connect it to a galvanometer (a form of 
sensitive ammeter, with the zero in the middle 
of the scale). You can use a laboratory coil, or 
you can wind your own from suitable metal 
wire using a cylinder as a former.

 ● Move the bar magnet so that its north-seeking 
pole approaches one end of the coil and 
observe the effect on the meter. Record the 
direction of the current as indicated by the 
meter and the peak value shown.

 ● Repeat the movement, moving the bar magnet 
with its south-seeking pole towards the coil.

 ● Move the bar magnet away from the coil.

 ● Change the speed with which you move the 
magnet.

 ● Compare the current directions for each case 
and also the size of the current produced.

 ● Now try moving the coil and keeping the 
magnet still. Does this change your observation?

 ● Now try moving the coil and the magnet at 
the same speed and in the same direction. 
What is the size of the current now? If your 
coil allows it, you might also try making the 
magnet enter the coil at an angle rather than 
along its axis. You could also try moving the 
magnet completely through the coil and out 
of the other side. Try to interpret this complex 
situation when you have understood the 
simpler cases.

 ● Relate the direction of current flow in the coil 
to the magnetic poles produced at the ends of 
the coil using the ideas in Topic 5. (Figure 1(b) 
reminds you of the rule.)

(b)

(a)

 Figure 1 (a) the experiment, (b) the N and S rule, and (c) typical results.

S N S N

S N

(c)

S N N S N S
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The results for this simple experiment are shown in figure 1(c). You 
should focus both on the direction of the conventional current flow and 
on the magnitude of the current. You are observing results similar to 
those made by Faraday in the 19th century.

A number of conclusions emerge from these simple experiments:

 ● The current only appears when there is relative motion between the 
coil and the magnet; either or both can move to produce the effect. 
However, if both coil and magnet move with no relative motion 
between them then no current occurs. Only movement of the wire 
in the coil relative to the field is important.

 ● When the north-seeking pole of the magnet is inserted into the 
coil, the current in the coil tends to reduce the magnet’s motion by 
producing another north-seeking pole at the magnet end of the coil. 
Push a south-seeking pole in and another south pole appears at the 
magnet end of the coil. It is as though the system acts to repel the bar 
magnet and to reduce its movement. The system appears to oppose 
any change in the magnetic flux; the greater the rate of change, the 
greater is this opposition. We will look at this again later.

 ● In the same way, when a magnetic pole is moved away from the coil, 
the opposite pole is formed by the current in the coil in an attempt to 
attract the magnet and reduce its speed of motion.

 ● Moving the coil at greater speeds relative to the magnet increases the 
sizes of the currents. The effect is at a maximum when the axis of the 
magnet between its poles is perpendicular to the area of cross-section 
of the coil.

The keys to understanding these effects lie in what we said earlier in 
Topic 5 about the motion of charges in a magnetic field and what we know 
about the internal structure of the conducting wire that makes up the coil.

Figure 2(a) shows electrons in a metal rod that is moving through 
a uniform, unchanging magnetic field. Free electrons in the wire 
are moving upwards with the rod in an external magnetic field that 
acts into the page. A force acts on each electron to the right. This 
force is equivalent in direction to that which would act on a positive 
charge moving down the page (a conventional current downwards). 
This direction is perpendicular to both the field and the direction of 
motion of the rod and is determined using Fleming's left-hand rule.

 Figure 2 Electrons forced to move in a magnetic field experience a force.

magnetic field into page 

L R

conventional
current

-

×
×

×
- - ---

electron
flow

(a) (b)

(c)

L R L R+ + +

×
×

×

×
×

×

×
×

×

×
×

×

×
×

×

×
×

×

×
×

×

In figure 2(b), with no external connection between L and R the 
electrons accumulate at the right-hand end (R) of the rod making it 
negatively charged, and a lack of electrons at the left-hand end (L) 
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  Nature of science
Electromagnetic force
Perhaps you can now see why the term electromagnetic force arose 
in the early days of electromagnetic induction – and why it still 
persists. Some physicists object that no force acts when the term 
emf is applied to electric cells, batteries, piezoelectric devices, and so 
on – therefore, they say, emf is not a good expression. It is true that 
it is difficult to see how the word “force” can apply in the case of a 
cell. But in the case of electromagnetic induction, it is clear that a 
force is acting on the electrons in the conductor that is being moved 
and so the term emf continues to be used in physics. The fact that 
we often use the abbreviation emf rather than the full expression is 
a reminder that we should not focus on the term “force” but rather 
on the units of emf: J C-1.

makes it positive. A potential difference exists between L and R, L being 
at the higher potential. When there is no external connection between L 
and R, no current will circulate. Charges will accumulate at the end of the 
rod, that is electrons will move to one end leaving the other end positive. 
Without a current in a closed circuit no work is required, no transformation 
of energy takes place.

If the circuit is closed externally between L and R (figure 2(c)), a flow of 
electrons will occur as shown. Inside the rod the conventional current 
flows from R to L. The electrons flow out of the right-hand end of the 
rod and this is a conventional current in the external circuit from L to R. 
A current has been generated, or induced, in the circuit.

The system is acting to move the electrons through the resistor and, 
because this is a transformation of energy into an electric form, the source 
of the energy is termed an electromotive force (emf). As usual, we can 
identify the amount of energy transferred for each coulomb of charge that 
moves around the circuit and we use the term induced emf to show that 
the emf arises from an induction effect. (The word “induction” is another 
term used in the early days of the study of electromagnetism.)

Lenz’s law
An important aspect of electromagnetic induction is that the induced 
emf exists whether the charge flows in a complete circuit or not. In the case 
shown in figure 2(b) the circuit is incomplete. Electrons flow along 
the rod until an excess of them sets up an electric field which repels 
further electrons, stopping further flow. It is only when the circuit is 
complete that charge flows. An induced emf is always generated by  
the system and the induced current will exist only if there is a 
complete circuit.

We can look at the system in terms of a possible direction rule. Fleming’s 
left-hand rule was able to predict the force on, and therefore a flow of, the 
electrons. This flow of electrons is equivalent to a conventional current 
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acting in the opposite direction. You have two choices: either use Fleming’s 
left-hand rule to work out the force direction from first principles and 
let this lead you to the conventional current direction (the argument is 
given above), or you can use another rule (Fleming’s right-hand rule), 
which uses the symmetry between our left and right hands to give the 
relationship between the motion of the conductor, the direction of the field 
and the direction of the induced conventional current. It's your choice!

The observations you made in the Investigate! can be interpreted by looking 
closely at the directions of current in the coil relative to the movement of 
field and coil. A rule that describes this was summed up by the German 
scientist Heinrich Lenz in 1833. He stated that 

the direction of the induced current is such as to oppose 
the change that created the current.

Check your experimental notes (or the diagrams in figure 1 that sum 
them up) and see if your results confirm this law.

In fact, Lenz’s law is little more than the conservation of energy. Suppose 
that, rather than opposing the induced effect, the change were to enhance 
it. This would imply an attraction instead of a repulsion between magnet 
and coil; the magnet would be pulled into the coil, accelerating as it goes. 
This would increase the speed and lead to an even greater acceleration. The 
magnet would move faster and faster into the coil, gaining kinetic energy 
from nowhere. Conservation of energy tells us this cannot happen. 

Another way to look at the consequences of Lenz's law is to realize that 
you cannot do work without having some opposition. The induced current 
in the coil is such that the induced field produced by this current opposes 
the motion of the magnet you are holding. If the circuit is open, there is no 
current, no opposition, and no electric energy produced. If you move the 
magnet very fast you will clearly feel the opposite force acting on you!

Electrons had not been discovered in Lenz’s time and we can see how his 
law arises from first principles. In Topic 5 we saw that when a current 
flows within a magnetic field the current produces a magnetic field 
which distorts the original field pattern. The result was that a force acted 
on (and could accelerate) the current-carrying conductor. This was the 
effect that led us to the basis of an electric motor. 

 Figure 3 Fleming’s rules.

force F

magnetic field B

current I

Fleming’s left-hand rule
for motor effects

left hand

right hand

Fleming’s right hand
rule for induction effects

motion of the
conductor

magnetic field

induced current

  Nature of science
Another rule
Another possibility is to use 
the right hand with its thumb 
in the direction of the current 
and fingers in the direction of 
the magnetic field. By pushing 
you get the direction of the 
force on a positive charge or 
a conventional current. If 
an electron is the moving 
charge, point the thumb in the 
opposite direction to get the 
force in opposite direction This 
convention can also be used to 
get the direction of the magnetic 
field due a conventional current 
e.g. by curling the fingers 
around a wire with current. 
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In electromagnetic induction, there is a current in the conductor as a 
result of the motion of the conductor. Figure 4 extends the example 
of the moving rod that is now rolling to the right at a constant speed 
through the magnetic field on a pair of rails. The rails conduct and 
form part of a complete electrical circuit WXYZ. (Rolling means that 
we do not have to worry about friction between the rod and the rails.) 
Charges, driven by the induced emf, flow around the circuit giving rise 
to an induced current in the direction shown. This induced current 
interacts with the uniform magnetic field to give rise to a force - the 
motor effect force that we discussed in Topic 5 (page 234). If you now 
use Fleming's left-hand rule you will see that the induced current 
leads to a motor effect (a force) acting to the left in figure 4, that is, 
opposite to the direction in which the conductor is moving. If the rod 
is to move at a constant speed then (by Newton’s first law of motion) 
an external force must be exerted on it. This is where the energy 
conversion comes in. The work done by the external force to keep the 
conductor moving at a constant speed appears as electrical energy in 
the conductor.

Magnetic flux and flux density
We can use the physics from Topic 5 to extend these qualitative ideas. 
The magnitude of this magnetic force is BIl where B is the magnetic 
field strength, I is the induced current in the rod, and l is the length of 
the rod. Fleming’s left-hand rule shows that the magnetic force arising 
from the induced current opposes the original force. In other words, 
the opposing magnetic force is to the left if the original applied force 
is to the right. The net force is zero and the rod moves at constant 
speed. It is possible for work to be done because of the opposition to 
the motion presented by the external magnetic field that produces 
a magnetic force on the induced current. No opposition, no work 
possible (or needed!).

From Newton’s first law, to keep the rod in figure 4 moving at  
constant velocity, a constant force equal to BIl must act on the rod to 
the right.

 Figure 4 Conducting rod rolling in a magnetic field.

W

Z
Y

X

B  

B
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constant
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-

-
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The energy we have to supply therefore in a time :t is 

force × distance moved 

which is 

BIl × :x

where :x is the distance moved to the right by the rod. 

The induced emf is equal to the energy per coulomb supplied to the 
system. In other words

  
energy supplied

  __  
charge moved

   = ε =   BIl × ∆x _ 
Q

   =   BIl:x _ 
I∆t

  

and therefore 

ε = Blv

where v is the speed of the rod.

Cancelling and rearranging gives

ε =   B ∆A _ ∆t
   = B × rate of change of area

This is because the area that is swept through by the rod in a time t is  
l:x = :A (because it is the amount by which the area changes in time :t)

So, in words,

induced emf = magnetic flux density × rate of change of area

This introduces you to an alternative term in magnetism for what was 
earlier called the magnetic field strength – magnetic flux density. 

The magnetic field strength is numerically equivalent to 
magnetic flux density.

In Topic 5 we used the term “magnetic field strength” because in that 
topic we were concerned with basic ideas of field. In both electrostatics 

and gravity, the term field strength has a meaning of   
force

 ____ mass   or   
force

 _____ 
charge

   

depending on the context. We defined magnetic field strength in Topic 5 as

  
force
 __  

current × length
  

However, this definition does not take account of the old but helpful 
view of magnetic field lines as lines directed from a north-seeking to a 
south-seeking pole with a line density that is a measure of the strength 
of the field. It is this visualization of a field in terms of lines (close 
together when the field is strong, and well-separated when the field is 
weak) that links magnetic field strength to magnetic flux density.

When lines of force (field lines) are close together, then the magnetic field 
strength is large. There will be many lines through a given area. We say 
also that the magnetic flux density is large. The total number of lines per 
square metre is a measure of the magnetic flux density and therefore the 
total number of lines in a given area is a measure of the magnetic flux. 

Flux is an old English word that has the meaning of “flow” and one way 
to think about flux is to imagine a windsock used to show the direction 
and speed of wind at an airfield. If the wind is strong then the flux  Figure 5 Flux and flux density.

B, magnetic flux density

normal to area

area, A

θ

Φ = BA cos θ
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density is high. The flux is the number of streamlines going through the 
sock. If the wind has the same speed for two windsocks of different sizes 
then the windsock with the larger opening will have a larger flux even 
though the flux density is the same.

If magnetic flux density is defined as the number of flux lines per unit 
area, then flux itself must be equivalent to 

flux density × area

so that, in symbols, 

Φ = B × A

This equation assumes that B and A are at right angles. Figure 5 shows 
the relationship between area and flux density when this is not the case. 
In this case, we need to consider the component of the field normal to 
the plane. A normal to the area is constructed and this normal makes an 
angle θ with the lines of flux. So,

Φ = BA cos θ so that when θ = 0 (area normal to field lines) Φ = BA, 
and when θ = 90°, Φ = 0.

To sum up:

 ● Magnetic flux density B is related to the number of field lines per 
unit area. It is a vector quantity.

 ● Magnetic flux is equal to BA (also written as Φ). It is a scalar quantity.

 ● The equation Φ = BA cos θ is used if the area is not normal to the lines.

The unit of flux is the weber (Wb) and is defined in terms of the emf 
induced when a magnetic field changes. The equation ε = B   ∆A

 ___ ∆t
   can be 

re-written as ε =   
:(BA)

 _____ :t
   or   

change in flux
  ______________  

time taken for change
   and so 

a rate of change of flux of one weber per second induces an 
emf of one volt across a conductor

For a particular conductor, knowledge of a magnetic field in terms of the 
magnetic flux and the rate at which it changes allows a direct calculation 
of the magnitude of the induced emf that will appear. 

We can now make a direct link between flux density and field strength. 

The magnetic flux density  (   flux 
  __________________  

area over which it acts
  , measured in 

weber metre–2 )  is numerically equal to the magnetic field 

strength  (   force
 _____________  

current × length
   )   .

One tesla (T) ≡ one weber per square metre (Wb m–2)

We therefore also have a link between changes in the magnetic field 
strength and the induced emf.

Magnetic flux linkage
Finally, one more quantity appears. Our derivation of ε = B   ∆A

 ___ ∆t
   above 

used a single rod rolling along two rails. This is equivalent to a single 
rectangular coil of wire that is gradually increasing in area. Imagine 
this single turn of coil gradually increasing its area to include more and 
more field lines. As before the emf across the ends of the coil will be 
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equal to the rate of change of area multiplied by the magnetic flux 
density. If there are N turns of wire in the coil then the induced emf 
will be N times greater so that = NB   ∆A

 ___ ∆t
   =   

∆(NΦ)
 _____ ∆t

  . NΦ is known as the 
magnetic flux linkage.

The unit of flux linkage is often written as weber turns, although this 
is entirely equivalent to weber because the number of turns is simply a 
number.

The relationships between these interlinked quantities can be shown as:

magnetic flux linkage,
measured in Wb-turns

NΦ

magnetic flux measured
in Wb

Φ = BA

magnetic flux density
measured in Wb m-2

magnetic field strength
measured in T

B

Magnetic induction is summed up in a law devised by Faraday himself 
that is known as Faraday’s law, it states that

the induced emf in a circuit is equal to the rate of change of 
magnetic flux linkage through the circuit.

In our usual notation this is written algebraically as 

ε = -   N∆Φ _ ∆t
  

The negative sign is added to include Lenz’s law. In its full 
mathematical form, the equation is also known as Neumann’s 
equation. This equation combines Faraday’s and Lenz’s ideas. It 
reminds us that, (as we shall see in the next section) magnetic flux 
can be changed in three different ways: by changing the area of 

cross-section with time  (   :A
 ___ :t
   ) , by changing θ with time  [   :(cos θ)

 ______ :t
   ]  or by 

changing magnetic flux density with time  (   :B
 ___ :t
   ) .

  Nature of science
Cutting lines of force
Faraday first introduced the field-line model though his model is 
not quite the same as our modern interpretation of a magnetic 
field. He considered the lines of force to be at the edges of “tubes 
of force”, like elongated elastic bands. At the time, an invisible 
“aether”, thought to have elastic properties, was considered to fill 
space. Later on, Faraday and others took the concept of the field 
line further by suggesting that it was the action of the conductor 
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Changing fields and moving coils
An emf can be electromagnetically induced in a number of ways that, on 
the face of it, appear different from each other:

 ● A wire or coil can move in an unchanging magnetic field (the 
example of the rolling rod above).

 ● The magnetic field can change in strength but the conductor does not 
move or change.

 ● A coil can change its size or orientation in an unchanging 
magnetic field.

 ● Combinations of these changes can occur.

We will look at these cases in the context of a rectangular coil interacting 
with a uniform (but possibly changing) magnetic field.

 Figure 6 Moving coils and changing fields.

area, A

zero field

(a)

(c)

(b)

flipped though 180°

B, field out of page

∆Φ = BA ∆Φ = 2BA

X Y

X
Y

X

X Y

Y

G

“cutting” the tubes of force that led to an induced emf. This is 
a helpful way to think of the process, although it conceals the 
link between a charge being moved in a magnetic field and the 
magnetic force that acts on the charge as a result. But we need 
always to remember that Faraday and the others did not know of 
the existence of the electron, and that they were very familiar with 
the ideas of field lines. In the nineteenth century, Maxwell refined 
these models by including both electrostatic and electromagnetic 
forces in one set of equations.

This illustrates two things about the nature of science: the way in 
which scientists allow a discovery to illuminate prior knowledge 
in a different way, and the power of the visual image to help us to 
comprehend a phenomenon.
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Case 1: Straight wire moving in a uniform field
This is the case of the rolling rod above. The change in area per second is 
lv, the length l of the rod multiplied by v, the speed of the rod.

The induced emf is therefore ε = Bvl when the wire moves at 90° to the 
field lines. If the wire motion is not at 90° to the field then, as usual, the 
component of field at 90° to the direction should be used.

Case 2: Coil moving
The coil can move as shown in figure 6(a) from one position in a magnetic 
field to another position where the field may be different. If the coil 
begins and ends in positions where the field is identical, then there is no 
change in the flux linkage and there is no induced emf. Although the 
coil is cutting lines, the same number is being cut on opposite sides of 
the coil. Two emfs are induced but in opposite senses and they therefore 
cancel out.

If the coil moves from a position where the flux is Φ to a position where 
the flux is zero, the change in flux linkage is NΦ and the induced emf ε is 

ε =   NΦ  __  
time taken for change

  

An interesting variant of this occurs where a coil in a field is flipped 
through 180° (figure 6(b)). To visualize this, look at things from the 
point of view of the coil. The field lines appear to reverse their direction 
through the coil, and so the change in flux is Φ –(–Φ), in other words, 
2Φ. So the emf induced will be equal to   2NΦ _______________  

time taken to rotate coil
  .

When a coil rotates in a field the emf produced instantaneously depends 
on the rate of change of the flux linkage, and this in turn depends on the 
angle the coil makes instantaneously with the field. If the coil rotates  
at a constant angular speed, then the emf output varies in a sinusoidal 
way. This is the basis of an alternating current (ac) generator as we shall 
see later.

Case 3: Magnetic field changes
Sometimes the field changes from one value to another – it gets stronger 
or weaker – but the coil does not move. The act of cutting field lines is 
not so obvious here. 

Suppose the field is being turned on from zero. Before the field begins 
to change there are no field lines inside the coil. You can think of 
the lines as moving from the outside into the area bounded by the 
coil. The change stops when the flux density is at its final value. In so 
doing the lines must have cut through the stationary coil. 

Again, the solution is not difficult. Now ε = -   N∆Φ ____ ∆t
   becomes ε = -NA   :B

 ___ ∆t
   

because only B is changing. You need to know the rate at which the field 
is changing with time (or the total change and the total time over which 
it happens). Another example is the case of two coils face-to-face as in 
figure 6(c). One coil is connected to a galvanometer alone, the other coil 
is connected to a circuit with a cell, a variable resistor and a switch. In 
what way will you expect the galvanometer reading to change when the 
switch is closed and remains closed? When the switch is opened? When 
the switch is closed and the resistance in the circuit is varied?
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  Nature of science
Applications of electromagnetic induction
There are many applications of electromagnetic induction over and 
above the generation of electrical energy. They include electromagnetic 
braking, which is used in large commercial road vehicles; the use of an 
induction coil to generate the large pds required to provide the spark 
that ignites the petrol–air mixture in a car engine; and the generation 
of the signal in geophones and metal detectors. In each of these 
examples, a changing magnetic field leads to the generation of an emf 
and demonstrates the physics developed in this sub-topic.

Worked examples
1 The graph shows the variation of magnetic 

flux with time through a coil of 500 turns. 

 

0 1 2 3 4 5

0.5

1.0
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2.0
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W

b
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Calculate the magnitude of the emf induced in 
the coil.

Solution
The change in flux is 2 × 10–3 Wb and this occurs 
in a time of 4.0 ms. the rate of change of flux is 

the gradient of this graph (as always) – as the 
flux is proportional to the time we can use any 
corresponding values of ϕ and t.

  ∆Φ _ ∆t
   =   2 mWb _ 

4 ms
   = 0.5V

thus the induced emf = 500 × 0.5 V = 250 V

2 A small cylindrical magnet and an aluminum 
cylinder (which is non-magnetic) of similar 
shape and mass are dropped from rest down a 
vertical copper tube of length 1.5 m. 

a) Show that the aluminum cylinder will take 
about 0.5 s to reach the bottom of the tube. 

b) The magnet takes 5 s to reach the bottom 
of the tube. Explain why the objects take 
different times to reach the bottom.

Solution
a) Use a kinematic equation, e.g. s = ut +   1 __ 2  a t  2 . 

Then 1.5 =   1 __ 2   × 9.8 × t2

 t = 0.55 s.

b) As the magnet falls the copper tube 
experiences a changing magnetic flux, and 
as a result an emf is induced in the walls of 
the tube. This emf results in a current in the 
tube. The current leads to another magnetic 
field that opposes the motion of the magnet 
by Lenz’s law. There is an upward force on 
the magnet so that its acceleration is less 
than the value for free fall. In the case of the 
aluminium cylinder no current arises and it 
falls with the usual acceleration.
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11.2 Power generation and transmission

  Nature of science
The provision of abundant, cheap electrical energy 
has been one of the ways in which an abstract 
science and its technological development have 
directly affected the lives of many people on the 
planet. Who could have imagined the enormous 
impact that Faraday's discoveries would make? 
...certainly not Faraday himself! This is an example 
of research in pure science leading to great 
practical applications.

Understanding
 ➔ Alternating current (ac) generators
 ➔ Average power and root mean square (rms) 

values of current and voltage
 ➔ Transformers
 ➔ Diode bridges
 ➔ Half-wave and full-wave rectification

  Applications and skills
 ➔ Explaining the operation of a basic ac generator, 

including the effect of changing the generator 
frequency

 ➔ Solving problems involving the average power 
in an ac circuit

 ➔ Solving problems involving step-up and step-
down transformers

 ➔ Describing the use of transformers in ac 
electrical power distribution

 ➔ Investigating a diode bridge rectification circuit 
experimentally

 ➔ Qualitatively describing the effect of adding a 
capacitor to a diode bridge rectification circuit

Equations
 ➔ rms and peak values:   

I  r.m.s.  =    I  0 
 _______ 

 √
__
 2  
   

 ➔ potential difference:  V  r.m.s.  =    V  0 
 _______ 

 √
__
 2  
  

 ➔ resistance: R =    V  0 
 ____  I  0    =    V  r.m.s.  ________  I  r.m.s.  

  

 ➔ maximum power:  P  max  =  I  0   V  0 

 ➔ average power:  P  average  =   1 ___ 2    I  0   V  0 

 ➔ transformer equation:    ε  p 
 _  ε  s    =   

 N  p 
 _____  N  s    =    I 

 s 
 ___  I  p    

Introduction
We have seen that a rod rolling along two parallel rails generates 
induced emf and induced current; this is hardly a sensible way 
to generate electrical energy on a large scale. The practicalities of 
generation were solved by scientists from the 1830s onwards, first for 
direct current, and later for alternating current.

Alternating current (ac) generators
In this IB course we focus on the ac generator because it is commonly 
used for the generation of energy. Such a generator consists of a coil 
with a large number of turns; the coil rotates relative to a magnetic field. 
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For the moment we will imagine a fixed coil placed between the poles 
of a U-shaped magnet that stands at the centre of a rotating turntable 
(figure 1(a)). The turntable can turn at different angular speeds and 
the coil can have different numbers of turns and cross-sectional 
areas. The coil is connected to a galvanometer or to a data logger that 
registers the emf across the coil. When the magnetic flux in the coil is 
maximum, the emf induced (current) is minimum (0) and vice-versa. 
Changing the speed of the turntable changes the frequency of the emf 
as well as its amplitude. Increasing the number of turns or increasing 
the area of the coil will increase the amplitude of the emf but leave the 
frequency unchanged if the turntable speed does not change.

Magnetic field lines cut the coil as the turntable rotates and an induced 
emf is generated. However the emf varies as the turntable rotates. 
Figure 1(b) shows how the flux linkage varies with θ, the angle between 
the normal to the coil and field lines. When θ is equal to 90°, the field 
lines lie in the plane of the coil and so the flux through the coil is zero 
(cos 90° = 0 in equation ϕ = BA cos θ). When θ is equal to 0° the field 
lines are at 90° to the plane of the coil and the flux through the coil is 
a maximum. When the turntable rotation speed is constant, this graph 
also shows how the flux varies with time. The graph is a sine curve.

The emf induced in the coil is equal to -  :ϕ ___ :t
  , in other words the negative 

of the gradient of the flux-time graph. Figure 1(b) also shows how the 
induced emf varies with time; this graph can be obtained either by 
differentiation or by a consideration of the gradient of the flux-time 
graph. When the normal to the coil and the field lines are parallel (θ is 
90°) then the emf is zero because the coil does not – instantaneously – 
cut the field lines at all.

However, while some ac generators have a rotating magnetic field, 
others have fixed magnets and a rotating coil (Figure 1(c)). The principle 
is however the same. The direction of charge flow in the coils varies with 
the position of the coil. The use of a direction rule shows this. 

When the left-hand wire is moving upwards as shown in Figure 1(d), 
the conventional current direction in this wire is to the back of the 
coil. The right-hand wire is moving downwards at the same instant 
and the current in this wire is towards the front of the coil. Charge 
flows clockwise (looking from above) in the coil and out into the 
external circuit.

Half a cycle later the sides of the coil will have exchanged position. 
Charge is again flowing clockwise, but because the coil has rotated, the 
current (so far as the meter is concerned) is in the opposite direction. 
Figure 1(d) shows this too.

If there were wires permanently connecting the coil to the meter they 
would quickly become twisted. Energy needs to be extracted from the 
generator without this happening. Slip rings are used for this. The ends 
of the coil terminate in two rings of metal that rotate with the coil about 
the same axis. Two stationary brushes, connected to the external part of 

N S

ac generator

slip rings

brush

V

(c)

(d)

(a)

(b)

rate of
change
of flux
linkage
and
induced
emf

time

flux
linkage θ  or time

N S N S N S

turn table

magnetN S

fixed coil

G

 Figure 1 Basic ac generator.
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the circuit, press onto the rotating rings and charge flows out into the 
circuit through these connections (Figure 1(c)).

The essential requirements for an ac generator are therefore:

 ● a rotating coil 

 ● a magnetic field 

 ● relative movement between the coil and the magnetic field

 ● a suitable connection to the outside world.

Real-life generators are more sophisticated than our simple models 
and an Internet search will allow you to see many different types of ac 
generator.

For real generators, there is another issue that arises because an 
induced current is generated in the coils. As we saw in Sub-topic 11.1, 
any moving conductor carrying an induced current in a magnetic field 
has two forces acting on it: the force that moves it, and an opposite 
force that arises because of the induced current. This also applies to 
the rotating current-carrying coil in the ac generator. Fleming’s left-
hand rule and Lenz’s law show that this force opposes whatever is 
turning the coil. 

If a generator coil is being rotated clockwise by an external agent, then 
the magnetic forces that arise from the induced current interacting with 
the magnetic field will exert a turning force anticlockwise on the coil. 
Some of the energy provided by the external agent turning the coil has 
to be used to overcome this anticlockwise magnetic effect. This reduces 
the induced current that can be made available to the external circuit. 
However, remember that with no opposition, no work is done and no 
energy will be transferred from the agent (doing the turning) to the coil 
(and its associated electrical circuit).

This is easily demonstrated using a bicycle dynamo (a device similar 
to our first rotating-magnet generator) (see figure 2). In this type of 
dynamo a permanent magnet is rotated in the gap inside a coil. When 
the lamp is switched off so that no induced current is produced, the 
dynamo is relatively easy to turn (remember, there will still be an 
induced emf across the terminals). When the dynamo supplies current 
and lights the lamp, more effort is required to rotate the dynamo at the 
same speed since an opposing magnetic force will act on the current 
(coil). This is Lenz’s law in action.  Figure 2 Bicycle dynamo.

motion of wheel

S

coil

N

rotating magnet

iron core

to bicycle lamp

S N

  Nature of science
Modelling an ac generator
Although the following derivation will not be 
required in the examination, it shows you how 
Faraday’s law can be used to model the behaviour 
of a simple ac generator.

The coil has an average length l and an average 
width of w with N turns (these dimensions are 
shown in figure 3(a)). The area of the coil A is 
therefore l × w. 
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  Figure 4 Increasing the rotation 
speed of the coil.

em
f

time

em
f

time

when the rotation speed is doubled:

At the instant when the normal to the plane of 
the coil is at an angle θ to the magnetic field, the 
flux linkage through the coil is N × Φ, which is 
N × BAcos θ. The coil spins at a constant angular 
speed ω In time t the angle swept is θ (= ωt).

Therefore the flux linkage varies with t as  
NB cos ωt and a graph showing how flux linkage 
varies with time has a cosine shape with maximum 
and minimum values of NBA at t = 0 and –NBA 
when the coil is halfway through one cycle. 

The value of the induced emf at any instant is 
equal to the (-) rate of change of the flux linkage 
(NΦ) and this is the the (-) gradient of the flux 
linkage–time graph. So the graph of induced emf 
is a (negative) sine curve with an equation of 
which has maximum and minimum values for the 
emf of ε0 = ±BANω.

A supply in which the current and voltage vary as 
a sine wave is an alternating supply. Although ω 
is used for convenience in the mathematics of 
the emf induced in the generator, for everyday 
purposes we use the frequency. This has the same 
meaning as elsewhere in physics: the number of 
cycles that occur each second. A generator that 
rotates 50 times in one second has an alternating 
current output at a frequency of 50 Hz.

The model above shows that the output emf of a generator is sinusoidal 
and that one complete rotation of the coil through 360° gives one cycle 
of the alternating current.

Figure 4 shows the effect on the emf of changing the angular speed of 
the coil (without changing any other feature of the coil or field). If the 
angular speed of the coil is increased then:

 ● the coil will take a shorter time to complete one cycle and so there 
will be more cycles every second hence the frequency increases.

 ● the time between maximum and minimum flux linkage will decrease 
and therefore (as the flux linkage is constant) the rate of change 
increases and hence the peak emf increases.

Other ways to increase the output of the emf, but without changing 
frequency, include increasing:

 ● the magnetic field strength (B) 

 ● the number of turns on the rotating coil (N)

 ● the larger coil area (A).
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Worked example
A coil rotates at a constant rate in a uniform 
magnetic field. The variation of the emf E with  
angle θ between the coil and the field direction  
is shown.

Copy the graph below and, on the same axes, 
add the emf that will be produced when the rate 
of rotation of the coil is doubled. Explain your 
answer.

θ/degree
0

0

E

180 360

Solution
The rate of change of the flux linkage will double, 
so the magnitude of the peak emf will also double. 
This is because Faraday’s law states that the 
induced emf is proportional to the rate of change 
of flux linkage. However, the coil now rotates in 
half the time, so the time for one cycle will be 
halved. On the same scales, the new graph is:

180 360 θ/degree
0

0

E

Measuring alternating currents and voltages
The current and voltage of an alternating supply change constantly 
throughout one cycle. Measuring these quantities is not straightforward 
because, with positive and negative half-cycles, the average value for 
current or voltage over one cycle is zero.

One way around this problem is to consider the power supplied to 
a resistance R connected to the generator. The instantaneous power 
dissipated in the resistance is I2R where I is the instantaneous current.

Figure 5 shows both the current–time graph and the power dissipated–time 
graph with the same time axes. Notice the difference between the two: 

 ● The power–time graph is always positive (which we would expect 
because the power is I2R and a number squared is always positive).

 ● The power graph cycles at twice the frequency of the current.

To see this, suppose that the time period of the ac generator is very large 
taking 10 s to turn once through one cycle. If you watch a filament lamp 
supplied with an ac supply of such a low frequency you will see the lamp 
flash on and off twice in each cycle. The lamp is on when the emf is near its 
maximum (positive) and minimum (negative) values.When we look at a 
filament lamp powered by the AC mains, persistence of vision prevents us 
seeing its flashing like this because it is switched on and off at 100 or 120 
times per second (twice the normal mains frequency of 50 or 60 Hz).

Alternating values are measured using the equivalent direct current that 
delivers the same power as the ac over one cycle. A lamp supplied from 
a dc supply would have the same brightness as the average brightness of 
our ac lamp flashing on and off twice a cycle. This equivalent dc current is 
that which gives the average value of the power in the power–time graph. 
Because the average value of a sin2 graph is halfway between the peak 
and zero values and the curve is symmetrical about this line (shown on 
figure 5(b)), the areas above and below the average line are the same. 

  Figure 5 Current–time and power–
time graphs for ac.
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So the mean power that an ac circuit supplies is   1 __ 2    I  max  
2
   R where Imax is the 

peak value of the current. The dc current required to give this power  

is  √_____
   1 _ 

2
   I  max  

2
     which is   

 Imax
 ___ 

 √
__
 2  
   .  

This value is known as the root mean square (rms) current  
Irms =   

Imax
 ___ 

 √
__
 2   
  . In a similar way  V  rms  =   

 V  max 
 ___ 

 √
__
 2  
  . The power P dissipated in a 

resistance =  I  rms  V  rms  =   
 I  max 

 ___ 
 √

__
 2  
     

 V  max 
 ___ 

 √
__
 2   
  =   

 I  max   V  max 
 ______ 2   

with the usual equivalents:

P =  I  rms  V  rms  =   1 __ 2    I  rms  
2
   R =   1 __ 2     

 V  rms  
2
  
 _ 

R
  

You will not need to know how to prove the relationship between peak 
values and rms values for the examination.

Many countries use alternating current for their electrical supply to 
homes and industry. We will look at some of the reasons for this later, 
but different countries have made differing decisions about the potential 
differences and frequencies at which they transmit and use electrical 
energy. Thus, in some parts of the world the supply voltage is about 
100 V; in others it is roughly 250 V. Likewise, frequencies are usually 
either 50 Hz or 60 Hz.

Worked examples
1 The diagram below shows the variation  

with time t of the emf E generated in a  
rotating coil.

Calculate: 

a) the rms value of the emf 

b) the frequency of rotation of the coil.

Solution
a) the peak value of the emf is 360 V, so the rms 

value is   360
 ___ 

 √
__
 2   
  = 255 V

b) f =   1 _ T   =   1
 ____ 0.02   = 50 Hz

2 A resistor is connected in series with an 
alternating current supply of negligible 
internal resistance. The peak value of the 
supply voltage is 140 V and the peak value of 
the current in the resistor is 9.5 A. Calculate 
the average power dissipation in the resistor.

Solution
The average power  =   

peak current × peak pd
  __  

2
   

 =   1 _ 
2

   × 140 × 9.5 = 670 W

t/ms
0

-360

360

0

E/V

10 3020

Transformers
One of the reasons why ac supplies are so common is because a device called 
a transformer can be used to change alternating supplies from one pd to 
another. Transformers come in many shapes and sizes ranging from devices 
that convert voltages at powers of many megawatts down to the small 
devices used to power domestic devices that need a low-voltage supply.

A transformer consists of three parts: 

 ● an input (or primary) coil

 ● an output (or secondary) coil 

 ● an iron core on which both coils are wound. 
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Figure 6 shows a schematic diagram of a transformer (a), a real-life 
transformer (b), and also the transformer symbol used in  
IB examinations (c).

The operation of a transformer, like the ac generator, relies on 
electromagnetic induction. 

 ● Alternating current is supplied to the primary coil. 

 ● A magnetic field is produced by the current in the primary coil and 
this field links around a core made from a magnetic material, usually 
soft iron. (The basic ideas behind the production of this field were 
covered in Topic 5.) 

 ● Because the primary current is alternating, the magnetic field in the 
core alternates at the same frequency also. The field goes first in one 
direction around the core and then reverses its direction. 

 ● The transformer is designed so that the changing flux also links the 
secondary coil.

 ● The secondary coil has a changing field inside it and an induced 
alternating emf appears at its terminals. When the coil is connected 
to an external load, charge will flow in the circuit of the secondary 
coil and its load. 

 ● Energy has been transferred from the primary to the secondary 
circuit through the core.

Suppose that an alternating pd with a peak value of Vp is applied to the 
primary coil and that this results in a flux of Φ in the core. The flux 
linked to the secondary coil of Ns turns is therefore NsΦ and the induced 
emf in the secondary coil is  V  s  = Ns   

∆Φ ___ ∆t
  . There is also a flux linkage to the 

primary coil even though the primary current was originally responsible 
for setting up the field in the first place. This gives rise to  ε  p  =  N  p    

∆Φ ___ ∆t
   

  Figure 6 Transformers in theory and practice.
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where  ε  p  and  N  p  are the induced emf and the number of turns in the 
primary coil. This induced primary emf will oppose the applied pd.

If we assume that the resistance of the primary coil is negligible, then  ε  p  
will be equal in magnitude to  V  p . Thus, because   ∆Φ ___ ∆t

   is the same for both 

coils   
 ε  p 

 __  N  p 
   =   

 V  p 
 __  N  p 
   =    V  s  __  N  s 

   and

   ε  p  _  ε  s    =   
 V  p 

 _ 
 V  s 

   =   
 N  p 

 _ 
 N  s 

  

This is known as the transformer rule. It relates the number of turns 
on the coils to the input and output voltages:

 ● When  N  s  >  N  p  the output voltage is greater than the input voltage. 
This is known as a step-up transformer.

 ● When  N  s  <  N  p  the output voltage is less than the input voltage. This 
is known as a step-down transformer.

 ● The terms “step-up” and “step-down” refer to changes in the 
alternating voltages not to the currents.

You may wonder how zero current in the primary coil can lead to any 
energy transfer to the secondary. The answer is: it cannot. The equation 
applies to the case where there is no current in the secondary (in other 
words it has not yet been connected to a load). Once again Lenz’s law 
has a part to play. When the secondary coil supplies current (because 
a resistor is now connected across its terminals), then because charge 
flows through this secondary coil, another magnetic field is set up in the 
coil and through the core. This magnetic field tries to oppose the changes 
occurring in the system and so tends to reduce the flux in the core. This 
in turn reduces the opposing emf in the primary (often called a “back 
emf” for this reason) and so now there will be an overall current in the 
primary that allows energy to be transferred. 

Electrical engineers use a more complex theory of the transformer than 
the one presented here to take account of this and other factors. But for 
our simple theory, which assumes that the transformer loses no energy, the 
energy entering the primary is equal to the energy leaving the secondary so 

 I  p  V  p  =  I  s  V  s 

where Ip and Is are the currents in the primary and secondary circuits 
respectively. This is a second transformer equation that you should know 
be able to use.

In fact, many transformers have an efficiency that is close to 100% 
as energy losses can be reduced by good design. The efficiency of a 
transformer is

  
energy supplied by secondary coil

   ____   
energy supplied to primary coil

   × 100%

Ways to improve the efficiency include:

Laminating the core
 ● Iron is a good conductor and the changing flux in the transformer 

produces currents flowing inside the iron core itself. These are known 
as eddy currents. To prevent these, transformer designers use thin 
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Worked example
A transformer steps down a mains voltage of 
120 V to 5 V for a tablet computer. The computer 
requires 1.0 W of power to operate correctly. 
There are 2300 turns on the primary coil of the 
transformer.

a) Calculate the number of turns on the 
secondary coil.

b) Calculate the current in the secondary coil 
when it is operating correctly.

c) The input current to the primary is 0.0090 A. 
Calculate the efficiency of the transformer.

Solution 

a)   
 V  p 

 __  V  s 
   =   

 N  p 
 __  N  s 
   so  N  s  =   

Vs × Np
 ______ Vp

   =   5 × 2300
 _______ 120   = 96 turns

b) Current in the secondary  I  s  =   
tablet power

 _________ Vs

   =   1.0
 ___ 5   

= 0.20A

c) Efficiency =   
power supplied by secondary coil

   _______________________   
power supplied to primary coil

   

=   5 × 0.2
 __________ 120 × 0.0090   = 0.93 (or 93%)

  Investigate!
Transformer action

 ● In this experiment you are asked to 
investigate the basic ideas behind the 
transformer. You will require an ac low-
voltage power supply to provide an input, an 
oscilloscope to view the output of your coils, 
and the coils themselves. One coil should 
have significantly less turns than the other, 

typical values might be 240 turns on one 
coil and 1100 turns on the other. You will 
also need additional apparatus for part of 
the experiment. (Some coil kits have special 
laminated iron cores that clip together to give 
a continuous magnetic circuit,)

Note
Hard and soft magnetic materials

We sometimes talk about magnetic 
materials being "soft" or "hard". 
A soft material, such as iron, can 
be easily magnetised by another 
magnet or a current-carrying coil. 
When the magnetic influence is 
removed, however, the iron loses 
all or most of its magnetism easily. 
Such materials are excellent for 
the cores of transformers because 
they respond well to the variations 
in magnetic field. Hard materials 
such as some iron alloys (a steel) 
do not magnetise easily but are 
good at retaining the magnetism. 
These materials are best for the 
manufacture of permanent magnets 
such as the ones you use in the 
laboratory. 

layers of insulating material that separate layers (sheets) of iron in 
the core (shown in Figure 6(a)). This has the result that although the 
magnetic properties of the iron are largely unaltered, the electrical 
resistance of the core is significantly increased. The currents are 
forced to travel along longer paths within the layers hence increasing 
electrical resistance and reducing the current. Laminations reduce 
the energy losses that result from a reduction in the amount of flux 
and from a rise in temperature of the iron that would occur if the 
eddy currents were large.

Choosing the core material
 ● The magnetic material of the core is a “soft” magnetic material. It can 

be magnetized and demagnetized very readily and also maintain high 
fluxes too. These are all desirable properties for the core.

Choosing the wire in the coils
 ● Low-resistance wires are used in the primary and secondary coils as 

high resistances would lead to heating losses (called joule heating) 
in the coils.

Core design
 ● It is important that flux is not allowed to leak out of the core. As 

much flux as possible should link both coils so that the maximum 
rate of change of flux linkage occurs.
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Transformers in action
Many countries have an electrical grid system so that each separate 
community within the country does not have to provide its own 
energy. In the event of power failures in one part of the grid system, 
energy can be diverted where needed. When energy has to be sent 
over long distances it is advantageous to send it at very high voltages. 
This is because transmitting at high voltages and low currents helps to 
reduce the energy lost in the power transmission lines that are used in 
the grid.

A laboratory example will help here:

Figure 8 shows two alternative ways to transmit electrical energy from 
one point in a school laboratory to another. In both circuits a power 
supply acts as the “generator” providing energy at an alternating 
potential difference of 12 V. This energy is transmitted through two 
transmission lines (leads strung between two retort stands). In one 
case (Figure 8(a)), the energy is tramsitted at 12 V, but in the other 
(Figure 8(b)) a step-up transformer with a turns ratio of 1:10 is used 
to transmit the energy at 120 V. At the other end of this transmission 
line, a step-down transformer returns the pd supply to the voltage level 
required by the lamps in the circuit.

 ● Connect the coil with fewer turns to the supply 
(this is the primary circuit) and the other coil to 
the oscilloscope (this is the secondary). Set the 
coils close so that the secondary coil is linked 
to the flux produced by the primary. Look 
closely at the output from the secondary coil 
and compare the relative sizes of the input and 
output and also their phases.

 ● Try the following changes to see how they 
affect the output: 

■ Alter the separation and orientation of the 
coils (reverse one coil relative to the other 
and observe the difference). Alter the 
frequency of the primary current. Link the 

coils by inserting a piece of iron or several 
iron nails through the centre of both coils.

■ With the coils linked with iron compare 
the output voltages when the 240 turn coil 
is the primary and, later, when the 110 
turn coil is the primary. If you have access 
to other coils with different numbers of 
turns collect data to complete the table.

Number 
of primary 

turns Np

Primary 
pd,  

Vp/ V

Number of 
secondary 

turms Ns

Secondary

pd, Vs / V
  
Vp _ 
Vs

    
Np _ 
Ns

  

 Figure 7 
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0

1
2
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 Figure 8 Transmission at high voltages.
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 Figure 9 A grid system.
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A numerical calculation will help you to compare the two cases: In 
each case, there are three lamps each rated at 0.3 A, 12V (a total power 
requirement of 3.6 W) and a transmission line of total resistance 1.5 ohms. 

Without the transformers, the total current required by lamps will be 
0.9 A and power loss in transmission line = I2R = 0.81 × 1.5 = 1.2 W.

With the voltage stepped up to 120 V along the transmission line, the total 
current will be stepped down to 0.09 A during transmission. This means 
the power loss in the transmission line = I2R = 0.081 × 1.5 = 0.012 W.

So, stepping up the voltage by a factor of 10 reduces the current by a 
factor of 10 and therefore reduces the power lost during transmission by 
a factor of 100 (i.e. 102). This is an important saving for electricity supply 
companies (and their customers!). Transformers play a crucial role in 
increasing the efficiency of transmission.

In practice, grid systems are usually like the one shown in figure 9. 
Numbers are not given on this diagram as they vary from country to 
country. Find out the details of the grid voltages used where you live.

449

11 . 2  P O W E R  G E N E R A T I O N  A N D  T R A N S M I S S I O N



Rectifying ac
The convenience of ac for domestic distribution is clear, but it raises 
the question of how devices that can only operate on dc, including 
computers and electronic equipment, can be made to function when 
connected to an ac supply.

The process of converting an ac supply into dc is called rectification. 
A device that carries this out is known as a rectifier. We consider two 
varieties of rectifier in this course: half wave and full wave. In half wave, 
only half of each cycle of the current is used whereas in full wave a 
more complex circuit leads to the use of both halves of the ac cycle.

Half-wave rectification
Figure 10(a) shows the basic circuit. A single diode is connected in series 
with the secondary terminals of a transformer and the load resistor. The 
load resistor represents the part of the circuit that is being supplied with 
the rectified current. 

Diodes are devices that only allow charge to flow through them in 
one direction (the symbol for the diode has an arrowhead that points 
in the direction of conventional current allowed by the device). We 
say that the diode is forward biased when it is conducting. When no 
charge can move through it (because the pd across the device has 
the wrong polarity) we say that the diode is reverse biased. The load 
resistor will only have a pd across it for about half a cycle (figure 10(b)). 
The waveform is not quite half a cycle wide because the diode does 
not conduct from exactly 0 V; it requires a small forward pd for 
conduction to begin.

 Nature of science
HVDC and international collaboration
The argument that high transmission voltages lead 
to better efficiency does not apply simply to ac. 
The argument is still valid for dc but historically 
the transformation between voltages was easier 
using ac. However, things are now changing. 
As the physics and engineering of electrical 
transmission improve, so it is advantageous to use 
high-voltage direct-current transmission (HVDC). 

Although the cost of the equipment to convert 
between two dc voltages is greater than the cost of a 
transformer, there are other factors in the equation. 
Countries use different supply frequencies and this 
is a major problem when feeding electricity from 
one country into the grid of another. Using undersea 
cables over long distances with ac also involves 
larger currents than might be expected as the cables 
have capacitance and induction effects. Additional 
currents are required to move charges every cycle. 

Some of the longest HVDC transmission paths in 
the world include the 2400 km long connection 
between the Amazon Basin and south-eastern 
Brazil that carries about 3 GW of electrical power, 
and the Xiangjiaba–Shanghai system in China that 
carries 6.4 GW over a distance of 2000 km.

Governments work together to maintain 
electricity supplies. There are many examples of 
electrical links between countries provided so that 
one nation can supply energy to another nation 
during times of shortage. These are not necessarily 
times of crisis. There are short-term fluctuations 
in the demand for electricity. Sometimes energy 
is fed from country to country at one time of 
the day and then back again later. Examples 
of such links include the electrical links from 
the Netherlands to the UK and the HVDC link 
between Italy and Greece.
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 Figure 10 Half-wave rectifier.
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The way in which the circuit operates is straightforward. When 
terminal X on the transformer is positive with respect to terminal 
Y, then there will be a current through the diode in its forward 
conducting direction. When the ac switches so that X is negative 
with respect to Y, then the diode is reverse biased and there is no 
conduction or current.

An obvious problem is that although the charge now flows in only 
one direction, the current is not constant. We need a way to smooth 
the waveform so that it more closely resembles the constant value of 
a dc supply. One way to achieve this is to use a resistor and capacitor 
connected in parallel between the diode and the load (figure 10(c)). 
During the first half-cycle, the capacitor charges up and the potential 
difference across it approaches the peak of the transformer output 
emf. When the current is zero in the second (negative) half-cycle, the 
capacitor discharges through the resistor at a rate determined by the 
time constant of the circuit (Figure 10(d)). If the time constant is much 
larger than the time for half a cycle, the amount of charge released by 
the capacitor (and therefore the pd across it) will be small and the pd 
will not change very much. When the diode conducts again in the next 
half-cycle, the charge stored on the capacitor will be “topped up”. From 
now on there will be a discharge–charge cycle with the pd across the 
capacitor varying much less than in the basic circuit (Figure 10(e)). 
When a capacitor is used in this way, it is often referred to as a 
smoothing or “reservoir” capacitor. The small variation in the output pd 
is known as the “ripple” voltage.

The choice of capacitor and resistor values depends on the application 
in use. A large time constant provides good smoothing, but at the 
cost of a more expensive capacitor and a trade-off in the shape of the 
waveform due to the large charging currents that are drawn from the 
transformer.

Full-wave rectification
For some applications, the amount of ripple in a half-wave rectifier 
cannot be tolerated. In such cases, full-wave rectifiers are used. 

Figure 11(a) below shows one way to achieve full-wave rectification. 
This arrangement uses two diodes and requires a centre-tap on the 
transformer. This means that there is a connection half way along the 
length of the wire that has been wound to make the secondary coil. 
This can be clearly seen at Y on the transformer symbol in the diagram. 
Also in the diagram is the resistor–capacitor pair that will smooth the 
rectified wave.

The best way to understand how the circuit works is to imagine that terminal 
Y is always at zero potential. Then, for half the time X will be positive and 
Z will be negative relative to point Y. For the other half of the cycle, these 
polarities reverse. When X is positive relative to Y, diode D1 will conduct. 
Notice that only half of the secondary coil connected to D1 takes part in 
conduction at any time. One half cycle later, D1 will not conduct because 
X will be negative and Z will be positive relative to Y. D2 conducts during 
this half cycle. Current is again supplied to a capacitor–resistor combination 
during both halves of the cycle leading to full-wave rectification.
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In order to achieve a particular value of peak pd, twice as many turns 
are required on the secondary compared to the half-wave arrangement. 
This disadvantage can be overcome using a diode bridge (figure 11(b)).

The full secondary coil is now used and the diode arrangement 
allows the whole of the coil to supply current throughout the cycle. 
The disadvantage is the need for four diodes and a more complex 
circuit arrangement.

When X is positive relative to Z then the junction between D1 and D4 
is positive relative to the junction between D2 and D3. Of D1 and D4, 
D1 is the one that conducts so that point A of the capacitor will be 
positive too. Similarly, D3 conducts and point B of the capacitor becomes 
negative. The capacitor charges and current is supplied to the rest of the 
circuit. When the polarity of the secondary coil switches, X becomes 
negative relative to Z and the conducting diodes are now D2 and D4. 
The connections are arranged so that the direction of the conventional 
current in D4 is away from B and the direction in D2 is towards A. This 
is the same as in the previous half cycle and the polarity of charge 
delivered to the capacitor is unchanged. 

The best way to learn this arrangement is not necessarily to memorize 
the orientation of the diodes but by understanding how they function in 
order to provide a consistent pattern of polarity at the capacitor during 
the full cycle.

These examples of rectifying circuits are said to be passive, meaning that 
none of the devices amplify or modify the waveforms. Some modern 
power supplies for computers are active devices. Switched-mode power 
supplies change the frequency of the supplied ac to a much higher value 
to allow the signal to be modified by an electronic circuit. The advantage 
is that less energy is wasted in resistance but this is achieved only at the 
expense of much greater complexity in the electronic circuits.

 Figure 11 Full-wave rectification.
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  Nature of science
The war of the currents
In the 1880s a commercial battle broke out 
between the direct-current distribution system 
developed by Edison and the alternating-current 
system of Westinghouse. Both companies were 
attempting to corner the US market. In those days, 
electricity was principally used to provide energy for 
filament lamps. Edison’s system had the advantage 
that batteries could be used as a backup if the 
power failed (which was a frequent event when 
electrical distribution began). On the other hand, 
Westinghouse’s ac system could be transmitted 
with lower energy losses using larger and fewer 
distribution stations. Westinghouse made full use of 
scientists from around the world in developing ac 

distribution, including Nikola Tesla who had made 
much progress in transformer design. 

The full story of the battle is complex, but more 
and more companies (principally the newly 
formed General Electric Company) began to 
follow Westinghouse’s lead and eventually dc 
supplies largely disappeared. However, as late as 
the 1980s, direct current was generated in the 
UK to supply the dc powered printing presses in 
London. In the US, the hotel where Tesla lived 
used dc into the 1960s. Consolidated Edison (as 
Edison’s company became known) shut down its 
last dc supply on 14 November 2007.

Wheatstone and Wien bridge circuits
The four-diode rectifier arrangement is one of a class of circuits known 
as bridge circuits.

The Wheatstone bridge (figure 12) was popularized by Sir Charles 
Wheatstone in 1833 and is a completely resistive arrangement that can 
be used to estimate the resistance of an unknown resistor. It is normally 
used in a dc context.

The working of the circuit is straightforward (figure 12). Three known 
resistors R1, R2 and R3, are connected in the circuit with a fourth 
unknown resistor RX. One of the known resistors is variable and is 
adjusted until the current in a galvanometer that "bridges" the pairs of 
resistors is zero. This galvanometer is usually a centre-zero meter (that 
shows negative and positive values with the 0 marking in the centre of 
the scale) with high sensitivity.

When the current in the galvanometer is 0, the bridge is said to be 
balanced. No charge is flowing through the galvanometer at the balance 
point because the potentials at B and D are identical so there is no 
potential difference across BD. This means that the potential differences 
across R1 and RX are the same as each other, and the potential differences 
across R2 and R3 are also identical.

V1 = I1R1 = I2RX  V2 = I1R2 = I2R3

So   
I1 __ I2

   =   
RX __ R1

   =   
R3

 __ R2

  

therefore 

RX =   
R1 × R3 _ 

R2

  

Knowledge of three of the resistors means that that RX can be calculated. 
For accurate work, the bridge requires that the known resistors have 
accurately measured values and that the ammeter is sufficiently sensitive 
to give precise results.

  Figure 12 The Wheatstone bridge.
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  Investigate!
Using the Wheatstone bridge

 ● The details of this experiment will depend on 
the equipment that you have in your school. 
Your teacher will advise you on this.

 ● Set up the circuit you are to use. Choose 
R1 so that it is similar in value to the 
unknown resistor.

 ● Set the ratio   
R3

 __ R2

   so that the current in the 

ammeter (the galvanometer) is zero. 

 ● One common way to carry out the experiment 
is to use a long (1 m) straight wire of uniform 
cross-section perhaps taped along a metre 
ruler. The resistance per unit length of such 
a wire should be constant along its length. 
Figure 13 shows the way the wire is connected 
in the circuit.

 ● The way to determine the ratio   
R3

 __ R2

   is to find the 

point on the metre wire at which the current 
in the ammeter is zero. Then the ratio of the 
lengths of the two parts of the wire is equal to 
the ratio of their resistances.

 ● The equation for the bridge becomes  

R3 = R1 ×   
l1 __ 
l2

    

where l1 and l1 are the relevant lengths on the 

metre wire.

l1

R3

RX

G

1 m wire

tapping key

l2

 Figure 13

  Nature of science
Unbalanced Wheatstone bridges
It is possible to make use of the Wheatstone 
bridge when it is out of balance. Suppose the 
unknown resistor RX is replaced by a thermistor. 
At a particular temperature the bridge can be 
made to balance with a particular combination 
of three fixed resistances and the thermistor 
itself. When the temperature changes from this 
starting point, the thermistor resistance will also 
change, increasing if the temperature drops, and 
becoming smaller if the temperature rises. These 
changes will take the bridge out of balance with a 

potential difference appearing across the meter that 
bridges the resistor pairs. The whole circuit can be 
calibrated so that a known temperature change at 
the thermistor gives rise to a known out-of-balance 
voltage across the meter. Such a circuit can be 
made to be extremely sensitive if the sensitivity 
of the meter and the resistor values are chosen 
carefully.

Other sensors can be chosen too: for example, 
a light-dependent resistor for changes in light 
intensity, and a length of resistance wire under 
tension (a strain gauge) for changes in length.

 Figure 14 Wien bridge.
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The Wien bridge circuit is a modification of the Wheatstone 
arrangement to allow the identification of resistance and capacitance 
values for an unknown component. This bridge operates with an 
alternating power supply. 

The bridge is modified by the addition of a capacitor in series with R2. 
Again the current in the centre arm of the bridge is minimized. R2, C2 
and the frequency of the supply need to be adjusted for the minimum 
current. Knowing the values of the components allows the operator to 
calculate the value of RX and CX. 

The theory for this bridge will not be tested in the examination.

454

E L E C T R O M A GN E T I C  I N D U C T I O N  ( A H L )11



11.3 Capacitance

  Nature of science
This sub-topic contains many important links and 
analogies. Some are straightforward, the link between 
the energy stored in a spring and the energy stored in 
a capacitor, for example. Others, however, reflect the 
importance of the over-arching ideas of exponential 
growth and decay that underpin many areas of 
sciences and social sciences. Rates of reaction in 
chemistry, changes in living populations in biology, 
and radioactive decay in physics are all related by 
the important idea that the rate of change depends 
on the total instantaneous number and a constant 
probability of change. This is one of the many ways in 
which scientists use mathematics to model reality.

Understanding
 ➔ Capacitance
 ➔ Dielectric materials
 ➔ Capacitors in series and parallel
 ➔ Resistor–capacitor (RC) series circuits
 ➔ Time constant

  Applications and skills
 ➔ Describing the effect of different dielectric 

materials on capacitance
 ➔ Solving problems involving parallel-plate 

capacitors
 ➔ Investigating combinations of capacitors in 

series or parallel circuits
 ➔ Determining the energy stored in a charged 

capacitor
 ➔ Describing the nature of the exponential 

discharge of a capacitor
 ➔ Solving problems involving the discharge of a 

capacitor through a fixed resistor
 ➔ Solving problems involving the time constant of 

an RC circuit for charge, voltage, and current

Equations
 ➔ definition of capacitance: C =   Q ___ V  
 ➔ combining capacitors in parallel:  

 C  parallel  =  C  1  +  C  2  + ...
 ➔ series:   1 ________  C  series    =   1 ____  C  1    +   1 ____  C  2    + ...
 ➔ capacitance of a parallel-plate capacitor:  

C = ε   A ___ d  

 ➔ energy stored in a capacitor: E =   1 ___ 2  C V  2 

 ➔ time constant: τ = RC 
 ➔ exponential discharge charge: Q =  Q  0   e  -  t ___ τ   
 ➔ current: I =  I  0   e  -  t ___ τ   
 ➔ potential difference: V =  V  0   e  -  t ___ τ   

Introduction
In Topic 10, a pair of charged parallel plates was used to produce a 
uniform field. A charge was transferred to the plates using a power 
supply. In this topic we look in detail at this transfer of charge onto, and 
from, the plates.
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Capacitors in theory
The arrangement of parallel plates in which the two plates are separated 
by an insulator is called a capacitor. The insulator might be a vacuum, 
it could also be air or another gas providing that a spark (and therefore 
charge) cannot jump between the plates. It could also be a non-conducting 
material such as a plastic. 

Figure 1 shows an arrangement of two parallel plates (in a vacuum for 
simplicity) connected to a cell. The plates are initially uncharged. 

When the switch is closed, electrons begin to flow. There is no current 
between the plates because of the insulation between them. Electrons 
are removed from the plate connected to the positive terminal of the 
cell and are transferred to the plate connected to the negative. 

Charge is being separated by the system and stored. This requires energy 
and, not surprisingly, this is provided by the cell, the only source of 
emf in the circuit. Energy is being stored on the plates as the electrons 
arrive there. 

To understand this, imagine the first electron that moves through the 
cell from the positive plate in the diagram to the negative one. The 
cell will not need much energy to do this as the plates were initially 
uncharged. However, the second electron to move will find it slightly 
more difficult (figure 1). This is because the first electron is now on 
the right-hand plate and repels this second electron. The cell has to 
use more energy to move the second electron. The energy required 
from the cell increases with each subsequent electron until finally 
there is insufficient potential energy available in the cell to move any 
more electrons.

At this point, if we were to disconnect the cell and measure the potential 
difference across the capacitor then we would find that the capacitor pd 
is equal to the emf of the cell. Had this been done earlier in the charging, 
then the unconnected capacitor pd would be less than the cell emf. The 
capacitor pd cannot exceed the emf of the power supply.

The charge Q on the capacitor is stored at a potential difference V. The 
ratio of the charge stored to the potential difference between the plates is 
defined to be the capacitance of the capacitor.

capacitance, C =   
charge stored on one plate

   ___   
potential difference between plates

   =   Q _ 
V

  

The charge stored on one plate is the same as the charge transferred 
through the cell and moved from one plate to the other. 

The unit of capacitance is the coulomb per volt, or farad (symbol: F) 
and is named after Michael Faraday, the English physicist, who developed 
so much of our understanding about current electricity and magnetism. In 
fundamental units the farad is equivalent to A2 S4 kg–1m–2.

One farad is a very large unit of capacitance since 1 C of charge is a very 
large amount of charge and you will usually use capacitances measured 
in millifarads (mF), microfarads (µF) and picofarads (pF). Try not to 
confuse mF and µF.

▲ Figure 1 Charging a capacitor.
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Tip
Notice that, even though one 
plate has charge +Q and the 
other -Q, the charge stored 
is Q not 2Q. This is because it 
is only one group of charges 
(electrons) that are being 
moved between the plates.
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  Nature of science
Changing names
The name capacitance has not always been used. 
In the late nineteenth century and even later it 
was called capacity in English (in French “capacité 
d’un condensateur” and in Spanish “la capacidad de un 
condensador”)

These were in many ways obvious names, and the 
idea of the capacity of a container can provide a 
model to help you understand capacitance ideas.

Imagine two containers of water the same height, 
one narrow, the other wide.

Both containers, initially empty, are filled with 
water at the same rate (the same volume of water 
every second). Obviously, the narrower container 
overflows first. Thinking in terms of the top of 
both containers having the same gravitational 
potential, the liquid in the narrow container 
reaches this potential first.

Put another way, when both containers are full, 
for the same potential (height of the water surface 

above the table is equivalent to the potential 
difference of the capacitor) the wider container 
will hold more liquid (equivalent to more charge) 
than the other.

This is another link within physics that leads to 
analogous relationships.

table

▲ Figure 2 Water container analogy.

  Investigate!
Charging a capacitor with a constant current

 ● It is unusual for a capacitor to charge or 
discharge with a constant current. But this 
exercise will help you to understand the 
charging process for any capacitor. 

 ● Set up the circuit. A value of 470 µF is suitable 
for this experiment.

 ● You also require a clock with a second hand. 
You may wish to use a data logger with a 

voltage sensor in place of the voltmeter and 
the clock (the data logger can make both 
measurements for you).

 ● Begin by shorting out the capacitor with the 
flying lead so that it is completely discharged. 
The voltmeter should indicate zero. 

 ● In the experiment you need to alter the 
resistance of the variable resistor to keep the 

Worked examples
1 A pair of parallel plates store 2.5 × 10–6 C 

of charge at a potential difference of 15 V. 
Calculate the capacitance of this capacitor.

Solution
C =   

Q
 _ 

V
   =   2.5 ×  10  -6  _ 

15
   = 1.7 ×  10  -7  F = 170 nF. 

2 Calculate the potential difference across a 
capacitor of capacitance 0.15 µF when it stores 
a charge of 7.8 × 10–8 C.

Solution
V =   Q _ 

C
   =   7.8 ×  10  -8  _ 

1.5 ×  10  -7 
   = 0.52 V
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charging current at a constant value. If the 
resistance remains at a constant value, the 
current will fall, reaching zero when the 
capacitor is fully charged so you will need 
to decrease the resistance as the experiment 
proceeds. 

 ● Set the variable resistor to its maximum 
value. Close the switch with the flying lead 
connected across the capacitor. Remove 
the flying lead, start the clock, and record 
measurements of time elapsed t and potential 
difference V across the capacitor. Record the 
value of the constant current I.

 ● Use your measurements to plot a graph to 
show how the charge Q stored on the capacitor 
varies with potential difference V. To obtain the 
charge stored, remember that Q = It.

100 kΩ
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ch
ar
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/m

C

0.0

0.5

1.0

1.5

20

2.5

3.0

(a)

(b)

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
pd/V

▲  Figure 3(a) and (b) Charging a capacitor with constant current.

Worked examples
1 Calculate the energy that can be stored on a 

5000 µF capacitor that is charged to a potential 
difference of 25 V.

Solution
Energy stored =   1 _ 

2
   C V  2  = 0.5 × 5 ×  10  -3  × 252

  = 1.6 J

2 A capacitor of value 100 mF stores an 
energy of 250 J. Calculate the pd across 
the capacitor.

Solution
Energy stored V =  √_________

    
2 × energy

 __ 
C

     =  √____
   500 _ 

0.1
     = 71 V

The results of this experiment are shown in figure 3(b). The graph is a 
straight line with a gradient that is equal to C. The potential difference across 
the plates of a capacitor is directly proportional to the charge it carries.

Energy stored in a capacitor
The graph shown in figure 3(b) can give more information than the gradient. 
The potential difference V is the energy per unit of charge stored on the 
capacitor and Q is the charge, so the product of these two quantities is the 
energy stored and this quantity is equal to the area under the graph.

Algebraically, this area is 

  1 _ 
2

  (base × height) =   1 _ 
2

   × Q × V 

There are two additional ways that this expression for the energy can be 
written:

Energy stored on capacitor =   1 _ 
2
   QV =   1 _ 

2
     
 Q  2 

 _ 
C

   =   1 _ 
2
   C V  2 

This is an idea that is analogous to the potential energy stored in a stretched 
string where there was also a factor of   1 __ 2  . (We looked at this in Topic 2.)
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Capacitance of a parallel-plate capacitor
In Topic 10 we saw that for a pair of parallel plates

  
Q

 _ 
A

   =  ε  0    V _ 
d
  

where Q is the charge stored, A is the area of overlap of the plates, V is 
the potential difference between the plates, and d is the separation of the 
plates.

Rearranging this expression gives

  
Q

 _ 
V

   = ε0   
A _ 
d
  

and   Q __ V   is the capacitance C of the two-plate system.

Finally, 

C =  ε  0    A _ 
d
  

This enables us to calculate the capacitance of a capacitor given the 
area of overlap of the plates and their separation. However, in real 
capacitors, edge effects will reduce this value. Earlier we mentioned 
the edge effects, the field distortions at the edge of the plates that lead 
to differences between the theoretical results here and what happens 
in practice with real capacitors. You saw some of the results of edge 
effects when you considered electric field-line shapes at the edges of 
plates in Topic 10.

If the gap between the plates is filled with an insulator of permittivity  
ε, this becomes 

C = ε   A _ 
d
  

Capacitors in practice
Capacitors are used extensively in electronic circuits. They store charge 
and can be used to reduce the effects of fluctuations in a circuit. They 
are also the basis of timing circuits. This means that electric component 
designers need to be able to design capacitors of various sizes and 
capacitance values.

The equation C = ε0   
A

 __ 
d
   gives the designers a basis for this. It is evident 

that there are three ways to increase the capacitance of the plates:

 ● Make the plate overlap area larger because C ∝ A

 ● Set the plates closer together because C ∝   1 __ 
d
  

 ● Change the value of the constant in the equation (in other words 
change the permittivity from that of a vacuum to some other value). 

Increasing the area of plate overlap increases capacitance because more 
charge can be stored for a given potential difference between the plates 
and therefore   Q __ V   increases.

The second way to increase C is to move the plates closer together. 
To understand the mechanism here, imagine the plates charged and 

Worked example
1 Two parallel plates 

both have an area 
0.015 m2 and are 
placed 2.0 × 10–3 m 
apart. Calculate the 
capacitance of this 
arrangement.

Solution
C = ε0   

A _ 
d
   

   = 8.9 ×  10  -12  ×   0.015 _ 
2 ×  10  -3 

   

   = 6.7 ×  10  -11  F 
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▲  Figure 4 How a dielectric increases 
capacitance.

isolated, i.e. not connected to a power supply. The charge on the plates 
cannot change as there is no route along which the charges can move 
between them. The plates attract because they are positive and negative. 
If they are allowed to move closer together at a constant speed (without 
touching) then they will do work on whoever is moving them. This 
energy must come from somewhere, the only possible source is the 
capacitor itself and so the potential difference must drop and once 
again   Q __ V   increases.

The third way to change capacitance is to insert a material between 
the plates that replaces the air (or vacuum) that we have so far 
imagined to fill the space. This means that the new material can 
do two things for the capacitor designer: it can be used to separate 
the plates by a fixed amount, and also change the properties of the 
capacitor at the same time.

In Topic 5 we mentioned that materials have their own permittivity 
which is greater than that of a vacuum. To treat this mathematically, 
when a material of permittivity ε is present we replace ε0 in the 
equations where it occurs with ε alone. Some typical values for ε were 
also given in Topic 5 for a number of different materials.

A particularly useful thing happens when a dielectric material is 
inserted between capacitor plates to fill the whole space between them. 
A dielectric is an electrical insulator that is polarized when placed in an 
electric field. The origin of the polarization is in the molecules of the 
dielectric substance. Each molecule is slightly more positive at one end 
than the other. This means that when a molecule is in an electric field, 
it responds either by moving slightly or by rotating so that the more 
positive end of the molecule moves in the direction of the electric field. If 
the molecules are in a solid and the solid is packed between the plates of 
a capacitor then this reduces the electric field strength between the plates.

When the dielectric is in place (figure 4), the molecules inside it 
respond to the field produced by the capacitor. Notice the field 
directions carefully. In the diagram the original field Ecap of the 
capacitor is from right to left, but the dielectric field Edielectric (indicated 
by the charges at the surface of the dielectric) is from left to right. 
Therefore the net field between the plates is equal to the capacitor 
field minus the dielectric field. The overall field Enet in the dielectric 

is reduced and because Enet = Ecap - Edielectric =   V __ 
d
   (V is the potential 

difference) then V decreases too as d is fixed. The insertion of 
the dielectric reduces the potential difference between the plates 
because some of the stored energy of the capacitor has been used to 
align the dielectric molecules. The overall charge stored is unchanged 
so   Q __ V   is increased and hence so is the capacitance of the capacitor. 
Dielectrics increase the capacitance of a capacitor. Another way to 
describe the action of the dielectric is by saying that the presence of 
the dielectric raises the potential of the negative plate and lowers 
the potential of the positive plate; this reduces the potential difference 
between the plates.

This explanation of the dielectric effect is a simplified one. There are 
other reasons for the increase in capacitance, but in many cases the 
explanation can be given in terms of potential change as here.

Dielectric strength of 
dielectrics

If the potential difference 
across a capacitor is increased, 
a maximum field strength will 
be reached after which the 
dielectric becomes a conductor. 
A spark will then jump between 
the plates. This maximum field 
is called the dielectric strength 
of the dielectric. For air this is 
about 1 kV mm-1 (the exact 
value depends on temperature, 
pressure and how dry the air 
is); for teflon the dielectric 
strength is 60 kV mm-1. If 
during thunderstorms the 
electric field strength in air 
between charged clouds or 
between a charged cloud and 
the ground exceeds this critical 
value, then a lightning strike 
may occur.
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▲ Figure 5 Practical capacitors.
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Tip
If you are using electrolytic 
capacitors in the laboratory, 
take care that the polarity of the 
capacitor in the circuit is correct. 
If the polarity is reversed, the 
dielectric can become hot and 
cause the capacitor to explode.

Figure 5(a) shows some typical designs used for practical capacitors. 
A very common type of capacitor is the electrolytic capacitor shown 
as a cutaway in figure 5(b). The designer here uses the dielectric 
advantageously by using it to space the two metal foils apart. The 
capacitor layers are then rolled up together (rather like rolling up three 
carpets initially on top of each other). This type of capacitor must be 
connected into a circuit correctly. The dielectric material is a chemical 
(the electrolyte in the diagram) that is a good dielectric when the 
electric field direction is correct. In this design the layers are very thin 
(good because d is small) and the plate area is large (even better) giving 
some of the largest values of capacitance possible in a given volume.

Materials used for the dielectric include; paper, mica (a mineral that 
can be cut into thin layers), Teflon, plastics, ceramics, and the oxides of 
various metals such as aluminium.

The table shows how good some of these materials can be at improving 
the ability of a capacitor to store charge at a given voltage. For each 
material the number given is the ratio of the permittivity of the material 
to that of a vacuum, in symbols   ε __  ε  0    . (This ratio is called the relative 
permittivity or sometimes the “dielectric constant”, but you will not be 
asked about this in the examination.)

Worked example
1 In a laboratory experiment, two parallel plates, 

each of area 100 cm2, are separated by 1.5 cm. 
Calculate the capacitance of the arrangement 
if the gap between the plates is filled with: 

a) air

b) polystyrene.

Solution
a) Convert the centimetre units to metres: area = 

100 × 10–4 = 10–2 m2; separation = 0.015 m

C =  ε  0    A _ 
d
   = 8.9 ×  10  -12  ×    10  -2  _ 

0.015
   = 5.9 ×  10  -12  F

b) Polystyrene has a dielectric constant of 3, 
which means that  
ε = 3 × 8.9 × 10-12. Capacitance is now  
1.8 × 10–11 F.

2 Calculate the area of overlap of two capacitor 
plates separated by a thickness of 0.010 m of 
air. The capacitance is 1 nF.

Solution
A =   Cd _ ε   =   1× 10-9 × 0.01  __  

8.9 × 10-12
   = 1.1 m

Material   ε _ ε0
  

vacuum 1
air 1.000 54 ≅ 1
paper 4
mica 5
polystyrene 3
ceramic 100–15 000
aluminium oxide 9–11
teflon 2.1
paraffin 2.3
water (pure) 80
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▲ Figure 6 Capacitors in parallel and series.

Parallel
Parallel capacitors have the same potential difference across them when 
connected as in figure 6(a). The total charge stored is Q1 + Q2 (as shown 
on the diagram) and these charges are Q1 = VC1 and Q2 = VC2. The single 
capacitor that is equivalent to the two parallel ones has a charge of Q = VC.

So

Q =  Q  1  +  Q  2  (conservation of charge)

and therefore 

VC = V C  1  + V C  2 

Cancelling the V terms gives

C = C1 + C2

When two capacitors are connected in parallel, the total 
capacitance is equal to the sum of the capacitances. 

Series
Capacitors in series (figure 6(b)) store the same amount of charge Q 
as each other because the same current charges both capacitors (an 
example of Kirchhoff’s first law in action). Kirchhoff’s second law tells us 
that the potential differences across the capacitors V1 and V2 must add up 
to give the emf of the cell V.

Thus

V =  V  1  +  V  2  (conservation of energy)

Combining capacitors in parallel and series
A further way to modify capacitance values is to combine two or more 
capacitors together in much the same way that resistors were combined in 
Topic 5. Like resistors, capacitors can be connected in parallel and in series.

Worked example
Calculate the capacitance of the 
network below.

2C

3C

C

Solution
The capacitors in parallel have 
capacitance of C + 2C = 3C

Combining the parallel capacitors 
and 3C gives:

  1
 ___ Ctotal

   =   1 __ 3C   +   1 __ 3C   =   2 __ 3C   so Ctotal= 1.5C.
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Using the definition of capacitance

  
Q

 _ 
C

   =   Q _ 
 C  1 

   +   Q _ 
 C  2 

  

Q cancels to give

  1 _ 
C

   =   1 _ 
C1

   +   1 _ 
C2

  

So this time, the reciprocal of the total capacitance is equal to the 
sum of the reciprocals of each capacitance.

This is a reversal of the equations for combining resistors and can be a 
convenient way to remember the equations.

Discharging and charging a capacitor
In an earlier Investigate! a capacitor was charged with a constant current. 
This is an unusual situation that required continuous changes to the total 
resistance in the circuit to achieve a constant flow of charge. When the 
total resistance is constant then the charging current varies with time. This 
section examines the nature of this variation.

  Investigate!
Discharging a capacitor

 ● Set up the circuit shown in figure 7(a). This 
circuit has two functions: to charge the 
capacitor and then to discharge it with the 
power supply disconnected from the circuit. 
Suitable values for the components are: 
capacitance, 100 µF; resistance 470 kΩ. 

 ● Charge the capacitor by connecting the flying 
lead to point X. Then begin the discharge by 
disconnecting the flying lead.

 ● Record the variation of the potential 
difference across the capacitor with time. 
The capacitance and resistance values are 
designed to allow you to carry out the 
experiment by yourself. However, you 
may find it even easier with two people, 
one recording the data. Alternatively use a 
voltage sensor together with a data logger to 
collect and display the data.

 ● Plot the graph of potential difference against 
time for the discharge.

 ● Your results will probably resemble those 
shown in figure 7(b).

pd
/V

0

1

2

3

4

5

6

7

(a)

(b)

0 20 40 60 80 100 120 140
time/s

flying lead

VC

X

R

▲ Figure 7 Circuit for capacitor discharge and results.
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Discharging
You can think of the capacitor as taking the place of a power source and, at 
any instant, the current I and the pd VC across the capacitor are related by 

 V  C  = IR
Here both VC and I change with time. This equation is obtained by 
applying Kirchhoff’s second law to the circuit loop in Figure 8.

Therefore

  ∆Q
 _ ∆t
   =   VC _ 

R
  

where Q is the charge on the capacitor and t is the time that has elapsed 
since discharging began.

So, because

 V  C  =   Q _ 
C

  

  ∆Q
 _ ∆t
   = -  Q _ 

RC
  

A negative sign has appeared in the right-hand side of the expression. As 
the capacitor discharges, the charge on the capacitor falls and in each ∆t 
the change in the charge is a negative value. 

Rearranging gives

∆Q = -  Q∆t
 _ 

RC
  

and we replace RC by the constant τ where τ = R × C so that

∆Q = -  Q∆t
 _ τ  

This new equation allows us to analyse how the charge on the 
capacitor varies with time during the discharge. The first step is to 
recognize what the equation says. It predicts that the loss of charge 
from the capacitor in a time interval ∆t will be equal to   1 __ τ   of the 
total charge that was stored on the capacitor at the beginning of the 
time interval. 

Figure 9 shows what this means in terms of a graph of Q against t. It has 
the same shape as figure 7(b) because C =   Q __ V   and so Q ∝ V.

The next step is to model the discharge using ∆Q =   Q∆t
 ____ τ  . We will use a 

spreadsheet to do this and begin by first concentrating on the part of the 
Q–t graph just after the discharge begins (at time t = 0) at which time the 
original charge on the capacitor is Q0.

If the charge on the capacitor did not change, then after a time interval 
∆t the charge would still be Q0 and the graph would be parallel to the 
time axis. But this is not what happens, the equation tells us that the 
charge goes down (remember the minus sign!) by   

 Q  0  ∆t
 ____ τ  . This change is 

shown on the graph. 

 ● The charge remaining on the capacitor after ∆t will be  Q  0  -    Q  0  ∆t
 ____ τ  . 

 ●  The graph line has a gradient of -   Q0 __ τ   during the first time interval ∆t.

▲  Figure 9 Charge versus time for a  
discharging capacitor.
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▲ Figure 8 Discharging circuit.
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What happens next? A second time interval begins and charge continues 
to move off the capacitor plates. But at the start of this interval the 
charge and, therefore, the pd across the capacitor are less than when  
t was 0. Call the new charge stored Q1. The change in charge this time 
is ∆Q = -   Q  1  ∆t

 ____ τ   because the charge is no longer Q0. Because Q1 is less 
than at the start, ∆Q will also be less over this second time interval. The 
gradient of the graph becomes less and has a new value of   

Q1 __ τ  .
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▲ Figure 10 Spreadsheet model for capacitor discharge.
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In each successive ∆t the change in the charge will be less than in the 
previous time interval and as time goes on the graph line will curve.  

 ● Column A shows the time increasing in steps of 10 s (this is a 
deliberately large time increment, 1 s or 0.1 s would be better). 

 ● Column B shows the calculation of ∆Q using ∆Q = -  Q∆t
 ___ RC  . 

 ● Column C shows the new value of Q at the end of the time interval. 

 ● The value of Q in column C is then applied as the initial charge in the 
next time interval on the next row of the sheet following a loop with 
initial conditions changing at each cycle.

The program calculates successive values for the charge that remains on 
the capacitor for every 10 s of the discharge. The program then plots a 
graph of charge of the capacitor against time.

(If you want to produce your own version of this spreadsheet, the 
formulae are:

 ● in cell B3 and below =C3*$G$3/($G$1*$G$2)

 ● in cell C9 and below =C3-B3

 ● the symbol $ is required to ensure that the spreadsheet uses the 
same row and column for C, R and ∆t when the columns are copied 
downwards from row to row – if these were not there then G3 would 
become G4 then G5 then G6 and so on as the rows are copied down 
the sheet.

At the top left-hand corner of the spreadsheet are the constants required 
in the solution: R, C, ∆t and Q0. R and C have the same value as in 
the Investigate! so this solution should match up with the results you 
obtained then.

Look closely at this graph (which only has the first 80 s of the discharge 
plotted) and compare it to your own results for the discharging 
experiment. The graphs have interesting properties. Examine the time 
it takes the charge on the capacitor to halve. The initial charge at t = 0 
is 1 × 10–6 C (written as 1.00E-6 in Excel notation) and half this value 
(5.00E-7) occurs at about t = 29 s. Compare this with the time taken 
for the charge to halve from 5.00E-7 to 2.50E-7. This is from t = 29 s to 
t = 58 s – another time of 29 s. The next halving from 2.50E-7 to 1.25E-7 
takes another 29 s. For this combination of R and C it always takes 29 s 
for the charge to halve. If you used values or 100 µF and 470 kΩ in your 
experiment check that your results give a similar result.

This behaviour is similar to that shown by decaying radioactive nuclei. 
The activity of the radioactive substance halves in one half-life. For a 
capacitor, half the charge leaves the capacitor during a half-life. Such 
behaviour is characteristic of exponential decay.

The equation

  ∆Q
 _ 

Q
   = -  1 _ τ   ∆t

has a similar form to the radioactivity decay equation
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  ∆N _ 
N

   = - λ∆t

(N is the number of nuclei present at a given instant and λ is the probability 
of decay) and therefore we expect them to share the same solution

N =  N  0   e  -λt 

and

Q = Q0  e -  t _ τ   
The capacitor discharge equation can also be written (by taking natural 
logs of both sides of the expression)

 log  e  Q =  log  e   Q  0  –   t _ λ  
A graph of  log  e  Q against t should be a straight line with gradient -  1 _ λ  .
The  log  e  Q – t graph for the spreadsheet results is shown in figure 10. It has 
an intercept on the y-axis of –13.8 and a gradient of –0.021 s–1. This tells 
us that loge (Q0/C) = –13.8 (remember that the units are written inside 
the brackets to make the whole log number unitless).

Therefore Q0 = e-13.8 = 1.0 µC which was the original charge the model 
gave the capacitor. R was 470 000 Ω and C was 100 µF in the model,  
so RC =   1

 ___ 
Gkτ   = 47 s and the model predicts Gkτ to be 0.021 s–1. This is 

also confirmed by the gradient.

The computer spreadsheet allows us to model one other aspect of 
capacitor discharge. As the charge flows, discharging the capacitor, 
there is a current in the circuit. The current is equal to the change in 
charge per second over each 10 s time interval. This can be modelled by 
assigning the average current during a time interval to the value of the 
current at a time halfway through the time interval (i.e. at 5 s for the 
first 0–10 s interval, at 15 s for the second 10–20 s interval and so on).

Another graph in figure 10 shows that the current – just like charge and 
potential difference – decays exponentially with a half-life behaviour.

The product R × C = τ is known as the time constant for the circuit. 
The name is fully justified because the units of RC are 

ohm × farad =   volt _ ampere   ×   coulomb _ 
volt

   =   coulomb _ ampere   =   ampere × second
  __  ampere   

= second.

The capacitor time constant is not the same as a half-life. After a time of 
RC since the start, Q will be

Q =  Q  0   e  -1 

because t = RC = τ 

So

  
Q

 _ 
 Q  0 

   =   1 _ e   = 0.37

During each time interval τ the charge drops to 37% of its value at the 
start of the interval. After 2τ this will be (0.37)2 or 13.7%. After 5τ the 
charge remaining on the capacitor will be less than 1% of its initial value. 

Tip
To obtain the instantaneous 
current in the resistor from 
the graph of charge on the 
capacitor against time, 
remember that the rate at 
which charge leaves the 
capacitor is also the rate at 
which charge flows through 
the resistor. In other words, 
the gradient of the tangent 
of the Q-t graph will give you 
the value of the current in the 
resistor.

Tip
There are three equations 
that give the variation of 
charge, current and potential 
difference with time for a 
discharge circuit:

Q =  Q  0   e  -   t _ τ   
I =  I  0   e  -   t _ τ   
V =  V  0   e  -   t _ τ   
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  Investigate!
Charging a capacitor

 ●  This is very similar to the experiment during 
which you varied the total resistance in a 
circuit to achieve a constant current. This time, 
however, the resistance does not change. As 
the potential difference at which the capacitor 
is storing charge increases, the current in the 
circuit will decrease. 

 ●  Suitable values for the fixed resistor and 
capacitor are, as before, 100 µF and 470 kΩ. 

 ● Make sure the capacitor is discharged, by 
short-circuiting it with the flying lead, and 
then disconnect the flying lead to begin the 
experiment. Wait for a data logger to do its job 
or  take manual readings of the voltage across 

the capacitor every 5 s until the pd becomes 
constant.

 ● Plot a graph of pd against time and examine 
it closely. To what extent does the behaviour 
resemble the discharge case?

flying
lead

C

R

VVemf

▲ Figure 11

Charging
Again we approach the solution of these equations through an 
experiment followed by making a spreadsheet model.

A model for charging
The capacitor is in series with a resistor of resistance R and a cell of emf 
Vemf. When the circuit is switched on with the capacitor uncharged, 
charge begins to flow.

Using Kirchhoff’s second law

 V  emf  =  V  C  +  V  R 

and therefore

 V  R  =  V  emf  -  V  C  = IR

Worked examples
1 A 220 µF capacitor charged to 30 V discharges 

through a 330 kΩ resistor.

a) Calculate the time taken for the capacitor to 
discharge to 10 V.

b) Calculate the charge moved from the 
capacitor in this time.

Solution
a) V =  V  0   e  -   t _ 

RC
    so 10 = 30 e  

-   t  ___   
330 ×  10  3  × 220 ×  10  -6 

  
 . 

Therefore ln 0.33 = -  t
 ____ 72.6   and t = 80 s.

b) :Q = C:V. So :Q = 220 ×  10  -6  × 20 = 4.4 mC.

2 Calculate the number of multiples of the time 
constant that are required for a capacitor to 
lose 90% of its charge.

Solution
Q = Q0 e  -  t _ 

RC
   

For this case 0.1 =  e  -  t
 ___ RC   , therefore -  t

 ___ RC   = ln 0.1  
= 2.3, making t = 2.3RC.

2.3 time constants are required to lose 90%  
of charge.
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▲ Figure 12 Spreadsheet model for capacitor charging.

Vc
/V

0

1

2

3

4

5

6

7

0 50 100 150 200 250 300 350 400
t/s

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300

0
1.28E+00
2.28E+00
3.07E+00
3.70E+00
4.19E+00
4.57E+00
4.88E+00
5.11E+00
5.30E+00
5.45E+00
5.57E+00
5.66E+00
5.73E+00
5.79E+00
5.83E+00
5.87E+00
5.90E+00
5.92E+00
5.94E+00
5.95E+00
5.96E+00
5.97E+00
5.98E+00
5.98E+00
5.98E+00
5.99E+00
5.99E+00
5.99E+00
5.99E+00
6.00E+00

time/s delta V/C Vc/C

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

D E F G H I J K LA B C

4.70E+05
1.00E-04

10
6

R
C

delta t
Vemf

0
1.28E+00
1.00E+00
7.91E-01
6.23E-01
4.90E-01
3.86E-01
3.04E-01
2.39E-01
1.88E-01
1.48E-01
1.17E-01
9.19E-02
7.23E-02
5.69E-02
4.48E-02
3.53E-02
2.78E-02
2.19E-02
1.72E-02
1.36E-02
1.07E-02
8.40E-03
6.61E-03
5.21E-03
4.10E-03
3.23E-03
2.54E-03
2.00E-03
1.57E-03
1.24E-03

so

I =   ( V  emf  -  V  C )
 __ 

R
  

In the time interval ∆t, the change in the charge on the capacitor ∆Q is 
related to the change in the potential difference between the plates ∆V by

I =   ∆Q
 _ ∆t
   =   C∆V _ ∆t

  

therefore (rearranging)

∆V =    (V  emf  -  V  C ) × ∆t
  __ 

RC
  

This expression can be integrated mathematically, but a numerical 
solution illustrates more of the physics of the charging.
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The three columns of the spreadsheet model are:

 ●  time is increased row by row by an amount ∆t; the formula for A4  
is =A3+$F$3 (as before the $ signs force the spreadsheet to use the 
same row and column each time). 

 ●  deltaVc is the change in Vc since the last time; it is given by 
the equation above and B4 translates into =($F$4-B3)*$F$3/
($F$1*$F$2) in the spreadsheet language. Look carefully at the 
contents of each cell and you should see why this is correct.

 ●  Vc is the new value of Vc that incorporates the deltaVc from the 
previous line; it is a simple addition =C3+B4

The spreadsheet is copied for about 50 rows (not all shown here) and 
then the values of t and Vc are used to plot a graph.

Does this graph have similarities to the one you plotted from 
experimental data? 

What are the similarities between charge and discharge?

TOK

Exponential decay

The similarity between radioactivity and capacitor discharge is shared with many 
other phenomena throughout the whole of science and extends into economic 
theory. In radioactivity the reason for the behaviour is that each nucleus of a 
particular isotope has an identical probability of decay per second. Therefore the 
number decaying in one second is directly proportional to the number of nuclei 
that remain undecayed. In capacitor discharge, the potential difference (which is 
proportional to the charge) between the plates is related to the discharge current 
through V = IR so   Q ___ C   = R   ∆Q

 _______ ∆t
  . We can use our water analogy again, this time for 

water flowing from the bottom of a large tank. When the tank is full the pressure 
(“potential”) from the weight of water at the bottom is large and the flow rate is large 
too. When the tank is nearly empty the pressure is lower and the flow rate smaller.

There are other examples of exponential changes in the natural world. Sea 
animals with shells grow at a rate that depends on the mass of food they 
can eat and this mass depends on their mouth size. So the shell grows 
exponentially and the shape of the shell can be in the form of an exponential 
curve. Population growth is an exponential change if there are no predators to 
remove a species.

Why do so many academic areas have this linking relationship?
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Questions
1 (IB) A bar magnet is suspended above a coil of 

wire by means of a spring, as shown below.

 

spring

magnet

coil

The ends of the coil are connected to a sensitive 
high-resistance voltmeter. The bar magnet is 
pulled down so that its north pole is level with 
the top of the coil. The magnet is released and 
the variation with time t of the velocity v of the 
magnet is shown below.

t0
0

v

a) Copy the diagram and on it:

  (i)  mark with the letter M, one point in 
the motion where the reading of the 
voltmeter is a maximum

(ii)  mark with the letter Z, one point  
where the reading on the voltmeter  
is zero. 

b) Explain, in terms of changes in flux linkage, 
why the reading on the voltmeter is 
alternating.  
 (4 marks)

2 A uniform magnetic field of strength B 
completely links a coil of area S. The field 
makes an angle ϕ to the plane of the coil.  

State the magnitude of the magnetic flux 
linking the coil. 

 

area S

B

ϕ

3 (IB) 

electromagnet

The current in the circuit is switched on.

a) State Faraday’s law of electromagnetic 
induction and use the law to explain 
why an emf is induced in the coil of the 
electromagnet. 

b) State Lenz’s law and use the law to predict 
the direction of the induced emf in part a). 

c) Magnetic energy is stored in the 
electromagnet. State and explain, with 
reference to the induced emf, the origin of 
this energy.  
 (8 marks)

4 (IB) A small coil is placed with its plane parallel 
to a long straight current-carrying wire, as 
shown below.

small coil

current-carrying wire
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a) Use Faraday’s law of electromagnetic 
induction to explain why, when the 
current in the wire changes, an emf is 
induced in the coil. 

 The diagram below shows the variation 
with time t of the current in the wire.

 

t

t

t

0 0cu
rre

nt

0 0

m
ag

ne
tic

 fl
ux

0 0em
f

b)      (i)  Copy the diagrams and sketch, on the 
axes, graphs to show the variation 
with time t of the magnetic flux in  
the coil. 

   (ii)  Sketch, on your axes, a graph to show 
the variation with time t of the emf 
induced in the coil. 

 (iii)  State and explain the effect on the 
maximum emf  induced in the coil 
when the coil is further away from  
the wire. 

c) Such a coil may be used to measure large 
alternating currents in a high-voltage 
cable. Identify one advantage and one 
disadvantage of this method.  
 (8 marks)

5 (IB) The diagram below shows an ideal 
transformer.

 

secondary coil

primary coil

laminated core

a) Use Faraday’s law to explain why, for 
normal operation of the transformer, the 
current in the primary coil must vary 
continuously. 

b) Outline why the core is laminated. 

c) The primary coil of an ideal transformer is 
connected to an alternating supply rated at 
230 V. The transformer is designed to provide 
power for a lamp rated as 12 V, 42 W and 
has 450 turns of wire on its secondary coil. 
Determine the number of turns of wire on 
the primary coil and the current from the 
supply for the lamp to operate at normal 
brightness.  
 (7 marks)

6 (IB) The graph shows the variation of potential 
difference V with time t across a 220 µF capacitor 
discharging through a resistor. Calculate the 
resistance of the resistor. (3 marks)

0
0

2

4

6

8

10

14

10 20 30 40 50 60

V/
V

t/s

12

7 a)  A circuit is used to charge a previously 
uncharged capacitor. The supply has an emf 
of 12.0 V and negligible internal resistance 
and is in series with resistance R. The graph 
shows how the potential difference across 
the capacitor varies with time after the 
switch is closed.

200 µF
12.0 V

S

V
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pd
/V

0

5

15

10

50 100 150 200
time/s

0

    (i)  Determine the time taken for the 
potential difference across the capacitor 
to reach half the maximum value. 

  (ii) Calculate R. 

(iii)  Calculate the initial charging  
current. 

b)  A 100 µF capacitor is added in series with 
the 200 µF capacitor.

  (i)  Calculate the effective capacitance of 
the combination. 

(ii)  Draw a graph showing how the 
potential difference across the 
combination varies with time when  
the combination is charged. 

 (10 marks) 

8 a)   (i)  A capacitor has a capacitance of 1 µF. 
Outline what this tells you about the 
capacitor. 

   (ii)  Sketch a graph to show how the 
charge on the 1 µF capacitor varies 
with the potential difference across 
it over a range of 6 V. 

(iii)  Explain how you could determine the 
energy stored by the capacitor for a 
potential difference of 6 V. 

b) A 0.047 F capacitor is charged to a pd 
of 20 V, disconnected from the supply 
and connected to a small motor without 
discharging. The motor can then lift an 
object of mass 0.25 kg through a height 
of 0.90 m before the capacitor is fully 
discharged.

Calculate:

  (i)  the initial energy stored by the  
capacitor 

(ii) the efficiency of the system. 

 (10 marks)

9 A capacitor stores a charge of 30 µC when 
the pd across it is 15 V. Calculate the energy 
stored by the capacitor when the pd across 
it is 10 V. (2 marks)

10 In a timer, an alarm sounds after a time 
controlled by a discharge circuit powered by a 
9.0 V cell of negligible internal resistance. The 
alarm time is varied using resistor R. 

The capacitor is charged by moving the two-
way switch to position S

1. The timing starts 
when the switch is moved to S2.

6.0 V

S1 S2

R to alarm

X

Y

2200 µF

An alarm rings when the potential difference 
across R reaches 3.0 V.

a) In one setting the time constant of the  
circuit when the capacitor is discharging  
is 3.0 minutes. Sketch a graph to show  
how the potential difference across R  
varies with time for two time constants  
of the discharge. 

b) Use your graph to state the time at  
which the alarm will sound. 

c) Calculate the resistance of the variable  
resistor when the time constant is  
3.0 minutes. 

d) Determine the maximum value of the 
resistance R that is needed for the  
timer to operate for up to 5 minutes. 

e) State how a capacitor could be  
connected to the circuit to increase  
the range of the timer. 

 (11 marks)
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switch

A

R
200 µF

V
8.0 V

 

R V

B

X

switch

8.0 V

200 µF

The diagram shows two graphs of the variation 
of p.d. with time for the discharge through 
resistor of value R of (i) a 220 µF capacitor and 
(ii) the same 220 µF capacitor in series with a 
capacitor of unknown capacitance.

V/
V

0

2

4

6

10

12

8

10 20 30 40
time/s

A

B

0

a) Outline why the p.d. in experiment B falls 
more rapidly than in experiment A. 

b)   (i) Determine R. 

(ii)  Determine the capacitance of the 
unknown capacitor. 

 (8 marks)

12 Three capacitors, one of unknown value, 
are connected in a circuit. The supply has a 
negligible internal resistance. The total charge 
stored on the capacitors is 400 µC when the 
potential difference between A and B is 12.0 V.

12 V X
A

B

150 kΩ
20 µF

60 µF

S

a)    (i)  Calculate the total capacitance  
of the circuit. 

   (ii)  Calculate X. 

(iii)  Calculate the potential difference 
across the 20 µF capacitor. 

b) The supply is disconnected and the 
capacitors discharge through the 150 Ω 
resistor. 

Calculate the:

   (i)  time taken for the potential difference 
between A and B to fall to 6.0 V 

(ii)   potential difference between A and  
B 8.0 s after opening the switch. 

 (10 marks)

13 A parallel plate capacitor is made from two 
circular metal plates with an air gap of  
1.8 mm between them. The capacitance  
was found to be 2.3 × 10–11 F.

Calculate:

a) the diameter of the plates 

b) the energy stored when the potential 
difference between the plates is 6.0 V.  

 (5 marks)
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12  Q U A N T U M  A N D  N U C L E A R 
P H Y S I C S  ( A H L )

Understandings
 ➔ Photons
 ➔ The photoelectric effect 
 ➔ Matter waves
 ➔ Pair production and pair annihilation
 ➔ Quantization of angular momentum in the Bohr 

model for hydrogen
 ➔ The wave function
 ➔ The uncertainty principle for energy and time, 

and position and momentum
 ➔ Tunnelling, potential barrier, and factors 

affecting tunnelling probability

  Applications and skills
 ➔ Discussing the photoelectric effect 

experiment and explaining which features of 
the experiment cannot be explained by the 
classical wave theory of light

 ➔ Solving photoelectric problems both graphically 
and algebraically

 ➔ Discussing experimental evidence for matter 
waves, including an experiment in which the 
wave nature of electrons is evident

 ➔ Stating order of magnitude estimates from the 
uncertainty principle

Equations
 ➔  Planck relationship: E = hf
 ➔  Einstein photoelectric equation: Emax = hf - Φ
 ➔  Bohr orbit energies: E = -   13.6 _ 

n2    eV

 ➔  quantization of angular momentum: mvr =   nh _ 
2π  

 ➔  Probability density: P(r) = |ψ|2 ∆V
 ➔  Heisenberg relationships: position–momentum 
∆x∆p ≥   h _ 4π  

 ➔  energy–time: ∆E∆t ≥   h _ 4π  

Introduction
This topic develops material we first met in Topic 7. 
The physics included here was ground-breaking 
when it was first proposed (mostly in the early 
to mid 20th century); there were many highly 
respected physicists who totally rejected much of 

the theory. Today these ideas are  seen as being 
fairly uncontroversial but there are still those who 
believe that reality should be modelled by theories 
that are simpler or more universal. Time will, no 
doubt, tell whether we have currently got it right!

12.1 The interaction of matter with radiation

  Nature of science
Scientists’ increasing dependence on 
quantum phenomena
Much of what is described by quantum mechanics 
depends upon probability and seems in many 
ways counter-intuitive. Einstein, who remained 
unconvinced about quantum mechanical 
interpretations of matter, said that he did not … 
“believe that God plays dice”.



  Nature of science
The ultraviolet catastrophe
In the later part of the nineteenth century 
physicists were attempting to explain the radiation 
emitted by a black body – a perfect emitter and 
absorber of radiation. The radiation emitted by a 
black body was modelled using classical physics 
by the Rayleigh–Jeans law, whereby the intensity 
is proportional to the square of the frequency. 
This theory worked well for the visible and 
infrared parts of the spectrum, where it matched 
the practical curve, but it failed in the ultraviolet 
region by implying that ultraviolet radiation 
would be emitted with an infinite intensity – 
something that clearly was not possible (see 
figure 1). In 1900, the German physicist Max 
Planck suggested that the ultraviolet catastrophe 
would be rectified if electrons oscillating in the 
atoms of hot bodies were to have energies that 
were quantized in integral values of hf – where f 
is the frequency of the electrons and h is Planck’s 
constant. The theory that he developed worked 
well at interpreting black-body radiation, but it 

was not well-received by the physics community 
because he was unable to justify why the energies 
of electrons should be quantized. It was not 
until Einstein used similar assumptions to those 
of Planck in order to explain the photoelectric 
effect that physicists began to take Planck’s ideas 
seriously.

Introduction
In Topic 4 we treated light as a wave, but in Topic 7 we needed to modify 
our views of this in order to describe energy changes that happen in 
atoms and to explain atomic spectra. In Sub-topic 7.3 we looked at the 
Rutherford model of the atom with a nucleus surrounded by orbiting 
electrons. We said that this model did not obey the laws of classical 
physics but had much to commend it in terms of agreement with 
experiment. We now consider the further leap of faith that needed to 
be made in order to reconcile the Rutherford’s experimental results with 
theory; this leap of faith meant abandoning aspects of classical physics 
and our everyday experiences and to accept many outlooks which go 
against our intuition. We will now consider the photoelectric effect 
and go on to look at Bohr’s old quantum theory and its development 
into the modern interpretation of the quantum theory; facets of 
physics that would mean that physicists could never be truly certain of 
anything again!

1000
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▲  Figure 1 The ultraviolet catastrophe – the experimental curve 
and one based on classical physics.

The photoelectric effect
Demonstration of the photoelectric effect
The photoelectric effect can be demonstrated using a gold-leaf electroscope 
(or a coulombmeter). A freshly cleaned sheet of zinc should be mounted 
on the electroscope plate and the sheet charged negatively by connecting 
it to a high negative potential (of around – 3 kV). When a range of 
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electromagnetic radiation from infra-red to ultraviolet is incident on the 
sheet the divergence of the leaf only falls when ultraviolet radiation is 
used; the leaf then immediately collapses. This is because the zinc sheet 
and electroscope leaf are discharging by the emission of electrons. 

Explanation of the photoelectric effect
Einstein explained the photoelectric effect in the following way:

 ●  Light can be considered to consist of photons, each of energy = hf

 ●  Each photon can only interact with a single electron.

 ●  There is a minimum photon frequency – called the threshold 
frequency (f0) below which no electron can be emitted.

 ●  Energy is needed to do the work to overcome the attractive forces 
that act on the electron within the metal – this energy is called the 
work function (Φ).

 ●  Any further energy supplied by a photon becomes the kinetic energy 
of the emitted electron (often called a photoelectron).

 ●  Increasing the intensity of light simply increases the number of 
photons incident per second. 

Explaining observations from the gold leaf experiment 
The zinc sheet has a certain work function and photons must 
have a greater energy than this to be able to emit electrons. The 
ultraviolet radiation has the highest frequency of the radiation used  
and so it is these photons that are able to free the electrons from 
the metal.

a) With very intense visible or infra-red light incident on the 
sheet the leaf remains diverged.

Increasing the intensity only increases the number of photons 
incident per second; with long wavelength (or low frequency) none 
of the photons have enough energy to liberate electrons so the leaf 
remains diverged.

b) If low intensity ultraviolet is used, the leaf still falls immediately.

One photon interacts with one electron so no time is needed to 
build up the energy to release an electron; as soon as the electron 
absorbs a sufficiently energetic photon it will be ejected from  
the metal.

c) Placing a sheet of glass between the ultraviolet source and the 
zinc prevents the leaf from falling.

Glass will only transmit low energy visible photons; it absorbs the 
higher energy ultraviolet ones so none reach the zinc.

d) If the zinc sheet is charged positively the leaf remains 
diverged for all wavelengths of radiation.

Raising the potential of the metal presents a much deeper potential 
well for the electrons to escape from, meaning that the photons no 
longer have sufficient energy to liberate the electrons. This is similar 

▲  Figure 2 Gold-leaf electroscope demonstration 
of the photoelectric effect.

ultraviolet radiationnegatively
charged
zinc plate

gold leaf falls immediately
that the zinc plate is 
illuminated with ultraviolet 
radiation

▲  Figure 3 Photoelectric emission and the work 
function.

electrons brought to
surface but stay there

hf = Φ

metal of work function Φ

hf  < Φ no electrons emitted
hf > Φ
electrons ejected
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to replacing the zinc with a metal of greater work function. This is 
analogous to someone being trapped in a well with vertical sides and 
only being able to jump out in one leap.

Einstein’s photoelectric equation
We are now in a position to look at how Einstein expressed the 
photoelectric effect in a single equation. His equation takes the form:

Emax = hf - Φ
In this equation Emax represents the maximum kinetic energy of the 
emitted electron, hf is the energy of the incident photon, and Φ is the 
work function of the metal. Each of the terms in the equation represents 
a quantity of energy that could be measured in joule. However, it is quite 
common to express the energies in electronvolts simply because this 
avoids using very small powers of ten. The kinetic energy is expressed as 
a maximum value because the work function is defined as the minimum 
energy required to liberate an electron – those embedded further inside 
the metal will take more energy than this to be liberated.

Worked examples
1 The work function for aluminium is 6.6 × 10–19 J.

a) Calculate the photoelectric threshold 
frequency for aluminium.

b) Calculate the maximum kinetic energy 
of the electrons emitted when photons of 
frequency 1.2 × 1015 Hz are incident on 
the aluminium surface.

Solution
The work function for aluminium is 6.6 × 10–19 J.

a) Using Einstein’s equation Emax = hf - Φ at the 
threshold value Emax = 0 so Φ = hf0 where f0 is 
the threshold frequency.

f0 =   Φ _ 
h

   =   6.6 × 10-19
  __  

6.63 × 10-34
   

= 1.0 × 1015 Hz

This is to two significant figures in line with 
the work function value.

b) Using Emax = hf - Φ 

 ⇒ Emax =  6.63 × 10-34 × 1.2 × 1015  
- 6.6 × 10-19

 = 1.4 × 10-19 J

2  Photons incident on a metal surface have 
energy 2.2 eV.

a) Calculate the frequency of this radiation.

b) Calculate the maximum speed with which 
a photoelectron may be emitted from a 
potassium surface by photons of this energy.  

 The work function for potassium is 1.5 eV.

Solution
a) First the energy needs to be converted into 

joules:

2.2 eV = 2.2 × 1.6 × 10-19 = 3.5 × 10-19 J

Then E = hf ⇒ f =   E __ 
h
   =   3.5 × 10-19

 _________ 
6.63 × 10-34   

= 5.3 × 1014 Hz 

b) Again using Emax = hf - Φ but sticking to 
electronvolts to start with:

 Emax = 2.2 - 1.5 = 0.7 eV

So the maximum kinetic energy = 0.7 eV = 
0.7 × 1.6 × 10-19 J = 1.12 × 10-19 J

This means that   1 __ 2  me v
2 = 1.12 × 10-19 J

So v =  √__________
    2 × 1.12 × 10-19

  ____________ me
    

Looking up the value for the mass of electron 
in the data booklet gives

 me = 9.11× 10-31 kg 

  v =  √______________
    2 × 1.12 × 10-19
  __  

9.11 × 10-31
    

  = 5.0 × 105 m s-1
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  Investigate!
Millikan’s photoelectric experiment
In 1916, the American physicist Robert Millikan 
designed an elegant experiment with which to test 
Einstein’s photoelectric equation. We can use a 
photocell for essentially the same experiment with 
an arrangement as shown in figure 4.

electrons

vacuum

potential of anode is made negative so
electrons cannot quite reach it and the 
picoammeter reading becomes zero

cathode

pA

anode

+

-

-

Vs

pA

-

-
-

-
-

-

-

▲  Figure 4 Photocell for measuring the Planck constant.

 ●  A variety of coloured filters are used with a 
white light source to allow incident photons of 
different frequencies to fall on the cathode of 
the photocell.

 ●  The electrons are emitted from the photocell 
and travel across the vacuum towards the 
anode.

 ●  In this way the electrons complete the circuit 
and a small current of a few picoamps registers 
on the picoammeter.

 ●  The maximum kinetic energy is obtained by 
adjusting the voltage of the anode with respect 
to the cathode using a potential divider (not 
shown on the diagram) – the anode is actually 
made negative!

 ● When the potential difference across the 
tube is just sufficient to prevent electrons 
from crossing the tube, the maximum 
kinetic energy of the emitted electrons 
is equal to eVs (where Vs is the stopping 

potential and e is the elementary charge on 
an electron).

 ●  Einstein’s equation Emax = hf - Φ can now be 
rearranged to give eVs = hf - hf0 where f0 is the 
threshold frequency.

 ● The filters are usually provided with a 
range of transmitted wavelengths which 
gives a value for their uncertainties. This 
means Einstein’s equation needs further 
rearrangement into

eVs =   hc _ λ   -   hc _ λo

   

where λo is the threshold wavelength and c 
is the speed of electromagnetic waves in a 
vacuum.

 ●  Dividing throughout by e gives

Vs =   hc _ 
eλ   -   hc _ 

eλo

   =   hc _ e    (   1 _ λ   -   1 _ λo

   ) 
This is of the form:

y = mx + c
 ●  A graph of Vs against   1 __ λ  :

 ■  will be of gradient   hc
 __ e   and 

 ■  have an intercept on the   1 __ λ   axis equal to   1 __ λo 

   

 ■  have an intercept on the Vs axis equal to 
-  hc

 ___ 
eλo

   (as shown in figure 5)

Vs
gradient =

0
0

hc
e

- hc
eλ0

1
λ1

λ0

▲  Figure 5 Planck’s constant graph.
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The wave theory and the photoelectric effect
The reason that the wave theory fails to account for the photoelectric 
effect is explained by the instantaneous nature of the emission that 
occurs when light falls onto a metal surface. Waves provide a continuous 
supply of energy, the intensity of which is proportional to the square 
of the wave amplitude. According to classical wave theory, when 
low intensity electromagnetic radiation of any frequency is incident 
on a metal surface, given sufficient time, enough energy should 
eventually accumulate to allow an electron to escape from its potential 
well. However we find that actually a small number of photons with 
frequencies above the threshold will always eject electrons from a metal 
surface immediately; below this frequency, no electrons are ejected. This 
is completely contradictory to wave theory.

The outcome of the photoelectric effect leaves us in a slightly 
uncomfortable position of needing waves to describe some properties of 
light, such as interference and diffraction, but needing particle theory to 
explain the photoelectric effect. This does not mean that either theory 
is “wrong” rather that both are incomplete. Light appears to have 
characteristics that can be attributed to either a wave or a particle – we 
call this wave–particle duality and is another example of the outcomes 
of experiments failing to be in accord with our everyday perception.

Note
Different metal cathodes will 
have different work functions 
so they will always give 
graphs of the same gradient as 
figure 5 but they will produce 
parallel lines with different 
intercepts.

Worked example
Photons of frequency of 1.2 × 1015 Hz are incident 
on a metal of work function of 1.8 eV.

a) Calculate the energy transferred to the metal 
by each photon.

b) Calculate the maximum kinetic energy of the 
emitted electrons in electronvolts.

c) Determine the stopping potential for the 
electrons.

Solution
a) Using E = hf to calculate the photon energy in 

joules (we are not asked for this to be in eV so 
it is fine to leave it in joules).

E = 6.63 × 10-34 × 1.2 × 1015 = 8.0 × 10-19 J

b) We now need to work in electronvolts so the 
photon energy =   8.0 × 10-19

 ________ 
1.6 × 10-19    = 5.0 eV 

With Φ = 1.8 eV this means the maximum 
kinetic energy is (5.0 - 1.8) = 3.2 eV

c) Working in electronvolts now really comes into 
its own since the stopping potential will be 3.2 V.

Matter waves
In his 1924 PhD thesis, the French physicist, Louis de Broglie (pronounced 
“de broy”), used the ideas of symmetry to suggest that if something 
classically considered to be a wave had particle-like properties, the opposite 
would also be true. Matter could, therefore, also have wave-like properties. 
He suggested that the wavelength λ associated with a particle is given by

λ =   h _ p  

Here h is the Planck constant and p is the momentum of the particle (= mv). 
This wavelength is known as the de Broglie wavelength.  

De Broglie used ideas from the special theory of relativity and the 
photoelectric effect in order to derive this equation for light (you don’t 
need to learn this derivation).
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The total energy of an object (from the special theory of relativity) is the 
total of the rest energy and kinetic energy, given by E =  √_________

  p2c 2 + m0
2c 4   

(the first term in the equation is a kinetic energy term and the second 
term is the rest mass energy term). For a photon the second term is zero 
(photons have no rest mass) so E =  √___

 p2c2   or E = pc.

As we have seen from the photoelectric effect E =   hc
 __ λ   equating these 

pc =   hc
 __ λ   or λ =   h __ p   

With this equation derived for light, de Broglie simply speculated that 
the same thing would be true for matter, and very soon he was shown to 
be correct!

Electron diffraction
In 1925, two American physicists, Clinton Davisson and Lester Germer, 
demonstrated de Broglie’s hypothesis experimentally by observing 
interference maxima when a beam of electrons was reflected by a nickel 
crystal. In 1928, the British physicist George Thomson independently 
repeated Davisson and Germer’s work at the University of Aberdeen.

Figure 6(a) and (b) shows a laboratory arrangement for demonstrating 
the effect using the transmission of electrons through a thin slice of 
crystal.

Electrons from a heated cathode pass through a thin film of carbon 
atoms (the crystal). If the electrons behaved like particles they would 
be only slightly deviated by collisions with the carbon atoms and would 
form a bright region in the centre of the screen.

▲  Figure 6 Electron diffraction tube.

evacuated tube

series of bright
and dark rings

power supply
and connections
not shown

diffracted electron beams

crystal

heated cathode

(a) (b)

The bright rings indicate where the electrons land on the screen. Where 
there is a bright glow there is a high probability of electrons reaching 
that point – where there is darkness there is a low probability of the 
electrons reaching that point. The same pattern builds up slowly, even if 
there are only a few electrons travelling in the tube at any one time. This 
pattern is very similar to the interference pattern that is obtained with 
light using a diffraction grating and can be explained by assuming that 
electrons behave in a similar way to waves:  

When electrons are accelerated through a potential difference they gain 
kinetic energy 

eV  ( =   1 _ 
2

   mv2 ) 
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Assuming that the accelerated electrons do not travel close to the 
speed of light then the momentum of the electrons is given by p = mv, 
meaning that p2 = (mv)2

so   1 __ 2   mv 2 =    p2

 ___ 2m   = eV

and p =  √_____
 2meV  

using the de Broglie relationship

λ =   h _ p  

this gives λ =   h _ 
 √

_____
 2meV  
  

Worked example
Calculate the de Broglie wavelength of electrons accelerated through a 
potential difference of 3.00 kV.

Solution
In an IB question on this you would be asked to develop this equation 
step by step and then do this calculation.

λ =   h _ 
 √

_____
 2meV  
   =   6.63 × 10-34

   ____    
 √

________________________________
    2 × 9.110 × 10-31 × 1.60 × 10-19 × 3000  
   

 = 2.24 × 10−11 m

This is similar to the wavelength of the X-rays used to form diffraction 
patterns when they are incident on crystals. Increasing the accelerating 
voltage increases the energy and momentum of the electrons. The 
wavelength, therefore, decreases and so produces smaller diameter rings 
with smaller spacing between them. This is analogous to light passing 
through a diffraction grating: the diffraction angle (θ) in the equation 
nλ = d sin θ is reduced when light of a shorter wavelength is used.

  Nature of science
Wave–particle duality
From our discussion of the photoelectric effect 
and electron diffraction we have seen that both 
electrons and photons sometimes behave as waves 
and sometimes as particles. This gives rise to 
questions such as “is matter a wave or a particle?” 
and “is light a wave or a particle?”. The answer 
to each of these questions is “neither”: matter is 
matter and light is light, therefore they are neither 
waves nor particles. However, in each case we 
need the wave model to explain some properties 
of each and we need the particle model to explain 
other properties. Nobody knows the mechanisms 

by which electrons and photons behave, because 
they do not enter into the realms of everyday 
experience. We interpret their behaviour by 
using mathematics (of increasing complexity), 
but it is impossible to unravel the properties of 
waves or electrons by relating these to everyday 
occurrences. That individual photons can pass 
through individual slits and produce a pattern 
consisting of regions of high photon densities and 
regions of low photon densities makes no sense 
when we think of the interference of particles – 
yet this is what happens in the quantum world.
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The Bohr model 
In order to interpret the scattering of alpha particles as discussed in Sub-
topic 7.3, Niels Bohr proposed a model of an atom in which electrons 
could only occupy orbits of certain radii. His model was based on the 
following three assumptions:

1 Electrons in an atom exist in stationary states.

 ●  Contradicting classical physics, electrons could remain in these 
orbits without emitting any electromagnetic radiation.

2 Electrons may move from one stationary state to another by 
absorbing or emitting a quantum of electromagnetic radiation

 ● If an electron absorbs a quantum of radiation it can move from 
one stationary state to another of greater energy; when an 
electron moves from a stationary state of higher energy to one 
of lower energy it emits a quantum of radiation.

 ● The difference in energy between the stationary states is given by 
∆E = hf.

3 The angular momentum of an electron in a stationary state is 
quantized in integral values of   h

 ___ 2π  
 ● This can be represented mathematically by: 

 mvr =   nh _ 
2π  

 ● Angular momentum is the (vector) product of the momentum of 
a particle and the radius of its orbit – so, for a particle in a circular 
orbit, the angular momentum will be constant. 

 ● This assumption is equivalent to suggesting that an integral 
number of de Broglie-type wavelengths fits the electron’s orbital:

λ =   h _ p   ∴ p(= mv) =   h _ λ  
The circumference of an orbit (of radius r) = 2πr

When the number of complete waves fitting this orbit is n then each

λ =   2πr _ n  

Equating the two values for λ gives

  h _ p   =   2πr _ n    

 or, rearranging and substituting mv for p, gives

 mvr =   nh _ 
2π  

  This pattern is shown in figure 7 and corresponds to standing 
waves.

Energies in the Bohr orbits
One of the triumphs of the Bohr atom was that it produced an equation 
that agreed with the experimental equation for the spectrum of the 
hydrogen atom. By measuring the total kinetic and potential energy of 

visualization of electron
waves for first three Bohr orbits

electron wave resonance

n = 3

n = 3, 3λ3 = 2πr3

n = 2, 2λ2 = 2πr2

n = 2
n = 1

n = 1, λ1 = 2πr1

▲  Figure 7 Standing waves in an atom for  
n = 2 and n = 3.
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the hydrogen atom we find that, for an electron in the nth energy level 
(where n = 1 represents the ground state, n = 2 the first excited state, 
etc. and is called the principal quantum number), the total energy E 
in electronvolts at each level is given by:

E = -  13.6 _ 
n2

   

See figure 8.

This total energy is negative because the electron is bound to the nucleus 
and energy must be supplied to the system in order to completely 
separate the electron from the proton. Bohr went on to modify this 
equation so that it could accommodate other hydrogen-like (i.e. one 
electron) systems such as singly ionized helium and doubly ionized 
lithium, etc. The model failed, however, to be extended to more 
complicated systems of atoms and it could not explain why certain 
allowed transitions were more likely to occur than others. Despite its 
flaws, the Bohr model proved to instigate a more fundamental approach 
to the atom; this is now called quantum mechanics.

Worked example
In his theory of the hydrogen atom, Bohr refers to 
stable electron orbits.

a) State the Bohr postulate that determines 
which stable orbits are allowed.

b) Describe how the existence of such orbits 
accounts for the emission line spectrum of 
atomic hydrogen.

The Bohr model of the hydrogen atom can be 
extended to singly ionized helium atoms. The 
model leads to the following expression for the 
energy E

n
 of the electron in an orbit specified 

by the integer n.

E
n =   k _ 

n2
   

where k is a constant.

In the spectrum of singly ionized helium, 
the line corresponding to a wavelength of 
362 nm arises from electron transitions 
between the orbit n = 3 to the orbit n = 2.

c) Deduce the value of k.

Solution
a) The angular momentum (mvr) of an electron 

in a stationary state is quantized in integral 
values of   h ___ 2π  

b) There are many things that can be said here but 
some of the key points are:

 ● When in a stable orbit an electron does not 
emit radiation.

 ● When an electron drops to a lower energy 
level or orbit it emits a photon.

 ● The frequency of the emitted photon is 
proportional to the difference in energy 
between the two levels.

 ● A transition between two levels results in 
a spectral line of a single wavelength being 
emitted.

c) E =   hc
 __ λ   =   k __ 

n2   so the difference in energy 
between the two levels will be

 = k  (   1 _ 
4

   -   1 _ 
9

   )  = 0.139 k

 k =   hc _ 
0.139λ   =   6.63 × 10-34 × 3 × 108

   ___  
362 × 10-9 × 0.139

   

 = 3.95 × 10-18 J

▲  Figure 8 Energy levels in a hydrogen 
atom.

n = ∞ = 0
n = 4

E
E
E

E

= -0.85 eV
n = 3 = -1.51 eV

n = 2 = -3.40 eV

E = -13.6 eVn = 1
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Schrödinger’s equation
Wave–particle duality explains a bright interference fringe as being the 
place where there is a high probability of finding a particle. The position 
of particles is described mathematically by probability waves. As with 
classical waves, probability waves superpose with one another to produce 
the expected interference pattern. A low-intensity beam of photons 
incident on a single slit one at a time will build up a distribution that 
is identical to the expected diffraction pattern, provided that we wait a 
sufficiently long time. A similar pattern is obtained by firing electrons at 
a slit of suitably small width (see figure 10). From this distribution we 
can predict the places where electrons will not reach but we are unable 
to predict where an individual electron will be detected – although, 
statistically, there will be approximately 22 times the number of electrons 
arriving at the area around the principal diffraction maximum compared 
to the number around the secondary maximum. 

1 2 3 4 5 6 7 80

1

22

diffraction angle/degrees

in
te
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/a
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itr
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y 
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▲  Figure 9 Diffraction pattern intensity 
distribution.

▲  Figure 10 Diffraction pattern being built up by individual electrons.

(a) (c)

(b) (d)

The concept of probability was developed into the quantum mechanical 
model of the atom in 1926 by the Austrian (and later Austrian–Irish) 
physicist, Erwin Schrödinger. Schrödinger’s wave function ψ 
describes the quantum state of particles. His wave equation has many 
similarities to a classical wave equation but it is not a derived equation. It 
has, however, been thoroughly verified experimentally and its solution 
for the single electron hydrogen atom agrees with the Bohr relationship 
E = -  13.6

 ____ 
n2  .

The wave function is not a directly observable quantity but its amplitude 
is very significant. With light waves we observe the intensity, not the 
amplitude, and we have seen that the intensity is proportional to the 
square of the amplitude. For the wave function, where the square 
of the amplitude is a maximum there is the greatest probability of 
finding a photon. When the square of the amplitude is zero there is 
zero probability of finding the photon. The quantity ψ may be thought 
of as the amplitude of the de Broglie wave corresponding to a particle 
(although it does not have any physical significance); however, the 
square of the amplitude of the wave function  ⎜ψ⎟ 2 is proportional to the 
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probability per unit volume of finding the particle – this is known as the 
probability density. Mathematically we write this as:

P(r) =  ⎜ψ⎟ 2 ∆V

Here P(r) is the probability of finding a particle a distance r from a 
chosen origin and ∆V is the volume being considered.

For double slit interference, in terms of the probability wave, the wave 
function is considered to be such that a single photon or electron passes 
through both slits and be everywhere on the screen until it is observed or 
measured. When this happens, the wave function collapses to the classical 
case and the particle is detected. This is known as the Copenhagen 
interpretation, so named by the German physicist, Werner Heisenberg. 
It relates to the interpretation of quantum mechanics used by Heisenberg, 
Bohr and their co-workers between 1924 and 1927. It can be summarized 
as nothing is real unless it is observed. So matter or light can be 
considered to be a wave or a particle. If it behaves like a particle then it is 
a particle. If it behaves like a wave, then it is a wave.

▲  Figure 11 The Copenhagen interpretation.

▲  Figure 12 Electron standing waves in a 
potential well.

n = 3

energy/eV
0

n = 2

n = 1

-13.6

In the simplified (one-dimensional) version of the hydrogen atom, as 
shown in figure 12, an electron would be detected somewhere between 
the nucleus and the outside edge of the atom – these are shown by the 
edges of a potential well. A more realistic model would show the potential 
varying as the inverse of the distance from the nucleus  ( V ∝ -  1 __ r   ) . 
Within the well, the electron energy must be such that the wave 
function has nodes at the sides. In the electron wave model the 
probabilities of finding an electron within the nucleus or outside 
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the atom are both zero so the wave amplitude is zero at these points. 
The electron is most likely to be found (highest probability) where 
the amplitude is maximum; this is midway between the nodes. 

Worked example
The graph below shows the variation with 
distance r from the nucleus of the square of the 
wave function, Ψ2, of an electron in the hydrogen 
atom according to the Schrödinger theory. The 
nucleus is assumed to be a single point.

Ψ2

0
0

a r

State where the electron is most likely to be 
found. Explain whether the electron could 
be found either in the nucleus or at positions 
corresponding to the largest value of r shown on 
the graph.

Solution
The position around a has the highest value of the 
square of the wave function. This is the position 
where there is the highest probability of finding the 
electron. Because the square of the wave function 
is zero at the position of the nucleus, the electron 
definitely cannot be found there but there is a finite 
chance of finding the electron at large values of r 
since the graph has not fallen to zero. The electron’s 
probability cloud would be densest at a, but it will 
still have a little density at large values of r.

The Heisenberg uncertainty principle
We have seen that when a quantum is diffracted it is only possible 
to predict its subsequent path in terms of the probability of the wave 
function. The outcome of this experiment is in line with Heisenberg’s 
uncertainty principle.

This is usually written as :x :p ≥   h ___ 4π   and places a limit on how precisely 
we are able to know the position and momentum of something in the 
quantum mechanical realm.

If we wish to know where an electron is positioned at a given time, the 
principle tells us that there is an uncertainty (given by :x) with which 
we can know that position. If :x is very small, then the uncertainty 
(:p) in knowing the momentum of the electron is very large. Therefore, 
it is not possible to precisely determine the position of the electron and 
its momentum at the same time; the product of the two uncertainties 
will always be greater than or equal to   h ___ 4π  .  
If we imagine the wave function of a free electron (one that is not in any 
field that would change its motion) to be a sine wave then we can measure 
its wavelength perfectly. Since we know its wavelength perfectly, we also 
know its momentum perfectly (p =   h __ λ  ). This implies that the position of the 
electron has an infinite uncertainty and is spread out over all of space.

In order to detect a quantum particle it would be necessary to use 
something that has a comparable size to that particle. Using radiation 
with which to detect a nucleus would need a wavelength of ≈ 10–15 m. 
We know from the de Broglie relationship (λ =   h __ p  ) that the shorter the 
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wavelength is, the greater the momentum so, with a wavelength of 
10–15 m, the momentum will be   6.63 × 10-34

 _________ 
10-15   ≈ 10-18 N s.

On a nuclear level this is a very large momentum and would mean that 
any radiation of this wavelength would impart energy to the nucleus 
which would then make its position effectively immeasurable.

In dealing with electrons diffracting through a narrow gap, perhaps of 
size ≈ 10–18 m, the uncertainty principle also applies. In passing through the 
gap the uncertainty of the electron’s position in the gap will be ± half the 
gap width. This then puts a limit on the precision with which we can know 
the component of the momentum of the electron parallel to the gap (and 
therefore its wavelength). Thus :p ≈   h

 ____________  
4π × 0.5 × 10-18   ≈ ±1 × 10-16 N s and 

:λ ≈   h
 ___ :p
   ≈ ±10-17 m (or approximately ten times the gap size. That is a 

large uncertainty in relation to the gap size!)

Note
In the limit when one of the 
quantities is known perfectly 
the other quantity has an 
infinite uncertainty.

Worked example
The diagrams show the variation, with distance x, 
of the wave function ψ of four different electrons. 
The scale on the horizontal axis in all four 

diagrams is the same. For which electron is the 
uncertainty in the momentum the largest?

0 0

A

x

Ψ

0 0

B

x

Ψ

0 0

C

x

Ψ

0

D

x

Ψ

0

Solution
The square of the wave function is proportional 
to the probability of finding the electron. Each of 
B, C and D have positions where the square of 
the wave function is greatest (close to zero in B 
and centrally in C and D). This means that there 
is a high probability of finding the electron at one 
position and, therefore, there is low uncertainty in 
(the Heisenberg) position – but, as a consequence, 

there will be large uncertainty in momentum. For 
A there are many positions where the electron 
could be found with equal probability – at each of 
the maxima or minima there is large uncertainty 
in position but low uncertainty in momentum. 
Because C has the position where the electron 
is most well-defined it must have the largest 
uncertainty in its momentum.

Pair production and annihilation
Close to an atomic nucleus, where the electric field is very strong, 
a photon of the right energy can turn into a particle along with its 
antiparticle. This could be an electron and a positron or a proton and 
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an antiproton. The outcome will always be a particle and an antiparticle 
in order to conserve charge, lepton number, baryon number and 
strangeness. The particle and antiparticle are said to be a “pair” and the 
effect is known as pair production. The antiparticle will have a mass 
equal to that of the particle meaning that the photon must have enough 
energy to create the masses of the two particles. The minimum energy 
needed to do this is given by:

E = 2mc2

where m is the (rest) mass of the particle/antiparticle and c is the speed 
of electromagnetic waves in a vacuum. Figure 13 shows a Feynman 
diagram for the production of an electron–positron pair.

The gamma ray photon (γ) must have an energy of at least 1.02 MeV 
(which is twice the rest energy of an electron). Any photon energy 
in excess of this amount is converted into the kinetic energy of the 
electron–positron pair and the original electron. Pair production can 
also occur in the vicinity of an orbital electron but in this case more 
energy will be needed as the orbital electron itself gains considerable 
momentum and kinetic energy. Figure 14 shows pair production taking 
place near an atomic electron. The photon is non-ionizing and leaves no 
track but the newly formed electron and positron can be seen spiralling 
in opposite directions in the applied magnetic field. The recoiling 
electron gains a great deal of kinetic energy and this is why it hardly 
bends in the magnetic field – although it can be seen to bend in the 
same direction as the other electron. Theory shows that the threshold 
energy needed for this type of pair production is 4mc2 (= 2.04 MeV). 

The equation for this interaction is:

γ + e- → e- + e- + e+

When a particle meets its antiparticle they annihilate, forming two 
photons. The total energy of the photons is equal to the total mass-energy 
of the annihilating particles. Sometimes a pair of particles annihilate 
but then one of the photons produces another pair of particles. The 
positron that is formed in the interaction, as shown in figure 14, 
quickly disappears as it is re-converted into photons in the process of 
annihilation with another electron in matter. 

newly formed positron

position of
original electron

path of incident
gamma ray photon
(no track actually seen)

original electron gains
significant kinetic energy

newly formed
electron

▲  Figure 14 Bubble chamber tracks of electron–positron pair production.

e
-

e
+

time

γ

▲  Figure 13 Feynman diagram of electron–
positron pair production.
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Pair production and the Heisenberg uncertainty principle
There are pairs of variables, other than x and p, to which the uncertainty 
principle also applies – of these energy and time are two important 
conjugate variables. This version of the uncertainty principle is 
written as:

∆E ∆t ≥   h _ 
4π   

Some interesting things can happen in the quantum world. It is found 
experimentally that the threshold energy required for the production 
of an electron–positron pair can be much less than the expected 
1.02 MeV in the presence of a heavy nucleus. Imagine a 10 eV photon 
in the vicinity of a heavy nucleus: the low energy photon produces 
an electron–positron pair. A very short while later the electron and 
the positron collide to produce two 5 eV photons. This looks like a 
huge violation of the conservation of mass-energy but it is allowable 
under the uncertainty principle. During the lifetime of the composite 
electron–positron pair there is uncertainty regarding the total energy. If 
the uncertainty was equal to 1.02 MeV, what would be the limit on the 
uncertainty of the lifetime of the pair? The time ∆t can be calculated by 
the energy–time formulation of the uncertainty principle:

∆t =   h _ ∆ E 4π   =   6.63 × 10-34
  ___   

1.02 × 106 × 1.6 × 10-19 × 4π   = 3.2 × 10-22 s

Here we have converted the energy in MeV into J by multiplying by the 
electronic charge.

This lifetime is so short that a measurement of the energy of the 
pair would have an uncertainty of at least 1.02 MeV and the 
experiment would not be able to detect the violation of the law of 
conservation of energy. If we cannot perform an experiment to detect a 
violation of the conservation law, then quantum mechanics says there 
is some probability of the process occurring. Another way of explaining 
this example is to say that nature will cheat if it can get away with it! 

This example has been verified experimentally but the theory behind it 
is beyond that covered in the IB Diploma physics course.

Quantum Tunnelling 
According to quantum mechanics, a particle’s wave function has a 
finite probability of being everywhere in the universe at the same time. 
The probability may be infinitesimally small away from the effect that 
we would expect from classical physics but it is, nevertheless, finite. 
This means that, for example, an electron in the ground state of a 
hydrogen atom could escape the attraction of the nucleus with less 
than the expected 13.6 eV. In agreement with the uncertainty principle 
a particle can effectively “borrow” energy from its surroundings, pass 
through a barrier and then pay the energy back, providing it does not 
take too long. 

Figure 15 shows a situation in which the wave function of the electron 
extends across a physical barrier giving the electron a finite possibility of 
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it existing there (ignoring any modification of the probability curve by 
the presence of the barrier).

Quantum tunnelling is responsible for the relatively low temperature 
fusion that occurs in main sequence stars such as the Sun. The 
repulsive forces between a pair of protons that are to fuse means that 
they require kinetic energies of just over 1 MeV – this requires them 
to be at a temperature of around 1010 K. This is much higher than the 
temperature of the core of the Sun (which is around 3 × 107 K). As the 
result of the high pressures and quantum tunnelling there is a small 
chance that hydrogen atoms can fuse at a temperature below that 
expected. Because of the immense numbers of atoms in the Sun, even 
with a very low probability of quantum tunnelling fusion occurring, 
there is still a great deal going on. In the case of the Sun there is 
estimated to be in excess of four million tonnes of hydrogen fusing in 
this way in every second. 

The scanning tunnelling microscope (STM), invented in 1981 by IBM 
Zurich, has revolutionized the study of material surfaces and has been 
used to manipulate individual strands of DNA – thus offering the 
potential to repair genetic damage. STMs use the currents generated 
when electrons tunnel into a surface in order to map out the structure of 
the surface. Quantum tunnelling is currently used in quantum tunnelling 
composites (QTCs). QTCs are the basis of touch screen technology. This 
technology has applications in smartphones, computer tablets, cameras 
and monitors. The entanglement of quantum particles is starting to bear 
fruit in photon teleportation, quantum cryptography and computing.

Worked example
The graph shows the variation with distance x of 
the wave function Ψ of an electron at a particular 
instant of time. The electron is confined within a 
region of length 2.0 × 10–10 m.

0.0
0

Ψ

0.5 1.0 1.5 2.0
x/10-10m

a) State what is meant by the wave function of an 
electron.

b) Using data from the graph estimate, for this 
electron:

  (i) its momentum

(ii) the uncertainty in its momentum.

Solution
a) The wave function is a property of the electron 

everywhere in space. The square of the wave 
function is proportional to the probability of 
finding the electron somewhere. 

b) (i)  the (de Broglie) wavelength of the 
electron is

      2 × 10-10

 _______ 6   = 3.3 × 10–11 m

 and so 

 p =  (   h __ λ   =   6.63 × 10-34

 _________ 
3.3 × 10–11   = )  2.0 × 10–23 N s

(ii) The electron is confined to 2.0 × 10–10 m, 
this means the uncertainty in its position 
(:x) = 2.0 × 10–10 m.

  Using the uncertainty principle this  
means that the uncertainty in momentum 
will be at least: 

 :p =  (   h _ 
4π:x

   =   6.63 × 10-34
  __  

4π × 2.0 × 10-10
   = )  

     2.6 × 10–25 N s

finite probability

probability
physical
barrier

displacement

▲  Figure 15 Quantum tunnelling to pass through 
a physical barrier.

491

12 . 1  T H E  I N T E R A C T I O N  O F  M A T T E R  W I T H  R A D I A T I O N



Introduction
In Sub-topic 7.3 we looked at the Rutherford model of the atom with 
a nucleus surrounded by orbiting electrons. We will now look more 
closely at the implications of the alpha scattering experiment and see 
how similar experiments have provided a much better understanding of 
the nucleus. We will then consider a more mathematical approach to the 
radioactive decay of nuclei.

12.2 Nuclear physics

  Nature of science
Why we need particle accelerators
When Rutherford, Geiger and Marsden performed 
their scattering experiments they needed to use 
naturally occurring sources of alpha particles 
with relatively low energies of between 3 and 
7 MeV. This is not enough energy for them to 
penetrate the electrostatic potential energy barrier 
around the nucleus. Although there are cosmic 
rays reaching the Earth with energies a million 
times greater than can be produced in a particle 
accelerator (1021 eV compared with 1015 eV on 
Earth), these are unpredictable and cannot be 
used. In CERN’s large hadron collider (LHC) the 
energy available has been raised to 7 TeV. By using 
particle accelerators, detectors and sophisticated 
computers the number of known particles has 
increased from the proton, neutron and electron 
to the enormous number possible in the standard 
model. If our knowledge of the atom is to progress 
still further, particle accelerators are the most likely 
way forward. Plans are already in place to construct 
a very large hadron collider (VLHC) with a 240 km 
circumference chamber and beam energy of at 
least 50 TeV.

Understanding
 ➔ Rutherford scattering and nuclear radius
 ➔ Nuclear energy levels
 ➔ The neutrino
 ➔ The law of radioactive decay and the decay 

constant

  Applications and skills
 ➔ Describing a scattering experiment including 

location of minimum intensity for the diffracted 
particles based on their de Broglie wavelength

 ➔ Explaining deviations from Rutherford 
scattering in high energy experiments

 ➔ Describing experimental evidence for nuclear 
energy levels

 ➔ Solving problems involving the radioactive 
decay law for arbitrary time intervals

 ➔ Explaining the methods for measuring short 
and long half-lives

Equations
 ➔ relationship between radius of nucleus and 

nucleon number: R = R0  A    
1 ___ 3   

 ➔ decay equation for number of nuclei at time t: 
N = N0 e-λt

 ➔ decay equation for activity at time t:  
A = λN0 e-λt

 ➔  angle of electron diffraction first minimum:   
sin θ ≈   λ ____ D  
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Rutherford scattering and the nuclear radius
In Sub-topic 7.3 we saw that the main results of the alpha scattering 
experiment were that:

 ●  most of the alpha particles passed through the gold leaf undeflected

 ●  some alpha particles were deflected through very wide angles

 ●  some alpha particles rebounded in the opposite direction.

The interpretations of these results were:

 ● most of the atom is empty space

 ●  the atom contains small dense regions of electric charge

 ● these small dense regions are positively charged.

We will now look at the analysis of this ground-breaking experiment in 
some detail.

The method of closest approach
Alpha particles that backscatter are those colliding head-on with a gold 
nucleus. As only about 1 in 8000 alpha particles are scattered through 
large angles it must mean that the probability of a head-on collision is 
very small and that the nucleus occupies a very small portion of the total 
atomic volume ... but how much?

α-particle

maximum electrical
potential energy

position of closest approach

rc

Au
(79e)path of alpha particle

▲  Figure 1 Method of closest approach.

Figure 1 shows an alpha particle that is incident head-on with a gold 
nucleus. As the alpha particle becomes closer to the nucleus its kinetic 
energy falls and its electrical potential energy increases. When the alpha 
particle is at its closest to the nucleus, its kinetic energy has fallen to 
zero and it has momentarily stopped moving. Taking an alpha particle of 
kinetic energy Eα at the position of closest approach (= distance rc from 
the nucleus) we can equate its kinetic energy to the electrical potential 
energy giving:

Eα =   kZe × 2e _ rc
   

where k is the Coulomb constant, Z is the proton number of gold 
(making Ze the charge on the gold nucleus) and 2e represents the alpha 
particle charge.
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So for an alpha particle

rc =   k2Ze2
 _ 

Eα
   

In Rutherford’s experiment Eα = 7.68 MeV and Z = 79, this gives a value 
for rc of

rc =   8.99 × 109 × 2 × 79 × (1.60 × 10-19)2

    ____   
(7.68 × 106 × 1.60 × 10-19

   = 2.96 × 10−14 m

This derivation is an approximation because we have treated the 
gold nucleus as being a point mass. If the alpha particle were to have 
penetrated the nucleus, then the Coulomb force would not have been 
applicable as we now know that the strong nuclear force is dominant 
within the nucleus. Rutherford went on to obtain an expression for the 
number of alpha particles scattered through a variety of angles and he also 
arrived at values that were in agreement with the upper limit of the gold 
nucleus being approximately 3 × 10−14 m. However, further experiments 
using more energetic alpha particles have approached the nucleus closer 
than this value. At this separation the strong nuclear force becomes 
dominant and the alpha particle must have penetrated the nucleus. As 
the volume V of a nucleus must be proportional to the number of its 
nucleons, we would expect V ∝ A (where A is the nucleon number) and 
so the nuclear radius R would be expected to be ∝ A    

1
 __ 3   . This gives

R = R0  A  
  1 _ 
3

  
 

Here R0 is called the Fermi radius and has a value of 1.2 × 10−15 m and is 
measured experimentally.

Nuclear density
If we imagine the nucleus to be spherical, it follows that its volume can 
be calculated using the following equation:

V =   4 _ 
3

   πR3 =   4 _ 
3

   πAR0
3

The density of nuclear material will be given by

ρ =   M _ 
V

   =   Au _ 
  4 __ 3  πAR0

3
   =   3u _ 

4πR0
3
  

where u is the uniform atomic mass and Au is the total mass of a nucleus 
of nucleon number A.

As each of the quantities in the equation is a constant, it implies that the 
density of any nucleus is independent of the number of nucleons in the 
nucleus.

Substituting values into this equation gives:

ρ =   3 × 1.66 × 10-27
  __  

4π × (1.2 × 10-15)3
   = 2.3 × 1017 kg m−3

This is an incredibly dense material – a volume of 1 cm3 would have 
a mass of 200 000 tonne! In nature the only object that has a nuclear 
density of this value is a neutron star – a type of stellar remnant 
resulting from the gravitational collapse of a massive star, which is 
composed almost entirely of neutrons.

Note
You should not confuse the 
Fermi radius (which is related to 
a nucleus) with the Bohr radius 
(which is related to an atom): 
there is a factor of 10−5 
difference in these values.
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Deviations from Rutherford scattering
The scattering experiments performed by Rutherford, Geiger, and 
Marsden were limited by the energies of the alpha parties emitted by 
the radioactive sources available to them. When their experiments are 
repeated using more energetic, accelerated alpha particles it is found 
that, at these higher energies, the Rutherford scattering relationship 
does not agree with experimental results. At higher energies the alpha 
particles were able to approach the target nucleus so closely that the 
strong nuclear attractive force overcomes the electrostatic repulsion. 
Figure 2 shows how the strong nuclear force and the repulsive coulomb 
force (between protons) vary with distance.

The method of closest approach gives an approximation of the size of 
a nucleus. More reliable values for the size of a nucleus can be found 
using electron diffraction. 

Electron diffraction 
As electrons are leptons (and not hadrons) they are not affected by the 
strong nuclear force but are affected by the charge distribution of the 
nucleus. High-energy electrons have a short de Broglie wavelength of 
the order of 10−15 m. As this is also the order of magnitude of the size of 
a nucleus, it means that diffraction analogous to that observed with light 
incident on a narrow slit or small object can be observed.  

For light incident on a small circular object of diameter D, the angle θ  
that the first diffraction minimum makes with the straight-through 
position (θ = 0°) is given by

sinθ ≈   λ _ 
D

    where λ is the wavelength of the light

The elastic scattering of high energy electrons by a nucleus produces a 
similar effect. With the arrangement shown in figure 3(a), the intensity 
of the diffracted beam is seen to be a maximum in the straight-through 
position, falling to a minimum before slightly increasing again. The 
minimum differs from light because it never reaches zero for scattered 
electrons. Again, the relationship can be approximated by

sin θ ≈   λ _ 
D

  

Here D is the nuclear diameter and λ is the de Broglie wavelength of 
the electrons.

▲  Figure 2 Variation of the strong nuclear force 
and coulomb force with distance.

Note
With angles greater than 10° the 
small angle approximation that 
sin θ ≈ θ cannot be applied to 
the electron scattering.

(a) outline of experiment (b) typical results

electron beam

thin metal sample
in a vacuum

detector

amplifier
and meter

θ

θmin

electron
intensity

angle of diffraction

▲  Figure 3 Experimental arrangement and results.
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To achieve an appropriate de Broglie wavelength the electrons used 
in this scattering experiment need energies in the region of 400 MeV. 
At these energies, electrons are travelling close enough to the speed of 
light to mean that relativistic corrections should be applied to both the 
electron momentum and the associated wavelengths. With the electron 
rest energy of approximately 0.5 MeV, the total energy can be taken as 
400 MeV without any serious error consideration.

The wavelength of an electron is given by 

λ =   hc _ 
E

  

For an electron with energy 400 MeV

λ =   6.63 × 10-34 × 3.00 × 108
   ___   

400 × 106 × 1.60 × 10-19
   = 3.1 × 10-15 m

This is the same order of magnitude as the size of a nucleus.

Worked example
The nuclear radius of calcium-40 has an accepted 
value of 4.54 fm. It is being investigated using a 
beam of electrons of energies 420 MeV.

a) How closely does the value of the radius of 
calcium-40, obtained using the relationship 
=R0  A    

1
 __ 3   , agree with the accepted value?

b) Calculate the de Broglie wavelength of an 
electron having energy 420 MeV.

c) Determine the angle that the first minimum in 
the diffraction pattern makes with the straight- 
through direction.

d) Explain why 50 MeV electrons would be 
unlikely to provide reliable results in this 
experiment.

Solution
a) A is the nucleon number that, for calcium-40, 

is 40. Thus  A    
1
 __ 3    =   3 √___

 40   = 3.42 which gives a 
value for R of 3.42 × R0 = 3.42 × 1.2 fm = 
4.10 fm.

There is an error of 0.44 fm between the 
accepted value and that obtained using 

the relationship given (4.54 – 4.10). As a 
percentage this is =   0.44

 ____ 4.54   = 9.7% ≈ 10%.

b) λ =   hc _ 
E

   =   6.63 × 10-34 × 3.00 × 108
   ___   

420 × 106 × 1.60 × 10-19
   

 = 2.9 × 10-15 m

c) Using sin θ ≈   λ __ D   ⇒ θ ≈ sin-1 (   λ __ 
D

   ) 
Thus, as the radius is 4.54 fm, the diameter is 
9.08 fm giving 

θ ≈ sin-1   2.9 × 10-15
  __  

9.08 × 10-15
   = 18.6°

d) As the de Broglie wavelength is given by 
λ =   hc

 __ E  , 50 MeV electrons would have a de 
Broglie wavelength of   420

 ___ 50   = 8.4 times greater 
than that of 420 MeV electrons. This means that

θ ≈ sin-1  (   2.4 × 10-14
  __  

9.08 × 10-15
   ) 

This is not calculable as sin θ cannot be greater 
than one.

The de Broglie wavelength is too long to be 
diffracted by a calcium nucleus.

Using electrons of higher energies
When electrons of much greater energies than 420 MeV are used in 
scattering experiments, something very different happens. The collisions 
are no longer elastic (the bombarding electrons lose kinetic energy). This 
energy is “converted” into mass as several mesons are emitted from the 
nucleus. At still higher energies, the electrons penetrate deeper into the 
nucleus and scatter off the quarks within protons and neutrons – this is 
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known as deep inelastic scattering and provides direct evidence for the 
quark model of nucleons. 

Energy levels in the nucleus
Much of our evidence for the nucleus having energy levels comes from 
the radioactive decay of nuclides. The emission of gamma radiation is 
analogous to the emission of photons by electrons undergoing energy 
level transitions. The emission of alpha or beta particles by radioactive 
parent nuclei often leaves the daughter nucleus in an excited state. 
The daughter nucleus then emits one or more gamma ray photons as 
it reaches the ground state. Figure 4 shows some of the decay routes 
of americium-241. Each nucleus emits an alpha particle having one of 
a number of possible energies (three of which are shown) to become 
a nucleus of neptunium-237. Depending on the energy of the emitted 
alpha particle, the neptunium nucleus can be in the ground state or an 
excited state. From this it will decay into the ground state by emitting a 
single gamma photon or, when it decays in two steps, two photons.

From the differences in the energies of the alpha particles we can see that 
the energy level E1 will be (5.545 – 5.486) = 0.059 MeV above the ground 
state (E0) and energy level E2 will be (5.545 - 5.443) = 0.102 MeV 
above the ground state. From the differences in the energy levels we can 
calculate the energies of each of the three gamma ray photons that could 
be emitted – they will be 0.102 MeV, 0.059 MeV, and 0.043 MeV.

γ
E2

E1

E0

γ

  α
5.443 MeV

ground state

Am241
95

Np237
93

  α
5.486 MeV

γ

  α
5.545 MeV

▲  Figure 4 Decay of americium-241.

As we see from the decay of americium, the energies of the alpha 
particles are also quantized and provide evidence for the nucleus having 
energy levels. The mechanism by which the alpha particle leaves the 
nucleus is more complex than that producing the emission of the 
gamma ray photons. Alpha particles form as clusters of two protons and 
two neutrons inside the nucleus well before they are emitted as alpha 
particles. The nucleons are in random motion within the nucleus but 
their kinetic energies are much smaller than those needed to escape 
from the nucleus. This is because the strong nuclear force provides a 
potential energy barrier which the alpha particle needs to overcome 
before it can escape from the nucleus (when the electrostatic repulsion 
will ensure that it accelerates away from the nucleus). From a classical 
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mechanics point of view the alpha particle simply should not leave the 
nucleus (see figure 5).

From the quantum mechanical standpoint, the wave function for the 
alpha particle is not localized to the nucleus and allows an overlap 
with the potential energy barrier provided by the strong nuclear force. 
This means that there is a finite but very small probability of observing 
the alpha particle outside the nucleus. Although the probability is 
extremely small, some alpha particles will tunnel out of the nucleus. 
Experimentally it is found that, with a higher potential barrier and 
greater thickness to cross, a nucleus will have a longer lifetime. This 
explains the very long half-lives of uranium and polonium. The 
Russian-born American physicist, George Gamow, was the first person 
to describe alpha decay in terms of quantum tunnelling (discussed 
in Sub-topic 12.1). When the wave function is at its maximum the 
probability of tunnelling is greatest, meaning that alpha particles with 
specific energies are most likely to be emitted.

energy

alpha particle cluster with
insufficient kinetic energy
to penetrate the potential
energy barrier

edge of nucleus where nucleons
are tightly bound by the strong
nuclear force - inside the nucleus
there are nucleons with a variety
of kinetic energy

kinetic energy
of uppermost
cluster

distance

▲  Figure 5 Classical mechanics view of alpha decay.

energy

wave function outside nucleus
has less momentum and longer
wavelength

wave function in potential energy
well has large kinetic energy (and
momentum) and short wavelength

distance

▲  Figure 6 Quantum tunnelling view of alpha decay.

Negative beta decay 
We looked at beta decay in Sub-topic 7.1 and returned to it in Sub-
topic 7.3 when it was explained that an anti-neutrino accompanies the 
electron emitted in negative beta decay. The first theory of beta decay 
was proposed in 1934 by Fermi; at this time the existence of quarks was 
unknown and neutrinos were hypothetical. Experiments show that beta 
particles emitted by a source have a continuous energy spectrum and are 
not of discrete single energy as are alpha particles and gamma photons. 
Figure 7 shows a typical negative beta-energy spectrum. 

Possible explanations for this spectrum were that mass–energy and 
momentum were not conserved in beta decay. These were very unlikely 
solutions since both of these principles are considered to be fundamental 
to physics. Pauli suggested that, if a third particle was to be emitted in 
the decay, not only would this solve the mass–energy and momentum 
problems but it would also allow spin angular momentum to be conserved 
in the emission. The emission (of what has proved to be) an electron 
antineutrino meant that for a particular nucleus the energy would be 
shared between the electron (the beta particle) and the antineutrino. ▲  Figure 7 Negative beta-energy spectrum.

energy spectrum of beta
decay electrons from 210Bi
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The law of radioactive decay
As we saw in Sub-topic 7.1, radioactive decay is a random and 
unpredictable process. There is no way of telling which nucleus in a 
sample of material will decay next. What we do know is that the more 
radioactive nuclei present, the greater the probability of some decaying. 
With a sample of many millions of nuclei the rules of statistics can be 
applied with a virtual certainty. 

The probability that an individual nucleus will decay in a given 
time interval (of one second, one minute, one hour, etc.) is known as the 
decay constant, λ. The units for λ are time−1 (s−1, minute−1, h−1, etc.). 

The activity of a sample A is the number of nuclei decaying in a 
second – it is measured in becquerel (Bq). In a sample of N undecayed 

TOK

Awe and wonder or turn-off?

Rumour has it that Murray Gell-Mann, when searching 
for a name to call what is now known as the “quark”, had 
a epiphany upon seeing the word “quark” in the novel 
Finnegan’s Wake by the Irish novelist James Joyce. The 
poet, John Updike, on reading about neutrinos chose to 
write the following:

Cosmic Gall

Neutrinos, they are very small.

They have no charge and have no mass

And do not interact at all.

The earth is just a silly ball

To them, through which they simply pass,

Like dustmaids down a draughty hall

Or photons through a sheet of glass.

They snub the most exquisite gas,

Ignore the most substantial wall,

Cold shoulder steel and sounding brass,

Insult the stallion in his stall,

And scorning barriers of class,

Infiltrate you and me! Like tall

And painless guillotines, they fall

Down through our heads into the grass.

At night they enter at Nepal

And pierce the lover and his lass

From underneath the bed – you call

It wonderful; I call it crass.

Telephone Poles and Other Poems, John Updike,  
(Knopf, 1960)

Updike clearly was not a believer in the neutrino. Does 
he have a strong case for his disbelief? Is the concept of 
something as challenging as the neutrino inspirational 
or is it too fanciful to be credible?

▲  Figure 8 Super-Kamioka Neutrino Detection Experiment Mount 
Kamioka near Hida, Japan.
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nuclei, the activity will be equal to the number of nuclei present multiplied 
by the probability that one will decay in a second. In equation form:

A = λN

N will decrease with time; this relationship is often written with a minus 
sign (although this is not the case on the IB Diploma Programme physics 
syllabus)

A = -λN

Using calculus notation, this is can be written as:

  dN _ 
dt 

   = -λN

This is the relationship that gives an exponential decay and is analogous 
to capacitor discharge as seen in Sub-topic 11.3 with the λ constant 
being analogous to τ-1.

In general, when the rate of change of a quantity is proportional to the 
amount of the quantity left to change, an exponential relationship will always 
be obtained. We will now show this for radioactive decay – the process will 
involve integral calculus and so you will not be tested on this in examinations.

Rearranging the equation

  dN _ 
dt

   = -λN

gives

  dN _ 
N

   = -λdt

this can be integrated from time t = 0 to time t = t when the number of 
undecayed nuclei will fall from N = N0 to N = N 

 ∫ 
N0

  

   N

    dN _ 
N

    = - ∫ 
0

   

   t

 λdt 

Integrating this gives

[ln N ]   N  0 
  N
   = -λt

So

ln N - ln N0 = -λt

or

ln  (   N _ 
N0

   )  = -λt

Raising both sides to the power of e gives

  N _ 
N0

   = e-λt or N = N0e
-λt

As A is proportional to N, this equation can be written in terms of the 
activity to give

A = A0 e
-λt

Here A0 is the activity of sample of radioactive material at time t = 0 and 
this can also be written as

A = λN0 e
-λt

Note
Again, we can make use iteration 
to avoid using calculus when  
solving the decay equation. The 
following flow chart shows an 
algorithm for doing this:  

Nn+1 = Nn + ∆Nn

tn+1 = tn + ∆t

∆Nn = -λ × Nn × ∆t

n = 0
choose ∆t, tn, Nn, λ

finish

no

yes

n     n + 1

enough
increments?
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Decay constant and half-life
We dealt with integral numbers of half-lives in Sub-topic 7.1. Now we 
consider cases where the number of half-lives is not a whole number.

The half-life is the time that it takes for the number of radioactive nuclei 
to halve. So, in this time, N falls from N0 to   

N0
 __ 2  .

Substituting these values into N = N0 e
-λt gives   

N0
 __ 2   = N0 e  

-λ t  
  1 __ 2  
 
  where  t  1/2  is 

the half-life.

When we rearrange this and take logs to base e we get

ln (     N0
 __ 2  
 _ 

N0

   )  = ln (   1 _ 
2

   )  = -λ t  1/2 

Calculating log to base e of   1 __ 2   gives 

 t  1/2  =   -0.693 _ -λ   =   0.693 _ λ  

Worked example
Radium-226 emits alpha particles. The decay 
constant is 1.35 × 10−11 s−1

What mass of radium 226 is needed to give an 
activity of 2200 Bq? 

Solution

A = λN so N =   A _ λ   =   2200 __  
1.35 × 10-11

   = 1.63 × 1014

1 mol of a substance contains 6.02 × 1023 particles 
so this quantity amounts to

  1.63 × 1014
  __  

6.02 × 1023
    = 2.7 × 10-10 mol

As a mol of radium 226 has an approximate mass 
of 226 g the sample has a mass of

2.7 × 10-10 × 226 × 10-3 kg = 6.1 × 10-11 kg

Worked example
A laboratory prepares a 10 µg sample of caesium-134. The half-life of 
caesium-134 is approximately 2.1 years. 

a) Determine, in s−1, the decay constant for this isotope of caesium. 

b) Calculate the initial activity of the sample.

c) Calculate the activity of the sample after 10.0 years.

Solution

a) λ =   0.693 _  t  1/2 
   =   0.693  ___   

2.1 × 365 × 24 × 3600
   

 = 1.05 × 10-8 s-1 (= 0.33 y-1)

b) 1 mol of 134Cs has a mass of approximately 134 g so 10 µg 
comprises of   10 × 10-6

 _______ 134   mol or = 7.5 × 10-8 mol.

This means that there are 7.5 × 10-8 × 6.02 × 1023 = 4.49 × 1016 
atoms of Cs 

A = λN = 1.05 × 10-8 × 4.49 × 1016 = 4.7 × 108 Bq

c) A = A0 e
-λt = 4.7 × 108e-0.33 × 10 (working in years)

A = 1.7 × 107 Bq 

Note
A second way to tackle this is 
to calculate the number of half-
lives that have elapsed =   10 ______ 2.1   
= 4.76

The amount that will be left 
is then 0.54.76 = 0.037, the 
activity will then be 0.037 × 
4.7 × 108 = 1.7 × 107 Bq
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Measuring long half-lives
Some nuclides have very long half-lives, for example uranium-238 
has one of just under 4.5 billion years. When a radioactive nuclide 
has a half-life that is long compared to the time interval over which 
radioactive decay observations are possible, there is no apparent rate 
of decay and it is not possible to measure the half-life in the manner 
suggested using a G–M tube. 

  Investigate!
Measuring short half-lives
The G–M tube was discussed in Sub-topic 7.1. This is a very important 
instrument used to measure half-lives of radioactive materials. For those 
with fairly short half-lives (from a few seconds to a few hours) it is a 
straightforward process to measure the count rate using a G–M tube and 
counter or a data logger.

 ● Measure the background count rate with your apparatus with no 
radioactive sources in the vicinity. 

 ● Position the source close to the window of the G-M tube so that 
almost none of the radiation is absorbed by the air.

 ● Take readings of the count rate at appropriate time intervals until 
the count rate is the same as the background count.

 ● Subtract the background count rate from your readings to give the 
corrected count rate (R); assuming that the radiation is emitted 
equally in all directions, the count rate shown on the counter will 
be proportional to the activity of the source.

 ● Plot a graph of the natural log of the corrected count rate, ln(R), 
against time.

 ● As R ∝ A we can write R = R0e
-λt

Taking natural logs of this gives ln R = ln R0 - λt

So a graph of ln R (on the y-axis) against t will be of gradient -λ 
and intercept on the ln R axis of ln R0 as shown in figure 9.

 ● Note the notation for the unit of a log quantity – logs have no units 
but R does so the unit is bracketed to R. The corrected count rate is in 
counts per second, as “count” has no unit this is equivalent to s−1.

 ● What is the advantage of plotting this log graph when compared 
with plotting count rate against time?

 ● How do you use the gradient to calculate the half-life of the 
radioactive nuclide?

 ● Compare your value with the accepted value to give you an 
idea of the uncertainty.

 ● What is the difference between the activity of source and the 
count rate?

In (R/s-1)

ln(R0)

t/s

▲  Figure 9 Graph of natural log of the corrected 
count rate against time.
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  Investigate!
Decay in height of water column

Perspex tube with
open top

metre ruler

height

adjustable clip
capillary tube

rubber tube

▲  Figure 10 Decay in height of a water column.

This is an analogue of radioactive decay using a 
long vertical tube of water, which is connected to 
a capillary tube.

 ● Make sure the clip is closed, then fill the long 
tube almost to the brim with water.

 ●  Undo the clip completely to allow the water 
to flow through the capillary tube – you will 
need to repeat the experiment with the same 

setting so, if the clip is not fully undone, you 
will need to count how many turns you make 
from the clip being fully tight.

 ●  As the water level in the long tube reaches a 
previously chosen point near the top of the 
tube, start measuring the height at regular 
time intervals – you will need to perform a 
trial experiment to allow you to judge what 
a sensible time interval should be – one that 
will give you a minimum of six points on 
your graph.

 ●  Record your results in a table.

 ●  Repeat the readings twice more – always 
starting the clock when the water level is at 
the same mark on the scale.

 ●  Find the average of the readings for each time 
interval.

 ●  Plot graphs of height against time and the 
natural log of height against time.

 ●  From each of these graphs calculate the half-
life and decay constant of the water.

 ●  Determine which of the two values is the most 
reliable.

 ● Consider how this experiment models radioactive 
decay and in which ways it is different.

In these cases a pure sample of the nuclide in a known chemical form 
needs to be separated, its mass measured and then a count rate taken. 
From this reading the activity can be calculated by multiplying the count 
rate by the ratio: 

  
area of sphere of radius equal to the position of the G-M tube window

       _______     
area of G-M tube window

  

The decay constant is then determined from the mass of the specimen 
using the method shown in the first worked example in this section. 
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Questions
1 When light is incident on a metal surface, 

electrons may be ejected. The following graph 
shows the variation with frequency f of the 
maximum kinetic energy Emax of the ejected 
electrons.

 

0
0 f

Emax

a) Sketch the graph obtained for the variation 
with frequency of the maximum kinetic 
energy of the emitted electrons when a 
different metal with a lower threshold 
frequency is used. 

b) Explain why you have drawn the graph in 
this way. 

 (4 marks)

2 (IB)

In order to demonstrate the photoelectric effect, 
the apparatus shown below is used.

vacuum
metal plate

glass tubemonochromatic
light

µA

V

Monochromatic light is incident on the metal 
plate. The potentiometer is adjusted to give 
the minimum voltage at which there is zero 
reading on the microammeter.

a) State and explain what change, if any, will 
occur in the reading of the microammeter 
when:

(i) the intensity of the incident light is 
increased but the frequency remains 
unchanged 

(ii) the frequency of the light is increased at 
constant intensity. 

b) For light of wavelength 540 nm, the 
minimum reading on the voltmeter for zero 
current is 1.9 V.

(i) State the connection between photon 
energy and the energy of the emitted 
electron.

(ii) Using your answer to (i) calculate the 
work function of the surface of the 
metal plate.

 (8 marks)

3 (IB)

In 1913 Niels Bohr developed a model of the 
hydrogen atom which successfully explained 
many aspects of the spectrum of atomic hydrogen.

a) State one aspect of the spectrum of atomic 
hydrogen that Bohr’s model did not 
explain.

 Bohr proposed that the electron could only 
have certain stable orbits. These orbits are 
specified by the relation

  mvr =   nh _ 
2π    with n = 1, 2, 3…

 where m is the mass of the electron, v its 
speed, r the radius of the orbit and h the 
Planck constant. This is sometimes known 
as Bohr’s first assumption.

b) State a second assumption proposed by 
Bohr. 

 By using Newton’s second law and 
Coulomb’s law in combination with the first 
assumption, it can be shown that 

  r =   n2h2
 _ 

4π2mke2
    where k =   1 _ 

4πε0

  .

 It can also be shown that the total energy E
n
 

of the electron in a stable orbit is given by

  E
n
 = –   ke2

 _ 
2r

  .

c) Using these two expressions, deduce that 
the total energy E

n
 may be given as

  E
n
 = –   K _ 

n2
    where K is a constant. 

d) State and explain what physical quantity is 
represented by the constant K. 

e) Outline how the Schrödinger model of 
the hydrogen atom leads to the concept of 
energy levels. 

  (10 marks)
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4 (IB)

A beam of electrons is incident normally to the 
plane of a narrow slit as shown below.

∆x

slit

beam of electrons

The slit has width ∆x equal to 0.01 mm.

As an electron passes through the slit, there is 
an uncertainty ∆x in its position.

a) Calculate the minimum uncertainty ∆p in 
the momentum of the electron. 

b) Suggest, by reference to the original 
direction of the electron beam, the direction 
of the component of the momentum that 
has the uncertainty ∆p. 

  (3 marks)

5 (IB) 

An α-particle approaches a nucleus of 
palladium. The initial kinetic energy of the 
α-particle is 3.8 MeV. The particle is brought 
to rest at point P, a distance d from the centre 
of the palladium nucleus. It then reverses its 
incident path.

d

palladium nucleus

P
α-particle

a) Calculate the value, in joules, of the electric 
potential energy of the α-particle at point P. 
Explain your working. 

b) The proton number of palladium is 46. 
Calculate the distance d. 

c) Gold has a proton number of 79.

 Explain whether the distance of closest 
approach of this α-particle to a gold nucleus 
would be greater or smaller than your 
answer in (b). 

d) The radius (in metre) R of a nucleus with 
nucleon number A is given by

  R = 1.2 × 10-15  A  
  1 _ 
3
  
 .

(i) State in terms of the unified atomic 
mass unit u, the approximate mass of a 
nucleus of mass number A. 

(ii) The volume of a sphere of radius R 
is given by v =   4πR3

 ____ 3  . Deduce that the 
density of all nuclei is approximately 
2 × 1017 kg m–3. 

(8 marks)

6 (IB) 

A nucleus of the nuclide xenon, Xe-131, is 
produced when a nucleus of the radioactive 
nuclide iodine, I-131 decays.

a) Explain the term nuclide. 

b) Complete the nuclear reaction equation for 
this decay.

   131   □  I →   131   54  Xe + β- + □ 
c) The activity A of a freshly prepared sample 

of I-131 is 6.4 × 105 Bq and its half-life is 
8.0 days.

(i) Sketch a graph to show the variation of 
the activity of this sample over a time of 
25 days. 

(ii) Determine the decay constant of the 
isotope I-131 (in day-1).

 The sample is to be used to treat a 
growth in the thyroid of a patient. The 
isotope should not be used until its 
activity is equal to 0.5 × 105 Bq. 

(iii) Calculate the time it takes for the 
activity of a freshly prepared sample  
to be reduced to an activity of  
0.5 × 105 Bq 

(11 marks)
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7 (IB) 

a) A stable isotope of argon has a nucleon 
number of 36 and a radioactive isotope of 
argon has a nucleon number of 39.

(i) State what is meant by a nucleon. 

(ii)  Outline the quark structure of 
nucleons.  

(iii) Suggest, in terms of the number of 
nucleons and the forces between 
them, why argon-36 is stable and 
argon-39 is radioactive. 

b) Argon-39 undergoes β− decay to an isotope 
of potassium (K). The nuclear reaction 
equation for this decay is

  39
18Ar → K + β- + x

(i) State the proton number and the 
nucleon number of the potassium 
nucleus and identify the particle x. 

(ii) The existence of the particle x was 
postulated some years before it was 
actually detected. Explain the reason, 
based on the nature of β− energy 
spectra, for postulating its  
existence. 

(iii) Use the following data to determine 
the maximum energy, in J, of the 

      β− particle in the decay of a sample of 
argon-39.

    Mass of argon-39 nucleus = 38.96431 u

     Mass of K nucleus = 38.96370 u 

c) The half-life of argon-39 is 270 years.

(i) State what quantities you would 
measure to determine the half-life of 
argon-39. 

(ii) Explain how you would calculate the 
half-life using the quantities you have 
stated in (i). 

(21 marks)

8 (IB) 

a) Outline a method for the measurement of 
the half-life of a radioactive isotope having 
a half-life of approximately 109 years. 

b) A radioactive isotope has a half-life  T  1/2 . 
Determine the fraction of this isotope that 
remains in a particular sample of the isotope 
after a time of 1.6  T  1/2 . 

(5 marks)
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 Nature of science
Einstein’s great insight was to realize that the 
speed of light is constant for all inertial observers. 
This has enormous consequences for our 
understanding of space and time. A paradigm shift 
occurred and the Newtonian view of time was 
overturned. There are many other examples of 
paradigm shift in science but perhaps none quite 
as profound as this.

Understandings
 ➔ Reference frames
 ➔ Galilean relativity and Newton’s postulates 

concerning time and space
 ➔ Maxwell and the constancy of the speed of light
 ➔ Forces on a charge or current 

 Applications and skills
 ➔ Using the Galilean transformation equations
 ➔ Determining whether a force on a charge or 

current is electric or magnetic in a given frame 
of reference

 ➔ Determining the nature of the fields observed 
by different observers

Equations
 ➔ Galilean transformation equations: 

x' = x - vt
 ➔ u' = u - v

Introduction
Earlier we described the rules of classical 
mechanics as developed by Newton and others. 
These rules provided the basis for physics for 
300 years. Ultimately, however, Newtonian and 
Galilean mechanics struggles: it cannot deal with 
things that move very fast or with objects that are 

very small. The insights of Einstein and others 
around the beginning of the twentieth century 
enabled physicists to change their understanding 
of time and space – this type of change is called 
a paradigm shift. This topic describes our present 
view of what we now called spacetime.

A RELATIVITY

A.1 The beginnings of relativity
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Reference frames
A reference frame allows us to refer to the position of a particle. Reference 
frames consist of an origin together with a set of axes. In this course we 
generally use the Cartesian reference frame, in which position is defined 
using three distances measured along axes that are at 90° to each other. The 
axes of a three-dimensional graph make up a Cartesian reference frame. 

Other frames are, of course, available. Sailors use latitude and longitude; 
these together with the distance of an object from the centre of the 
Earth constitute a different reference frame. Astronomers usually use 
angles when defining the position of a star that is being observed; they 
only need two angles because the distance to the star (for observational 
purposes) is irrelevant. 

For some of the frames of reference in use, one or more of Newton’s laws of 
motion do not hold. Our own frame on the surface of a rotating planet shows 
this straight away. Everything off-planet appears to be spinning around us. 
An object that is at rest relative to us on planet Earth is not moving at a 
constant velocity at all. This has consequences that we have already seen in 
earlier topics; the fictitious centrifugal force and the Coriolis force used to 
“explain” the movement of weather systems are two cases in point.

For Newton’s first law to be valid we need to be careful about the nature of 
the reference frame in which we use the law. We define an inertial frame 
of reference as a frame in which an object obeys Newton’s first law: so that 
it travels at a constant velocity because no external force acts on it.

Do inertial frames exist? The best way to find one is to take a spaceship 
out into deep space, well away from the gravitational effects of planets and 
stars, and then turn off the engines. No forces act from outside or inside the 
spacecraft and this will be a true inertial frame of reference.

Galilean relativity and Newton’s postulates
Even though we have to take some trouble to reach one, there are 
an infinite number of inertial frames of reference in the universe and 
there are a number of ways in which we can move between them.

 ● The first obvious way is to step sideways from one frame to another. 
This is known as a translation (figure 1(a)).

 ● The set of axes can be rotated to form another set. This is known as a 
rotation (figure 1(b)). We shall not consider these in detail in this course.

 ● One frame can move relative to another frame with a constant 
relative velocity. This is known as a boost. (figure 1(c))

It is easy to see that if an object moves with constant velocity in one 
reference frame then under any of these three conditions it will be measured 
as having a constant (but different) velocity in the other reference frame.

The principle of relativity is often associated with Albert Einstein. In fact, 
Galileo was probably the first person to discuss the principle. He describes 
how, in a large sailing ship, butterflies in a cabin with no windows would 
be observed to fly at random whether the ship were moving at constant 
velocity or not. An observer in the cabin could not deduce by observing 

y'

x'
x

θ

yy

x'
x

x

x'

y'

X

x = vt + x'

y'

x

x x'

x'

y

vt

t = 0 v

(a) (b)

(c)

later time t

 Figure 1 Translations, rotations, and boosts.
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the butterflies whether the ship was moving. And the butterflies would 
certainly not be pinned against the back wall of the cabin.

This principle of relativity as described by Galileo tells us about the 
nature of our universe.

 ● The translation rule is equivalent to saying that there is no special 
place in the universe; position is relative.

 ● The rotation rule says that there is no special direction; direction is 
relative.

 ● The boost rule says that there is no special velocity. Stationary is not 
an absolute condition and any object can be described as stationary 
with respect to another object. (As we shall see, the disagreement 
between Galileo’s ideas and those of Einstein is crucial here.)

Thinking, for a translation, in terms only of the x-direction (that is, in one 
dimension), if the distance between the origins of two inertial frames S' 
and S’ is X then a position x in S is related to position x' in frame S' by 

 x' = x - X

For a boost, if one inertial frame moves relative to the other by a 
constant relative velocity v along the x-axis, then the distance between 
the origins of the reference frames must be changing by v every second 
and this distance is vt where t is the time since the frames coincided.

Imagine that the origins of the two reference frames S and S' (Figure 1(c)) 
were at the same position (that is, they were coincident) at time t = 0. 
Technically, we say that clocks in the frames were adjusted so that x = x’ = 0  
when t = t’ = 0. At a later time t, the origins of S and S' will be separated 
by vt where v is the velocity of frame S' relative to frame S. Therefore a 
position x in frame S will be related to position x’ in S' by 

x = x' + vt and x' = x - vt 

The velocities also transform in an obvious way. If the velocity in S is u 
and the velocity in S' is u', then 

u' = u - v
This set of equations that link two reference frames by their relative 
velocity are known as the Galilean transformations.

Newton developed Galileo’s ideas further in his Principa Mathematica 
by suggesting two important postulates (a postulate is an assertion or 
assumption that is not proved and acts as the starting point for a proof):

 ● Newton treated space and time as fixed and absolute. This is implied in 
our use of t in both equations above (t' does not appear, only t). A time 
interval between two events described in frame S is identical to the 
time interval between the same two events as described in frame S'. 
The evidence of our senses seems to confirm this (but remember that 
we do not travel close to the speed of light in everyday life).

 ● Newton recognized that two observers in separate inertial frames 
must make the same observations of the world. In other words, they 
will both arrive at the same physical laws that describe the universe.

 Nature of 
science

The way Newton  
put it.
These postulates were 
expressed somewhat 
differently by Newton in 
the Principa Mathematica 
– the book (in Latin) 
that he wrote to publish 
some of his discoveries. In 
translation his postulates 
were:

“ I.  Absolute, true, 
and mathematical  
time, of itself, and 
from its own nature, 
flows equably without 
relation  to anything 
external .

II.  Absolute space, 
in its own nature, 
without any 
relation to anything 
external, remains 
always similar and 
immovable.”

(Translation by Mottes 
(1971), revised by Cajorio, 

University of California 
Press.)
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TOK

Changing perspectives

In Topic 2 we began by 
describing Newton’s second 
law of motion in a simple  
way as: 

force = mass × acceleration

Later we showed that this was 
better expressed as 

force =  rate of change of 
momentum

A similar change of 
expression is possible here: 
Newton’s first law is usually 
given as a variant of “Every 
object continues in its state of 
rest or uniform motion unless 
net external forces act on it” 
(and you should continue to 
use this or a similar wording 
in your own work). But this 
is not the only possibility. A 
succinct and interesting way 
to express Newton’s first law 
is as “Inertial frames exist”.

To what extent do concise 
forms of scientific laws help 
or hinder our understanding?

Charges and currents – a puzzle
The choice of inertial frame can make a radical difference to the 
perception of a situation.

Consider a positively-charged particle moving initially at velocity v some 
distance away from and parallel to a wire carrying a current. In the wire 
the electrons are also moving with speed v. The positive charges in the 
wire are stationary. We will use two inertial reference frames in this 
example. One frame is at rest relative to the positive charges in the wire. 
The other frame is at rest relative to the moving charge q.

- - - - - - - - - - -

+ + + + +

+

+ + + + + +

v

v

v

+q

- - - - - - - - - - -

+ + + + +

+

+ + + + + +

v

v

v

v

+q

(a) (b)

 Figure 2 Moving charges in reference frames.

To an observer at rest (figure 2(a)) with respect to the stationary positive 
charges the situation in the wire seems clear. The numbers of negative 
and positive charges in the wire are equal and therefore the lone 
moving charge +q does not experience an electrostatic (electric) force. 
The movement of the electrons in the wire to the right (a conventional 
current to the left) gives rise to circular magnetic field lines centred on 
the wire and going into the page above the wire. The single moving 
charge is therefore moving perpendicularly with respect to this field. 
Fleming’s left-hand rule indicates that there is a magnetic force acting 
perpendicularly outwards on the charge and therefore the charge will be 
accelerated in this direction. The stationary observer detects a magnetic 
repulsive force acting between the charge and the current-carrying wire.

What is the situation from the point of view of the moving charge q? 
An observer moving with the charge (figure 2(b)) sees the single charge 
+q as stationary; electrons in the wire that also appear to be stationary, 
but the positive charges in the wire appear to be moving to the left at 
speed v. We could imagine that the moving positive charges lead to a 

Worked example
1 In a laboratory an electron travels at a speed 

of 2 × 104 m s–1 relative to the laboratory and 
another electron travels at 4 × 104 m s–1 relative 
to the laboratory. Use a Galilean transformation 
to calculate the speed of one electron in the 
frame of the other when they are travelling  
a) in opposite directions b) in the same direction.

Solution
a) The closing speed of the electrons is  

2 × 104 – (– 4 × 104) = 6 × 104 m s–1

b) The relative speed of one electron relative to 
the other is  
2 × 104 – (4 × 104) = 2 × 104 m s–1 
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magnetic field around the wire just as before – but this does not help! To 
the moving observer the charge +q is stationary relative to the resulting 
magnetic field and therefore no magnetic force should arise.

What happens is that (as we shall see later) the relative movement of the 
positive charges in the wire leads to a contraction in the spacing of these  
charges as perceived by the observer moving with +q. There are more 
positive charges than negative charges per unit length as detected by the 
moving observer and so there is effectively a net repulsive force acting 
on +q (we shall see how this change arises from length contraction in 
a later sub-topic). Now the observer moving with q explains the force 
acting on q as electrostatic in origin, not magnetic as before.

However, both observers report a force and in both cases the force acts 
outwards from the wire. The physical result is the same even though 
the explanations differ. A mathematical analysis from the standpoint of 
the two inertial frames also confirms that the magnitude of the force is 
identical in both cases.

Another situation is that of two point electric charges moving in parallel 
directions at the same speed as each other. This case (figure 3) is not 
identical to that of the charge moving near a current-carrying wire. There 
is no balance of positive and negative charges to complicate matters this 
time. Again, we consider the situation from the standpoint of two separate 
inertial frames: that of an observer stationary relative to the point charges, 
and that of an observer moving at a different velocity relative to the 
charges. Observations made in the frame of the point charges are easier to 
understand (figure 3(a)): the observer moving with the charges sees two 
positive charges that repel and no magnetic attraction between the two. This 
observer describes the repulsion as purely electrostatic. 

+q

+q

(a)

+q

+q

(b)

stationary, observes a
magnetic field due to both
charges moving

v

  Figure 3 Two point charges moving parallel.
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For an observer no longer stationary relative to the point charges (figure 
3(b)), the situation is changed. From this point of view, the repulsive 
electric field is increased (through relativistic length contraction). There 
is also a magnetic field that was not apparent when the observer was 
stationary relative to the charges. This is because a moving charge gives 
rise to a magnetic field. Each charge now appears to be moving within 
the magnetic field due to the other charge and consequently there is an 
attraction that the observer describes as magnetic in origin. There is both 
an increased (electrostatic) repulsion and a new (magnetic) attraction 
compared with the stationary observer frame. Again, a mathematical 
analysis shows that the force between the charges is identical for all 
observer inertial frames of reference. This is what we expect given that 
all physical systems observed in inertial frames must obey the same laws. 
As Einstein himself said:

“What led me ... to the special theory of relativity was the conviction that 
the electromagnetic force acting on a body  in motion in a magnetic field was 
nothing else but an electric field.” 

Maxwell and electromagnetism
In 1861 James Maxwell established the connection between 
electrostatics, electromagnetic induction, and the speed of light. He 
developed four equations that between them describe the whole of 
electrical and magnetic theory and lead to the recognition that light is 
a form of electromagnetic radiation. The four equations incorporate 
the value of the speed of light travelling in a vacuum (free space) 
in a fundamental way. The conclusion that must be drawn from 
Maxwell’s equations is that, if observers in different inertial frames 
make observations of the speed of light then, if they are to agree about 
physical laws, they must observe identical values for the speed of light. 
But the Galilean transformations predict a different result from this. The 
Galileo predicts that the speed of light differs in different frames by the 
magnitude of the relative velocity between the frames. 

So the inescapable conclusion that follows from Maxwell (same speed of 
light for all observers) is directly contrary to the assumption of absolute 
time and absolute space as postulated by Newton, and as embodied 
in the Galilean transformations. Physics had reached an impasse; it 
required the genius of Maxwell to recognize the problem. It required 
another genius, Einstein, to move the subject forward again half a 
century later.

TOK

Validating a paradigm shift

The development of 
Einstein’s relativity ideas 
required a shift in the view 
that scientists took of the 
physical rules that govern the 
universe. How do scientists 
ensure that the need to shift 
perspectives is valid?

TOK

Maxwell’s advances

Einstein wrote: 

The precise formulation 
of the time–space laws 
was the work of Maxwell. 
Imagine his feelings 
when ...equations he had 
formulated proved to him 
that electromagnetic 
fields spread in the form 
of polarised waves, and 
at the speed of light!... 
it took physicists some 
decades to grasp the full 
significance of Maxwell's 
discovery, so bold was the 
leap that his genius forced 
upon the conceptions of his 
fellow workers.

(Albert Einstein, Science,  
May 24, 1940)

To what extent do you think 
this is true?
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A.2 Lorentz transformations

  Nature of science
Einstein’s theory of relativity stems from two 
postulates. He deduced the rest of the theory 
mathematically. This is an example of pure deductive 
science at work.  

Understanding
 ➔ The two postulates of special relativity 
 ➔ Clock synchronization
 ➔ The Lorentz transformations
 ➔ Velocity addition
 ➔ Invariant quantities (spacetime interval, proper 

time, proper length, and rest mass)
 ➔ Time dilation
 ➔ Length contraction
 ➔ The muon decay experiment

  Applications and skills
 ➔ Solving problems involving velocity addition
 ➔ Solving problems involving time dilation and 

length contraction
 ➔ Solving problems involving the muon decay 

experiment

Equations
 ➔ Lorentz transformation equations:  
γ =   1 ___ 

 √_____
 1-    v  2  _ 

 c  2 
     

  

 ➔ x' = γ (x - vt); ∆x' = γ (∆x - v∆t)

 ➔ t' = γ  ( t -   vx _ 
 c  2 

   ) ; ∆t' = γ  ( t -    v∆x _ 
 c  2 

    ) 
 ➔ u' =   u-v __ 

1-   uv _ 
 c  2 

  
  

 ➔ ∆t = γ∆ t  0 

The two postulates of special relativity
Newton’s two postulates of space and time from Sub-topic A.1 require 
an absolute time that is the same for all observers in inertial frames. This 
implies, through the Galilean transformation, that a moving observer 
will observe a different value for the speed of light in free space from 
that of a stationary observer. 

Maxwell’s discoveries began to prompt serious questions about the 
peculiar behaviour of light and the validity of Galilean transformations. 
In 1887, two US scientists, Michelson and Morley, using very precise 
apparatus showed experimentally that any such difference between 
moving and stationary observers was below the measurement limits of 
their experiment. Scientists such as Lorentz, Fitzgerald, and Poincaré 
attempted to explain both Maxwell’s conclusions and the results of the 
Michelson-Morley experiment. 

Einstein’s great leap forward was to recognize that if Maxwell’s four 
electromagnetic equations were to be true in all inertial frames (which 
had to be the case) then some modifications of Newton’s postulates were 
required. He was able to show that some equations that had already 
been developed by Lorentz as a way of avoiding the problems of the null 
result of Michelson and Morley could, alternatively and more properly, be 
derived assuming only Einstein’s own modifications of Newton’s postulates.
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Einstein’s two postulates are:

 ● The laws of physics are the same in all inertial frames of reference 
(Newton’s first postulate too).

 ● The speed of light in free space (a vacuum) is the same in all inertial 
frames of reference (replacing the concept of absolute time and 
space, Newton’s second postulate).

The Lorentz transformation
Earlier we saw that, for boosts, the Galilean transformations lead to the 
equations x’ = x – X, x’= x – vt, and u’= u – v. There is an additional new 
transformation that arises from Newton’s postulate that time is absolute. 
This is represented as :t'= :t. 

To make the Maxwell’s equations consistent for all inertial reference 
frames, Lorentz introduced a factor γ given by

γ =   1 _ 
 √_____

 1-    v  2  _ 
 c  2 

    
  

v is (as usual) the speed of one inertial frame relative to the other and 
c is the speed of light in free space, γ is called the Lorentz factor. As v 
tends to c, γ tends to infinity. Lorentz then used this factor to modify the 
Galilean expressions so that 

x' = γ(x - vt) and :t' = γ:t

8

0
0 0.2 0.4 0.6 0.8 1 1.2
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c

 Figure 1 How the Lorentz factor varies with speed.

Figure 1 shows how the Lorentz factor changes with speed. The scale 
on the x-axis is in the ratio of   v _ c   and shows us that, for speeds up to 20% 
of that of light, the Lorentz factor remains close to 1. If the Galilean 
transformations were true for all speeds then the graph would show a 
horizontal line at value 1 for all values of   v _ c  .

Strictly, the equation involving x and x’ is used to translate from a 
position in one frame to the position in the other frame at the same instant 
in time. In the Galilean transformation, lengths measured within one 
frame transform without change into the same length in any other 
frame because length ∆x is the difference between two positions, and

:x = x1 - x2 = (x1' - vt) - (x2' - vt) = x1' - x2' = :x'. 
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In the Lorentz transformation this equality of :x and :x' is no longer 
true and

:x' = γ(:x - v:t)

This is a crucial result because it tells us that if one inertial reference 
frame is moving at a constant velocity relative to another, then an 
observer in one frame making a length measurement of an object in the 
other frame will not agree with the measurement made by an observer 
in the other frame. Space is no longer absolute.

The expression x' = γ(x - vt') gives the position x of the object as 
observed in the moving reference frame. Sometimes we observe the 
position in the moving frame x' and we need the value of x in the 
stationary frame. This is given by x = γ(x' + vt) and is known as the 
inverse Lorentz transformation.

The Lorentz transformation for time is

t' = γ  ( t -   v _ 
c2

  x ) 
with an inverse transformation of t = γ  ( t’ +   -v

 ___ 
c2  x’ ) 

Like space, time has also lost the property of being absolute. Time 
measured in different frames differs when there is relative velocity 
between the frames. Also, terms in x now appear in the time equations 
and terms in t in the expressions for x' and x.

We have assumed so far that there is no relative motion between 
the frames in the y or z directions. If this is true then there will 
be no relativistic changes in these directions either (this can be 
proved formally). The assumption of no motion in directions y and 
z and the previous expressions lead to the complete set of Lorentz 
transformations which are here compared with their Galilean 
equivalents.

Galilean Lorentz Inverse Lorentz

x' = x - vt  x' = γ  ( x -   v _ c   ct ) x = γ  ( x' +   v _ c   ct' ) 
y' = y

z' = z

y' = y

z' = z

y = y'

z = z'

t' = t t = γ  ( t -   -v _ 
c2

  x ) 
ct' = γ  ( ct -   v _ c   x ) 

t = γ  ( t +    -v _ 
c2

   x ) 
ct = γ  ( ct' +   v _ c   x' ) 

In each case, if v ≪ c then γ ≈ 1 and the Lorentz equations reduce to the 
Galilean equations with which we are already familiar.

An additional change in the Lorentz equations in this table is the 
expression of time using ct rather than t alone (this gives the time 
equation the dimensions of distance). A second change is to include 
the speed of light, c, twice in the distance equations. These changes 
make the equations appear more symmetric and help to explain 
why later in this topic we use axes of ct against x to draw spacetime 
diagrams.
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Velocity addition
An object is moving in frame A with a constant velocity uA. Frame A 
itself is moving with a constant velocity v with respect to frame B. What 
do the Lorentz equations have to say about the velocity uB of the object 
when it is viewed by an observer in frame B?

v

frame B frame A

uA

 Figure 2 Relativistic relative velocities.

Galilean relativity has no problem with this, the answer is simple:  
u

B
 = u

A
 + v. But this cannot be correct from a relativistic view. Suppose 

the rocket in frame A is moving at the speed of light. Then if v is positive 
u

B
 will exceed c; this is not allowed by Einstein’s second postulate.

We need to use the Lorentz equations. The speed u
A
 is equal to   

 x  A 
 __  t  A    when 

viewed in frame A (here x
A
 and t

A
 correspond to x' and t' in the earlier 

transformation equations).

Similarly u
B 
=   

 x  B 
 __  t  B    (x and t from before)

so

u
B 
=   

 x  B 
 _  t  B    =   

γ ( x  A  +  vt  A )
 __  

γ  (  t  A  +    vx  A 
 _ 

 c  2 
   )   

Worked examples
1 Calculate the Lorentz factor for an object 

travelling at 2.7 × 108 m s–1.

Solution
This speed is 0.9c. 

γ =   1 _ 
 √_____

 1-    v  2  _ 
 c  2 

    
   =   1 __  

 √________
 (1-  0.9  2 )  
   = 2.3

2 Clocks in two frames S’ and S are adjusted so  
that when x = x’ = 0, t = t’ = 0. Frame S’ as a 
speed of 0.8c relative to S.

Event 1 occurs at x1 = 50 m, y1 = 0, z1 = 0, and 
t1 = 0.3 µs.

Event 1 occurs at x2 = 80 m, y2 = 0, z2 = 0, and 
t2 = 0.4 µs.

Calculate, as measured in S’,

a) The distance between x1 and x2 

b) The time interval between t1 and t2.

Solution
a) γ =   5 _ 

3
   = 1.67

From the Lorentz transformation

x2’ - x1’ = γ  ( (x2 - x1) - v(t2 - t1) ) 
Substituting gives 

x2’ - x1’ =  1.67 ( (80 - 50) - 0.8 × 3 × 108  
(4 × 10-7) - (3 × 10-7) ) 

x2’ - x1’ = 10 m 

b) t2’ - t1’ = γ  ( (t2 - t1) -   v _ c     
(x2 - x1) _ c   ) 

 = 1.67  ( (t2 - t1) -   v _ c     
(t2 - t1) _ c   ) 

t2’ - t1’ = 30 ns (2 s.f.)
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using the Lorentz transformations. The positive signs are there because 
we are expressing x

B
 and t

B
 in terms of x

A
 and t

A
 rather than the other 

way round as we did before.

You should satisfy yourself that substituting x
A
 = u

A
t
A
 into this expression 

gives

u
B
 =   

 u  A  + v
 _ 

1 +    u  A v
 _ 

 c  2 
  
  

This is the case where an observer at rest in frame B is measuring the 
speed of the object. 

The inverse case of an observer in frame A (sitting in the frame A rocket 
in figure 2) measuring the speed of the object in frame B gives a similar 
expression with a change in sign.

u
A 
=   

 u  B  - v
 _ 

1 -    u  B v
 _ 

 c  2 
   
  

A way to get the signs correct for a particular combination of frame 
velocities is to begin with the Galilean transformation (that is, when  
uv « c) and see what signs you would expect in this case. Then remember 
that the sign matches top and bottom of the equation.

Invariant quantities
Spacetime interval
In developing his theory of special relativity, Einstein realized that absolute 
time and absolute space are not invariant (unchanging) properties when 
moving from one inertial reference frame to another. However, not all 
quantities change when moving between inertial frames.

In the previous section we chose to express time in the Lorentz 
transformations not as plain t but as the product of the speed of light and 
time, ct. This quantity ct has the dimensions of length and this leads us to 
an invariant quantity known as the spacetime interval ∆s that is defined 
for motion in the x direction as ∆s2 = (c∆t)2 - :x2 (sometimes called the 
invariant interval). (You may see this defined in some books as :x2 - 
(c∆t)2, in other words, as the negative of our definition.)

The spacetime interval is invariant because in another frame of reference

c∆t = c(t2 - t1) = γ  ( ct2' +   v _ c   x2' )  - γ  ( ct1' +   v _ c   x1' )  = γ  ( c:t' +   v:x' _ c   ) 
and

 ∆x = x2 - x1 = γ  ( x2' +   v _ c   ct2' )  - γ  ( x1'+   v _ c   ct1' )  = γ(:x' + v:t')

therefore

:s2 = γ2   ( c:t' +   v:x' _ c   )   2 - γ2 (:x' + v:t')2

 = γ2(c 2 - v 2):t'2 - γ2  ( 1-    v  2  _ 
 c  2 

   )  :x'2

 = (c:t')2 - :x'2

This is obviously identical to the original definition using the same 
quantities (and no others) measured in the new frame.

Worked example
1 Jean and Phillipe are 

in separate frames of 
reference, neither of 
which is accelerating. 
Jean observes a 
spacecraft moving 
to his right at 0.8c. 
Phillippe observes a 
spacecraft moving 
to his left at 0.9c. 
Calculate the velocity 
of Phllippe’s frame of 
reference relative to 
Jean’s.

Solution
Suppose Jean is the 
observer at rest and 
Phillippe is moving relative 
to Jean with speed v.

 u  A  =   
 u  B  - v

 ______ 
1 -    u  B v

 ___ 
 c  2 
  
   can be re-

arranged to give v =   
 u  B  -  u  A 

 ______ 
1 -   

 u  B   u  A 
 ____ 

 c  2 
  
  

This gives the relative 
velocity of the reference 
frame in terms of the 
known individual speeds in 
the reference frames.

So v =   
(0.8c – (–0.9c))

 ___________ 
1 +   0.72

 ____ 
c2  

  

 =   1.7c
 ____ 1.72   = 0.989c.
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In three dimensions the spacetime interval becomes  
:s2 = (c:t)2 - :x2 - :y2 - :z2. 

Rest mass
A second invariant quantity is the rest mass m0 of a particle. This is an 
important quantity and is defined as the mass of a particle in the frame 
in which the particle is at rest. This will be discussed at more length in a 
later sub-topic, as the concept of mass is bound up with what we mean 
by energy.

Proper time  
Some of the most dramatic differences between our everyday 
perceptions of space and time and the predictions made by special 
relativity concern the time and length differences that arise between 
frames of reference moving relative to each other. 

Figure 3 shows a simple light clock that consists of two mirrors facing 
each other across a room. An observer sits at rest in the room and 
watches light reflect between the mirrors. The distance across the room 
is L and so the time taken for the light to return to a mirror is t =   2L

 ___ c  . 

TOK

So what about time travel?

 The spacetime interval has a bearing on the cause and effect relationship 
between two objects or events. Intervals can be classified as space-like,  
time-like, or light-like depending on the value of :s2 for the two events.

Space-like intervals

If :s2 is < 0 (i.e. negative) then (:x2 + :y2 + :z2) > (c:t)2. This means 
that the distance between the events is too great for light (or anything 
travelling slower) from one event to have any effect on the other. They do not 
occur in each other’s past or future and although there is a reference frame in 
which they occur at the same time, there is no reference frame in which the 
events can occur at the same place.

Time-like intervals

In this case, :s2 is > 0 (ie positive) and (c:t)2  > (:x2 + :y2 + :z2). 
Now there is sufficient time for there to be a cause and effect relationship 
between the events because the time part of the spacetime interval is greater 
than the spatial separation. 

Light-like intervals

The intermediate case is where (c:t)2 = (:x2 + :y2 + :z2) and therefore 
:s2 = 0. The spatial distance and the time interval are exactly the same. Such 
events are linked by, for example, a photon travelling at the speed of light.

Time travel has always been a fascination of science-fiction authors. The 
spacetime interval can tell us the extent to which two events in space and time 
can affect each other.

To what extent do fictional works that you know mirror scientific truth?

 2LL LD

mirror position 1 mirror position 2

Dc

vt'

t =

  Figure 3 A light clock from 
stationary and moving frames of 
reference.
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Another observer moves to the left parallel to the mirrors at constant 
velocity v relative to the mirrors, watching the reflections. The right-
hand diagram shows the bottom mirror at two positions as seen by 
the moving observer: when the light leaves the bottom mirror and 
when it returns. In the frame of this observer, the light appears to 
travel to the right at an angle to the direction of motion (but, of 
course, at the same speed of light). The distance travelled by the light 
is now 2D and the time observed between reflections at the same 
mirror is now t'=   2D

 ___ c  .  

The distance travelled horizontally by the moving observer in time t’ is vt’ 
and by an application of Pythagoras’ theorem:

D2 = L2 +    v  2  t’  2  _ 
 4  2 

  

D =   ct' _ 
2

  

Rearranging for t’ gives

t' =   
  2L _ c  
 _ 

 √______
 1 -    v  2  _ 

 c  2 
    
  

and so

t' =   t _ 
 √______

 1 -    v  2  _ 
 c  2 

    
  

which reduces to t' = γ t. 
This result also follows directly from the Lorentz transformations: Two 
events (the light leaving from, and returning to, the bottom mirror) 
occur at t1 and t2. These events occur at the same place (the mirror) so 
we do not need to include the x terms in our proof (because x1 = x2 = x). 
The time interval between these events is ∆t = t2 – t1.

In the observer frame therefore

:t' = t2’ - t1’ = γ  ( t2 -   vx _ 
 c  2 

   -  ( t1 -   vx _ 
 c  2 

   )  )  = γ:t

The same result as before and 

time interval in the observer frame = time in the mirror frame × γ
:t = γ:t0

The quantity :t0, the time interval in the stationary frame, is known 
as the proper time. Its definition is the time interval between two 
events measured in the reference frame where both events occur 
at the same position. Proper time is our third invariant quantity. 
Alternatively, it is the shortest possible measured time interval 
between two events.

The result shows that time measured in a moving frame is always longer 
than the time measured in a frame that is stationary relative to a clock. 
The effect is known as time dilation (“dilated” means “expanded”). If the 
moving observer in our example here also has a clock then an observer 
stationary with respect to the mirror frame observes the moving clock 
running slower than the mirror clock. The situation is symmetric. We 
will discuss this point further in the next section. 
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Proper length
The length of an object also changes when observed in frames moving 
relative to the object. When discussing proper time we had to be careful 
to specify that the positions at which time was measured were the same 
for both measurements. This time, the length L of an object (where L = 
x2 − x1 ) must have x1 and x2 measured at the same time so that t1 and t2 
in the Lorentz equations are both equal to t.

In reference frame S, x1 and x2 represent the ends of an object of length 
L0. This is the frame in which the object is at rest. In S' these ends become 
x1' and x2' with a length L'. The reference frame of S moves at speed v 
relative to S'.

In S

L0 = x2 - x1

which in S' using the Lorentz transformations

=   
x2’ + vt2’ _ 
 √_____

 1-   v2
 _ 

c2
    
   -   x1’ + vt1’ _ 

 √_____
 1-   v2
 _ 

c2
    
  

The ends of the rod are measured at the same time and so t1’ and t2’ 
are equal.

So

L0 =   L' _ 
 √______

 1 -    v  2  _ 
 c  2 

    
  

and 

L’ =   
 L  0  _ γ  

This leads to the fourth invariant quantity (L0) called the proper 
length defined as the length of an object measured by an observer 
at rest relative to the object. By implication the two measurement 
events have to be made at the same time. The proper length can also 
be regarded as the longest measured length that can be determined for 
an object.

There is direct experimental evidence for time dilation and length 
contraction (which are two sides of the same coin). Muons are particles 
that can be created either in high-energy accelerators or (more cheaply!) 
in the upper atmosphere when cosmic rays strike air molecules. These 
muons have very short mean lifetimes of about 2.2 µs. When travelling 
at 0.98c, the distance the muon will travel in one mean lifetime is 
roughly 660 m – far less than the height of 10 km above the Earth’s 
surface where they are created. On a Newtonian basis very few muons 
would be expected to reach the surface as the time to reach it is about 
15 mean lifetimes. Yet a considerable number of muons are detected at 
the surface. This is due to time dilation (or length contraction, whichever 
viewpoint you choose). At a speed of 0.98c, γ =   1

 ________ 
 √

_______
 1- 0.982   
   = 5. So, in the 

reference frame of the Earth, the mean lifetime becomes 11 µs. The time 
to travel 10 km at 0.98c is 33 µs so that a significant number of muons 
will remain undecayed at the surface.

Worked example
1 Tom is flying a plane at 

0.9c. The landing lights 
of the plane flash every 
2 s as measured in the 
reference frame of the 
plane. Sam watches the 
plane go by. Calculate 
the time between 
flashes as observed 
by Sam.

Solution
When v = 0.5c, γ = 2.3 
(this was calculated in 
an earlier example). The 
proper time is 2 s.

The time between flashes 
for Sam = γ t = 2.3 × 2  
= 4.6 s.

The time is dilated in Sam’s 
frame of reference.
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In the frame of reference of the muon, the 10 km (as measured by an 
observer on the Earth) from atmosphere to Earth’s surface is only   10 km

 _____ γ  
(to the muon). This is 2 km in the muon’s rest frame corresponding to 
a travel time of about 3 mean lifetimes allowing many more muons to 
reach the surface than Galilean relativity would suggest.

Depending on the observer’s viewpoint, either time dilation or length 
contraction can be used to explain the observed large number of muons 
at the surface.

Clock synchronization
The problem of synchronizing the clocks we have used in our discussions 
is an important one. Suppose an observer is standing close to a clock and 
simultaneously viewing another clock 1 km away. Because the speed 
of light is invariant, the distant clock – even if originally synchronized – 
will appear to register a time    10  4 

 _____ 
3 × 10  8 

   = 30 µs later than the nearby clock. 
However, if the two clocks are in the same inertial frame, they will be 
synchronized (tick at the same rate). 

One way to achieve this synchronization is to synchronize both 
clocks when they are close together and then move one to its final 
position, but to do it very slowly so that the two clocks continue 
(approximately) to share a reference frame with each other. Another 
method would be to have both clocks at their final positions and to use 
a third clock moving slowly between them to transfer the times from 
one to another.

Worked example
1 Clare and Phillippe fly 

identical spacecraft that 
are 16 m long in their own 
frame of reference. Clare’s 
spacecraft is travelling at 
a speed of 0.5c relative to 
Phillippe’s. Calculate the 
length of

a) Clare’s aircraft according 
to Phillippe

b) Phillippe’s aircraft 
according to Clare.

Solution
γ = 1.15 for this relative speed.

a) The length of Clare’s 
aircraft  is   16

 ____ 1.15   m  according 
to Phillippe, this is 13.9 m.

b) Because the situation is 
symmetrical Clare will 
also think that Phillippe’s 
spacecraft is 13.9 m long.

 Nature of science
GPS – a study in relativity
Satellite navigation units (satnavs) in cars and 
other domestic devices that use the global 
positioning system are now very common. They 
can pinpoint their position to within a few metres.

At the time of writing there is a network of 24 
satellites orbiting at about 2 × 107 m above the 
Earth with orbital periods of about 12 hours. 
The orbits are such that at least four satellites are 
above the horizon at any point on the surface at 
all times. Inside the satellite is an atomic clock that 
is accurate to about 10–9 s and transmits a signal to 
the receivers on or above the Earth. 

The receivers triangulate the signals from satellites 
above the horizon to arrive at a positional fix 
to within metres within a few seconds. Wait a 
little longer with some special receivers and this 
precision can rise to orders of millimetres. It is 
now routine for a satnav in a moving vehicle to 
show its speed and heading in real time.

The design of both the satellite transmitters 
and the GPS receivers need to take account 
of relativity. The atomic clocks are adjusted so 
that once in orbit they run at the same rate as 
Earth-bound clocks. The GPS receivers have 
microcomputers that carry out the required 
calculations to make the relativistic corrections. 
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A.3 Spacetime diagrams

  Nature of science
The spacetime (or Minkowski) diagram is a perfect 
example of a picture adding value to conceptual 
understanding. At first, Einstein did not realize the 
full potential of these diagrams but came to see that 
they had considerable value in making some of the 
difficult ideas of relativity – including simultaneity – 
more obvious.

Understanding
 ➔ Spacetime diagrams
 ➔ Worldlines
 ➔ The twin paradox

  Applications and skills
 ➔ Representing events on a spacetime diagram 

as points
 ➔ Representing the positions of a moving particle on 

a spacetime diagram by a curve (the worldline)
 ➔ Representing more than one inertial reference 

frame on the same spacetime diagram
 ➔ Determining the angle between a worldline and the 

time axis for specific speed on a spacetime diagram
 ➔ Solving problems on simultaneity and 

kinematics using spacetime diagrams
 ➔ Representing time dilation and length 

contraction on spacetime diagrams
 ➔ Describing the twin paradox
 ➔ Resolving of the twin paradox through 

spacetime diagrams

Equations
 ➔ angle of worldline to ct axis θ = tan-1 (   v _ c   ) 

Spacetime diagrams and worldlines
In 1908, Minkowski introduced a way to visualize the concept of 
spacetime. This will help you to understand many of the ideas and 
concepts that arise in special relativity.

Physicists are well used to graphs as ways to visualise data. Minkowski 
attempted to represent the four-dimensional nature of spacetime using 
a graphical picture known as a spacetime diagram or sometimes as a 
Minkowski diagram.

R'

R

speed =  c

x

t

(a) (b) (c)

P'

P
x

t
worldline of Q

t/s

x/m

3

2

1

0 4 8 12

 Figure 1 Spacetime diagrams.
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Spacetime diagrams show the position of an object in one dimension 
(x) at a time (t) in an inertial frame. The axes themselves constitute 
the inertial frame. The diagram resembles (but should not be confused 
with) the ordinary distance–time graphs with which you are familiar in 
mechanics, except that time is plotted on the y-axis and position on the 
x-axis.

Figure 1(a) shows the spacetime diagram for a particle that is stationary 
with respect to the inertial frame that is represented by the diagram. At  
t = 0 the particle P is on the x-axis. As time goes on, because the object is 
stationary, it does not change its position (x) in the reference frame. Time 
is, of course, increasing. Line PP’ shows the trajectory of the particle 
through spacetime and is known as the worldline of the particle.

Figure 1(b) shows a different particle Q moving at a constant velocity 
in the reference frame of this spacetime diagram. At t = 0, Q is at the 
origin of the diagram (x = 0) and it is moving at 4 m s-1 to the right. 
Each second after the origin time, Q is 4 m further to the right and so 
its worldline in the spacetime diagram is a line at an angle to the axes. 
It should be easy for you to see that if a further particle R were to be 
accelerating relative to the reference frame of the diagram, then the 
worldline of R would be a curve (figure 1(c)). 

There must be a limit to the R worldline because nothing can exceed 
the speed of light in free space. So the gradient of the dotted line on 
figure 1(c) shows the maximum limiting speed of R. This dotted line 
also represents the world line of a photon in the diagram (the minimum 
gradient of RR’).

Returning to particle Q which is moving with constant velocity in the 
reference frame of P, we could think of Q as being stationary in its own 
reference frame and in this event the spacetime diagram for Q in its own 
frame would be identical in shape to figure 1(a). We can combine these 
two separate spacetime diagrams for different inertial frames moving at 
constant speed relative to each other and this combination of axes will 
be of particular help later in this sub-topic when we resolve some of the 
paradoxes that special relativity appears to create.

Figure 2 shows the combined spacetime diagram for Q and P drawn for 
the reference frame of P. Notice what has happened to the Q axes (t' – x'), 
they have swung away from t and x and become closed up together. The 
Q x'-axis is now at the same angle as the previous Q worldline in the P 
reference frame. Q is, of course, moving along a worldline parallel to the 
time axis in the Q reference frame. 

We have so far used t and x for our axes, but this is not the only 
convention used. Sometimes you will see time plotted in units of ct. This 
is convenient because it means that the limiting line that represents the 
speed of light will have a gradient of 1 on the spacetime diagram. You 
can expect to see both conventions used in IB examinations. 

An additional convention is that sometimes physicists define c to be 
equal to 1 so that, in calculations, large values for the answers do not 
trouble them. Equally, expect to see speeds quoted as, for example, 0.95c 
meaning 95% of the speed of light in free space (2.85 × 108 m s–1).

  Figure 2 Two inertial frames – one 
spacetime diagram.

x

x'

t't

worldline of Q

  Figure 3 Definition of θ.
x

c
ct X

cT

particle 
worldline 

θ
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Some simple geometry (Figure 3) shows that when we are using ct-x 
axes, then the angle θ between the worldline of a particle and the ct axis 
is given by

tan θ =   
opposite

 _ 
adjacent

   =   X _ 
cT

   =   1 _ c   ×   X _ 
T

   =   v _ c  

or

θ = tan-1  (   v _ c   ) 
When v = c, then θ = 45° (tan 45° = 1) and the worldline for a photon 
starting at the origin of the spacetime diagram is a line at 45° to both ct 
and x axes. 

Simultaneity
There are significant changes to our ideas about the order in which 
things happen or whether two events happen simultaneously under 
special relativity. This is because the speed of light is always observed to 
have the same value by observers in different frames. 

The classic “thought” experiment to illustrate this is the example of a 
train carriage moving at constant velocity past an observer standing on a 
station platform (Figure 4). A person in the carriage (Jack) switches on 
a lamp that hangs from the centre of the ceiling. Jack observes that the 
light from the lamp reaches the two end walls of the carriage (R and L) 
at the same moment. 

L R

lamp

Jack

Jill

platform

railway carriage

simultaneous

L LR R

not simultaneous

Jack’s frame(a) (b) Jill’s frame (ct' - x')

ct'
ct

x'

x x

 Figure 4 Simultaneity at work in a spacetime diagram.

Jill who is on the platform, does not agree with this observation. The light 
from the lamp moves to both ends of the carriage at the same speed c. 
However, in the time it takes the light to get to the ends, the left-hand end 
of the carriage has moved towards the light and the right-hand end has 
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moved away. The consequence is that the light (according to Jill) hits the 
left-hand end first (event L) before the right (event R).

This result becomes clear in a spacetime diagram. In the reference frame of 
Jack (ct-x) the events R and L occur at the same instant because they are on 
a line parallel to the x axis and are at the same ct coordinate (figure 4(a)). 
In Jill’s frame plotted on figure 4(b) (ct’-x’) it is clear that L occurs before R 
when you look these events in terms of the ct’ axis.

There is a danger of confusion here because it is possible to misunderstand 
and think that the loss of simultaneity is to do with the transmission of 
the information. In other words, that this difference of opinion between 
Jack and Jill arises because the light travels through different distances 
from the ends of the carriage to their eyes. That is not the explanation of 
what is happening. The lack of simultaneity arises because the speed of 
light is always constant even if a particular observer is moving relative to 
the light source. As far as Jack is concerned, he is always midway between 
the carriage endwalls. As far as Jill is concerned, once the photons have 
left the lamp, then they travel at c and the carriage will continue to move 
while the photons themselves are in transit.

One of the reasons for this confusion is the use of the term “observer”, 
which is a very common one in books and articles about relativity. We 
often think of an observer as being located at one point in the inertial 
reference frame. This is not the true meaning. It is better to think of the 
observer as being in overall charge of an (infinitely) large number of 
clocks and rulers that are located throughout the observer’s frame. Jack 
(the stationary observer in this case) can take a reading at the instant 
when the light hits the end wall of the carriage without having to worry 
about the time taken for this information to travel from the carriage 
to his position. Another way is to think about the observer as being a 
whole team of observers with each one able to make measurements of 
his or her immediate region of the reference frame.

This can be explained in terms of the Lorentz transformations. Imagine 
that two events are simultaneous in one frame of reference. This will 
mean that for both events the time coordinate will be ct for any value of 
x. However, in a frame moving at v relative to the first frame, the Lorentz 
transformation shows that:

t' =   
t -   vx _ 

 c  2 
  
 _ 

 √______
 1 -    v  2  _ 

 c  2 
    
  

Therefore unless x is the same for both events then t’ cannot be the same 
for both events – they will not be simultaneous.

Conversely, this also tells us that if two events are simultaneous in the 
second, moving frame then they must be occurring at the same position (x).

Time dilation and length contraction re-visited
Figure 5(a) shows the spacetime diagram for an observer in frame B who 
is viewing an automobile moving at a constant velocity v relative to B. 
The diagram shows the stationary frame A for the automobile with the 
B spacetime axes included. We need to be quite clear about what we 
mean by the term time interval here. It is the time between two events 
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measured at the same place in the reference frame (in other words, the 
proper time). The spacetime diagram should show that a measurement 
in any other frame leads to a time interval greater than the proper time.

ct

x x

ctct' ct'

x' x'
time in Bproper time–

time in A proper time
time that A thinks

B measures

frame A
(a) (b)

frame B

 Figure 5 Measuring times in two reference frames.

At t = 0 the origins of both reference frames coincide and the automobile 
is at the origin in both frames. The automobile is stationary in frame A 
and its worldline lies along the time axis as usual. Frame B is moving at 
constant velocity and its axes are modified as usual in frame A. The event 
that marks the end of the proper time interval is transformed along the x’ 
axis to meet the ct’ axis in order to obtain the time that B will measure at 
what B thinks is the same instant in the moving frame (figure 5(a)). 

The question of what A (in the stationary frame) thinks is the same 
instant is different (figure 5(b)). However, whichever view we take of the 
measurement in frame B (whether from the A or B standpoint), the time 
measured in B is always greater than the proper time because the length 
of the line in the spacetime diagram is always along the hypotenuse of the 
triangle, whereas the proper time is one of the other sides of the triangle.

A spacetime diagram also helps understanding of length contraction. 
To see why distance measurements change in a moving frame, again 
we must understand what is being measured. We need to consider the 
distance between two points at the same instant in time as judged by the 
two observers in different frames.

ct
frame B

x  frame B

ct' 
frame A

x' frame A

x1'

x1

x2'

x2

worldline of 
0 cm in A

proper length

worldline of 
30 cm in B

worldline of 
30 cm in A

worldline of 
0 cm in B

simultaneous
in A

simultaneous
in B

CM
2 31 4 5 6 7 8 9 10 27 28 29 3011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

CM
2 31

4 5 6 7 8 9 10

27 28 29 30

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

 Figure 6 Measuring lengths in two reference planes.
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Figure 6 shows a ruler stationary in frame A. The ruler lies along the 
x’-axis because this is where we will determine the proper length. 
The rules for measuring proper length indicate that the two position 
determinations must be made simultaneously. The other frame B is 
considered to be the stationary frame for the purposes of the spacetime 
diagram. Thus, A must be moving relative to B and as a result has the 
axes ct’-x’. The diagram shows what happens. The proper length of the 
ruler is the distance measured between the worldlines and parallel to the 
x’ axis. The equivalent simultaneous measurement in B will always be 
shorter than that in A – the length is contracted.

The twin paradox
Many of the ideas we have discussed so far in the study of special 
relativity come together in a series of paradoxes. The twin paradox is the 
most famous of these and can be very simply stated:

Mark and Maria are twins. Mark decides to go on a journey to a distant 
star at a high speed with Lorentz factor equal to γ. After reaching the 
star taking a time T in Maria’s frame of reference. Mark returns with his 
journey also taking a time T (to Maria) to do so. At the end of his journey 
Maria has aged 2T but she is amazed to find that Mark has only aged by   2T

 __ γ  . 
This is nothing more than time dilation – so where does the paradox 
arise? Think about Mark’s experience. He sits in his spacecraft – his 
frame – and watches Maria and the Earth move away at high speed 
(with the same γ as before) so why is Maria not younger than him on 
his return? We would expect some symmetry between the two frames.

The answer to the paradox is that there is no symmetry at all between 
the two cases. Maria has remained in an inertial frame throughout 
Mark’s journey. Mark has not. He needs to accelerate four times during 
the journey: at the start of the trip, when he slows down at the star, 
when he accelerates back up to top speed and finally when he decelerates 
to arrive at the Earth. Moving out of an inertial frame of reference even 
once breaks the symmetry and as a consequence Mark and Maria age at 
different rates relative to each other over the whole journey.

The spacetime diagram (figure 7(a)) shows what happens. The frame for 
Maria is ct-x, the frame for Mark is ct’-x’. Mark leaves Maria at the origin 
of her reference frame and she remains here throughout. Of course, she 
moves along the ct axis as time increases. Meanwhile, Mark moves along 
his worldline which is at his origin x’ = 0 or (in Maria’s frame) at x = vt 
where v is Mark’s speed relative to Maria. Mark reaches the star at event 
P. We can draw two lines of simultaneity; one for Mark and one for Maria. 
In Maria’s frame she thinks Mark arrives at the star at time Q. R is the 
time that Mark thinks Maria observes when he arrives at the star. They 
disagree about the simultaneity of events Q and R as we should expect. At 
this stage, both Mark and Maria think that the other is younger by a factor 
of γ – as predicted by the time dilation result from earlier.

There is a problem in thinking about the return journey because if it is 
to happen at all, Mark has to change speed. It is not necessary for him to 
do this, though. We can imagine that as soon as he reaches the star, he 
synchronizes his clock with another clock on a spacecraft that belongs  Figure 7

ct

x

Q P

R

Mark worldline

Mark arrives
at star

Maria worldline (a)

ct' 

x' 

ct

x

Jay worldline

Q

S

R

Mark worldline

Mark arrives
at star

Maria worldline (b)

ct' 

x' 
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to Jay. Jay is already on his way to Earth (and therefore Maria) at the 
same speed that Mark had when approaching the star. Figure 7(b) shows 
the added worldline for Jay. As Jay leaves the star, he thinks that Maria 
is at S. If Mark were to slow down at the star, turn round, and go back 
to the Earth, the acceleration procedure would make Maria appear to 
rapidly age from Q to S.

Worked example
In the distant future a network of four warning 
beacons W, X, Y and Z is set up to warn spaceship 
commanders of the approach lanes for planet 
Earth. The beacons flash in sequence. The 
spacetime diagram shows the reference frame in 
which the beacons are at rest and one cycle of the 
sequence. The worldline for a spaceship is  
also shown.

ct

x
W X Y Z

worldline of 
spaceship

beacon
frame

ct' 

a) Determine the order in which the four 
beacons flash according to: 

 (i) an observer stationary in the frame of the 
beacons

(ii) an observer on the spaceship

b) Determine the order in which the observer on 
the spaceship sees the beacons flash.

c) Calculate the speed of the spaceship.

Solution
a) (i)  The spacetime diagram in the frame of 

the beacons indicates the chronological 
order in which the beacons flash: W 
and Z simultaneously, then X, and 
then Y.

W
X

Y

Z

ct

x

ct' 

  (ii)  The order of the flashes in the spaceship 
frame has to be obtained from 
constructing lines parallel to the x’ axis.

 In this frame, Z is observed to flash first, W 
and X then flash simultaneously, finally Y 
flashes.

b) To decide on the arrival of the light from the 
beacons it is necessary to add the photon 
worldlines to the diagram. These are lines that 
begin at the beacon flash and travel at 45° to 
the axes.

ct

x

light 
from X

light from
Y

light 
from Z

light 
from W

The intersection of the photon worldline 
with the ct’ axis gives the arrival time at the 
spacecraft. The order is Z, Y, X, W.

c) tan θ =   v _ c   = 0.58

    v = 0.58c
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A.4 Relativistic mechanics (AHL)

  Nature of science
A further paradigm shift occurred in physics when 
Einstein realized that some conservation laws 
(momentum and energy) broke down as inviolate 
laws of physics unless modifications were made 
to them. This led him (amongst other things) to 
formulate one of the most famous equations in the 
whole of physics.

Understanding
 ➔ Total energy and rest energy
 ➔ Relativistic momentum
 ➔ Particle acceleration
 ➔ Electric charge as an invariant quantity
 ➔ Photons
 ➔ MeV c– 2 as the unit of mass and MeV c– 1 as the 

unit of momentum

  Applications and skills
 ➔ Describing the laws of conservation of 

momentum and conservation of energy within 
special relativity

 ➔ Determining the potential difference necessary 
to accelerate a particle to a given speed or 
energy

 ➔ Solving problems involving relativistic energy 
and momentum conservation in collisions and 
particle decays

Equations
 ➔ total relativistic energy E = γm0c2

 ➔ rest-mass energy E0 = m0 c2

 ➔ relativistic kinetic energy EK = (γ - 1)m0 c2

 ➔ relativistic momentum p = γm0v
 ➔ energy-momentum relation E2 = p2 c2 + m0

2 c4

 ➔ acceleration through pd V qV = :EK

So far we have dealt almost exclusively with the basic concepts of space 
and time and we have shown that they change their nature when we 
have regard to the relative motion of inertial frames. Now we have to 
identify and explain the changes that need to take place in the other 
laws of physics for them to be invariant for all inertial observers.

Total energy and rest energy
In a previous sub-topic we mentioned that the rest mass m0 of a particle 
was an invariant quantity. Einstein, in one of his famous 1905 papers, 
proved that when an object loses energy its mass changes and by so 
doing he suggested that energy and mass are related. This led him to 
possibly the most well-known physics equation in the world – and 
possibly the most misunderstood, E = mc2. 

When a particle is viewed from its rest frame then its mass will be 
observed as the rest mass m0. This means that the rest energy of the 
particle is E0 = m0c

2. Like the rest mass, this is an invariant quantity for a 
particular particle.

Some physicists also use the concept of relativistic mass, meaning the 
mass observed when the particle is in a reference frame moving relative 

529

A . 4  R E L A T I V I S T I C  M E C H A N I C S  ( A H L )



to the observer. However, the consequences of energy and mass having 
an equivalence means that it is not necessary to use both relativistic 
mass and energy; we will only use the term total energy to signify both 
these ideas. The total energy can easily be converted into an equivalent 
mass if required using Einstein’s equation (but we will not do so in 
this course).

The total energy E of a particle is equal to the sum of the rest energy E0 
and the kinetic energy EK: 

E = EK + E0

ignoring potential energy and its changes, and energy dissipation. This 
leads to a set of equations relating the energies and masses:

E = m0 γc2

and therefore

EK = mc2 - m0c
2 = m0 (γ - 1)c2

0
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  Figure 1 Relativistic kinetic energy against speed.

Figure 1 shows the shape of the graph of EK against speed (expressed as 
a fraction of c). 

When the speed is zero, the energy is the rest energy. At high speeds 
approaching the speed of light, the curve becomes asymptotic to the 
line   v _ c   = 1.

Relativistic momentum
Momentum must still be conserved within the special theory. However 
in order to achieve this, the expression for momentum must incorporate 
γ to change from the Newtonian mu to m0γu.

In fact, both momentum and energy are jointly conserved within the 
theory with the proviso that energy has to include the whole bundle 
of energies associated with a particle including its rest energy. The 
momentum p of the particle is expressed as p = mγu and (as before) the 
total energy is E = m0 γc2.

Combining these equations and eliminating u leads to an expression for 
the total energy:

E2 = p2c2 + m0
2c4 = (pc)2 + (m0c

2)2
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This is known as the energy–momentum relation. It has an important 
property. If the equation is rearranged as

(m0c
2)2 = E2 - (pc)2

then the quantity on the left-hand side is the invariant mass – it does not 
change between inertial frames. Therefore the right-hand side must also 
be invariant, so we can write

(m0c
2)2 = E2 - (pc)2 = E'2 - (p'c)2

The knowledge that (E2 – p2c2) in the frame is invariant allows us to, for 
example, move easily between the particle frame in a particle accelerator 
and the lab frame.

Many tests of these equations were made from the time of Einstein’s first 
suggestions of the relationships. The equations were always verified but 
some of the determinations were indirect and had many sources of error. 
Perhaps the most direct and convincing experiment was that developed 
by Bertozzi in 1964. He accelerated electrons to a high speed and 
measured their speed as they travelled through a vacuum. Immediately 
after passing through the speed-measuring apparatus, the electrons 
were absorbed by an aluminium disc, thus transferring their energy to 
the internal energy of the disc. The temperature of the disc increased 
as a result and the energy of the incident electrons could be measured 
directly. Bertozzi’s results are shown in figure 2. This was a direct and 
convincing verification of Einstein’s theory.

0 5 10 15 20 25 30
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v2 /c
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special relativity

bertozzi

  Figure 2 Results of Bertozzi’s experiment.

 Nature of science
Operating a particle accelerator
Although one of the most direct verifications of 
special theory was only carried out in the 1960s, it 
was clear that the theory was the appropriate one to 
use. Cyclotrons had already been designed and built, 
and in these particle accelerators the circulating 
particles gain considerable energy. The energy that 
they gain (in our frame of reference) is found not to 

vary with   1 __ 2   mv2 and a relativistic correction for this 
is required. Essentially, the particles become more 
massive than would be expected from a Newtonian 
consideration. As cyclotrons were developed that 
could supply more and more energy there came 
a point where a synchronization mechanism was 
required to allow for the relativistic changes. This 
led to the development of synchrocyclotrons and 
other high-energy accelerators.

Worked example
1 Calculate the speed 

at which a particle 
must travel for its 
total energy to equal 
five times its rest mass 
energy.

Solution
E = γmc2 = 5mc2 

As γ = 5 =   1 _ 
 √_____

 1-    v  2  _ 
 c  2 

    
   →

1-    v  2  _ 
 c  2 

   =   1 _ 
25

   and    v  2  _ 
 c  2 

   =   24
 __ 25  

Therefore, v = 0.98c.
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Particle acceleration
The obvious way to accelerate a charged particle is to place it in an 
electric field. As we saw in Topic 5 this leads to an electric force on the 
particle and to a gain in energy that can be expressed in terms of the 
charge on the particle and the potential difference through which it 
moves. The key here is that charge q is our fifth invariant quantity so the 
term γ does not enter into our specification of charge in a moving frame. 
Thus the charge of the particle during the acceleration does not change 
and we can see directly (as in earlier parts of this book) that

qV = :EK

where :EK is the change in kinetic energy and V is the potential difference. 

This leads to a new set of units that are extensively used in particle 
and relativistic physics. Rather than use kg for mass and kg m s–1 for 
momentum it is much easier to think and work in terms of the energy 
equivalent of these units. 

Thus, for mass we use eV c–2 (or, more commonly, multiples of this, 
MeV c–2 and GeV c–2) and for momentum MeV c–1 and GeV c–1. What 
has effectively happened is that c in the energy–momentum relation has 
been made equal to 1. It is as though the equation has been written:

E2 = p2 + m0
2

One of the worked examples below is a repeat of an earlier example to show 
you how this change in units works.

Photons
Photons have zero mass. What does this mean for their properties within 
the special theory? 

The starting point is the energy–momentum relation once again, but this 
time m0 is zero and so the right-most term disappears leaving

E2 = p2c2

So the momentum of a photon is p =   E _ c   =   
hf

 _ c   =   h _ λ  

Worked examples
1 A particle of charge +e has a rest mass of 9.1 × 10–31 kg. It is 

accelerated from rest to a speed of 2.4 × 108 m s–1. 

Calculate, for this particle:

a) the rest energy in MeV

b) the total energy after acceleration

c) the kinetic energy after acceleration

d) the potential difference through which it must be accelerated 
to reach this speed.

Solution
a) The rest energy = m0c

2 = 8.2 × 10–14 J; this is   8.2 × 10-14
 __ 

1.6 × 10-19
   = 0.51 MeV.

TOK

Conservation laws

This discussion of 
conservation rules that have 
needed to be modified in the 
light of the special theory 
calls into question the nature 
of all conservation rules. Do 
the laws of natural science 
differ from the laws that 
exist in other branches of 
knowledge, for example, in 
economic theory?
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b) The speed is equivalent to γ = 1.7.

The total energy = m0 γc2 = 1.7 × 8.2 × 10–14 = 1.4 × 10–13 J = 0.87 MeV

c) The kinetic energy = (1.7 – 1) × 8.2 × 10–14 = 5.5 × 10–14 J = 
(0.87 – 0.51) MeV = 0.36 MeV

d) To attain a kinetic energy of 360 keV must require a pd of 360 kV.

2 Calculate the momentum of a photon of visible light of 
wavelength 560 nm.

Solution
p =   h _ λ  

SO p =   6.6 ×10-34
 _ 

5.6 × 10-7
   =1.2 × 10-27 kg m s–1.

3 A small insect with a mass of 1.5 × 10–3 kg flies at 0.48 m s–1. 
Calculate the momentum and kinetic energy of the insect.

Solution
This is a non-relativistic solution as the speed is much less than that 
of light.

1 eV ≡ 1.6 × 10-19 J and 1 kg ≡ 9 ×1016 J = 9 × 104 TJ.  

Kinetic energy =   1 _ 
2

   × 1.5 × 10–3 × 0.482 = 1.7 × 10–4 J  

=   1.7 ×10-4
 __  

1.6 × 10-19
    = 1.1 × 1015 eV = 1.1 × 103 TeV

Momentum = 1.5 × 10–3 × 0.48 = 7.2 × 10–4 kg m s-1 = 7.2 × 10–4 × 
3 × 108 ÷ 1.6 × 10–19 = 1.35 × 1024 eV c–1 = 1.4 × 1012 TeV c–1.
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The equivalence principle
In Topic 2 we introduced the idea that there are two types of mass: 
inertial and gravitational and we suggested that these are equivalent. 
Mass that is gravitationally attracted is taken to be the same as the mass 
that responds to a force by accelerating. This equivalence had been 
recognized since the time of Galileo but was first discussed in detail 
by the German physicist Mach at the end of the nineteenth century 
(having been touched on by various philosophers before him). Einstein 
and others named the central idea: Mach’s principle. Mach had rejected 
Newton’s view of absolute time and space, taking a relational view 
of the universe in which any motion can only be seen with respect 
to other objects in the universe. Thus we cannot say merely that an 
object is rotating but must refer to the axis about which it rotates. 
Mach’s writings, although controversial amongst scientists, partly led to 
Einstein developing the general theory of relativity that he published in 
1916. In this he proposed a principle of equivalence:

Einstein’s principle of equivalence states that gravitational 
effects cannot be distinguished from inertial effects.

A.5 General relativity (AHL)

  Nature of science
After publishing his special theory, which applied 
to non-accelerated reference frames, Einstein 
tackled the general theory incorporating the effects 
of acceleration and gravity. This required intuition, 
imagination and creative thinking on his part. He 
needed to modify his ideas of spacetime in the 
light of the effects of mass and the curvature that 
it produces. In this way he was responsible for yet 
another paradigm shift in physics.

Understanding
 ➔ The equivalence principle
 ➔ The bending of light
 ➔ Gravitational redshift and the Pound-Rebka-

Snider experiment
 ➔ Schwarzschild black holes
 ➔ Event horizons
 ➔ Time dilation near a black hole
 ➔ Applications of general relativity to the universe 

as a whole

  Applications and skills
 ➔ Using the equivalence principle to deduce and 

explain light bending near massive objects
 ➔ Using the equivalence principle to deduce and 

explain gravitational time dilation
 ➔ Calculating gravitational frequency shifts
 ➔ Describing an experiment in which gravitational 

redshift is observed and measured
 ➔ Calculating the Schwarzschild radius of a  

black hole
 ➔ Applying the formula for gravitational time 

dilation near the event horizon of a black hole

Equations
 ➔ Gravitational frequency shift:    :f

 _ 
f
    =   g:h

 __ 
c2   

 ➔ Schwarzchild radius: Rs =   2GM _ 
c2   

 ➔ gravitational time dilation :t =   :t0 __ 
 √_____

 1 -   Rs ____ r    
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A thought experiment helps to explain the equivalence principle; the 
experiment involves two observers and an elevator (lift). The elevator 
is a long way from any other mass so that it is essentially a gravity-free 
zone.

One of the observers (X) is in the elevator and carries an object that has 
mass; X cannot see out of the elevator. Another observer (Y) is outside 
the elevator and not connected to it in any way but can view what 
happens inside.

Y YX X

(a)

(b)

▲  Figure 1 The elevator "thought" experiment.

Initially the elevator is moving at constant velocity. X releases the object 
and it stays exactly where it is placed. (Remember that there are no 
nearby masses or planets to attract the mass.)

X repeats the experiment (Figure 1(a)) but this time, as X releases the 
object, the elevator begins to accelerate at 9.8 m s–2 in the direction of 
the elevator roof (we will call this "upwards" for brevity). X will think 
that the object accelerates downwards at 9.8 m s–2. Y observes from 
outside that the object stays where it is in space and that the lift is 
accelerating upwards around it.

Consider the same experiment repeated (Figure 1(b)) with the elevator 
stationary relative to and close to the surface of the Earth. When X 
releases the object it will be accelerated downwards at 9.8 m s–2. Y will 
explain this acceleration as due to the attraction of the Earth.

The important point here is that in both experiments the object 
accelerated downwards, in one case due to an inertial (acceleration) 
effect and in the other due to the effects of gravity. But to observer X in 
the elevator these two cases are identical and cannot be distinguished. 
It is this inability to decide what causes the acceleration that lies at the 
heart of the principle of equivalence. There is in principle no experiment 
that the observer in the lift can carry out to decide which effect is which. 

In figure 1(b) we can either regard the lift as accelerating within a 
universe (i.e. everything else) that is stationary or we can view the lift 
as stationary in the frame of observer X with the rest of the universe 
accelerating around it. According to Einstein there is no absolute 
motion, only relative motion exists. This means that the special status 
held by observers in inertial frames of reference in the special theory 
no longer exists in the general theory and – accelerated or not – all 
observers have the same status and obey the same laws. However, 
it may be that some frames allow the laws to be stated in a more 
straightforward way.
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Gravitational redshift
The general theory predicts that gravity can affect the motion of light 
itself. The equivalence principle helps us understand why.

:h

F

F

R

R(a) (b)

▲  Figure 2 Equivalence in action.

Imagine a spaceship that is stationary (or moving at constant velocity) 
relative to the rest of the universe. Inside the ship are an observer 
and two identical light sources, one light source at the rear of the ship 
(lamp R) and one close to the observer at the front (lamp F).

The spaceship begins to accelerate Figure 2(a)). At the instant that the 
acceleration begins, both light sources start to emit light of the same 
frequency. (It helps to imagine that the light emission begins as the spaceship 
starts to accelerate, but this is not an essential part of the argument.)

The light from R takes a finite time ∆t =   :h
 ___ c   to reach the observer 

(where ∆h is the distance between the light sources). During this 
time the velocity of the spaceship and observer will have changed 
by an amount ∆v = g∆t, where g is the acceleration. However, the 
light in transit from R to the observer will not change its speed 
because (as usual) the speed of light is independent of the observer. 
The observer will observe a longer wavelength for the light from 
R compared to the light from F as lamp R will appear to have been 
Doppler redshifted. 

This can be made quantitative. Merging the two equations above gives

:v = g:t =   g:h
 _ c  

∆v is the change in speed of the observer over the time period, ∆t is 
relative to the speed of light source R when it emitted the observed light, 
and so the frequency shift ∆f  observed is

  :f
 _ 

f
   =   :v _ c   =   g:h

 _ 
c2

   

where f is the frequency of the emitted light. 

The equivalence principle predicts that the effects in a gravitational 
field should be indistinguishable from an inertial system, so we do not 
need necessarily to say more. However, it is instructive to consider the 
problem from another different (but ultimately identical) standpoint.

Figure 2(b) shows the spaceship at rest relative to, and sitting on, the surface 
of the Earth. Again lamp R emits light to the observer. Each emitted light 
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photon has energy hf when it leaves the source. To reach the observer 
some of this energy has to be traded off against the gravitational field as 
gravitational potential energy. This loss of photon energy (reduction in f ) 
is equivalent to an increase in the wavelength λ of the light (fλ = c) and so 
again, the light from R is redshifted compared to the light from lamp F.

These discussions of frequency and wavelength shifts lead to the idea of 
gravitational time dilation. We can regard the arrival of the wave as 
a series of ticks of a clock. A redshift means that the clock is observed 
to tick more slowly than the original. So the observer at the front of the 
rocket thinks that lamp R is “ticking” more slowly than lamp F and the 
observer at the top of a mountain on Earth thinks that time is running 
more slowly for an observer at sea level. 

This effect is gravitational time dilation. It is different from the time dilation 
effect observed when inertial frames are moving relative to each other. 

We mentioned the GPS system earlier (p 521) in the context of special 
relativity, which predicts that the clocks on the satellites fall behind 
ground clocks by about 7 µs every 24 hours due to their relative motion 
with respect to the surface. General relativity, on the other hand, 
predicts that the satellite clocks should advance compared with the 
surface clocks by about 45 µs in the same time period. The net result 
is that the clocks in the GPS satellite gain on clocks back on Earth by 
about 38 µs every day. This factor swamps the 20 ns accuracy required 
of the Earth-bound GPS receivers. If relativistic effects are not taken into 
account, then the errors in a position become serious after about  
100 s and accumulate at a rate of tens of kilometres every day. This 
would be completely unacceptable for any navigational systems. The 
GPS receivers in our cars and on our mobile phones are constantly 
carrying out relativistic corrections to adjust for the unavoidable time 
changes due to relativistic effects.

Worked examples
1 The frequency of a line in the emission 

spectrum of sodium is measured in a frame 
of reference in which the sodium source is 
stationary and well away from gravitational 
influences. Calculate the fractional frequency 
shift that will be measured by an observer also 
stationary with respect to the sodium source 
but placed 1 km above the source close to the 
surface of Earth.

Solution
The fractional frequency shift is given by 

  :f
 _ 

f
   =   g:h

 _ 
c2

   

so the wavelength shift is   :λ ___ λ   =   g$h
 ____ 

c2   =   9.8 × 1000
 ________ 

9 × 1016   ≈ 
1.1 × 10-13

This is a redshift so the wavelength is increased by 
this fractional amount.

2 Calculate the difference in time per day due 
to gravitational redshift of a clock at the top 
of Everest compared to a clock at sea level. 
Mount Everest is 8800 m above sea level.
Assume that the acceleration due to gravity is 
constant over this height difference.

Solution
  :T

 ___ T   =   :f
 __ 

f
   where T is the time for one day.  

This means that   :T
 ___ T   =   g:h

 ____ 
c2    and ∆T =   

gT:h
 ____ 

c2   =  
  9.8 × 86 400 × 8800

  _______________  
(3 × 108)2   this is 80 ns every day. The 

observer on the mountain thinks that the 
sea-level clock is running more slowly so the 
mountain clock appears to gain time.
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Although the need for relativistic corrections in the GPS satellite navigation 
system indicates the truth of Einstein’s general theory, there have been 
formal scientific tests made over the past century to verify that it is correct. 
They include experiments some of which were suggested by Einstein himself:

 ● The precession of the perihelion of Mercury (the point in its orbit 
where Mercury is closest to the Sun)

 ● Deflection of light by the Sun 

 ● Gravitational redshift of light

One of the most recent of these is the experiment devised by Pound, 
Rebka and Snider in 1959 to measure gravitational redshift. This 
experiment was the last of Einstein’s suggestions to be attempted using 
the (then) recently discovered technique of Mossbauer spectroscopy. 
This technique allows small shifts in the frequencies of gamma rays to 
be measured.

In a very precise experiment, Pound and his co-workers fired a 
beam of gamma rays vertically upwards towards a detector placed 
about 22 m above the gamma source. They repeated the experiment 
with the gamma source firing downwards to the detector. If the 
upward and downward fractional changes in energy of the gammas 
are compared then

  (   :E _ 
E

   )   
upwards

  -   (   :E _ 
E

   )   
downwards

  =   2g:h
 _ 

c2
   

For the Pound–Rebka–Snider experiment, ∆h = 22.6 m and g = 9.81 m s–2 
which leads to a theoretical difference in the fractional energies of 
4.9 × 10–15. They measured the difference to be (5.1 ± 0.5) × 10–15 
which compares well with the theoretical value. This was a convincing 
verification of the general theory.

  Nature of science
Tidal forces, and a more precise definition
The earlier explanation of the elevator “thought” 
experiment was too simplistic. The equivalence of 
gravity and acceleration is true only for uniform 
gravitational fields. Real gravitational fields will 
almost always be non-uniform and inhomogeneous.

At the surface of the Earth with human-sized 
experiments, the field is very close to uniform and 
nearby objects appear to fall in parallel directions 
with the same acceleration. But two objects in 
a very large elevator will converge towards the 
centre of the Earth as they fall. An observer in the 
elevator sees the two objects apparently moving 
closer together – and will wonder why.

This is known as a tidal effect (figure 3) and 
means that a precise statement of the principle 
of equivalence should include a clause stating 
that it applies when tidal effects can be 

neglected. Alternatively, we can say that over an 
infinitesimally small spacetime region the laws of 
physics in general relativity are equivalent to those 
under special relativity.

▲  Figure 3 Tidal effects.

▲  Figure 4 Pound–Rebka–Snider experiment.

gamma detector

gamma detector

gamma 
source

gamma 
source
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If a single planet orbits a star, then Newtonian gravitation and mechanics 
predict that the orbit of the planet will follow the same elliptical path 
forever. The presence of other nearby planets and moons, however, 
disturbs this motion. In practice, planets in the solar system orbit the 
Sun in an ellipse that rotates gradually around the Sun; this is known as 
precession. The rate at which this rotation occurs can be predicted very 
accurately on the basis of Newtonian mechanics. 

Observations made in 1859 showed that the precession of Mercury 
is faster than predicted by Newtonian mechanics. The change to the 
precession rate is small but much larger than the error in its measurement; 
there is no doubt that the precession prediction is incorrect. One of the 
first successes of Einstein’s general theory was that it correctly predicted 
the value of the observed precession rate of Mercury. 

Einstein’s third suggestion was that a massive star would deflect light 
from its straight-line path. Shortly after Einstein published his theory, 
the English physicist Eddington travelled to the west coast of Africa 
with colleagues to observe stars during the 1919 total eclipse of the Sun. 
This enabled them to confirm that the mass of the Sun deflects light 
according to the general theory. This will be discussed in more detail in 
the next section.

A fourth effect was tested by Irwin Shapiro in 1964. Einstein had 
predicted that the time for a radar (microwave) pulse of radiation 
to go past the Sun and return to Earth after reflection from Venus 
and Mercury would take longer than expected because of the 
effect of the Sun’s gravity. Shapiro measured this time and made a 
similar measurement when the signal did not travel close to the Sun 
(because the planets had moved on in their orbits). He found that 
the delay existed as Einstein had predicted and that its magnitude 
was as expected. Similar experiments have been repeated in various 
ways since the 1960s, and always indicate a time delay as predicted 
by Einstein.

The bending of light
So far we have discussed the general theory in terms of the equivalence 
it suggests between gravitational and inertial effects and the changes it 
predicts for astronomical observations. The general theory, of course, 
offers much more than this.

For Newtonian gravitation, the gravity field is a model of reality that can 
be analysed using the law of gravitation. In the general theory, Einstein 
constructed a set of ten equations known as the Einstein field equations. 
These equations indicate that gravity is the effect observed when 
spacetime is curved (distorted) by the presence of mass and energy.

An analogy for spacetime curvature is that of a rubber sheet. The sheet 
represents a two-dimensional space in a three-dimensional spacetime 
continuum. (This means that it is only an analogy to the real world 
because one dimension has been suppressed.) In the absence of energy 
or mass, the sheet is flat, horizontal and undistorted. However, if a mass 
is placed on the sheet, then the sheet deforms under the influence of the 
mass as shown in figure 5.
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▲  Figure 5 Rubber sheet analogy for gravity.

star
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  of star 
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light path

light path 
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The effect of this deformation on the passage of light from a distant star 
can be seen in figure 5. Light comes from the real location of the star 
but, as it passes near the Sun, the direction of the light is altered by the 
warping of spacetime. After leaving the vicinity of the Sun the light 
appears to have come from a different direction. In 1919 Eddington was 
able to measure this apparent shift in the star position when the Sun 
moves close to the line between the Earth and the star. Measurements 
were made in Brazil and Africa (both places where the eclipse was 
total) and they confirmed the predictions made by the general theory. 
However the data were hard to collect and it is only recently that re-
workings of the data have confirmed that Eddington’s conclusion was 
not affected by observational errors and confirmation bias.

Of course, the deflection effect is happening in the four dimensions 
of spacetime, not the three of our analogy. This means that a three-
dimensional (to us) gravitational lensing can be observed. Figure 6 is a 
striking image taken by the Faint Object Camera of a European Space 
Agency satellite showing the primary image of a star and four additional 
images of it formed by this lensing effect.

The Einstein field equations do not always have exact solutions (in the 
sense that two simultaneous equations with two unknowns have an exact 
solution). For example, at present, the equations cannot provide an exact 
solution for the spacetime of two binary stars – one of the commonest 
star arrangements. Physicists usually make simplifying approximations 
when studying the implications of the equations. If, for example, the 
assumptions of low speeds and very weak gravity are made, then the field 
equations can be manipulated to give Newton’s law of gravitation which, 
therefore, proves to be a special case of general relativity.

Schwarzschild black holes
Within a few weeks of the publication of the general theory, Karl 
Schwarzchild was able to produce one of the first exact solutions of 
the Einstein field equations. He assumed the presence in spacetime ▲  Figure 7 The Schwarzschild radius.

rs

R

photon
emitted

event horizon

mass M

▲  Figure 6 A primary star and lensing effect.
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of a spherical, non-rotating, uncharged mass and was able to derive 
equations for the gravitational field that surrounds such an object.

Using Schwarzchild’s equations, the photon redshift that results from the 
effect of the gravitational field of the mass can be derived and is given 
(approximately) by

  :λ _ λ   =   Rs _ 
2r

   =   gM
 _ 

rc2
  

where λ is the emitted wavelength shifted by δλ and r is the distance 
from the centre of the mass to the point at which the photon is emitted 
and the constant Rs =   2GM

 ____ 
c2   . This approximate equation assumes that r is 

much greater than Rs. Notice the similarity between this equation and 
the earlier expression for the fractional change in frequency

  :f
 _ 

f
   =   :v _ c   =    g:h

 _ 
c2

   

The constant in the expression, Rs, has the dimensions of length and is 
known as the Schwarzschild radius; it is equal to   2GM

 ____ 
c2  . 

Outside the Schwarzchild radius (r > Rs) gravity obeys the usual rules, 
but inside the spherical region defined Rs where r < Rs the normal 
structure of spacetime does not apply. 

The change between the two regimes where r = Rs is known as an 
event horizon. Events happening inside the event horizon cannot 
affect an observer outside the horizon. Although the event horizon is not 
a true boundary (observers are able to pass through it from outside to 
inside), the event horizon represents the surface where the gravitational 
pull is so large that nothing can escape – not even light. A different 
interpretation of the event horizon is that it is the surface at which the 
speed needed to escape from the mass becomes equal to the speed of 
light. Light emitted from inside the event horizon cannot escape.

The strong gravitational field (extreme warping of spacetime) associated 
with the black hole, attracts nearby mass to it. Mass will appear to 
collapse towards the centre of the black hole.

Clocks in a strong gravitational field run more slowly than in the 
absence of gravity. The same phenomenon is observed near an event 
horizon. As a clock moves towards the event horizon from the outside, 
an external observer will see the clock slow down with the clock never 
quite passing through the horizon itself. The light emitted from the 
clock will also be increasingly gravitationally redshifted as the clock 
approaches the Schwarzschild radius (we already know that this is 
equivalent to time dilation). We might expect the situation in the frame 
of the clock to be different and, indeed, the clock (in its frame) will pass 
through the horizon in a finite amount of proper time. 

The proper time interval ∆t
o for an observer at distance Ro within the 

gravitational field of the mass that has a Schwarzchild radius of Rs is 
related to the time interval ∆td measured by a distant observer by

:to = :td  √______
 1 -   Rs _ 

R0

    

This equation assumes that the object giving rise to the event horizon 
does not rotate. 

Worked example
Calculate the Schwarzchild radius 
for: 

a) the Earth (mass = 6 × 1024 kg)

b) the Sun (mass = 2.0 × 1030 kg).

Solution 
a) The Schwarzchild radius =   2GM

 ____ 
c2   

  =   2 × 6.67 × 10-11 × 6 × 1024

  ___________________  
9 × 1016   

   = 8.9 mm

b) A similar substitution for the 
mass of the Sun gives: 3.0 km.

Worked example
Ticks separated by intervals of  
1.0 s are emitted by a clock that is 
2 × 105 m from the event horizon 
of a black hole of mass 3 × 1031 kg. 
Calculate the number of ticks 
detected by an observer in a distant 
rocket in a period of 10 minutes in 
the frame of reference of the rocket.  

Solution
The Schwarzchild radius 

is   2 × 6.67 × 10-11 × 3 × 1031

  ___________________  
9 × 1016   =  

4.5 × 104 m

:tp = :to  √_____
 1 -   Rs __ R0

     and when the 
measured time interval on the 
rocket ship is 600 s the proper time 
at the horizon is 

600 ×  √__________
  1 -   4.5 × 104

 ________ 
2.0 × 1031     

= 529 s. There will be 592 ticks.

541

A . 5  G E N E R A L  R E L A T I V I T Y  ( A H L )



This applies to all bodies that have mass and the worked examples show 
typical Schwarzchild radii for planetary and solar bodies. In theory, any 
object that can be compressed sufficiently for all its mass to be inside the 
event horizon will demonstrate these effects. The crucial point is whether 
this compression is possible or not. For almost all objects it is not, because 
the gravitational self-attraction of a planet’s mass is insufficient to overcome 
the repulsion of the electrons in the atomic shells of atoms. However, for 
very dense objects, the mass can fit inside the Schwarzchild radius and this 
object then becomes a black hole. A star needs, typically, to be about three 
times the mass of the Sun for this to occur.

Black holes are massive, extremely dense objects from which matter 
and radiation cannot escape. Spacetime inside the event horizon is so 
warped that any path taken by light inside the Schwarzchild radius will 
curve farther into the black hole.

  Nature of science
Links between classical and quantum physics
For many years after Einstein’s discovery it was 
thought that nothing could escape a black hole. It is 
now recognized that this is only true for black holes 
under a classical theory. Under quantum theory a 
black hole can be shown to radiate in a similar way 
to a black body. This result was unexpected and led 
to other connections between black holes and the 
classical study of thermodynamics. 

The work of the physicist Stephen Hawking 
and others has led to an understanding of the 
thermodynamics and mechanics of black holes, 

so that it is now recognized that black holes 
(or rather the strong gravity field near them) 
can lead to the emission of Hawking radiation. 
This would in principle allow a black hole to be 
observed and studied. In practice, the radiation 
emitted by mass being accelerated towards 
the event horizon will swamp the Hawking 
radiation. This emission of this radiation implies 
that black holes can evaporate over time leading 
to a dynamic process of hole creation and 
disappearance,

Applications of general relativity to the universe 
as a whole
There are many topics in cosmology that rely on general relativity. Some 
of these have been solved; some remain the subject of active research. 
Others remain as tantalizing theoretical predictions.

 ●  Studies of the Einstein field equations lead to a number of 
different solutions (of which Schwarzchild’s was one of the first) 
in particular the solutions of Friedmann, Lemaitre, Robertson and 
Walker (FLRW). These allow the behaviour of the universe over 
its lifetime to be modelled and the equations have been highly 
successful in their application. Many aspects of the early universe 
are illustrated in the FLRW solutions including the large-scale 
structure of the universe, the way in which chemical elements 
were created, and the presence of the cosmic background radiation. 
Additionally, knowledge of the rate at which the universe is 
expanding allows the total mass of the universe to be estimated. 
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The answer the equations produce does not agree with the amount 
of matter that we can actually see around us in the universe. 
Physicists now suggest the presence of an (at present) unobservable 
dark matter and dark energy.

 ●  There is a suggestion that single super-massive black holes can be 
found at the centre of galaxies. The mass of these objects can range 
up to a mass of several billion times that of our Sun. Such black 
holes will have been influential in the formation of galaxies and 
other larger structures in the universe. As interstellar dust and other 
materials fall into the galactic black holes, a number of artefacts 
appear, many of which are predicted by the general theory. These 
include the emission of jets of very energetic particles at speeds close 
to that of light that can in principle be observed. Astronomers look 
carefully for evidence of black holes at the centre of galaxies. There is 
a strong candidate in the Milky Way with an object (Sagittarius A*) 
that has a diameter similar to the radius of Uranus but a mass about 
4 million times greater than that of the Sun.

 ●  Binary black holes, normally in orbit around each other, can merge. 
The general theory suggests that the resulting event should lead to 
the emission of gravitational waves. Other events in the universe 
may also cause gravitational-wave emission. There are experiments 
in operation and others being devised that will, it is hoped, detect the 
effects of these gravitational waves and provide further verification 
of some of Einstein’s predictions.

TOK

The unnecessary constant

One form of the Einstein field equations is

Rµυ -   1 _ 
2

   gµυR + gµυΛ =   8πG _ 
c4    Tµυ

(this is not going to be tested in the examination!). 

R and g tell us about the curvature of spacetime, and T is concerned with the matter 
and energy in the universe. The constants G and c have their usual meaning.

The reason for including this equation is to draw your attention to the third term 
on the left-hand side of the equation and the constant Λ (capital lambda) that 
it contains. Einstein called Λ the cosmological constant.

In the early part of the twentieth century when Einstein was working on the 
general theory, the scientific view was that the universe was stationary and 
unchanging. Einstein realized that his theory predicted a universe that was 
neither static nor unchanging – according to the equations it should be growing 
larger. Einstein added the Λ term to adjust the theory to predict a stationary 
state. A few years later the astronomer Edwin Hubble found strong evidence 
that the universe is expanding. At this point, Einstein realized that his inclusion 
of Λ had been unnecessary. He later described putting the constant into the 
equation as “my greatest blunder”.

What other examples are there of scientists whose work was initially rejected 
(either by themselves or others) but which was later accepted?
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Questions
1 Explain what is meant by an inertial frame of 

reference. (1 mark)

2  An electron is travelling parallel to a metal 
wire that carries an electric current. Discuss the 
nature of the force on the electron in terms of 
the frame of reference of:

a) a proton stationary with respect to the wire

b) the moving electron.

3 Two electrons are travelling directly towards 
one another. Each has a speed of 0.002c relative 
to a stationary observer. Calculate the relative 
velocity of approach, as measured in the frame 
of reference of one of the electrons according to 
the Galilean transformation. (2 mark)

4 (IB) 
a) Define:

(i)    proper length 

(ii) proper time 

 Muons are accelerated to a speed of 0.95c 
as measured in the reference frame of the 
laboratory. They are counted by detector 
1 and any muons that do not decay 
are counted by detector 2. The distance 
between detector 1 and 2 is 1370 m.

muons

detector 1
1370 m

detector 2

v = 0.95 c

 Half the number of muons pass through 
detector 2 as pass through detector 1 in the 
same given time.

b) Determine, the half-life of the muons

(i)  in the laboratory frame 

(ii)   in the rest frame of the muons. 

(iii)  Detemine the separation of the 
counters in the muon  
rest frame. 

c) Use your answers in (b) to explain what is 
meant by the terms time dilation and length 
contraction. (11 marks)

5 (IB) 
The radioactive decay of a particular nuclide 
involves the release of a β-particle. A beta-
particle detector is placed 0.37 m from the 
actinium source, as measured in the laboratory 
reference frame. The Lorentz factor of the beta 
particle after release is 4.9.

a) Calculate, for the laboratory reference frame:

(i)    the speed of the β-particle 

(ii)  the time taken for the β-particle to 
reach the detector. 

 b) The events described in (a) can be described 
in the β-particle’s frame of reference.

 For the frame of the beta particle:

(i)    state the speed of the detector 

(ii)  calculate the distance travelled by the 
detector. (7 marks)

6 (IB) 
a)  Explain what is meant by an inertial frame of 

reference. 

b) An observer in reference frame A measures 
the relativistic mass and the length of 
an object that is at rest in their reference 
frame. The observer also measures the time 
interval between two events that take place 
at one point in the reference frame. The 
relativistic mass and length of the object 
and the time interval are also measured by 
a second observer in reference frame B. B is 
moving at constant velocity relative to A.

c) (i)     State whether the observer in frame B 
measures the quantities as being larger, 
the same size or smaller than when 
measured in frame A. 

(ii)  Compare the density of the object 
measured in frame B with the same 
measurement made in A. (7 marks)

7 Some students are marooned on a planet 
carrying out field work when it becomes clear 
that the star of the planet system is about to 
become a supernova. A spaceship is despatched 
to rescue them and the students can be beamed 
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aboard the spaceship without the need for it to 
change speed. The spacetime diagram shows 
the frame of the star and planet and the frame 
of the spaceship. The star and the planet do not 
move relative to each other. The star becomes a 
supernova at spacetime point S.

star

S

planet space axis of 
planet frame

tim
e 

ax
is

 o
f p
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ne

t f
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tim
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me

space axis of spaceship fra
me

ct

x

a) Copy the diagram to scale and on it identify:

(i) the spacetime point at which the spaceship 
arrives at the planet 

(ii) the spacetime point of the star when 
the spaceship arrives at the planet. 

b) Discuss whether the spaceship arrives at the 
planet before or after the supernova: 

(i) in the frame of the spaceship 

(ii) in the frame of the planet. 

c) Discuss when the IB students see the 
supernova. (9 marks)

8 Two athletes compete in a race. Athlete S is 
slow and is awarded a handicap so that he has 
less far to run than athlete F. The spacetime 
diagram for the race is shown for the frame 
of reference of the referee who is stationary 
relative to the finishing lines.

 

ct

x
S finishing

line
F finishing

line

a) Discuss who wins the race in the reference 
frame of: 

(i)      F 

(ii)   S 

(iii) the referee. 

b) Discuss whether there is agreement about the 
result of the race. (10 marks)

9 (IB) 
a)   Define rest mass. 

b) An electron of rest mass m0 is accelerated 
through a potential difference V. Explain 
why, for large values of V, the equation  
  1 __ 2   m0v

2 = eV cannot be used to determine the 
speed v of the accelerated electron. 

c) Determine the mass equivalence of the 
change in kinetic energy of the electron 
when V is 5 MV. (7 marks)

10 (IB) 
a)  A charged particle of rest mass m0 and 

carrying charge e, is accelerated from rest 
through a potential difference V. Deduce that

 γ = 1 +   eV _ 
m0c

2
   

 where γ is the Lorentz factor and c is the 
speed of light in free space.  

b) Calculate the speed attained by a proton 
accelerated from rest through a potential 
difference of 500 MV. (5 marks)
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11 A proton is accelerated from rest through a 
potential difference of 2.0 × 109 V. Calculate, in 
MeV c–1 the final momentum of the proton.  
 (3 marks)

12 (IB) 
a)  Distinguish between the rest mass–energy 

of a particle and its total energy. 

b)  The rest mass of a proton is 938 MeV c–2. 
State the value of its rest mass–energy. 

c)  A proton is accelerated from rest. Determine 
the potential difference through which it 
must be accelerated to reach a speed of 
0.98c, as measured by a stationary observer 
in the laboratory reference frame. (9 marks)

13 (IB) 
a)  In both the special and general theories of 

relativity, Einstein introduced the idea of 
spacetime.

  Describe, with a diagram, what is meant by 
spacetime with reference to a particle that is 
far from other masses and is moving with a 
constant velocity.  

b) Explain how the general theory of  
relativity accounts for the gravitational 
attraction between the Earth and an 
orbiting satellite. 

c) Describe what is meant by a black hole. 

d) Estimate the radius of the Sun necessary  
for it to become a black hole. (12 marks)

14 (IB) 
a)  A spaceship in a gravity-free region of 

space accelerates uniformly with respect 
to an inertial observer, in a direction 
perpendicular to its base. A narrow beam of 
light is initially directed parallel to the base. 

Diagram 1: View with Diagram 2: View with
  respect to respect to
   inertial  observer 
  observer  in ship 

base

acceleration

initial 
direction
of light 
beam

base

acceleration

initial 
direction
of light 
beam

 (i)   Describe the path taken by the light beam 
as observed by the inertial observer.

 (ii)    Describe the path taken by the light beam 
as observed from within the spaceship.

 (iii)  Explain the difference between the paths.

b) Explain how this difference relates to the 
equivalence principle.  (7 marks)

15 (IB) 
a) State the principle of equivalence. 

b) A spacecraft is initially at rest on the surface 
of the Earth. After accelerating away from 
Earth into deep space, it then moves with a 
constant velocity. A spring balance supports 
a mass from the ceiling.

0

(a) (b) (c)

0 0

 The diagrams show the readings on the spring 
balance at different stages of the motion.

 Identify, with an explanation, the reading 
that will be obtained when the spaceship is:

(i) at rest on the Earth’s surface

(ii) moving away from Earth with 
acceleration

(iii) moving at constant velocity in deep 
space.

546

R E L AT I V I T YA

546

A



c) The spacecraft now accelerates in deep 
space such that the acceleration equals that 
of free fall at the Earth’s surface.

 State and explain which reading would be 
observed on the spring balance. (10 marks)

16 (IB) 
The gravitational field of a black hole warps 
spacetime.

 

a) (i)  Describe what is meant by the centre 
and the surface of a black hole. 

(ii)  Define the Schwarzchild radius. 

(iii)  Calculate the Schwarzchild radius  
for a star that has a mass 10 times that 
of the Sun (solar mass  
= 2.0 × 1030 kg).  

b) In 1979, astronomers discovered “two” 
very distant quasars separated by a small 
angle. Examination of the images showed 
that they were identical. Outline how  
these observations give support to the 
theory of general relativity. (9 marks)

17 One prediction from the principle of equivalence 
is the effect known as gravitational lensing. 

a) State the principle of equivalence. 

b) Use the principle to explain gravitational 
lensing. (5 marks)

18 (IB) 
On 29 March 1919, an experiment by Eddington 
carried out during a total eclipse provided 
evidence to support Einstein’s general theory. 
The diagram below (not to scale) shows the 
relative position of the Sun, Earth and a star S 
on this date.

 

earth

sun

S

orbit path of
earth about sun

Eddington measured the apparent position 
of the star and six months later, he again 
measured the position of the star from Earth.

a) State why the experiment was carried out 
during a total solar eclipse.  

b) Explain why the position of the star was 
measured again six months later.  

c) Copy the diagram and draw the path 
of a ray of light from S to the Earth as 
suggested by the general theory. 

d) Explain how Einstein’s theory accounts  
for the path of the ray. 

e) Label the apparent position of the star  
as seen from Earth. (6 marks)

19 (IB) 
a) (i)     Describe, with reference to spacetime, 

the nature of a black hole. 

 (ii)     Define, with reference to (a)(i), the 
Schwarzchild radius.  

 (iii)  A star that has a mass of 4.0 × 1031 kg 
evolves into a black hole.

   Calculate the Schwarzchild radius of 
the black hole, stating any assumption 
that you make.  
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b) A spacecraft approaches the black hole in 
(a)(iii). If it were to continue to travel in a 
straight line it would pass within 1000 km 
of the black hole.

  (i)    Suggest the effect the black hole  
would have on the motion of the 
spacecraft. 

  (ii)  Explain gravitational attraction in  
terms of the warping of space-time  
by matter. (10 marks)

20 Alan and Brenda are in a spaceship that is 
moving with constant speed. Close to Alan is a 
light source fixed to the floor of the spaceship. 
Both Alan and Brenda measure the same  
value for the frequency of the light emitted by 
the source.

Alan Brenda

The spaceship begins to accelerate.

a) Explain why Brenda observes the source 
close to Alan to emit light of a lower 
frequency during the acceleration. 

b) Outline how the situation described  
in (a) leads to the idea of gravitational 
redshift.  (5 marks)
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B  ENGINEERING PHYSICS
Introduction
Engineering physics covers some of the key topics 
that you would expect to meet on an undergraduate 
engineering course. These are quite diverse topics 
covering rotational motion, thermodynamics, 
fluid mechanics, and forced vibrations and 

resonance. The mathematical content of these 
topics is naturally restricted to be in line with a pre-
university course; however, those students with a 
strong mathematical inclination will find much in 
these sub-topics to stimulate further research.

B.1 Rigid bodies and rotational dynamics

  Applications and skills
 ➔ Calculating torque for single forces and couples
 ➔ Solving problems involving moment of inertia, 

torque, and angular acceleration
 ➔ Solving problems in which objects are in both 

rotational and translational equilibrium
 ➔ Solving problems using rotational quantities 

analogous to linear quantities
 ➔ Sketching and interpreting graphs of rotational 

motion
 ➔ Solving problems involving rolling without slipping

Equations
 ➔ Torque equation: Γ = Fr sinθ
 ➔ Moment of inertia: I = ∑mr2

 ➔ Newton’s second law for rotational motion:  
Γ = Iα

 ➔ Relationship between angular frequency and 
frequency: ω = 2πf

 ➔ Equations of motion for constant angular 
acceleration:

 ➔ ωf = ωi + αt
 ➔  ω  f  2  =  ω  i  2  + 2αθ
 ➔ θ = ωit +   1 _ 

2
   αt2

 ➔ Angular momentum: L = Iω
 ➔ Rotational kinetic energy:  E   K  rot  

 =   1 _ 
2

   Iω2 

Understanding
 ➔ Torque
 ➔ Moment of inertia
 ➔ Rotational and translational equilibrium
 ➔ Angular acceleration
 ➔ Equations of rotational motion for uniform 

angular acceleration
 ➔ Newton’s second law applied to angular motion
 ➔ Conservation of angular momentum

  Nature of science
Extended objects
The work covered until now has almost invariably 
used the model of an object being represented by 
a single particle of zero dimensions. This model 
works well for many situations but falls short 
when forces are not applied along a line passing 
through the centre of mass of the object. In such 
cases an extended object can still be modelled; 
however, objects of different shape will not always 
move in the same way when forces are applied to 
them. Using simplifying models, engineers were 
able to design and manufacture sophisticated 
machines that had significant impact during the 
industrial revolution of the late eighteenth to early 
nineteenth century.
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Introduction 
This sub-topic is very closely related to the linear mechanics and 
circular motion that you studied in Topics 2 and 6. There are quantities 
that are directly analogous to the linear quantities of displacement, 
velocity, acceleration, force, etc. With the knowledge that you 
have already absorbed and an understanding that a rigid body is an 
extension of a point object you will be able to solve most rotational 
dynamics problems.

Uniform motion in a circle
You will remember that for a body moving around a circle with a 
constant linear speed (or angular speed) there needs to be a means of 
providing a centripetal force. This can be a contact force, such as tension 
or friction (or a component of these forces), or a force provided by a 
field, such as Newton’s law of gravitation or Coulomb’s law.

In all cases the force (or component) providing the centripetal force will 
be given by:

F =   mv2
 _ r   = mω2r

These terms were defined in Topic 6. Remember that ω is known as the 
angular velocity or angular frequency and is related to frequency f by  
the equation:

ω = 2πf

Angular acceleration
Let us consider an object moving in the circle so that it is given an 
angular acceleration and its angular speed increases. We define angular 
acceleration (α) as the rate of change of angular speed with time. 

α =   :ω _ ∆t
  

α is measured in radian per second squared (rad s−2)

Note
 ● The angular acceleration 

is different from both 
centripetal acceleration (ac)
and tangential acceleration 
(at) – this is the rate 
of change of the linear 
tangential velocity with time.

 ● As an object moving in a 
circle undergoes angular 
acceleration, its tangential 
acceleration increases 
as does its centripetal 
acceleration.

 ● The tangential acceleration 
of the body is related to the 
angular acceleration and 
the radius of the circle (r) 
by the relationship:  
 a

t
 = r α

This is because vt = ωr

This means that α =   ∆v _______ 
r∆t

   =   
at ____ r    

where vt is the tangential 
velocity of the object. Thus 
the linear quantity (velocity 
or acceleration) is the angular 
quantity multiplied by the 
radius.

Worked example

▲  Figure 1

A

B

hula-hoop

C

The diagram shows a hula-hoop (a large plastic 
ring) rolling with constant angular speed along 
a horizontal surface prior to rolling down a 
uniform inclined plane. When it reaches a second 
horizontal surface it, again, moves with a constant 
angular speed.

Sketch graphs to show the variation with time 
of a) the angular velocity and b) the angular 
acceleration of the hula-hoop.
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Equations of motion
In Topic 2 we met the four equations of motion under constant linear 
acceleration:

 v = u + at

 s = ut +   1 __ 2   at 2

v2 = u2 + 2as

 s =   
(v + u)t

 _ 
2

  

In rotational dynamics there are four analogous equations that apply to 
a body moving with constant angular acceleration:

 ωf = ωi + αt

 θ = ωit +   1 __ 2   αt2

 ω  f  2  =  ω  i  2  + 2α θ
 θ =   

 (  ω  i  +  ω  f  ) t _ 
2

  

Here ωi = initial velocity (in rad s−1), ωf = final velocity (in rad s−1), θ = 
angular displacement (in rad) or sometimes just "angle", α = angular 
acceleration (in rad s−2), t = time taken for the change of angular speed (in s).

Note
The IB Physics Data Booklet 
does not include the last of 
these rotational equations 
– it is probably the most 
straightforward of the equations 
because it simply equates two 
ways of expressing the average 
angular speed.

Solution
a) The graph shows the hula-hoop travelling 

with constant angular velocity along A and C. 
It has a greater value along C since it has now 
undergone angular acceleration. As B is of 
constant gradient, the angular acceleration is 
constant here.

b) The second graph shows zero angular 
acceleration throughout A and C and a 
constant angular acceleration along B. You 
should compare these graphs with those for a point 
object moving along a frictionless surface.

▲  Figure 2

ω/arbitrary 
units

α/arbitrary 
units

t/arbitrary 
units

t/arbitrary 
units

A

A

B

C

B

C

When the hula-hoop is travelling at the higher 
angular velocity it covers the same distance in 
a shorter time

Worked example
A wheel is rotated from rest with an angular 
acceleration of 8.0 rad s−2. It accelerates for 5.0 s. 

Determine:

a) the angular speed 

b) the number of revolutions that the wheel has 
rotated through.

Solution
a) ωf = ωi + αt =>ωf = 0 + 8.0 × 5.0  

    = 40.0 rad s−1

b) θ =   
 ( ωi + ωf ) t _ 

2
   =   

(0 + 40.0)5.0
  __ 

2
   = 100 rad

Each revolution makes an angle of 2π radian  
so the number of revolutions =   100

 ___ 2π  

=15.9 revolutions.
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▲  Figure 4 Moment of inertia of a 
point mass.

axis of 
rotation

m

r

Note
With linear motion there is just 
one “single” mass value for an 
object. In rotational motion, 
the moment of inertia is also a 
function of the position of the 
axis of rotation. This means 
that there are an infinite range 
of possible moments of inertia 
for any one object.

▲  Figure 3 A pair of flywheels with 
much of the mass distributed to be 
around the perimeter.

Moment of inertia
The moment of inertia ,I, of a body is the rotational equivalent of the role 
played by mass in linear dynamics. In a similar way to the inertial mass of an 
object being a measure of its opposition to a change in its linear motion, the 
moment of inertia of an object is its resistance to a change in its rotational 
motion. Objects such as flywheels that need to retain their rotational kinetic 
energy are designed to have large moments of inertia as shown in figure 3.

The moment of inertia of an object depends on the axis about which it  
is rotated.

For a particle (a single point) of mass m rotating at a distance r about an 
axis, the moment of inertia is given by:

I = mr2

Moments of inertia are scalar quantities and are measured in units of 
kilogram metres squared (kg m2).

For an object consisting of more than one point mass, the moment of 
inertia about a given axis can be calculated by adding the moments of 
inertia for each point mass.

I = ∑mr2

This summation is a mathematical abbreviation for m1r1
2 + m2r2

2 + m3r1
3 + 

. . . + mnrn
2 when the object is made up of n point masses.

The moment of inertia of a simple pendulum of length l and mass m is 
given by

Ipendulum = ml2

while that of a simple dumb-bell consisting of two masses m connected by 
a light rod of length l, when rotating about the centre of the rod, will be

Idumb-bell = m  (   l _ 
2

   )   2  + m  (   l _ 
2

   )   2  = 2m  (   l _ 
2

   )   2  =   1 _ 
2

  ml2

axis of rotation
into plane 
of the page

axis of rotation
into plane 
of page

light string light connecting
rod

point masses 
of value m

bob of mass m

l/2

l/2

simple pendulum

simple dumb-bell

l

m

▲  Figure 5 Moment of inertias of a simple pendulum and dumb-bell.

In each of these cases we assume that the mass is a point mass and that the 
string and the connecting rod are so light that their masses can be ignored.

For a more complicated structure we need to use integral calculus 
in order to derive formulae for moments of inertia. In IB Diploma 
Programme physics questions, any equations that need to be used for 
moments of inertia will be provided in the question.
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Torque
Torque ,Γ, can be defined as shown in figure 6. Consider force F acting 
at point P on an object. The direction of F is such that it makes an angle 
θ to the radius of the circle in which the object rotates. The torque will 
be given by:

Γ = Frsinθ
This is sometime called the force multiplied by the "arm of the lever".

Torques are also called "moments", but to avoid confusion between 
"moment" and "momentum" we advise sticking to the term torque. 
They are (pseudo) vector quantities with the direction perpendicular 
to the plane of the circle in which the object rotates. Imagine your 
right hand gripping the axis about which the object rotates so that 
the fingers curl round the axis, when your thumb is "up" it will be 
pointing in the direction of the torque (as shown in figure 7). This 
rule also applies to the directions of angular displacement ,θ, angular 
velocity ,ω, and angular acceleration ,α, which, like torque, are all 
vector quantities.

The maximum torque that a force can apply to a body is when the force 
is perpendicular to the arm of the lever. In this case θ = 90° and so  
sin θ = 1. This means that

Γ = Fr

Couples
A couple consists of a pair of equal and opposite forces that do 
not act in the same straight line (see figure 7). This combination 
of forces produces a torque that causes an object to undergo angular 
acceleration without having any translational acceleration. 

F

F

P P

-F

-Fd

d

(a) (b)

▲  Figure 8 Two examples of couples.

The torque of the couple about the pivot P in both figure 8(a) and (b) is 
equal to Fd (that is the product of one of the forces and the perpendicular 
distance between them).

 ● A single resultant force acting through the centre of mass of an object will 
produce translational acceleration. This means that the object will move 
in a straight line. An object in free-fall is an example of this as (ignoring 
air resistance) the pull of gravity is the only force acting on it.

 ● The same force, but acting through a point displaced from the centre of 
mass of the object, will produce a combination of both linear and angular 
acceleration. This means that the object will move in a helical path.

▲  Figure 6 Definition of torque.

r sinθ F

P

radius (r) θ

▲  Figure 7 Direction of torque.

torque
direction
τ

radius
from 
axis r

applied
force

F

Note
Torque is measured in units of 
newton metre (N m) but don’t 
confuse this with the unit of 
work or energy (the joule). In 
the case of torque the force is 
perpendicular to the direction in 
which the object moves but in 
the case of work the force and 
direction moved are the same. 
Torque is a vector quantity while 
work is a scalar.
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Figure 9 shows a force acting at the top of an object – the effect of this 
force can be split into the (i) same force acting at the centre of mass of 
the object (producing translation) and (ii) a couple (producing rotation). 
The couple consists of   1 __ 2   F at the top and -  1 __ 2   F at the bottom of the object. 

This is a general principle that can be applied to any force not 
acting through the centre of mass of an object.

A couple acting on an object will produce angular acceleration with no 
linear motion at all. This means that the object will move in a circular 
path (as shown in figure 8).

▲  Figure 9 Force acting through point displaced from centre of mass.

centre of mass

F

translation rotation

F

1
2

= +

1
2

F

F-

Newton’s first law for angular motion – rotational equilibrium
We saw in Topic 2 that a body in (translational) equilibrium does not 
accelerate but remains in a state of rest or travels with uniform velocity. This 
means that there can be no resultant force acting on the body in line with 
Newton’s first law of motion. For an object to be in rotational equilibrium 
there can be no external resultant torque acting on it – it will then remain 
in a state of rest or continue to rotate with constant angular velocity.

For rotational motion Newton’s first law may be stated as:

An object continues to remain stationary or to move at a constant angular velocity 
unless an external torque acts on it.

When the object is in rotational equilibrium: 

total clockwise torque = total anticlockwise torque.

This statement is often called the "principle of moments".

Newton’s second law for angular motion – angular 
acceleration
Again, in Topic 2 we considered the simpler statement of Newton’s second 
law of (translational) motion equating force to the product of mass and 
acceleration. The rotational equivalent of Newton’s second law relates the 
angular acceleration and torque on a body of moment of inertia.

Γ = Iα
In IB Diploma Programme Physics questions, the axis to which 
the torque is applied and the axis about which the moment of 
inertia is taken will always be the same (although there are quite 
simple ways of dealing with situations when this is not the case).
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Newton’s third law for rotational motion
You can probably guess that this version of the law says that action 
torque and reaction torque are equal and opposite – this pair of torques, 
like action and reaction forces for linear motion, act on different bodies. 
If body A applies a torque to body B, then body B applies an equal and 
opposite torque to body A.

Angular momentum 
Linear momentum (p) is a vector quantity defined as being the product 
of mass and velocity. Angular momentum (L) is the rotational equivalent 
to this and is defined as being the product of a body’s moment of inertia 
and its angular velocity; this, too, is a vector.

L = Iω
Angular momentum is measured in units of kg m2 rad s−1.

Worked example
A couple, consisting of two 4.0 N forces, acts 
tangentially on a wheel of diameter 0.60 m. The 
wheel starts from rest and makes one complete 
rotation in 2.0 s. Calculate:

a) the angular acceleration 

b) the moment of inertia of the wheel.

Solution
a) θ = ωit +   1 _ 

2
   αt2 => 2π = 0 +   1 _ 

2
   α × 2.02

α =   4π _ 
4.0

   = π = 3.14 rad s−2

b) torque of couple Γ = Fd = 4.0 × 0.60 = 2.4 N m

as Γ = Iα => I =   Γ _ α   =   2.4 _ 
3.14

   = 0.76 kg m2

The conservation of angular momentum
In linear dynamics we find the total (linear) momentum of a system 
remains constant providing no external forces act on it. In rotational 
dynamics, the total angular momentum of a system remains constant 
providing no external torque acts on it.

Figure 10 shows a small mass being gently dropped onto a freely 
spinning disc. The addition of the mass increases the combined moment 
of inertia of the disc and the mass and so the angular velocity of the 
system now falls in order to conserve the angular momentum.

small mass

r

spinning disc

▲  Figure 10 An example of the conservation of angular momentum.

The conservation of angular momentum has many applications in 
physics, such as the speeding up of an ice skater when pirouetting with 
decreasing angular momentum, or a gymnast putting in turns or twists 
by changing the distribution of mass.
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▲  Figure 11 Disc rolling on a flat 
surface.

ωR + v

ωR - v

ω

v

R

Rotational kinetic energy
You probably feel confident about the analogies between linear and 
rotational dynamics, so it should not surprise you that the relationship 
for angular kinetic energy is

 E   K  rot 
  =   1 __ 2   Iω2

This, like all energies, is a scalar quantity and could, in principle, be 
found by adding the (translational) kinetic energies of all the particles 
making up a rotating object.

Two more useful rotational analogies are given in the table below.

Quantity Linear equation Angular equation

work W = Fs W = Γθ
power P = Fv P = Γω

Rolling and sliding
If an object makes a perfectly frictionless contact with a surface it is 
impossible for the object to roll – it simply slides. When there is friction 
the object can roll; as the point of contact between the rolling body and 
the surface along which it rolls is instanteously stationary, the coefficient 
of static friction should be used in calculations involving rolling. The 
point of contact must be stationary because it does not slide. Figure 11 
shows a disc of radius R rolling along a flat surface such that its centre of 
mass has a velocity v. Each point on the perimeter of the disc will have a 
tangential velocity = ωR.

This means that the top of the disc will have total velocity of ωR + v and 
the point of contact with the surface will have a velocity of ωR - v. As 
the disc is not slipping, the bottom of the disc has zero instantaneous 
velocity and so ωR = v. This means that the top of the disc will have an 
instantaneous velocity = 2v.

The total kinetic energy of a body that is rolling without slipping will 
be =   1 __ 2   Iω2 +   1 __ 2   mv2. When an object rolls down a slope so that it loses a 
vertical height h, the loss of gravitational potential energy will become 
the total kinetic energy. This gives us

mgh =   1 __ 2   Iω2 +   1 __ 2    mv  2 

Worked example
A solid ball, of radius of 45 mm, rolls down an 
inclined plane of length 2.5 m. The sphere takes a 
time of 6.0 s to roll down the plane. Assume that 
the ball does not slip. 

The moment of inertia, I, of a solid ball of 
mass M and radius R is given by I =   2 __ 5   MR2

a) Calculate the velocity of the sphere as it 
reaches the end of the plane. 

b) Calculate the angular velocity of the sphere as 
it reaches the end of the plane.

c) Determine the angle of inclination of the 
plane.

d) Comment on whether the assumption that 
the ball does not slip was appropriate in  
this instance.
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Solution
a) For the ball starting at rest rolling along the 

slope for time t the (translational) equations of 
motion give: 

s =   1 __ 2   at2 and v = at

Substituting the values for s and t

a =   2s _ 
t2

   =   2 × 2.5 _ 
6.02

   = 0.14 m s−2 

v = at = 0.14 × 6.0 = 0.84 m s−1

b) The angular speed ω =   v _ r   =   0.84
 _______ 

45 × 10−3   = 18.7 ≈  
19 rad s−1

c) from the equations mgh =   1 __ 2   Iω2 +   1 __ 2   mv 2  
and v = ωR

mgh =   1 __ 2   v2  (   I _ 
R2

   + m ) 

substituting for the moment of inertia equation 
we have:

Mgh =   1 __ 2   v 2  (     2 _ 
5
   MR2

 _ 
R2

   + M ) 
Cancelling M and R2 gives 

gh =   1 __ 2   v 2  (   2 _ 
5
   + 1 )  =   7 _ 

10
   v 2

So h =   7 __ 10   ×   v 2
 __ g   where h is the height of the end 

of the inclined plane.

h =   7 _ 
10

   ×   0.842
 _ 

9.81
   = 0.05 m

sinθ =   0.05 _ 
2.5

    ∴  θ = sin−1  (   0.05 _ 
2.5

    )  = 1.1°

d) This angle is very small and so there is no 
problem with assuming that the ball rolls 
without slipping.

  Investigate!
Measuring the moment of inertia of a flywheel
A flywheel is mounted so that it can rotate on a horizontal axle (the axle 
forming part of the flywheel). A mass, suspended by a string, is wound 
round the axle of a flywheel ensuring that it does not overlap. When the 
mass is released, the gravitational potential energy of mass is converted 
into the linear kinetic energy of the mass + the rotational kinetic energy 
of the flywheel + work done against the frictional forces (all these values 
are taken when the string loses contact with the axle).

mgh =   1 _ 
2

   mv2 +   1 _ 
2

   Iω2 + n1W

The symbols here have their usual meaning with n1 being the number of 
turns of string and W the work done against frictional forces during each 
revolution. When the string disengages, the rotational kinetic energy 
makes a further n2 rotations before it comes to rest – so the rotational 
kinetic energy of the flywheel must be equal to n2W or

  1 _ 
2

   Iω2 = n2W making W =   Iω2
 _ 

2n2

  

This means mgh =   1 __ 2   mv 2 +   1 __ 2   Iω2 +   n1Iω2

 ____ 2n2

   

or  mgh =   1 __ 2   mv 2 +   1 __ 2   Iω2  ( 1 +   n1 __ n2
   ) 

In addition to this ω = vr and   v __ 2   =   h __ t  

 ● Measure the radius r of the axle of the system using vernier or 
digital callipers. 
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 ● Attach a mass hanger to one end of the piece of string and make a 
loop at the other end so that, as the mass hanger just touches the 
floor, the loop slips off the peg in the axle. 

 ● Loop the string over the peg, wind up the string for a whole 
number of revolutions n1 and measure the height h of hanger 
above the floor. Make sure the windings do not overlap.

▲  Figure 12 Measuring the moment of inertia of a flywheel.

peg

view from front view from side

axis of rotation

h

flywheel

slotted
masses
mass
hanger

axle

axle
r

 ● Adjust the number of slotted masses on the hanger.

 ● Measure the time t from the moment of release until the hanger 
reaches the floor.

 ● Count the number of revolutions n2 the flywheel makes after the 
string comes off the peg until it comes to rest. 

 ● Repeat several times and calculate mean values from which a 
value for the moment of inertia of the flywheel and axle I can be 
deduced.

 ● Consider how the data could be used graphically to find a value 
for I.
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B.2 Thermodynamics

  Nature of science
Different viewpoints of the second law 
of thermodynamics
Thermodynamics is an area of physics which, 
through different scientific eras, has been shaped 
by a combination of practice and theory. When 
Sadi Carnot wrote his treatise about heat engines, 
he was a believer in the caloric standpoint – yet 
his ideas were sufficiently developed to influence 
the development of machines in the industrial 
revolution. Clausius, Boltzmann, Kelvin, and Gibbs 
were all responsible for different statements of the 
second law of thermodynamics – a law that has a 
fundamental impact on whether or not a process, 
allowed by the first law of thermodynamics, can 
actually occur.

Understandings
 ➔ The first law of thermodynamics
 ➔ The second law of thermodynamics
 ➔ Entropy
 ➔ Cyclic processes and pV diagrams
 ➔ Isovolumetric, isobaric, isothermal, and 

adiabatic processes
 ➔ Carnot cycle
 ➔ Thermal efficiency

  Applications and skills
 ➔ Describing the first law of thermodynamics as a 

statement of conservation of energy
 ➔ Explaining sign convention used when  

stating the first law of thermodynamics as  
Q = :U + W

 ➔ Solving problems involving the first law of 
thermodynamics

 ➔ Describing the second law of thermodynamics 
in Clausius form, Kelvin form and as a 
consequence of entropy

 ➔ Describing examples of processes in terms of 
entropy change

 ➔ Solving problems involving entropy changes
 ➔ Sketching and interpreting cyclic processes 
 ➔ Solving problems for adiabatic processes for 

monatomic gases using p V  
  5 _ 
3

   
 = constant

 ➔ Solving problems involving thermal efficiency

Equations
 ➔ First law of thermodynamics: Q = :U + W

 ➔ Internal energy: U =   3 _ 
2

   nRT

 ➔ Entropy change: :S =   :Q _ 
T

  

 ➔ Equation of state for adiabatic change:  

p V  
  5 _ 
3

   
 = constant (for monatomic gases)

 ➔ Work done when volume changes at constant 
pressure: W = p:V

 ➔ Thermal efficiency: η =   useful work done __________________________ energy input  

 ➔ Carnot efficiency: ηCarnot = 1-   Tcold _ Thot

   

Introduction
When using thermodynamics, there is a convention that we talk about the 
body that we are interested in as being the system. Everything else that may 
have an impact on the system is known as the surroundings. The system 
is separated from the surroundings by a boundary or wall. Everything 
including the system and the surroundings is called the universe.
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system

surroundings

universe

the flask represents the boundary in this case

▲  Figure 1 Thermodynamic system and surroundings.

As we saw in Topic 3, James Joule showed that work done on a system 
or energy transferred to the system because of temperature differences 
result in the same outcome: the internal energy of that system increases.

The nature of the way the system changes and how that energy reveals 
itself depends on whether or not the phase of the substance changes. 
When there is no change of state the most apparent effect is the increase in 
the mean random kinetic energy of the particles; when there is a change 
of state the increase in the potential energy is the most significant effect.

Remember that the internal energy of a system is the total of the potential 
energy and the random kinetic energy of all the particles making up the system. 

We often simplify discussion by considering the system to be an ideal 
gas. In this case the internal energy is entirely kinetic and we can use the 
relationship derived in Sub-topic 3.2. This showed that, for n moles of an 
ideal gas, the internal energy U is related to the absolute temperature T 
by the equation U =   3 __ 2   nRT, where R is the universal molar gas constant.

The first law of thermodynamics
The internal energy of a system may change as any combination of (i) 
doing work on the system (or allowing the system to do work on the 
surroundings) and (ii) transferring energy to or from the system as a 
result of a difference in temperature. Saying this amounts to stating the 
conservation of energy. There are a variety of versions of the equation 
for the first law of thermodynamics and each has its merits – they will 
all be self-consistent and understandable but you will need to make sure 
that you read the definition of each of the terms in the equation. The 
preferred version of the equation for the IB Physics syllabus is written as:

Q = :U + W
When each of these quantities is positive:

 ● Q represents the energy transferred from the surroundings to the system 
because the surroundings are at a higher temperature than the system

 ● :U represents the increase in the internal energy of the system (this 
is not simply a change, it is an increase)

 ● W represents the work done by the system as it expands and pushes 
back the surroundings.

When each of these quantities is negative:

 ● Q represents the energy transferred from the system to the surroundings 
because the system is at a higher temperature than the surroundings 
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 ● :U represents the decrease in the internal energy of the system 

 ● W represents the work done on the system as the surroundings 
compresses it.

Worked example
A system’s internal energy falls by 200 J as 
a result of energy transfer and work being 
done. The system does 500 J of work on the 
surroundings.

a) State and explain whether the system is 
at a higher or lower temperature than its 
surroundings.

b) Calculate the amount of energy transferred 
causing the reduction in internal energy. 

Solution
a) The system must gain energy in order to be able 

to do this amount of work and so its temperature 
must be below that of the surroundings.

b) Using the first law of thermodynamics  
Q = :U + W, :U must be negative and W must 
be positive.

Q = -200 + 500 = 300J

So 300 J are transferred to the system from 
the surroundings.

  Nature of science
Human metabolism and the first law
Let us consider a human body as a 
thermodynamic system. When we eat, our 
internal energy increases because we are taking 
in food in the form of chemical potential energy. 
When there is no energy transfer because of 
temperature differences this must be a process 
which is related to work – although we will not 
discuss the biochemistry here. 

So, using the first law with no energy transfer:

0 = :U + W
As :U is positive this means that W is negative.

The chemical energy in the food we eat does 
three main things: it allows us to do work on 

our surroundings, it allows us to transfer energy 
to the (usually) cooler surroundings and the 
remainder is stored in our bodies (as fat). With 
a well-adjusted, balanced diet the build up of fat 
and change in internal energy is zero and the 
food we eat allows us to stay warm and do work 
and be active. So the ideal system is to make the 
net change in the internal energy of our bodies 
zero – eat too much and we will build up fat (:U 
is positive), eat too little and we will lose weight 
(:U is negative). In reality, human metabolism 
is much more complicated than this, but the first 
law of thermodynamics does represent a model 
that has many more applications than the gases 
we will now focus on.

Using the first law for ideal gases
When discussing the changes that can be made to the state of the 
gas, it is usual to consider an ideal gas enclosed in a cylinder by a 
moveable piston. The gas represents the system, the cylinder and the 
piston represent the boundaries or walls. Everything else becomes the 
surroundings. 

Calculating the work done in an isobaric change
An isobaric change is one which occurs at constant pressure. Consider 
an ideal gas at a pressure p enclosed in a cylinder of cross-sectional area A. 
When the gas expands it pushes the piston a distance :x so that the volume 
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of the gas increases by :V (= A:x). When energy is supplied to the gas 
from the surroundings the pressure can remain constant at value at p. The 
work done by the gas on the surroundings during this expansion will be 
W. The force F of the gas on piston = pA. This means that the work done 
during expansion = F:x = pA:x = p:V. 

W = p:V

This will be a positive quantity because the system is doing work on the 
surroundings. When the gas is compressed W will be negative.

Figure 3 shows a p-V graph for an isobaric change. The area under 
the graph is equal to the work done. The arrow on the line connecting 
the end points AB shows that the gas is expanding and doing work on 
the surroundings – an arrow in the opposite direction would show a 
compression.

Applying the first law of thermodynamics to this, we get Q = :U + p:V. 
This could result in any number of possibilities but they must be consistent 
with this equation; Q must be positive for an expansion and negative for 
a compression. For example, supplying 20 J to the gas could increase the 
internal energy by 19 J and allow the gas to do 1 J or work or increase 
the internal energy by 19.1 and do 0.9 J of work etc.

The equation of state for an isobaric change is   V __ T   = constant.

Work done for non-isobaric changes
When changes do not occur at constant pressure we can still calculate 
the work done from the area under a p-V graph. We can make the 
assumption that the pressure will be unchanged over a small change in 
volume and, therefore, we approximate the overall change to a series of 
small isobaric changes as shown in figure 4. 

The area of the first constant pressure rectangle = p1:V1 = W1

The area of the second rectangle would be p2:V2 = W2, etc.

Therefore, the total work done = ∑
n
W

n
 = ∑

n
p

n
:V

n
 for n rectangles – this 

is the area under the curve. So for any p-V graph the area under the 
curve will give the work done – this depends on the path taken and not 
just on the end points.

Isothermal changes
Isothermal changes are those that occur resulting in the internal 
energy of the system staying constant. The internal energy of an 
ideal gas consists of the sum of the mean random kinetic energies of 
the particles of gas. The mean kinetic energy is proportional to the 
temperature of the gas. An isothermal change, therefore, means that 
there is no change in the temperature of the system.

Using the first law of thermodynamics Q = :U + W with :U = 0, 
this leaves Q = W. As there is no change in internal energy, the energy 
transferred to the system because of a temperature difference between the 
system and the surroundings Q will allow the system to do work W on the 
surroundings. As W = p:V this can only mean that the gas is expanding – 
the direction arrow on the graph should go from A to B.

▲  Figure 2 Work done by an ideal gas.

piston

area A

volume V

ideal gas = system

cylinder

∆ X
∆ V = A ∆ X

V

p

p A B

p

area under line = work done by
gas on surroundings = p∆ V

∆ V

▲  Figure 3 Work done in an isobaric change.

▲  Figure 4 Work done in a non-isobaric change.

V

p

p1
p2

area of isobaric
rectangle = p1∆V1
= work done

∆V1

∆V2

A

B

Note
Isothermal changes normally take place 
very slowly and the boundary between 
the system and the surrounding must be 
a good conductor of energy.
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The other possibility is that -Q = -W so the energy transferred from the 
system to the surroundings is equal to the work done on the system by 
the surroundings. In this case the gas is being compressed – the direction 
arrow on the graph should go from B to A. 

We saw in Topic 3 that when the temperature does not change 
pV = constant. This is the equation of the line on a p-V graph for an 
isothermal change. The lines are known as isotherms. As shown in 
figure 6, changes at higher temperatures will always produce isotherms 
that are further from the origin than those at lower temperatures. For 
a given volume the pressure will always increase in moving from a low 
temperature isotherm to one at higher temperature.

Adiabatic changes
This is the name given to a change in which no energy is transferred 
between the system and the surroundings. This does not mean that 
the system and the surroundings are always at the same temperature, 
although that could be so, but it is more likely that there is a well-
insulated barrier between them. Adiabatic changes usually happen very 
quickly, which means that there is no time for the energy to transfer.

Applying the first law of thermodynamics to a system undergoing an 
adiabatic change gives:

Q = :U + W but, as Q = 0, this can mean either :U = -W (an increase 
in internal energy occurs because of work being done on the system) 
or -:U = W (a decrease in internal energy occurs because the system 
is doing work on the surroundings). For an ideal monatomic gas the 
equation for an adiabatic change takes the form:

p V  
  5 _ 
3

  
  = constant

This can be written as p1 V1  
  5 _ 
3
  
  = p2 V2  

  5 _ 
3
  
  when there is a constant 

temperature.

As the gas is an ideal gas the equation

  
p1V1 _ 
T1

   =   
p2V2 _ 
T2

  

also applies to an adiabatic change. 

Dividing p1 V1  
  5 _ 
3

  
  = p2 V2  

  5 _ 
3

  
  by   

p1V1 _ 
T1

   =   
p2V2 _ 
T2

  

gives

T1 V1  
  2 _ 
3
  
  = T2 V2  

  2 _ 
3
  
 

In the p-V equation for an adiabatic change V is raised to a power of 
greater than one. This means that for an adiabatic change the line will be 
steeper than that for an isothermal change – as shown in figure 7.

The area under the adiabatic change, as for all other changes, will be the 
work done. The direction of the arrow will determine whether work is 
done on or by the gas.

Isovolumetric changes
These changes occur at constant volume and, therefore, mean that no 
work can be done by or on the system.

Q = :U + W = :U + p:V

▲  Figure 5 Work done in an isothermal change.
V

A

B

p

area = work done

▲  Figure 6 Isotherms at different temperatures.
V

p
T1 > T2

T1

T2

▲  Figure 7 Adiabatic and isothermal changes.
V

p

work done

adiabatic process

isotherms

Note
You don’t need to derive the equations 
for adiabatic changes. The exponent 
for V does vary if the gas molecules 
are diatomic (two atom molecules) or 
polyatomic (three or more molecules in 
the atom). The value is actually the ratio 
of the principal molar specific heats but, 
as this is not going to be examined, we 
leave you to do further research on this.
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With no change in the volume, the first law of thermodynamics becomes 
Q = :U (when the energy transferred to the system increases the 
internal energy) or -Q = -:U (when the energy transferred from the 
system decreases the internal energy).

Figure 8 shows an isovolumetric change on a p-V graph. In this case the 
change shows an increase in temperature (moving to a higher isotherm 
on an isothermal graph).

The equation of state for an isovolumetric change is   
p
 __ T   = constant.

Worked example
a) Distinguish between an isothermal process and 

an adiabatic process as applied to an ideal gas.

b) An ideal gas is held in a cylinder by a 
moveable piston and energy is supplied to the 
gas such that the gas expands at a constant 
pressure of 1.5 × 105 Pa. The initial volume of 
the cylinder is 0.040 m3 and its final volume is 
0.12 m3. The total energy supplied to the gas 
during the process is 7.5 × 103 J.

    (i)  State and explain the type of change that 
the gas undergoes.

  (ii) Determine the work done by the gas.

(iii)  Calculate the change in internal energy of 
the gas.

Solution
a) An isothermal process is one that takes place at 

constant temperature (and constant internal 
energy) so there is an interchange of energy 

transferred because of the temperature 
difference between the gas and the surroundings 
and work done one on the other.

An adiabatic process is one in which there is no 
energy exchanged between the system and the 
surroundings. This means that changes in the 
internal energy (and hence temperature) occurs 
because of work done by or on the ideal gas.

b)     (i)  As the pressure does not change the gas 
undergoes an isobaric expansion.

  (ii)  Work done = area under the p-V graph 
for the change (= p:V) = 1.5 × 105 (0.12 
- 0.04) = 1.2 × 104 J

(iii)  Using the first law of thermodynamics  
Q = :U + W
  :U = Q - W because only 7.5 × 103 J is 
supplied to the gas and 12.0 × 103 J of 
work is done, the internal energy must 
fall by 4.5 × 103 J

Cycles and engines
Work can be converted into internal energy effectively through frictional 
forces. Work done by friction is usually undesirable because it increases 
the temperature of the system (good) and the surroundings (bad). The 
reverse process of continuously converting energy into work is more 
difficult to achieve, but it can be done using a heat engine that operates 
through a cycle of changes. In 1824 the French physicist and engineer, 
Sadi Carnot, published the first description of a heat engine; in this 
he described what has come to be known as the "Carnot cycle". The 
principle of a heat engine is to take in energy at a high temperature, 
reject energy at a low temperature and use the remainder of the energy 
to do work on the system as illustrated in figure 9.

We can think of the system as being a gas enclosed in a cylinder with a 
frictionless moveable piston. When energy Q1 is supplied to the gas from 
a hot reservoir at temperature T1, the gas expands and moves the piston, 
doing work. This will stop as soon as the gas pressure is equal to that of the 
surroundings. The gas now needs to be returned to its original state before 
it can do further work. This can only happen if some of the energy (Q2) that 
was initially absorbed is rejected to a cold reservoir at lower temperature T2.

▲  Figure 9 The principle of a heat engine.

hot reservoir
T1
Q1

work = Q1 - Q2
Q2

heat engine

cold reservoir
T2

▲  Figure 8 Isovolumetric change.
V

p

B

A
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The thermal efficiency η of the heat engine will be given by:

η =   useful work done  __  
energy input

   =   W _ 
Q1

   =   
Q1 - Q2 _ 

Q1 
  

In the Carnot cycle we imagine a completely friction-free engine that is 
able to take a gas through a cycle of two isothermal and two adiabatic 
changes as shown in figure 10. 

Starting at point A where the gas is at its highest temperature T1, it 
expands isothermally to B by absorbing energy Q1. The internal energy 
of the gas does not change so all the energy absorbed is doing work.

The gas now expands adiabatically to C where the temperature falls to 
T2. No energy is now being absorbed but the gas still does work on the 
surroundings by losing some internal energy.

During the expansion ABC the area under the two expansion curves 
gives the work done on the surroundings.

At C the gas now needs work being done on it so it is compressed 
isothermally to D and rejects energy Q2. The internal energy does not 
change so the work done on the gas is all rejected as energy.

Finally, the gas is further compressed adiabatically from D back to A. 
The work done on the gas is all used to increase the internal energy in 
returning the gas to temperature T1.

During the compression CDA the area under the two compression curves 
gives the work done by the surroundings on the gas. The area enclosed 
by the curve is the net work done by the gas on the surroundings 
in one cycle.

The Carnot heat engine is said to be reversible. This is a theoretical 
concept in which, at any part in the cycle, the system can be returned 
to a previous state without any energy transference – this must be done 
infinitely slowly and means that the system returns exactly to its initial 
state at the end of the cycle. It can be shown that, for the Carnot cycle 
(and all reversible heat engines), that the thermal efficiency is given by

η =   
T

1- T2 _ 
T1

   = 1-  T2 _ 
T1

  

This is written in the IB Physics Syllabus as 

ηCarnot = 1-   
Tcold _ 
Thot

  

Note
 ● Temperatures used here must be 

in kelvin.
 ● This is the equation for the maximum 

efficiency of a heat engine.
 ● The maximum efficiency is increased 

by raising the temperature of the 
hot reservoir and/or by lowering the 
temperature of the cold reservoir.

 ● The maximum efficiency can never 
equal 100% as this would mean that 
the cold reservoir was at absolute 
zero or else the hot reservoir was 
at an infinitely high temperature 
– neither of these requirements is 
possible.

 ● In practice thermodynamic cycles 
can be achieved but none will be 
more efficient than the Carnot cycle.

▲  Figure 10 The Carnot cycle.
V

p

A

D

C

B

Q2

Q1
T1 > T2

T1

T2

Worked example
A quantity of an ideal gas is used as the 
working substance of a heat engine. The cycle 
of operation of the engine is shown in the p-V 
graph opposite. Change CA is isothermal.

The temperature of the gas at A is 300 K.

a) During the change AB the change in internal 
energy of the gas is 7.2 kJ.

  (i) Calculate the temperature, at B, of the gas.

(ii) Determine the amount of energy 
transferred during change AB.

0
0 2 4 6

4.0

8.0

12.0

V I10-3 m3

p I105 Pa

C

BA
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b) State why, for the change BC, the change in 
the internal energy of the gas is numerically 
the same as that in AB.

c) Calculate:

  (i) the net work done in one cycle

(ii) the efficiency.

Solution
a)   (i)  For an ideal gas   

pV
 __ T   = constant

As pressure is constant   
VA __ TA

   =   
VB __ TB

   =>TB 

=   
VB × TA ______ VA

   =   6.0 × 10-3 × 300
  _____________ 

2.0 × 10-3   = 900 K

(ii)  W  = p:V  
= 12.0 ×105 ×  ( 6.0 × 10-3 - 2.0 ×10-3 )   
= 4.8 kJ

The increase in internal energy = 7.2 kJ 
so the energy transferred to the gas must 
equal 4.8 + 7.2 = 12.0 kJ.

b) The gas undergoes the same change in 
temperature and, as the gas is ideal, this 
means that the change in internal energy 
depends solely on the temperature.

c)   (i)  We need to find the area enclosed by 
the cycle.

Each large square is equivalent to  
1.0 × 10-3 × 2.0 × 105 J = 200 J

Estimate that there are 14 large squares, 
making a total 2800 J or 2.8 kJ.

(ii) η =   W _ 
Q1

   =   2.8 _ 
12

   = 0.23 or 23%

Worked example
The diagram shows the relationship between 
the pressure p and the volume V of the working 
substance of a refrigerator for one cycle of its 
operation. The working substance is a volatile 
liquid which is made to vaporize and condense.

V

p
A

DC

B

a) The working substance at point C of the cycle 
is entirely in the liquid phase.

Suggest the reason why both the changes from 
CD and AB are isothermal, isobaric changes.

b) State during which process of the cycle energy 
is absorbed from the cold reservoir and during 
which process energy is transferred to the hot 
reservoir.

c) State how the value of the work done during 
one cycle may be determined from the pV 
diagram.

Heat pumps and refrigerators 
Heat pumps and refrigerators act in a similar manner to a heat engine 
working in reverse. They take in energy Q2 at a low temperature T2, 
do work W on the working substance and reject energy Q1 at the high 
temperature T1. Although they are very similar in their working the heat 
pump is designed to add energy to the high temperature reservoir (for 
example, the room being heated by extracting energy from the ground) 
whilst the refrigerator is designed to remove energy from the low 
temperature reservoir (the cool box). Air conditioning units are another 
example of heat pumps.

▲  Figure 11 The principle of a heat 
pump and refrigerator.

hot reservoir
T1

W = Q1 - Q2

Q2

Q1

refrigerator or
heat pump

cold reservoir
T2
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The second law of thermodynamics
Although this is a fundamental law that has its origins in practical 
experiences, the second law of thermodynamics can be stated in a 
number of different ways. The first law of thermodynamics equates 
work to energy, the second law deals with the circumstances in which 
energy can be converted to work. Each of the statements is equivalent 
to the others and communicates an expression of the impracticability of 
reversing real thermodynamic processes.

The Clausius version of the second law can be stated as:

It is impossible to transfer energy from a body at a lower 
temperature to one at higher temperature without doing work 
on the system.

The Kelvin (or Kelvin-Planck) version states:

It is impossible to extract energy from a hot reservoir and 
transfer this entirely into work.

If the second law was not true it would be possible to power ships by 
energy extracted from the sea – this cannot be done because there needs 
to be a cold reservoir into which the difference between the energy 
extracted and the work done would be rejected. When, after a time, 
we return to full cup of coffee we do not expect to find it at a higher 
temperature than when it was made. Energy passes from the hot coffee 
to the cooler room until the two bodies are at the same temperature – if 
we wanted the coffee to heat up we would have to transfer energy to it 
using a heating coil or else do work on it by stirring it rapidly!

The internal energy of an object is related to the random motion of the 
molecules of the object. By trying to convert this internal energy into 
work we are trying to convert random motion into something more 
ordered. It is impossible to do this because we cannot take control over 
the individual motion of a colossal number of molecules.

Entropy
A third version of the second law of thermodynamics involves the 
concept of entropy S. This quantity can be defined (for a reversible 
change) in terms of the equation

:S =   
:Q

 _ 
T

  

Solution
a) Both changes are isobaric and isothermal 

because there is no pressure or temperature 
change. Each of the changes occurs because of 
a change of phase of the working substance. 
From C to D the liquid vaporizes and from A 
to B the vapour condenses.

b) Energy is absorbed during C to D as the liquid 
needs energy to vaporize and it is ejected during 
A to B in order for the vapour to condense.

c) The area enclosed by the cycle will always 
indicate the net amount of work – in this case it 
is work done on the system (working substance).
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:S is the increase in entropy

:Q is the energy absorbed by the system

T is the temperature in kelvin at which this occurs.

Entropy is a scalar quantity and has units of joule per kelvin (J K−1)

Worked example
0.20 kg of ice at 0 °C melts. The specific latent heat of fusion of water 
is 3.3 × 105 J kg−1. Calculate the change in entropy of the ice as 
it melts.

Solution
Energy needed to melt the ice = mL = 0.20 × 3.3 × 105 = 6.6 × 104 J

:S =   
:Q

 _ 
T

   =   6.6 × 104
 _ 

273
   = 2.4 × 102 J K−1

Entropy as a measure of disorder
We have now seen that for real processes the entropy of the universe 
increases – in fact this is another way of stating the second law of 
thermodynamics first suggested by Boltzmann.

Real processes always degrade the energy, i.e. change the energy from 
being localized to being more spread out. If some hot water is mixed 
with cold water in a completely insulated container there is no loss 
of energy, however, the opportunity to use the energy to do work is 
now restricted by having cold water. It is not a sensible proposition to 
separate the most energetic molecules to produce some hot water and 
some cold water from the mixture – the energy has changed from the 
localized situation in the hot water molecules to a situation where it is 
spread-out amongst all of the molecules.

Imagine having 10 coins all placed heads up on the table. The coins are 
picked up and shaken before being returned to the table, without looking 
to see where they are placed; some coins will, therefore, have heads up 
but others will have heads down. The coins have moved from an ordered 
state to a disordered state. There is a small likelihood  (   (   1 __ 2   )  10

  =   1
 ____ 1024   )  that 

the coins would be replaced with all 10 heads up. By increasing the 
number of coins from 10 to 100 it decreases the likelihood of them all 
being heads up to 1 in 1.3 × 1030, and, this really isn’t likely to happen! 
The coin experiment mirrors nature in that a system does not naturally 
become more ordered. We have now seen that the entropy of a system 
naturally increases with the disorder of the system. This is not coincidental 
since it can be shown that entropy is a measure of the disorder of a system.

▲  Figure 12 Ten coins all “heads up”.

Note
 ● T is always positive so when 

energy is absorbed by a 
system and :Q is positive 
there will be a positive 
change in entropy – an 
increase. When energy is 
rejected by the system the 
entropy will decrease.

 ● For an adiabatic change  
:Q = 0 and so :S = 0

 ● A substance taken through 
a complete reversible cycle 
will undergo no change in 

entropy as η = 1-   
T2 ____ T1

   = 

1-   
Q2 ____ Q1

   this means   
Q1 ____ T1

   =   
Q2 ____ T2

  
 ● All heat engines reject 

energy to the surroundings 
and generate an overall 
increase in entropy of the 
universe.
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TOK

The arrow of time

Many scientists have discussed increasing entropy as 
representing the "arrow of time". Because the disorder 
of a large system will increase with time, finding such a 
system with increased order would be equivalent to time 
going backwards. Perpetually increasing entropy is

contrary to Newton's laws of motion in which the change 
of state of a system is equally predictable whether we go 
forwards or backwards in time.

Does this statement of the Second law prevent the 
possibility of time travel?

Worked example
a) State what is meant by an increase in entropy of 

a system.

b) State, in terms of entropy, the second law of 
thermodynamics.

c) When a chicken develops inside an egg, 
the entropy of the egg and its contents 
decreases. Explain how this observation 
is consistent with the second law of 
thermodynamics.

Solution
a) When the entropy increases, there is an 

increase in the degree of disorder in the system.

b) The total entropy of the universe increases.

c) Entropy of the surroundings must increase 
more than the decrease of entropy in the 
developing egg. The energy generated by the 
biochemical processes within the egg becomes 
more spread out as a consequence of some 
passing into the surroundings.
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B.3 Fluids and fluid dynamics (AHL)
Understandings

 ➔ Density and pressure
 ➔ Buoyancy and Archimedes’ principle
 ➔ Pascal’s principle
 ➔ Hydrostatic equilibrium
 ➔ The ideal fluid
 ➔ Streamlines
 ➔ The continuity equation
 ➔ The Bernoulli equation and the Bernoulli effect 
 ➔ Stokes’ law and viscosity
 ➔ Laminar and turbulent flow and the Reynolds 

number

  Applications and skills
 ➔ Determining buoyancy forces using 

Archimedes’ principle
 ➔ Solving problems involving pressure, density 

and Pascal’s principle
 ➔ Solving problems using the Bernoulli equation 

and the continuity equation
 ➔ Explaining situations involving the Bernoulli 

effect
 ➔ Describing the frictional drag force exerted on 

small spherical objects in laminar fluid flow
 ➔ Solving problems involving Stokes’ law
 ➔ Determining the Reynolds number in simple 

situations

Equations
 ➔ Buoyancy force: B = ρfVf g
 ➔ Pressure in a fluid: p = p0 + ρf gd
 ➔ Continuity equation: Av =constant
 ➔ The Bernoulli equation:  

  1 ___ 2   ρv2 + ρgz + p = constant
 ➔ Stokes’ law: FD = 6πηrv

 ➔ Reynolds number: R =   vrρ _ η  

  Nature of science
Fluids in motion
The study of the transportation of mass is 
very important in medicine and engineering. 
Knowledge of how the velocity and pressure 
changes throughout a moving fluid is vital in 
our understanding of many physical processes, 
including how blood flows around the body, 
how aircraft fly, and how jet engines operate. 
The visualization of fluid flow can be extremely 
appealing and has been used extensively in the 
visual arts.
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Introduction
The gaseous and liquid states of matter are jointly known as fluids – 
substances that can flow and take the shape of their containers. There 
are important differences between gases and liquids:

 ● It is easy to compress a gas but liquids, like solids, are almost 
incompressible.

 ● Gases are not restricted by a surface but liquids are – you can have 
half a cup of coffee but not half a cup of air! The most energetic 
molecules may, however, be able to break through the surface to form 
a vapour above the liquid.

Although this topic is called fluids and fluid dynamics, it is almost 
entirely restricted to idealized fluids – those that cannot be compressed, 
are non-viscous, and flow in a steady manner. These properties are best 
represented by a low viscosity liquid, such as water, and not by a 'sticky' 
one, such as oil (which has much internal friction).

Static fluids – density and pressure
The density ρ of a substance is given by the ratio of the mass m of the 
substance to the volume V of the substance:

ρ =   m _ 
V

  

Pressure is the ratio of the perpendicular contact force acting on a 
surface to the area of the surface:

p =   F _ 
A

  

Although the direction of force is at right angles to the surface on which 
it acts, pressure is a scalar quantity and acts in all directions; with the 
force in newton and the area in metres squared, pressure is measured 
in pascal (Pa). In a fluid, pressure is found to increase with depth and, 
at a given depth, the pressure is found to be equal in all directions. This 
results in a perpendicular force acting on any surface at a given depth. If 
this was not the case, any pressure differences would cause the liquid to 
flow until the pressure was constant. 

Consider a cylinder of height h and base area A in a fluid of density ρ as 
shown in figure 2 – the top of the cylinder is at the surface of the fluid. 
The forces acting on the bottom of the cylinder are the weight W of the 
column of liquid above it acting downwards and the pressure force pA 
from the liquid acting upwards. These are in equilibrium so 

W = pA

W = mass of cylinder × gravitational field strength = mg, this means that

W = Ahρg = pA

and therefore

p = hρg

In a liquid that is not in a sealed container the atmospheric pressure 
p0 will also act on the liquid surface. This makes the total pressure p at 
depth h become hρg + p0

p = hρg + p0

▲  Figure 2 Pressure in a fluid.

h

cross-sectional
area A

fluid of
density ρ

pA

W

▲  Figure 1 Definition of pressure.

force F

p =

area A

F
A
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Pascal’s principle
This principle says that the pressure applied at one point in an 
enclosed fluid under equilibrium conditions is transmitted equally 
to all parts of the fluid. The principle allows hydraulic systems to operate. 
For example, the hydraulic jack is used to raise heavy objects such as cars. 

A small force Fx applied to a piston of small cross-sectional area Ax produces 
a pressure Px in a liquid such as oil. This pressure is communicated through 
the liquid so that it acts on a second, larger piston of cross-sectional area Ay. 
This will then produce a larger force Fy so that

px =   
Fx _ 
Ax

   =   
Fy

 _ 
Ay

  

The device cannot amplify the energy, so the distance moved by Fx must 
be far more than that moved by Fy in order to conserve energy (work 
being force × distance).

Archimedes’ principle
When you dive into a swimming pool you quickly feel the buoyancy 
force of the water acting on you. The magnitude of this upward force 
is expressed by Archimedes' principle; this says that for an object 
wholly or partially immersed in a fluid there will be an upward 
buoyancy force acting on the object which is equal to the weight 
of fluid that the object displaces. The buoyancy force is often known 
as the upthrust. 

We can deduce this relationship by considering a cylinder of height h 
and cross-sectional area A fully immersed in a liquid of density ρ. The 
pressure is px at the top and (px + :px) at the bottom. The latter is higher 
because of the extra depth of fluid. The forces on the top and bottom 
of the cylinder will be pxA and (px + :px)A. We ignore the atmospheric 
pressure because it acts on both the top and the bottom of the cylinder. 

  Nature of science
Measuring density of immiscible liquids using a U-tube
When two liquids that do not mix are added to 
the limbs of a U-tube, their levels settle in a way 
that is dependent on their relative densities. At 
the level X–Y in figure 3 the pressure will be 
constant, so 

p0 + h
A
ρ

A 
g = p0 + h

B
ρ

B 
g

Cancelling p0 and g gives

h
A
ρ

A
 = h

B
ρ

B

When we know the density of one liquid we are 
then able to calculate that of the second liquid by 
taking a ratio of the heights. This experiment is an 
example of hydrostatic equilibrium.

▲  Figure 4 Hydraulic jack.

Fy

Fx

Ay
Ax

pressure throughout fluid =  px

▲ Figure 3 Hydrostatic equilibrium to measure density.

atmospheric pressure = p0

liquid A
of density
ρA

X Y

liquid B
of density
ρB

▲  Figure 5 Archimedes’ principle.

h
cylinder of 
cross-sectional
area A

fluid of density ρ

pxA

(px + ∆px) A
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The buoyancy force B will, therefore, be the difference between these forces 

B =  ( px + :px ) A - pxA = :pxA

:px = hρg making B = hρgA

V = hA

And so B = ρVg, which is the weight of the fluid displaced by the 
cylinder.

To emphasize that this applies to a fluid, the IB Physics data booklet 
shows this equation as 

B = ρfVf g

Note
When an object is floating:

 ● The buoyancy force acting 
on the object must equal 
the weight of the object.

 ● The buoyancy force will 
equal the weight of fluid 
that is displaced by the 
submerged portion of the 
floating object.

Worked example
A block of wood of mass 50 kg is completely immersed in water. 

The density of the wood is 1.1 × 103 kg m−3 and that of the water  
1.0 × 103 kg m−3

a) Calculate the resultant force on the block.

b) When the block is cut into planks and made into a boat it floats, 
displacing 0.15 m3 of water when empty. Calculate the buoyancy 
force acting on the boat.

Solution
a) The weight of the block = mg = 50 × 9.81 = 4.90 × 102 N

Buoyancy force = weight of water displaced = B = ρfVf  g

Vf = volume of block =   m _ ρ   =   50 _ 
1.1 × 103

   = 0.045 m3

B = ρfVf g = 1.1 × 103 × 0.045 × 9.81 = 4.86 × 102 N

The overall force is, therefore,  
4.90 × 102 - 4.86 × 102 = 4 N downwards

b) The weight of water displaced by the boat  
= 0.15 × 1.0 × 103 × 9.81 = 1.5 × 103 N

So B = 1.5 × 103N (around three times the original value)

Fluid dynamics
There are many instances of fluid flow. Examples include the smoke from 
a fire, hot water in a central heating system and wind spinning around in 
a tornado. Fluid dynamics also deals with solid objects moving through 
stationary fluids. An ideal fluid offers no resistance either to a solid moving 
through it or it moving through or around a solid object. An ideal fluid is 
said to be non-viscous. We will start our discussion of fluid dynamics by 
considering a non-viscous, incompressible fluid in a stream tube.

Streamline (or laminar) flow
Ideal fluids flow in a very predictable way. We can represent the paths 
taken by particles within a fluid using the concept of streamlines. In 
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streamline flow, the motion of a particle passing a particular point is 
identical to the motion of all the particles that preceded it at that point. 
Streamlines will be close together when the particles move quickly and 
further apart when they move more slowly. A group of streamlines is 
known as a stream tube. Fluid never crosses the surface of a stream tube. 
Figure 6 shows the streamlines in a tube that narrows and widens again.

▲  Figure 6 Streamlines in a tube that narrows.

The continuity equation
With steady flow the mass of fluid entering one end of a stream tube 
must be equal to that leaving the other end. The stream tube may be a 
physical tube or pipe or it may be a series of streamlines within the fluid.

▲  Figure 7 Streamlines at the boundary of a stream tube.

Ax

Ay

Y
X

vx

vy

For a length of stream tube the fluid enters at X through an area of 
cross-section Ax at velocity vx and leaves at Y through an area of cross-
section Ay with velocity vy.

In a short time, :t, the fluid leaving X will travel a distance vx:t – thus 
meaning that a volume Axvx:t and a mass Axvxρ:t enter the tube in  
this time.

In the same time a mass Ayvyρ:t will leave the stream tube through Y.

As there cannot be any discontinuities in an ideal liquid these masses 
must be equal so 

Axvxρ:t = Ayvyρ:t meaning that when ρ:t is cancelled from both  
sides Axvx = Ayvy

We see from this that

Av = constant

This is known as the continuity equation – and the product Av is 
known as the volume flow rate (or, sometimes, just flow rate). 
Volume flow rate is measured in units of m3 s−1.
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The Bernoulli equation
This equation is a generalized equation which deals with how a fluid 
is able to both speed up and rise to a higher level as it passes through a 
stream tube. The equation is derived from the conservation of energy 
and, although the derivation is shown below, you will not need to repeat 
this in an IB Physics examination. In your data booklet the Bernoulli 
equation is written as

  1 __ 2   ρv 2 + ρgz + p = constant

Here ρ is the fluid density, v is its speed, g the gravitational field strength, 
z the height above a chosen level, and p the pressure at that height. You 
will notice in the equation that, if ρ was replaced by m in each of the first 
two terms, we would have kinetic energy and potential energy.

As density ρ is equal to   m __ V   , multiplying the Bernoulli equation by V 
would give

  1 __ 2   mv 2 + mgz + pV = different constant

This has now turned the Bernoulli equation into the conservation of 
energy – because it implies that the kinetic energy + gravitational 
potential energy (z is height here) + work done (remember the first law 
of thermodynamics) remains the same. The equation in the Bernoulli 
form expresses each of the terms as an energy density (energy per unit 
volume) and is measured in J m−3. This equation also tells us that, for 
any point in a continuous steady flow, the total of all the quantities will 
remain the same: if the pressure changes then one or more of the other 
terms must also change.

Derivation of the Bernoulli equation

▲  Figure 8 The Bernoulli equation.

Fy = pyAy

Fx = pxAx

X

Y

X'

Y'

hx

hy

vx

vy
∆ x

∆y

Consider a fluid entering and leaving a pipe that becomes wider and 
higher. It is obvious that the pressure at the inlet must be greater than 
the pressure at the outlet. When the inlet pressure is px the force Fx at 
the inlet is pxAx and that at the outlet is pyAy.

In a short time, :t, the fluid entering the pipe at X moves a short 
distance :x from X to X′ at velocity vx. This means that the work done 
on the fluid is Fx :x = pxAx :x.

In the same time, the same mass of fluid moves a distance :y in moving 
from Y to Y′ and the work done will be Fy :y = pyAy:y.
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The net work done will be pxAx :x - pyAy :y 

As this happens in the same time, :t, and because equal masses must 
mean equal volumes for an ideal fluid of constant density, this gives

Ax :x = Ay:y = V thus net work done = V ( px- py ) 
the change of kinetic energy for this mass =   1 __ 2   m ( vy

2 - vx
2 ) 

and the change in potential energy = mg ( hy - hx ) 
Overall, for the conservation of energy: 

work done = gain in kinetic energy + gain in gravitational potential energy 

so

V ( px - py )  =   1 __ 2  m ( vy
2 - vx

2 )  + mg ( hy - hx ) 
Dividing by V and collecting terms for x and y we get 

px +   1 __ 2   ρvx
2 + ρghx = py +   1 __ 2   ρvy

2 + ρghy

This is the Bernoulli equation.

In the IB Physics data booklet the symbol z is used for heights.

Applications of the Bernoulli equation
From the Bernoulli equation it follows that, when a fluid speeds up, 
there must be a decrease in either the pressure or the gravitational 
potential energy or both of these. When the flow is horizontal there can 
be no change in the gravitational potential energy, so there must be a 
reduction in pressure. Aerofoils, used on aircraft wings and mounted on 
racing cars, are shaped so that the air flows faster over the more curved 
surface than over the flatter surface – in most cases it is the aerofoil that 
moves, but the relative effect is identical. The faster moving air produces 
a lower pressure and less force acts on that section of the aerofoil – this 
causes the aerofoil to be forced upwards (a lift) or downwards (a down 
thrust) depending on which way it is positioned. The effect of the shape 
of the aerofoil causes the streamlines to be closer together on the curved 
side and to be further apart on the flatter side.

shorter path, low velocity

longest path, high velocity

streamlines
direction of 
air flow

▲  Figure 9 The aerofoil.

Venturi tubes
When a tube narrows, the speed of the fluid increases at the narrow 
part of the tube before returning to the original value at the wider part. 
This means that the pressure is higher at the edges of the tube and lower 
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in the centre. This is the principle of the Venturi gauge, which is used 
for measuring fluid speeds as demonstrated in figure 10. The higher air 
pressure has a greater effect on the right limb of the manometer. This 
pressure difference can be calibrated to measure relative fluid speeds and 
flow rates.

wide low
speed

narrow high
speed

lower pressure higher pressure

height proportional
to pressure difference

▲  Figure 10 Venturi gauge.

Pitot static tubes 
Pitot static tubes are used for measuring the velocity of a fluid of 
density ρ. The tubes X and Y must be on the same streamline. The 
opening of tube X is perpendicular to the direction of fluid flow but the 
opening of tube Y is parallel to the flow. The fluid can then flow into 
the opening of tube Y. The two tubes must be far enough apart for tube 
X not to affect the velocity at Y. When there is steady flow, no fluid 
particles can move from one streamline to another and so none enter 
tube X. Tube X measures the static pressure px. Particles will enter tube Y 
where their kinetic energy will be brought to zero.

hx

hy

static
tube

X Y flowing liquid

Pitot
tube

flow direction

velocity = v

▲  Figure 11 Pitot static tubes.
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▲  Figure 12 Leaking can demonstration.

X

Y

hx

Applying the Bernoulli equation to the streamline along X–Y gives 

px +   1 __ 2   ρvx
2 = py

which gives 

vx =  √________
   2 _ ρ    ( py - px )   

As px = hxρg + p0 and py = hyρg + p0 the velocity equation becomes

vx =  √_________
  2g ( hy - hx )   

For an idealized fluid this will be the velocity along the streamline X–Y. 
This arrangement is the one used for measuring the velocity of liquids, 
but it can be adapted to measure the flow of gases. A Pitot tube is installed 
on aircraft wing to measure the speed of the aircraft relative to the air.

Flow out of a container 
You may be familiar with the leaking can demonstration. Figure 12 
shows liquid pressure increasing with depth. This is another application 
of the Bernoulli equation. The line X–Y represents a streamline joining 
water at the surface to a hole in the side of the can. Each of these 
two points will be open to the atmosphere and so they will both be at 
atmospheric pressure. This means that px = py = p0.

The Bernoulli equation becomes:

  1 __ 2   ρvx
2 + ρghx =   1 __ 2   ρvy

2 + ρghy

Here hx is the height above Y and hy = 0. If we assume the container is 
wide enough and the holes small enough for the velocity of the water 
surface to approximate to zero, the equation reduces to

ρghx =   1 __ 2   ρvy
2

Cancelling ρ and re-arranging the equation gives

vy =  √____
 2ghx  

This confirms that the velocity is related to the height of water above 
opening. Viscosity and turbulence have been neglected.

Worked example
The diagram shows a large water tank, open to 
the atmosphere. The tank feeds a pipe of cross-
sectional area 4.0 × 10−3 m2 which, in turn, feeds 
a narrow tube of cross-sectional areas 5.0 × 10−4 
m2. The narrow tube is sealed with a closed valve. 
The water surface in the tank is 12.0 m above the 
centre of the two tubes.

density of water = 1.00 × 103 kg m−3

atmospheric pressure = 1.0 × 105 Pa

X

12.0 m

Y valve

tank

Z
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Viscosity of fluids
We have seen that ideal fluids are non-viscous. Real fluids do, of course, 
have viscosity with some fluids being more viscous than others. For a viscous 
fluid in laminar flow, each layer impedes the motion of its neighbouring 
layers. In a pipe, the layers adjacent to the inner walls of the tube are 
stationary while the layers in the centre of it travel at the highest speed.

The viscosity of fluids is highly temperature dependent, with most 
liquids becoming less viscous at higher temperatures and gases becoming 
more viscous at higher temperatures. The viscosity of a fluid is measured 
in terms of its coefficient of viscosity η (at a given temperature). This is a 
quantity measured in units of pascal second (Pa s).

Stokes’ law
When a sphere, of radius r, falls slowly through a viscous fluid it pulls 
cylindrical layers with it. Under these conditions of streamline flow, the 
sphere experiences a viscous drag force FD. This is given by 

FD = 6πηrv 

where v is the velocity of the sphere and η is the coefficient of viscosity 
of the fluid. If the sphere is contained in a tube, the tube would need to 
be very wide for Stokes’ equation to apply.

When a small metal ball is released in oil, the ball will initially accelerate 
until the drag force (plus the buoyancy force) is equal to the weight of 
the ball – the ball will then travel at its terminal speed so 

6πηrvt +   4 __ 3   πr3 ρg = mg

a) Calculate the pressure at Y.

b) Calculate the pressure at Z.

c) The valve is now opened so that water leaves 
the system. The pressure at the open valve is 
now atmospheric.

    (i) Determine the velocity of the water at Z.

  (ii) Calculate the velocity of the water at Y.

(iii) Calculate the pressure at Y.

Solution
a)  and b) The pressure at Y and Z will be  

equal because they are at the same level.  
The pressure will be p = p0 + ρf  gd  
= 1.0 × 105 + (1.00 × 103 × 9.81 × 12.0)  
= 2.18 × 105 Pa ≈ 2.2 × 105 Pa

c) (i)  Assuming the surface area is large  
enough for the kinetic energy at X to be 
zero we have shown that  
v =  √___

 2gh   =  √
_____________

  2 × 9.81 × 12.0    
   = 15.3 m s−1

Note
That this is not an equation given in the IB Physics data 
booklet. If you were tested on it, the question would 
need to be structured in order to lead you through the 
development of this equation.

  (ii)  Using the continuity equation

Ayvy = Azvz

4.0 × 10−3 × vy = 5.0 × 10−4 × 15.3

vy = 1.9 m s−1

(iii)  Using the Bernoulli equation between 
Y and Z (they are on the same level so 
there will be no difference in gravitational 
potential energy).

pz +   1 __ 2   ρvz
2 = py +   1 __ 2   ρvy

2 

and as pz = p0 then py = p0 +   1 __ 2   ρ ( vz
2 - vy

2 ) 
py = 1.0 × 105 +   1 __ 2   × 1.00 × 103  ( 15.32 - 1.92 )   
= 2.2 × 105 Pa
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  Investigate!
Measuring the coefficient of viscosity of oil
Using the apparatus shown in figure 13 you can 
investigate Stokes’ equation. 

 ● Use six or more balls of different radii (but 
made of the same material) – small balls 
should reach the terminal velocity in a few 
centimetres if you use a viscous liquid such as 
engine oil or glycerol.

 ● You will need to know the densities of the 
liquid and the material of the balls. 

 ● You will need to make sure that the balls 
reach their terminal velocity – use a long, wide 
transparent cylinder.

 ● If you use steel balls, a magnet can be used to 
remove them from the oil.

 ● Think about ways of releasing the balls 
consistently.

 ● Think how you are going to measure the 
diameter of balls accurately. ▲  Figure 13 Stokes’ law investigation.
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or 

6πηrvt +   4 __ 3   πr3 ρg =   4 __ 3   πr3 σg

and 

vt =   
2r 2 g(σ - ρ)

  __ 
9η  

Here vt is the ball’s terminal speed, ρ is the density of the fluid and σ is 
the density of the ball.

Turbulent flow
At low velocities fluids flow steadily and in layers that do not mix – 
because the fluid is viscous the layers travelling closest to the walls will 
move slowest as shown in figure 14. When the fluid velocity is increased 
or obstacles project into the fluid the flow becomes turbulent. The flow 
is no longer laminar and the particles in the different layers mix with 
each other. This causes the smooth streamlines, seen during laminar 
flow, to break up and form eddies and vortices.

It is not easy to predict when the rate of flow is sufficiently high to cause 
the onset of turbulence. A quantity, known as the Reynolds number R, 
gives a practical "rule of thumb" that can be used to predict whether 
the flow is great enough to become turbulent. This is a dimensionless 
quantity which is calculated from the equation:

R =   
vrρ _ η  

▲  Figure 14 Laminar and turbulent flow.

turbulent

laminar
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For a fluid v is velocity, r the radius of the pipe (or other dimension 
for a river, length of a plate etc.), ρ the density and η the coefficient of 
viscosity. Using this definition a Reynolds number that is less than 1000 
is taken to represent laminar flow. If the Reynolds number is greater 
than 1000, it does not mean that the flow will be turbulent because 
there is a transition stage between the fluid being laminar and becoming 
turbulent. It is generally accepted that, using this definition of the 
Reynolds number, a value of above 2000 will be turbulent.

Worked example
Oil flows through a pipe of diameter 30 mm with a velocity of  
2.5 m s−1. The oil has viscosity 0.30 Pa s and density of 890 kg m−3

a) Determine whether or not this flow is laminar.

b) Calculate the maximum velocity at which the oil will flow through 
the pipe and still remain laminar. 

Solution
Coefficient of viscosity is often just called "viscosity".

a) R =   
vrρ _ η   =   2.5 × 15 × 10−3 × 890   ___  

0.30
   = 111

This value is below 1000 so the flow is laminar.

b) v =   
Rη _ rρ   =   1000 × 0.30  __  

15 × 10−3 × 890
   = 22 m s−1
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B.4 Forced vibrations and resonance (AHL)

  Nature of science
Risk assessment and resonance
Resonance can be a useful phenomenon and, 
as discussed in this sub-topic, it is utilized in 
many walks of life. Despite this, the possibility 
of one system interacting with another has its 
drawbacks – loud music with heavy bass notes 
or the noise during construction work can carry 
over long distances and can, therefore, impinge 
upon people’s lives. Most nations promote the 
inclusion of resonance hazards during risk 
assessment applicable when carrying out building 
or maintenance work. For example, devising safety 
measures such as incorporating sound insulation 
in wall cavities or installing double or triple glazing 
to shield from the effects of unwanted sounds 
from outside.

Understandings
 ➔ Natural frequency of vibration
 ➔ Q factor and damping
 ➔ Periodic stimulus and the driving frequency
 ➔ Resonance

  Applications and skills
 ➔ Qualitatively and quantitatively describing 

examples of under-, over-, and critically-
damped oscillations

 ➔ Graphically describing the variation of the 
amplitude of vibration with driving frequency 
of an object close to its natural frequency of 
vibration 

 ➔ Describing the phase relationship between 
driving frequency and forced oscillations

 ➔ Solving problems involving Q factor
 ➔ Describing the useful and destructive effects of 

resonance 

Equations
Quality factor equations

 ➔ Q = 2π    energy stored
  ______  

energy dissipated per cycle
  

 ➔ Q = 2π × resonant frequency ×   
energy stored

 ___ 
power loss

  

Introduction
All mechanical systems, and some electrical systems, will vibrate when 
they are set in motion. We have seen this in Sub-topics 4.1 and 9.1 
when studying simple harmonic motion. More intricate examples of 
oscillations, that are not simple harmonic, include the motion of a tall 
building in the wind, the shaking of an unbalanced washing machine 
as its drum spins, or the vibrations caused by a car engine misfiring. 
In some instances, the vibrations are useful but, often, the function of 
the system will benefit from being damped – when the amplitude of 
oscillation is restricted. Dampers are increasingly being incorporated in 
tall buildings to restrict potential earthquake damage.

Free vibrations
When a mechanical system is displaced from its rest position and allowed 
to vibrate, without any external forces being applied, it will oscillate at 
its natural frequency f0. Such vibrations are called free vibrations.
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Oscillations and damping
At a given time the amplitude of an oscillation depends on how much 
the system is damped as well as the size of the driving force. This happens 
when an oscillating system experiences a resistive force which causes the 
amplitude of the object oscillating to decay. The resistive force acts in the 
opposite direction to the motion of the system and it increases with the 
speed of the oscillation. This means that the damping force is a maximum 
when the system passes through its equilibrium position as it will have 
a maximum speed at this point (and it will be zero at the maximum 
displacement at which point the system momentarily stops). In opposing 
the damping force, the system must do work and this reduces the energy 
that it stores – causing the amplitude to decay. The resistive nature of the 
force slows the oscillator down which increases the time period (although 
this effect is negligible when a system is lightly damped).

Figure 1 shows how the displacement of an oscillator varies with time 
when there is light damping. This is also known as under-damping. 
The envelope of the curve takes an exponential shape when the 
damping or resistive force is proportional to the speed; this means  
the ratio of the amplitudes at half-period intervals is a constant value  
 (   0.25

 ____ 0.21   ≈   0.21
 ____ 0.18   ≈   0.18

 ____ 0.15   etc. ) .
displacement/m

0

0.05

0.10

0.15

0.20

0.25

-0.20

-0.15

-0.10

-0.05
2 4 6 8 10 12 14 16 18 20 t/s

▲  Figure 1 Under-damped vibration.

Although the amplitude decreases with time, the frequency and time 
period of the oscillator are approximately constant.

Heavier damping may completely stop a system from oscillating. When 
the system is displaced and it returns to its equilibrium position without 
overshooting it, the system is "heavily damped". A system returning to its 
equilibrium position in the shortest possible time is said to be critically 
damped, while a system taking longer than this to return to the equilibrium 
position is over-damped. Critical damping is necessary in many mechanical 
systems – using this type of damping in car suspension systems avoids 
oscillations on uneven surfaces; such oscillations may lead to a loss of control 
and a very uncomfortable ride. For a similar reason, fire doors in buildings 
are often fitted with automatic closers that are critically damped.

  Investigate!
Iteratation with damped SHM

 ● The equation for a velocity 
dependent SHM can be written 
as ma = -kx - bv 

(the symbols having their 
usual meaning and b being the 
damping factor ... a number 
between 0 and 1). 

 ● The term bv should now 
be subtracted from each 
acceleration value in the 
spreadsheet iteration discussed in 
the SHM spreadsheet investigate! 
in sub-topic 9.1(the second box 
in the flow chart is modified to 
an + 1 = -kxn - bvn). 

 ● You should try out different 
values for b in order to judge 
the impact that it has on the 
damping of the shm.

 ● An example of this spreadsheet 
is provided on the webpage.
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amplitude

time

critically damped

under-damped

over-damped

▲  Figure 2 Variation of amplitude with time for different degrees of damping.

These curves can be modelled by adding a velocity-dependent damping 
term to the simple harmonic motion equation.

Forced vibrations
When an external force acts on a mechanical system, the force may have its 
own frequency of vibration, which may affect the motion of the mechanical 
system. A simple example of this is a child on a swing. When the child is left 
to his own devices he will only be able to swing at a particular frequency 
which is a property of the child–swing system. Pushing the child provides an 
external force that causes the motion of the swing to change. The amplitude 
of the swing will only increase if the pushes are applied at a rate matching 
the swing frequency. When the applied frequency does not match the swing 
frequency the amplitude might decrease. Forced vibrations are those 
that occur when a regularly changing external force is applied to a system 
resulting in the system vibrating at the same frequency as the force.

Resonance
When a mechanical system is forced to oscillate by a driving force that has 
the same frequency as the natural frequency of the mechanical system, it 
will vibrate with maximum amplitude. This is called resonance. When the 
frequency of the driving force becomes closer to the natural frequency of 
the system the amplitude of the oscillation will be greater. This can be seen 
in figure 4, which shows the variation with the driving frequency of the 
system’s amplitude. The degree of damping alters the system’s amplitude 
response. Resonance occurs in many physical systems ranging from tuning 
radios to the tidal effects of the Moon and the function of lasers.

Q factor
The Q or "quality" factor is a criterion by which the sharpness of 
resonance can be assessed. It is defined by the relationships:

Q = 2π   
energy stored

  ___   
energy dissipated per cycle

    

   = 2π × resonant frequency ×   
energy stored

  __  
power loss

  

This is an arbitrary definition with the 2π being included so that using the 
equation with a real system becomes simplified! In the equations for many 
rotating or oscillating systems the 2π factor will cancel ...making estimation 
of Q factors straightforward. The two definitions are equivalent relationships:

▲  Figure3 Child being pushed on 
swing.

Note
 ● For zero damping the 

amplitude would be infinite, 
however, this could not 
happen in practice because 
infinite amplitude would 
require an infinite amount 
of energy to be supplied! 

 ● As the damping increases 
the peak moves slightly 
to the left of the natural 
frequency.

 ● Increased damping 
reduces the sharpness of 
the resonance peak.
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▲  Figure 4 Effect of damping on resonance.
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writing Es for energy stored, Ed for the energy dissipated per cycle, f0 for 
the resonant frequency, T0 for the resonant period, P for power loss  
(= power dissipated) and E for the energy lost in time t.

The second relationship becomes

Q = 2πf0   
Es

 __ P   = 2π   1 _ 
T0

     
Es _ 
  E _ t  

  

= 2π   t _ 
T0

     
Es _ 
E

  

The factor   t __ T0

   =   time considered
  ________________  

time for one oscillation
   = n (number of oscillations)

So Q = 2πn  
Es

 __ E  

= 2π   
Es

 __ 
  E __ n  
   = 2π  Es __ Ed

  

or in words Q = 2π   
energy stored

  ___________________  
energy dissipated per cycle

   

This is the first relationship.

The Q factor is a numerical quantity and has no unit. A system with a high Q 
factor is lightly damped and will continue vibrating for many oscillations as 
the energy dissipated per cycle will be small. As a rule of thumb, the Q factor 
is approximately the number of oscillations that the system will make before 
its amplitude decays to zero (without further energy input). The larger the 
Q factor, the sharper the resonance peak on the graph of amplitude against 
driving frequency. A high quality factor means a low loss of energy.

For light damping Q = mω/b where b is the damping factor relating the 
resistive force Fr to the speed v: Fr = - bv

Some typical values of Q factors are:

Oscillator Q factor

critically damped door 0.5

loaded test tube oscillating in water 10

mass on spring 50

simple pendulum 200

oscillating quartz crystal 30 000

Worked example
An electrical pendulum clock has a period of 1.0 s.  
An electrical power supply of 25 mW maintains 
its constant amplitude. As the pendulum passes  
its equilibrium position it has kinetic energy of  
40 mJ.

a) Explain how these quantities apply to the Q 
factor relationship.

b) Calculate the Q factor for the pendulum clock.

Solution
a) The pendulum has a frequency of 1.0 Hz. 

As it is storing 40 mJ, the rate of energy supplied 
must equal the rate at which energy is lost i.e., 
the power is supplied at a rate of 25 mW.

b) Q = 2π × resonant frequency ×   
energy stored

  __  
power loss

  

   = 2π × 1 ×   40 × 10−3
 _ 

25 × 10−3
   

   =10
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The Q factor is an especially important quantity for electrical oscillations 
transmitting radio waves. When selecting radio and television stations it 
is essential that the transmitting and receiving circuits are tuned to the 
same resonance frequency. 

Barton's pendulums
Figure 5 shows an arrangement of pendulums that can be used to 
investigate resonance. The apparatus is known as Barton’s pendulums – 
named after the British physicist, Edwin Barton.

As the diagram shows, the set up consists of a number of paper cone 
pendulums of varying lengths. All are suspended from the same string 
as the brass bob that acts as the "driver" pendulum. When the driver 
pendulum is displaced from its rest position and released, it forces all the 
paper cone pendulums to oscillate with the same frequency, but with 
different amplitudes. 

This is an example of forced oscillations. The "cone" that has the same 
length as the driver pendulum has the greatest amplitude because it 
has the same natural frequency as the driver pendulum. In calculating 
the period using the equation for the period of a simple pendulum, the 
"equivalent length" of each pendulum should be taken from the centre 
of the bob to the horizontal broken line shown on the diagram.

Careful observation shows that:

 ● cone 3 (which has the same length as the driver pendulum) always 
lags behind the driver pendulum by one quarter of period (equivalent 
to 90° or   π __ 2   radian)

 ● the shorter cones (1 and 2) are almost in phase with the driver 
pendulum

 ● the longer pendulums (4 and 5) are almost in anti-phase (180° or π 
radian out of phase) with the driver pendulum.

Figure 6 shows the variation, with forcing frequency, of the phase lag 
for a pair of pendulums. The length of the driver pendulum string is 
adjusted – when it is shorter than the driven pendulum the forcing 
frequency is higher and the driven pendulum will lag behind the driver 
by π radian, etc.

phase
lag/rad

driver leads by half a period

driver leads by quarter of a period

driver and driven in phase

driver frequency

lighter damping

heavier damping

π

π/2

0
f0

▲  Figure 6 Phase relationship for the displacement of a forced vibration.
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5
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▲  Figure 5 Barton’s pendulums.
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  Nature of science
Examples of resonance
In nature, resonance is a very common 
phenomenon having examples in virtually all 
areas of physics. Further examples include:

 ● The human voice uses resonance to produce 
loud sounds from a relatively weak source – 
the vocal cord.

 ● The sound box of musical instruments 
amplifies the energy, causing air in the box to 
resonate at the same frequency.

 ● Ozone in the stratosphere has natural 
frequencies of vibration that match the 
frequency of ultraviolet and absorb this 
radiation.

 ● Microwave cookers emit electromagnetic 
waves that match the natural frequency of 
water molecules in food.

 ● The optical cavities in lasers set up standing 
waves for light in order to produce coherent 
beams. 

 ● MRI (magnetic resonance imaging) scans use 
resonating protons in atoms to provide vital 
information about body cells.

Resonance can have drawbacks as well as benefits, 
for example:

 ● Vibrations in machinery can cause vibrations 
in nearby objects – overtaking mirrors on 
lorries that are idling can be seen to vibrate 
with large amplitude.

 ● Vibration set up by soldiers marching across 
bridges has meant that they are told to "break 
step". In June 2000, London’s Millennium 
Footbridge (figure 7) was found to sway 
alarmingly from the resonances set by 
pedestrians crossing it. Fitting dampers solved 
the problem but failed to prevent the bridge 
being known as "the wobbly bridge".

 ● The Tacoma Narrows Bridge in Washington State, 
USA, collapsed in November 1940 as a result of 
cross winds matching its natural frequency.

▲ Figure 7 The London Millennium Footbridge.

 ● Feedback can be heard at rock concerts – a loud 
howling sound is produced when microphones 
or pickups are too close to loudspeakers, giving 
an uncontrolled amplification of the sound.

  Investigate!
Resonance of a hacksaw blade
Apparatus similar to that shown in figure 8  
can be used to investigate the resonance of a 
hacksaw blade.

 ● An electromagnet is powered by a signal 
generator that behaves as a variable frequency 
ac supply.

 ● The frequency can be varied by adjusting the 
signal generator.

 ● The clamped hacksaw blade will have a natural 
frequency that depends on the length projecting.

 ● The amplitude of the end of the blade can 
be determined using a vertically clamped 
millimetre scale (not shown).

 ● This apparatus can be used to measure 
the variation of amplitude with (a) supply 
frequency f (b) projecting length L.
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 ● The general form of the relationship may be  
x0 = kf n or x0 = kLn

 ● This suggests a log–log graph should generate 
a straight–line graph.

Melde's string offers a similar investigation 
when a long metallic wire carries a current in 
a magnetic field (see Sub-topic 4.5):

 ● An alternating small current is set up in  
the wire. 

 ● The wire is placed between the poles of a 
strong U-shaped magnet and is clamped 

at both ends. The magnet is positioned 
somewhere near one end of the wire. 

 ● By changing the tension in the wire the 
natural frequency of the wire will approach 
the frequency of the AC current. 

 ● When resonance is reached, standing waves 
will appear along the wire, the harmonic 
depending on the conditions.

 ● Take care because the wire can become  
red-hot!

signal
generator

hacksaw
blade

G-clamp electromagnet

wooden
blocks

laboratory jackbb y ja

▲ Figure 8 Resonance of a hacksaw blade.
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Questions
1 An object of mass 3.0 kg is attached to a string 

which is wrapped round a thin uniform disc 
of radius 0.25 m and mass 7.0 kg. The disc 
rotates about a horizontal axis passing through 
its centre. Assume the rotation of the disc is 
frictionless.

7 kg

3.0 kg

Calculate:

a) the angular acceleration of the disc when 
the mass is released from rest 

b) the angular acceleration if the force were 
applied by pulling the cord with a constant 
force of 30 N. 

The moment of inertia I of a thin uniform disc 
of mass M and radius R is given by 
I =   1 __ 2   MR2 (5 marks)

2 A skater has moment of inertia 2.85 kg m2 
with her arms outstretched. She rotates with 
an initial angular speed of 2.0 rad s-1 as shown 
in the diagram. By bringing in her arms the 
skater’s moment of inertia reduces to 1.5 kg m2.

For the skater, calculate:

a) her final angular speed 

b) the change in her rotational 
kinetic energy.  (5 marks)

(a) (b)

3 The angular speed of a rotating disc is increased 
from 20 rad s-1 to 85 rad s-1 in a time of 6.0 s 
by a constant torque.  
The disc has mass of 8.0 kg and radius is 
0.35 m. Calculate:

a) the work done by the torque in this time 

b) the average power applied to the disc 
during this time. (The moment of inertia 
of a disc is given by the equation in 
question 1.) (7 marks)

4 (IB) 
The graph shows the variation with volume 
of the pressure of a fixed mass of gas when 
it is compressed adiabatically and also 
when the same sample of gas is compressed 
isothermally.

2.0
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4.0
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B
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a) State and explain whether line AB or AC 
represents the isothermal compression. 

b) On a copy of the graph, shade the area that 
represents the difference in work done in 
the adiabatic change and in the isothermal 
change.

c) Determine the difference in work done, as 
identified in (b). 

d) Use the first law of thermodynamics to 
explain the change in temperature during 
the adiabatic compression. (9 marks)

5 (IB) 
An ideal gas at an initial pressure of 4.0 × 105 Pa 
is expanded isothermally from a volume of  
3.0 m3 to a volume of 5.0 m3.

a) Calculate the final pressure of the gas. 

b) On graph paper, sketch a graph to show the 
variation with volume V of the pressure p 
during this expansion. 

c) Use the sketch graph in (b) to:

(i) estimate the work done by the gas 
during this process

(ii)  explain why less work would be done 
if the gas were to expand adiabatically 
from the same initial state to the same 
final volume. (7 marks)

6 (IB) 
a) State what is meant by isobaric change.

b) The diagram below shows the pressure–
volume (p-V) changes for one cycle of the 
working substance of a refrigerator.

0
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7
6
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4
3
2
1
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9
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12
13

V I10-3 m3

p 
I1

05 P
a

1.6

 On a copy of the diagram above:

(i)  draw arrows to show the direction of 
the changes 

(ii)     label with the letter A an isobaric change

(iii)  label with the letter B the change 
during which energy is transferred to 
the working substance because of a 
temperature difference.

c) Use data from the diagram in (b) to 
estimate the work done during one cycle of 
the working substance.

d) (i)    By reference to entropy change, state 
the second law of thermodynamics. 

(ii)  The cycle of the working substance 
in (b) reduces the temperature inside 
the refrigerator. Explain how your 
statement in (d)(i) is consistent with 
the operation of a refrigerator. 
 (11 marks)

7 A horizontal tube of cross-sectional  
area 3.0 × 10−4 m2 narrows to 1.6 × 10−4 m2. 
Water flows through the tube at a speed of  
0.40 m s−1 at the wider part. 

a) Calculate:

(i)    the volume rate of flow in m3 s−1 
through the tube 

(ii)  the speed of the water in the narrower 
part of the tube. 

b) Explain how the flow of water in the pipe is 
accelerated. (6 marks)

8 The diagram shows a venturi meter which is 
used to measure the flow rate of low-density 
liquid through a horizontal pipe. When the liquid 
is flowing, the mercury manometer is used to 
measure the difference between the pressure of 
the liquid in the pipe at the entrance to the venturi 
meter and that in the throat of the meter:

entrance pipe exit pipe
throat

mercury
manometer 80 mm

liquid
flow
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a) In one measurement the difference  
in levels of the mercury in the 
manometer arms is 80 mm. Calculate  
the pressure difference between the 
liquid in the entrance to the venturi 
meter and that in the throat, expressing 
your answer in pascals. 

 density of mercury = 1.4 × 104 kg m-3

b) the corss-sectional areas of the pipe and 
venturi meter throat are 4.0 × 10-2 m2 and 
1.0 × 10-2 m2 respectively. 

 Determine the ratio of the speed of the 
liquid flowing in the throat of the venturi 
meter to its speed in the entrance pipe.

c) The liquid has a density of 8.0 × 102 kg m-3.

(i)    Use the Bernoulli equation to 
estimate the speed of the liquid in the 
horizontal pipe.

(ii)  Hence estimate the flow rate of the 
liquid in kg s-1.

 (10 marks)

9 a) (i)    Use the continuity equation to show 
that an incompressible liquid moving 
from a wider pipe to a narrower pipe 
must increase its velocity.

(ii)  State Bernoulli’s relation for the flow of 
an incompressible inviscid fluid along a 
horizontal stream line.

b) Figure 1 shows a cross-section through a 
simple laboratory filter pump.

A
D

B

C

▲ Figure 1

The Pressure at C is at atmospheric pressure 
(100 kPa) and the water at C is moving very 
slowely. 

The Pressure at D is 45 kPa. Nozzle B has a 
diameter of 2.0 mm. Calculate

(i) Explain how a flow of water from A to 
C through the pump produces a partial 
vacuum at D.

(ii) Calculate the velocity of the water 
emerging from the nozzle B.

(iii) Calculate the rate, in m3 s-1, at which  
water flows through the pump. 
(density of water = 1000 kg m-3) 
 (13 marks)

10 A spring for which the extension is directly 
proportional to the weight hung on it is 
suspended vertically from a fixed support. 
When a weight of 2.0 N is attached to the 
end of the spring the spring extends by 50 
mm. A mass of 0.50 kg is attached to the 
lower end of the unloaded spring. The mass 
is pulled down a distance of 20 mm from the 
equilibrium position and then released.

a) (i)    Show that the time period of the simple 
harmonic vibrations is 0.70 s.

(ii)  On a sheet of graph paper sketch the 
displacement of the mass against time, 
starting from the moment of release 
and continuing for two oscillations. 
Show appropriate time and distance 
scales on the axes.

b) The mass–spring system described in part 
(a) is attached to a support that can be made 
to vibrate vertically with a small amplitude. 
Describe the motion of the mass–spring system 
with reference to frequency and amplitude 
when the support is driven at a frequency of

(i) 0.5 Hz  (ii) 1.4 Hz

 (8 marks)

11 The Millennium Footbridge in London was 
discovered to oscillate when large numbers of 
pedestrians were walking across it.

a) What name is given to this kind of physical 
phenomenon? 

b) Explain the conditions that would cause 
this phenomenon become particularly 
hazardous?

591
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c) Suggest two measures which engineers 
might adopt in order to reduce the size of 
the oscillations of a bridge. (7 marks)

12 a) A forced vibration could show resonance.

Explain what is meant by:

(i)   forced vibrations 

(ii) resonance. 

b) (i)    Explain what is meant by damping.

(ii)  What effect does damping have on 
resonance? (5 marks)
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  Nature of science
 ➔ Virtual images cannot be formed directly on a 

screen. The technique of ray tracing allows the 
position and size of a virtual image or a virtual 
object to be inferred. This is an example of 
deductive logic in action.

Understanding
 ➔  Thin lenses
 ➔  Converging and diverging lenses
 ➔  Converging and diverging mirrors
 ➔  Ray diagrams
 ➔  Real and virtual images
 ➔  Linear and angular magnification
 ➔  Spherical and chromatic aberrations

  Applications and skills
 ➔  Describing how a curved transparent interface 

modifies the shape of an incident wavefront 
 ➔  Identifying the principal axis, focal point, and 

focal length of a simple converging or diverging 
lens on a scaled diagram

 ➔  Solving problems involving not more than two 
lenses by constructing scaled ray diagrams 

 ➔  Solving problems involving not more than two 
curved mirrors by constructing scaled ray diagrams

 ➔  Solving problems involving the thin lens equation, 
linear magnification, and angular magnification

 ➔  Explaining spherical and chromatic aberrations and 
describing ways to reduce their effects on images

Equations

 ➔ Thin lens equation:   1 _ 
f
   =   1 _ v   +   1 _ u  

 ➔ Power of a lens: P =   1 _ 
f
  

 ➔ Linear magnification: m =   
hi _ 
ho

   = -   v _ u  

 ➔ Angular magnification: M =   
θi _ θo

   

 ➔ Magnification of a magnifying glass: 

Mnearpoint =   D _ 
f
   + 1; Minfinity =   D _ 

f
   

Introduction
Data collection in science often depends on 
using our senses to make an observation. 
Sometimes the image we perceive needs to be 
enhanced in some way. For example, doctors 

may need to “see” inside the human body in 
order to make a diagnosis. This topic deals 
with the physics of imaging in both visual and 
non-visual contexts.

C  I M A G I N G

C.1 Introduction to imaging
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Converging and diverging mirrors 
Topic 4 introduced the rules of reflection at plane surfaces. In this section 
we look at what happens when surfaces are no longer flat. A curved 
reflecting surface allows the rays to be manipulated, leading to images 
of various types formed by mirrors. The shapes of convex and concave 
surfaces are shown in figure 2. 

Mirrors made with these shapes are commonly found in a number of 
situations: as mirrors used for makeup or shaving where a magnified image 
is needed, or as a way for seeing a wide angle of view.

We will mainly consider mirror surfaces that have a spherical profile. Figure 2 
shows what happens when light is incident on both convex and concave 
reflectors that have been formed from the surface of a hollow sphere.

The line that goes through the centre of the mirror surface at 90° to the 
surface is the principal axis.

  Figure 2

Q′

Q

f

R

F

F
P

C

(a) (b)

focal length

principal axis

radius of curvature

concave mirror convex mirror

focal length

C

When rays that are parallel and close to the principal axis are incident 
on a concave mirror then they all reflect through a point known as the 
principal focus F. F is also known as the focal point of the mirror. 
It is easy to see why this has to be the case. The second law of reflection 
tells us that the angle of incidence at the mirror is equal to the angle of 
reflection. The surface of the mirror is part of a sphere (drawn as a circle in 
the two-dimensional diagram) and therefore the line joining the centre of 
the sphere C to the mirror at the point where the light ray is incident is the 
normal to the surface. This defines the angle of incidence i. 

The angle of reflection r must equal i. If the incident ray is close to the 
principal axis then, after reflection, the ray will cross the principal axis at a 
point F that is half way from the pole P of the mirror to the centre of the 
sphere. The distance from F to the pole is known as the focal length f. 

When the distance between the principal axis and the incident ray is small, 
f is half the radius of curvature of the mirror. We shall look at what happens 
when incident rays lie well away from the principal axis later. For now, our 
assumption is always that the distance between rays and the axis is small.

When a convex mirror is used (figure 2(b)) the position is very similar, 
except that this time the reflected ray appears to have come from the 
focus. There is the same relationship between f and the radius of the 
mirror as before.

  Figure 1 Concave and convex mirrors and their 
reflections.
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  Investigate!
Images from a mirror
These experiments are intended to introduce you 
to the images formed by a mirror. The mirrors that 
will work best for these experiments have a focal 
length of about 15–25 cm. You need to know the 
approximate focal length of each mirror before 
you begin.

(1) Concave
Begin by taking the concave mirror and looking 
into it with an approximate distance between 
your eye and the mirror that is (a) about double 
the focal length, (b) less than the focal length. 
What do you notice about the image you see? 
Is the image the right way up or upside down? 
Can you describe what happens when the eye is 
exactly at the focal point?

Now set the mirror on the bench using suitable 
stands so that the light from an illuminated object 
is incident on the mirror and then reflected to form 

an image on a screen. Make sure that the object–
mirror distance u is greater than the focal length. 
Find out the range of u for which the image is 
larger, smaller, and the same size as the object.

(2) Convex
This time simply look into the mirror. Where is the 
image formed? Is it similar to the image formed by 
a plane mirror, what are the differences?

θ
lamp

white paper

ruler

concave mirror

wooden block

 Figure 3.

To explain the positions of images formed by curved mirrors we use the 
technique of drawing a ray diagram. A ray diagram establishes the 
relationship between an object and its image that results when rays from 
the object are reflected in the mirror.

Using the idea that light is reversible we can identify predictable rays 
that we will use to construct a scaled ray diagram. Reversibility means 
that when light rays are reflected back along their original path they will 
trace out the incident path but in the reverse direction. 

The predictable rays we will use are:

 ● X: initially parallel to the principal axis and then going, after 
reflection, through the focal point.

 ● Y: initially through the focal point and then going, after reflection, 
parallel to the principal axis.

 ● Z: a ray through the centre of curvature that goes after reflection 
back along its original path.

Using these rays we can determine the position and the nature (size and 
type) of the image formed by a curved mirror. Remember that X, Y, and 
Z are close to the principal axis and the mirror is almost flat at the centre.

The drawing technique uses several conventions:

 ● The mirror is drawn in two dimensions as a straight line at 90° to the 
principal axis. Only the top and bottom of the mirror are curved to 
indicate whether the mirror is convex or concave.

 ● The vertical scale and the horizontal scale need not be the same. 
Objects and mirrors are sometimes only centimetres high but can 

  Figure 4 Predictable rays.

X

Y

Z
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be separated by distances of metres. Using the same scale in both 
directions might compress the diagram in one dimension.

 ● The object is represented by a vertical arrow drawn to show the 
largest dimension of the object to scale.

 ● At least two predictable rays are drawn from the top of the object 
arrow. The position of the top of the image of the arrowhead will be 
shown by the direction of the rays after reflection.

 ● Arrows are drawn to show the direction in which the rays travel.

The step-by-step construction of one ray diagram each for a concave and 
a convex mirror is shown in sequence in figure 5.

  Figure 5 Step-by-step instructions for drawing concave mirror and convex mirror ray drawing.

C F CF

C F

object

image

image

object

ConvexConcave

CF

C F CF

C F CF

This image is smaller than the
object (diminished), upside
down (inverted), and real
(because the rays cross).  

This image is smaller than the object (diminished), 
the right way up (erect), and virtual (because the
 rays appear tohave come from the image and
do not cross). 

1   Draw the principal axis and the mirror. 
      Add the centre of curvature and the focal
      point. Add the object to scale (vertical
     and horizontal scales can be different).

3  Draw another ray either (a) through the
      focal point and then reflecting parallel to
      the principal axis or (b) to and from the
      centre of curvature.

4   Where the rays/construction lines cross
      is the position of the image. The nature
      and position of the image give information
      about it.

2   Draw one ray from the top of the object
      parallel to the principal axis. After
      reflection the ray goes through/appears
      to have come from the focal point. Note
      that a line for the convex mirror is dotted
      because it is a construction line, not a ray.

The concave mirror has a number of separate cases each of which 
depends on the position of the object. If the rays from the top of the object 
converge to a single point then this marks the top of the arrowhead. This 
is now below the principal axis (whereas the object was above) because 
the image is an inversion of the object (turned upside down). This point 
where the rays converge is still called the “top” of the image.

The rays in these cases form a real image. Rays that intersect 
(converge) in this way can be used to form an image on a screen. 
This is what was happening when you saw a “picture” forming on the 
screen in the Investigate! 
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However, when the object is closer than the focal point, the final ray 
directions diverge (move apart) and do not cross. When these diverging 
rays are constructed back (notice that construction lines are always 
drawn as broken lines  in the worked examples as they are not rays), 
they form a different type of image known as a virtual image. This type 
of image cannot be formed on a screen but it can be seen or manipulated 
using another mirror or a lens. Virtual images in the Investigate! were 
formed by the lens in your eye. 

A convex mirror by itself can never form a real image from a real object. 
As the rays always diverge, the convex mirror is called a diverging 
mirror. For the concave mirror, unless the object is closer to the lens 
than the focal point, the rays converge. Concave mirrors are usually 
called converging mirrors – in some books they are referred to as 
converging (concave) mirrors. 

Magnification
Because the diagrams for both types of mirrors are scaled, the final 
scale sizes of the object and image can be used to measure the linear 
magnification m of the mirror system.

m =   
height of image

  __  
height of object

   =   
hi _ 
ho

  

Geometry shows that m is also equal to   v __ u  , where u and v are  
the distances from the mirror pole to the object and the image 
respectively.

In some mirror examples that we shall see later, the object and 
image heights cannot be easily identified. In these cases angular 

magnification M is used. M =   
θi __ θo

   where θi and θo are the angles 

subtended at the mirror by the rays from the image of the top of the 
image and the rays from the top of the object, respectively.

Aberrations in a mirror
So far we have assumed that the rays from the object are travelling close 
and approximately parallel to the principal axis. When this is not the 
case then the spherical mirror introduces distortions (aberrations) into 
the images.

The principal reason for this is that at large distances from the pole of 
the mirror the rays no longer reflect through the focal point. When rays 
parallel to the principal axis are incident over the whole mirror surface 
then they form a pattern known as a caustic curve. You may have 
noticed this pattern forming when strong sunlight strikes the reflecting 
surface of a circular cup of coffee or another opaque liquid. The inner 
surface of the cup reflects the light onto the liquid surface. The position 
of focal point and the shape of the caustic can be clearly seen.

To reduce this problem in cases where a large mirror surface is needed, 
a parabolic surface can be used. Rays parallel to the principal axis of a 
parabolic mirror always pass through the focus and no caustic forms in 
these circumstances (figure 7(b)). An example is the large mirror used 
for an astronomical telescope. 

  Figure 6 Magnification by a mirror, linear 
and angular.

F
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(a) spherical mirror (b) parabolic mirror

  Figure 7 Spherical mirror distortions and the parabolic mirror.

The reversibility of light tells us that a parabolic mirror shape can also be 
used to generate a parallel beam of light if a light source is placed at the 
focus. This is often used to produce a searchlight beam that diverges very 
little even at large distances from the mirror. 

In some situations, two or more mirrors can be combined in optical 
instruments such as telescopes. We will give examples of these in a 
later section.

Worked example
1 Construct a ray diagram for a concave mirror 

when:

a) the object is between F and C

b) the object is at C

c) the object is at F

d) the object is between the pole of the 
mirror and F.

Solution
a)

image

FC object

b)

image

FC

object

c) 

FC

object

d)

imageFC

object

2 Construct a ray diagram for a convex mirror 
when the object is between the pole of the 
mirror and the focal distance.

Solution

image

F Cobject
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Converging and diverging thin lenses 
A mirror has only one surface and the light always travels in the air. 
When light enters a transparent medium it is refracted and the speed 
and wavelength of the light change.

This change of speed makes the analysis of light passing through a 
curved interface into a different medium more complex than the 
reflection case. Lenses usually have two interfaces through which the 
light enters and leaves. Before considering this double refraction in  
detail we will look at the effect of a single interface between two 
different media. 

In this example, the light travels slower in the second medium than the 
first. Figure 8(a) shows parallel rays of light as they travel through a convex 
surface from one medium to another of greater optical density. Parallel 
plane wave fronts are associated with these rays and are also shown. 
The centre of these wavefronts meets the curved convex surface earlier 
than the outer edges of the wave front. As the wave enters the medium 
it slows down and the wavelength of the light becomes smaller. This 
means that the centre of the wave is travelling at a slower speed in the 
second medium than the wave edges that have not yet reached the 
interface.

The overall effect on the wave when it has fully entered the medium 
is that what was a parallel wave has become curved. The rays are no 
longer parallel either. They meet at a focal point.

One interpretation of the action of a curved surface is that it adds 
curvature to wavefronts (in the convex case) or removes curvature (in 
the concave case). The curvature of a surface can be defined in general 
terms as   1 __ R   where R is the radius of the surface. The smaller the radius 
of the surface, the more curved it is.

Now we can see what happens when a real lens is used to modify rays 
(figure 8(b)). There are two curved interfaces and it is the cumulative 
effect of both interfaces that determine the properties of the lens 
(figure 9). 

We use a similar model to that of the mirrors to define the parts of the 
lens (figure 10). The optical centre of the lens is the point in the lens 
that does not deviate rays of light passing through it. As with the mirror 
we define a principal axis, focal point and focal length. Rays parallel 
to the principal axis pass through the focal point after refraction for a 
convex lens. For a concave lens, the parallel rays appear to have come 
from the focal point.

We shall assume that the convex or concave lenses have lens thicknesses 
that can be ignored compared to the distances between object and 
image. The thin-lens theory that uses this assumption is more 
straightforward than when the thickness of the lens is included. 

We will also consider only spherical lenses, that is, those with surfaces 
shaped so as to form part of the surface of a sphere. Many modern lenses 
are designed to have an aspherical shape (non-spherical), such lenses, 
for example, spectacle lenses, can be made thinner and lighter than their 
spherical counterparts.

  Figure 8 Wave fronts through a medium.

ray

wavefronts
(a)

(b)

curved interface

ray

O I

  Figure 9 Rays through convex and  
concave lenses.

  Figure 10 Definitions of the parts of a lens.
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  Investigate!
Finding an approximate value for the focal length of a convex lens

 ● We have used the idea of rays that travel parallel 
to the principal axis. These can be obtained 
(approximately) by using rays that have come 
from a distant object. The diagram shows how 
these arise. Two rays that leave the same place 
on an object and then travel a large distance 
compared with the diameter of the lens have 
to be travelling very close to parallel if they are 
both to enter the lens.

 ● Hold your lens near a window so that rays 
from a distant object outside (more than about 
20 m away will do) form an image on a sheet 
of card (called a screen) held behind the lens.

 ● The distance from the card to the lens is, 
approximately, the focal length. Get someone 
to measure this distance while you hold the 
lens and the card. Notice that the image is 
upside-down.

 Figure 11

F O
screen

O2F

C

long distance

  Investigate!
The relationship between object and image for a thin convex lens

 ● For this experiment you will need a convex 
lens of approximate focal length 0.15 m, an 
illuminated object, a screen, and a ruler to 
measure the distance between the object and 
the lens (the object distance) and the lens and 
the screen (the image distance).

 ● Set the object about 0.4 m from the lens. 
Move the screen until there is a clearly 
focused picture of the object on the screen – 
you should expect it to be upside–down. 

 ● Measure the object distance u and the image 
distance v and record them.

 ● Repeat the procedure for a range of object 
distances (do not attempt to have the object 
distance closer than the focal length).

 ● Plot your data on a graph of:  
  1 __ v   against   1 __ u  

optical bench

screen (image)lenslamp (object)
u v

 Figure 12

The results of this experiment can be summed up using scaled ray diagrams.

Ray diagrams for both convex and concave lenses are constructed on a 
similar basis to those for mirrors. Additional rules are that:

 ● The lens is drawn as a vertical line to emphasize that it is thin. 
Symbols at the top and bottom of the lens indicate whether it is 
convex or concave. 
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 ● The focal length should be shown on both sides of the lens.

 ● There are three predictable rays:

 ■ A ray from the top of the object parallel to the principal axis goes 
through the focal point after refraction by the convex lens or, 
in the case of a concave lens, deviates so that it appears to have 
passed through the virtual focus.

 ■ A ray from the top of the object through the optical centre of the 
lens does not deviate.

 ■ A ray from the top of the object through the focal point travels 
parallel to the principal axis after refraction.

 ■ Only two of these rays are needed to complete the diagram and 
show the position size and nature of the image. The third can be 
used as a check.

 ● Rays should have an arrow to show the direction in which they travel.

  Figure 13 Ray diagrams for a convex (converging) lens.
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image

image

image
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object
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F F

image
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Figure 13(a) shows the ray diagrams that match some of the cases you 
tested in the Investigate! 

When the object is closer to the lens that the focal point, a real image 
cannot be formed and a virtual image results (figure 13(b)). This is the 
ray diagram for a magnifying glass.

Diverging lenses have fewer ray diagrams than the converging lenses, 
the final image is always virtual. Such images cannot be formed on a 
screen and an additional converging lens (such as the lens in the eye) is 
required to form a real image that can be projected (figure 14).
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imageF F

object

  Figure 14 Ray diagram for a concave (diverging) lens.

The lens equation
The Investigate! shows that the position of the image depends both on the 
position of the object and the focal length of the lens. The lens equation 
quantifies this relationship. 

In curvature terms, a particular lens of focal length f adds the same 
amount of curvature to any wavefront passing through it. The amount 
added is   1 __ 

f
  . This is because a lens with a small f gives more curvature to 

incident parallel rays than does a lens where f is large (the small f lens 
bends the rays more). The quantities   1 __ u   and   1 __ v   determine the curvature of 
the object and image wavefronts. Figure 15 shows how the symbols are 
defined and relate to each other. Therefore we can write:

curvature of wavefronts leaving lens =  curvature of wavefronts 
entering lens + curvature 
added by lens

so

  1 _ v   =   1 _ u   +   1 _ 
f
  

  Figure 15 The lens equation.

f
v

u

However, the wavefronts from the object are spreading out when they 
reach the lens whereas the wavefronts that have left the lens to form 
the image are converging. The curvatures of the object wavefronts are 
in the opposite sense to those of the image. To allow for this we should 
consider the u value to be negative with respect to v. This leads to the 
lens equation:

  1 _ u   +   1 _ v   =   1 _ 
f
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Some care needs to be taken with the signs given to u, v and f. The rule 
that applies when using the lens equation in this form is: 

 ● real objects and images are treated as positive

 ● virtual objects and images are treated as negative

 ● the focal length of a converging lens is positive

 ● the focal length of a diverging lens is negative

 ● this is known as the real-is-positive sign convention; you may see 
texts that use other conventions.

The ability or power of the lens to add (or subtract) curvature to a 
wavefront is:

power, P (in dioptre) =   1 __ 
f(in metre)

  .

A “strong” lens has a small focal length and adds a large curvature to 
any wavefront passing through it. The power of a lens is measured in 
dioptres (not an SI unit). A converging lens with a focal length of 50 
cm (0.5 m) has a power of +2D; the lens is said to be a ‘positive lens’. A 
diverging lens of focal length –12.5 cm has a power of –8D; the lens is 
said to be a ‘negative lens’. If you wear eye glasses or contact lenses you 
may have seen these units used on your lens prescription. 

The definitions of linear and angular magnification are identical to those 
for curved mirrors.

m =   
height of image

  __  
height of object

   =   v _ u  

M =   
θi _ θo

  

where the θo and θi are the angles subtended by the object and the image 
at the lens.

Worked examples
1 An object of height 5 cm is placed 12 cm from 

a converging lens of power +10 D.

Calculate:

a) the focal length of the lens

b) the position of the image

c) The nature of the image.

Solution
a) f =   1 _ 

D
   = 0.10 m = 10 cm

b)   1 _ u   +   1 _ v   =   1 _ 
f
    so    1 _ v   =   1 _ 

f
   -   1 _ u  

    1 _ v   =   1 _ 
10

   -   1 _ 
12

   =   2 _ 
120

  ; 

 v = +60 cm from the lens

c) The positive sign tells us that the image is real, 
magnified by   60

 __ 12   = 5 times and is therefore  
25 cm high. The image is upside–down and on 
the opposite side of the lens to the object. 

2  An object of height 5 cm is placed 8.0 cm  
from a converging lens of focal length  
+10 cm. Calculate the position and nature of 
the image.

Solution

  1 _ v   =   1 _ 
f
   -   1 _ u   =   1 _ 

10
   -   1 _ 

8
   =   -2 _ 

80
  ; v = -40 cm

The image is formed 40 cm from the lens; it is 
virtual, magnified 4 times, and is the right way 
up. It forms on the same side as the object. This is 
the magnifying glass arrangement.

Note 
In fact, although this will not be 
tested in the examination, the 
lens equation also applies to 
mirrors. In this case f is equal 
to 1/R.
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The simple magnifying glass
A single convex lens used as a magnifying glass is the oldest optical 
instrument recorded. Around 2400 years ago, Aristophanes magnified 
small objects using spherical flasks filled with water like those used by 
present-day chemists.

We have already drawn the ray diagram for the magnifying glass, but 
because of its importance, both alone and in conjunction with other 
lenses, it merits a section of its own.

The human eye has a near point distance D that is the closest distance 
at which the eye can focus on an object without strain. For a normal 
eye this distance is taken to be 25 cm (although it varies greatly from 
individual to individual). Therefore, the best we can do to see the fine 
detail in an object is to hold it 25 cm away from the eye. The magnifying 
glass helps us to improve on this.

3 Calculate the position and nature of an image 
placed 12 cm from a diverging lens of focal 
length –24 cm.

Solution

  1 _ v   =   1 _ 
f
   -   1 _ u   =   1 _ -24

   -   1 _ +12
   = -  36 _ 

24 ×12
   =   -1 _ 

8
  

The image is formed 8 cm from the lens on the 
same side as the object. It is diminished with 
a magnification of (–)  8 __ 12   = 0.67. The image is 
upright and virtual.

4  a)   A converging lens of focal length +15 cm 
is 25 cm from an object. Calculate the 
position of the image.

b)  Another converging lens also of focal 
length +25 cm is placed 18 cm from the 
lens on the image side. Calculate the new 
position of the image.

Solution

a)    1 _ v   =   1 _ 
f
   -   1 _ u   =   1 _ 

15
   -   1 _ 

25
  ; v = 37.5 cm.

b)  The new u is 37.5 – 18 = 19.5 cm from the 
lens. This is a virtual object for the second lens 
and so will have a negative sign in the lens 
equation.

   1 _ v   =   1 _ 
25

   -   1 _ -19.5
  ; v = +11 cm

A real image forms 11 cm from the second  
(f = 25 cm) lens.

Although not asked for in the question, the 
ray diagram is given as an example of a more 
complicated arrangement.

second lens

final image

intermediate
(virtual) object

f1f1 f2 f2

first lens

The first lens and its image is drawn first (green 
lines) the rays beyond the position of the 
second will not form so are drawn dashed as 
construction lines.

Then the second lens is added together with its focal 
points (red lines). There are a number of possible 
predictable rays that can be drawn. One shown 
here is the ray that is aimed at the optical centre of 
the second lens – this ray will not deviate as it goes 
through the lens and must also go through the top 
of the virtual image. The other ray for the second 
lens comes from the top of the original object, 
through f1 and then must go parallel to the principal 
axis after being refracted by the lens. After passing 
through the second lens, it must go through f2 and 
defines the top of the final real image.
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  Figure 16 Image formed by a magnifying glass at near point and infinity
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One way (and the least tiring method for prolonged viewing) is to 
position the object at the focus of the converging lens and therefore form 
the image at infinity where it can be viewed with relaxed eye muscles 
(figure 16). If f for the lens is smaller than 25 cm the object will need 
to be closer than the near point with the eye muscles relaxed. In such 
circumstances, the eye should be as close to the lens as possible.

In this case, the angle subtended by the unaided eye is the size of the 
image   h __ D   whereas the angle subtended by the aided eye is   h __ 

f
   so the 

angular magnification M is 

  
  h _ 
f
  
 _ 

  h _ 
D

  
   =   D _ 

f
  .

So a magnifying glass with focal length 0.1 m will give a magnification  
of ×2.5. However this is not the best that the magnifying glass can do.

Another way to use the lens, but more tiring because the muscles are 
not relaxed, is to place the eye close to the lens as before and to adjust 
the position of the object so that the image forms at the near point. The 
object can now be much closer to the eye than would be comfortable 
without the lens.

The angular magnification now changes to M =   
  h' _ u  

 __ 
  h _ 
D

  
   where u, h' and h are 

defined in figure 17. 

The lens equation gives

  1 _ 
f
   =   1 _ -D

   +   1 _ u  

So   D - u
 _____ u   =   D __ 

f
   or    D __ u   - 1=   D __ 

f
  

So for this setting of the magnifying glass

M =   D _ 
f
   + 1

objectimage f

h'

h
G

D

u

  Figure 17 Angular magnification for 
a magnifying glass.
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For a magnifying glass with focal length 0.10 m and a near point of  
0.25 m, the magnification is ×3.5.

Spherical and chromatic aberrations
Chromatic aberrations
The absolute refractive indices of the materials used for making lenses vary 
with wavelength. Different colours travel through the lenses at different 
speeds and thus form focal points at different distances from the lens.

chromatic aberration achromatic doublet

flint

crown

  Figure 18 Chromatic aberration and a way to correct it.

This problem is known as chromatic aberration and it leads to the 
appearance of colour fringes around the image. The best place to view 
the image is at the intersection of the green rays. This is the point known 
as the circle of least confusion. A circle drawn around all the rays 
here is at its smallest.

One common way to correct for chromatic aberrations is to use a doublet 
lens, one of the lenses is converging with positive power and the other 
diverging with a negative and smaller magnitude power. The lenses 
produce chromatic aberrations in opposite senses. Over the whole visible 
range, the colour performance of the combined lens is better than with 
one lens alone.

Spherical aberrations
Like mirrors, lenses also suffer from aberrations caused through the 
geometry of the spherical lens. 

As figure 19 shows, rays that are far from the optical centre are 
brought to a focus closer to the convex lens than those near the lens 
centre. This is spherical aberration and leads to an object consisting 
of a square grid distorting as shown. This is known as barrel distortion.

  Figure 19 Rays that produce spherical aberration and the effect on a square grid.

Worked example
A magnifying glass has a 
focal length of 7.5 cm. It 
is used by a person with 
a near point of 25 cm to 
view an object. Calculate 
the angular magnification 
of the object when the 
image is at:

a) infinity 

b) the near point.

Solution

a)  M =   D _ 
f
  ; M =   25 _ 

7.5
   = 3.3

b)  M = infinity angular 
magnification + 1 = 4.3

Note 
You may see that some books 
give the equation as M =   D ___ f   - 1. 
This results when the sign of 
D is not introduced during the 
proof but is used in the final 
calculation. Using the numerical 
examples above together with 
the equation with the negative 
sign, when the image is at 
infinity is M × –2.5 and when 
the image is at the near point it 
is ×–3.5. So the magnitude of 
the magnification still remains 
larger for the second case.

606

C IM A GIN G



The easiest way to cure spherical aberration is to reduce the aperture 
(diameter) of the lens perhaps by putting an obstacle with a hole cut in 
the centre over the lens. Of course, this will reduce the amount of light 
energy arriving at the image position and will make the image appear 
less bright.

TOK

Sign conventions – what is 
their effect?

There are two common 
sign conventions used in 
optics: the real-is-positive 
convention used here 
and the “New Cartesian’ 
convention. Earlier we used 
a conventional current 
of positive charges in 
electricity. To what extent, 
if any, do sign conventions 
affect our understanding and 
use of science?

  Nature of science
Same travel times

O

short time in lens–
longer physical path

shorter physical path–
but spends more time
in lens

same time to
go from O to I

edge ray

centre ray
I

  Figure 20

There is another interpretation of how lenses work. We have regarded 
the lens as refracting light rays or as adding curvature to or subtracting 
curvature from a wavefront.

Think about two rays going through a converging lens (figure 20). 
One goes through the centre of the lens where it is thickest. The other 
goes through the edge of the lens where there is not much glass. The 
image forms at the place on the other side of the lens where the time 
taken by the light to take these two paths is the same.

The ray through the centre travels farther than the other ray in the 
glass, and because the speed of the light is slower in the glass, this ray 
spends longer in the glass than the edge ray. The edge ray has a longer 
overall path. What is special about the image position is that it is the 
(unique) place where all rays from the object take the same time to 
reach their respective places on the image.

This has to be the case given our wavefront interpretation. The lens keeps 
the wave together so that all parts meet at the same time at the same place 
on the image. Taking the same time and having the same effective path 
distance is what makes a lens a useful thing to manipulate rays. This is an 
example of Fermat’s principle of least time.
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C.2 Imaging instrumentation

  Nature of science
Optical instruments have been developed over the 
centuries to improve our ability to observe very 
distant objects in the sky and very small objects on 
Earth. Instruments to improve our vision were used 
in the time of the Egyptians. Authors described 
combinations of lenses in mediaeval Europe and 
it is certain that the knowledge of optics had been 
known in the Arab world since at least 1000 years 
BP. This line of improvement in instrumentation is 
clear in optics.

Understanding
 ➔ Optical compound microscopes
 ➔ Simple optical astronomical refracting 

telescopes
 ➔ Simple optical astronomical reflecting 

telescopes
 ➔ Single-dish radio telescopes
 ➔ Radio interferometry telescopes
 ➔ Satellite-borne telescopes

  Applications and skills
 ➔ Constructing and interpreting ray diagrams 

of optical compound microscopes at normal 
adjustment

 ➔ Solving problems involving the angular 
magnification and resolution of optical 
compound microscopes

 ➔ Investigating the optical compound microscope 
experimentally

 ➔ Constructing or completing ray diagrams 
of simple optical astronomical refracting 
telescopes at normal adjustment

 ➔ Solving problems involving the angular 
magnification of simple optical astronomical 
telescopes

 ➔ Investigating the performance of a simple 
optical astronomical refracting telescope 
experimentally

 ➔ Describing the comparative performance of 
Earth-based telescopes and satellite-borne 
telescopes

Equations
 ➔ Magnification of astronomical telescope M =    

f0 _ 
fe 

  

Optical compound microscope
Although the convex lens used as a magnifying glass provides 
magnification, small focal lengths are required to produce large 
magnifications (M =   D __ 

f
  ). Lenses with small focal length have large 

surface curvatures and this can give rise to so much aberration that 
features in the image cannot be seen clearly.

The compound microscope is designed to produce a virtual magnified 
image of a small object. The term “compound” means that it is 
composed of more than one lens: an objective lens, close to the 
object, with a very short focal length fo, and an eyepiece lens into 
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which the user looks As with all optical systems, you should  
try to understand the function of each component in the  
microscope:

 ● The objective forms a real, highly magnified image of the object at a 
position that is closer to the eyepiece than fe. 

 ● The eyepiece then acts as a magnifying glass the objective’s real 
image as its own object.

 ● The final image, viewed by the observer’s eye, is virtual and very 
highly magnified. 

 ● The final image should not be closer to the eye than the near point 
D and when the image is formed here then the microscope is said 
to be in normal adjustment. Many experienced microscope users  
do not focus the microscope in full normal adjustment, however. 
It is often much more convenient for the final image to be focused 
at the plane of the bench on which the microscope stands. A 
notebook next to the microscope on the bench will then also be in 
focus for note keeping or drawing and can be viewed by the other 
open eye.

The ray diagram (see figure 1) shows how the microscope in normal 
adjustment forms its image. When learning about microscopes and 
telescopes, try to understand the role of the separate elements as this 
will make it easier for you to draw the ray diagrams in examinations.  
It is a good idea to devise a strategy for drawing the diagram as it is  
easy to end up with a final image that is too large for the paper or  
off the page. Figure 3 (on page 611) shows one route to achieve a  
good sketch. 

Notice that the vertical size of the lenses does not necessarily reflect 
their actual sizes in the instrument itself. The eyepiece and objective 
apertures are usually very small in diameter, but are shown large on 
the diagram so that it appears that the rays actually go through them. 
In practice, with real microscopes the lenses are small to minimise the 
aberrations and so that the lenses can be ground very accurately. As 
usual, if the ray diagram is drawn to scale, then measurements can 
be taken of the object and image scaled sizes to establish the overall 
magnification. 

For the objective lens the magnification is equal to   L __ 
fo

   where L is the 

length in the microscope tube between the objective focal point and the 
eyepiece focal point (so that the total physical length of the microscope 
tube is fo + L + fe). The angular magnification of the eyepiece is   D __ 

fe

   as 

it is a magnifying glass (remember that D is the near point distance). 
The angular magnification of the complete microscope is given by the 
product of the magnification of the two lenses acting separately and this 
is approximately

  DL _ 
fo fe

  

O

O

I1

objective lens

eye lens

D

fo fe

  Figure 1 Compound microscope.
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Resolution of a microscope
All light that goes through an aperture such as a lens is diffracted. Point 
objects become image disks as a result. If the image disks of two adjacent 
point objects overlap, it is difficult to tell them apart and the two images 
are not resolved. This is a significant problem in microscopy. 

Rayleigh suggested that two images were just resolved when the 
minimum of the diffraction pattern of one image coincided with the 
central maximum of the pattern of the other. This means that when the 
images are just resolved, the angle θ subtended at the eye by rays from 
each image is given by: 

sin θ = 1.22   λ _ 
d
  

where λ is the wavelength of the light and d is the diameter of the aperture 
(in this case circular). For the microscope the aperture diameter is the 
effective diameter of the lenses. This is known as the Rayleigh criterion.

You can find more discussion of the Rayleigh criterion in Topic 9.

The criterion is often modified for use with microscopes and the effective 
aperture is replaced by N the numerical aperture of the lens. This is equal 
to n sin θ where n is the refractive index of the medium in which the lens 
is placed (n = 1 in the case of most microscopes that are in the air) and θ 
is the half angle of the maximum cone of light that can enter the lens. The 
criterion becomes:

sin θ = 1.22   λ _ 
N

  

(You will not need to use this equation in the examination.) 

  Investigate!
Make a microscope

 ● Take two converging lenses, with focal lengths 
perhaps 5 cm and 15 cm. Determine their focal 
lengths by using rays of light from a distant 
object and measuring the approximate focal 
length between the lens and a piece of card.

▲ Figure 2

 ● Fix the short focal length (objective) lens 
securely to the end of a short ruler (length 
30 cm or so) using modelling clay or similar 
material. Set up the ruler so that it is a short 
distance from an object – a well-illuminated 
piece of graph paper makes a good object for 
this experiment. 

 ● Fix the other (eyepiece) lens so that when you 
look into it, you see a magnified virtual object.

 ● By comparing the size of the grid on the object 
with the size of the grid on the image, estimate 
the magnification of the microscope.

 ● Does your microscope approach the 
theoretical value of the magnification? The 
approximations assume that fo and fe are very 
small compared with D and L. Is this true in 
this case?

  Nature of science
Electron microscopes
Electron microscopes are used to 
image the smallest objects. The 
electrons are accelerated and as 
a result have extremely small 
wavelengths, much less that that  
of light.

Glass lenses cannot be used to focus 
the electrons but magnetic and 
electrostatic fields can, and these 
are used to bend the paths of the 
electrons to produce a focusing effect. 
Look at some web sites that explain 
how the various types of electron 
microscope work. Try to understand 
how the fields replace the lenses of 
the compound optical microscope.
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fe fefo

fo

objective lens

principal axis

object

virtual
image

eyepiece lens

First, draw the principal axis. Add the
lenses a scaled distance apart if you have
been given dimensions. Then draw the
intermediate image – use an intermediate
image height that will allow the final image
to be on the page.

Work backwards from the intermediate
image to form the object to the left of
the objective. Either choose the focal
lengths yourself or use the scaled values
if they have been provided. Don’t draw
rays to the right of the intermediate
image yet.

Finally, draw the rays to the right of the
intermediate image. These do not deviate
between the lenses, but after going
through the eyepiece they must appear
to have come from the top of the virtual
image. To complete the diagram add the
arrows to all rays (not construction lines)
and label all focal points and both lenses.

  Figure 3 Strategy for drawing the compound microscope diagram.

The equations suggest that the resolution of a microscope can be 
improved by:

 ● using a short wavelength for the light (sometimes microscopists use 
ultraviolet radiation for taking photographs of specimens to improve 
the resolution)

 ● using as a wide an aperture for the objective as is consistent with 
reducing aberrations (the design of the final eye piece lens is fixed by 
the average size of the eye)
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 ● using a liquid of high refractive index between the specimen and 
the objective lens. The liquid objective allows a wider cone of light 
rays to be collected by the lens and this extra information improves 
the resolution of the image. Typically an oil of refractive index 
around 1.6 is used in special microscopes that have oil-immersion 
objectives.

Astronomical refracting telescopes
Objects in the night sky have always fascinated astronomers, and 
telescopes for viewing the sky were, like the microscope, developed early 
in the history of science.

objective

eyepiece

fefefo,fo

fefefo,fo

fefefo,fo

fefefo,fo

objective

eyepiece

objective

eyepiece

θe
image
at ∞ 

θo

objective

eyepiece

Begin by drawing the principal axis, 
the lenses and the common focal points.
Add an intermediate image. Do not make
it too small – allow enough room for 
the construction later.

Draw construction lines to show you
the final direction of the rays when 
they have been refracted by the 
eyepiece. These are construction 
lines so should be dashed.

The first ray should be the ray that 
ends at the top of the intermediate 
image and goes through the optical 
centre. This ray is not deviated at 
the objective. After passing through 
the eyepiece the ray must travel 
parallel to the construction lines.

Choose two more rays parallel to 
the first ray before they enter 
the objective. After passing 
through the objective they must go 
to the top of the intermediate image. 
After passing through the eyepiece 
they must go parallel to the first ray 
(and the construction lines). Finally, 
add further construction lines to show 
the direction of the final image. Then 
label the diagram and add the ray arrows

  Figure 5 Telescope ray diagram and drawing sequence.

  Figure 4 An astronomical reflector.
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Also like the microscope, the astronomical refracting telescope uses two 
converging lenses. The objective lens has a long focal length fo and an 
eyepiece lens that has a short focal length fe. The telescope is designed 
primarily to focus the light from very distant objects and in its normal 
adjustment is set up for this purpose only.

Light from infinity (that is, parallel rays) from the object are focused by the 
objective lens at its focal point. The focal points of the objective and eyepiece 
lenses are coincident (at the same place) inside the telescope and therefore 
the eyepiece treats the image formed by the objective as though it is a real 
object placed at fe. We know from earlier that this leads to parallel rays 
emerging from the eyepiece and these then enter the eye of the observer.

The angle subtended by the rays from the top of the image and the principal 
axis is much greater than the angle subtended by the rays from the top 
of the object. The image is magnified. The ray directions show that the 
viewed image is also upside–down, but this is not an issue for astronomers 
(maps of the Moon are often inverted to take account of this). The angular 
magnification of the telescope follows directly by looking at the incident and 
emerging rays and the angles, θf and θe, they make with the principal axis 

M =   θo _ θe

   =   fo _ 
fe

   

  Investigate!
Making a telescope

▲ Figure 6

 ●  The basic method is similar to that of 
the microscope in that the instrument is 
constructed on a ruler or optical bench.

 ●  This time a metre ruler is required together with 
a long focal length objective (fo about 50 cm 
or longer) and a short focal length eyepiece 

(fe about 10–15 cm). The combined total of  
fo + fe should not exceed the length of the ruler. 

 ●  Measure and record the focal lengths of both 
lenses.

 ●  Fix the eyepiece lens at the end of the ruler 
with modelling clay as before.

 ● Holding or clamping the ruler horizontally, fix 
the objective lens a distance equal to fo + fe from 
the eyepiece while looking through the eyepiece. 
You may need to move the objective forward 
and backwards along the ruler a short distance to 
get the optimum focus for your own eye.

 ●  View a distant object (say a brick wall) and 
estimate how much larger one brick is when 
viewed through the telescope compared with 
using your naked eye.

 ●  Does your telescope approach the theoretical 
angular magnification give above?

Refracting telescopes are frequently used by amateur astronomers and also 
by professional astronomers for some applications. However, the largest 
refracting telescopes made have objective apertures up to 2 m and this 
represents the limit of the technology for grinding the glass lens. It is also 
difficult to support the lens given that it needs to be at the end of a long 
tube. Mirrors can be made much larger and therefore collect more light 
energy meaning that more distant objects can be viewed.

Note 
In astronomy the term “power” 
is sometimes used in place 
of “angular magnification”. 
The maximum practical power 
for any given astronomical 
telescope is limited by the 
need to produce a high 
resolution image. This in itself is 
determined by the atmospheric 
conditions.
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Astronomical reflecting telescopes
The first known reflecting telescope was completed by Newton in 1668. 
The basis of the telescope is straightforward. 

Rays from the top and bottom of a distant object are reflected by a 
concave mirror and come to a focus at the focal point where an image 
of the object forms. An observer positioned at the focal point will see an 
image in the mirror.

Rays from the top and bottom tend to confuse the diagram. The 
convention in many reflecting telescope ray diagrams is to show only 
the rays parallel to the principal axis and you may well see this in some 
books. 

Because the rays are parallel or at very small angles to the principal axis, 
either spherical mirrors or parabolic mirrors can be used in the reflecting 
telescopes. For astronomical use, parabolic is chosen so that the spherical 
aberrations discussed in the earlier section are eliminated. 

As with compound microscopes, the angular resolution of a reflecting 
telescope is given by 

sin θ = 1.22   λ _ 
d
  

where d is the diameter of the aperture. So a large aperture for the 
mirror is an advantage as this increases the resolving power of the 
instrument.

There are many advantages of reflecting telescopes over their refracting 
equivalents:

 ● There is one surface which is usually ground to shape and then 
coated with a reflective metallic surface. The rays of light do not 
have to pass through a number of layers of glass. The telescope can 
therefore in principle have no chromatic aberration.

Worked example
1 A small object is placed 30 mm from the 

objective lens of a compound microscope in 
normal adjustment. A real intermediate image 
is formed 150 mm from the objective lens. 
The eyepiece lens has a focal length of 75 mm 
and forms a virtual image at the near point. 
For the observer, the near point distance is 
300 mm. Calculate the overall magnification 
of the telescope.

Solution
Magnification of the objective =   150

 ___ 30   = 5×.

For the eyepiece   1 __ 75   =   1 __ u   +   1
 ____ -300  ;   1 __ u   =   5

 ___ 300  ; 
u = 60 mm. So magnification of eyepiece  
=   300

 ___ 60   = 5×.

Overall magnification = 5 × 5 = 25×

2  An astronomical telescope in normal 
adjustment has an objective focal length of 
150 cm and an eyepiece focal length of 5.0 cm. 
Calculate:

a) the angular magnification of  
the telescope

b) the overall length of the telescope. 

Solution
a)  M =   

fo
 __ 

fe

   =   150
 ___ 5   = 30× (angular magnification 

and linear are the same for the telescope in 
normal adjustment)

b)  Overall length = fo + fe = 1.55 m

  Figure 7 Picture of astronomical telescope  
and basic ray diagram.

primary
mirror

prime

prime
focus
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 ● The mirror only has to be supported from one side. This makes 
engineering large reflecting telescopes more straightforward. 

 ● With only one surface to grind, the telescopes are cheaper for a 
comparable quality of image.

 ● Only one surface has to be made perfect.

There are also some disadvantages however:

 ● The mirror surface is vulnerable to damage and needs to be cleaned 
(unless covered – which introduces aberration).

 ● The optics can easily get out of alignment if the support for the 
mirror shifts in some way.

In addition, this simple design means that the observer’s head or a 
camera blocks some of the light travelling along the tube thereby 
reducing some of the benefits of using a large mirror.

For this reason, various arrangements are used to transfer the image 
from inside to outside the main tube of the telescope. There are a 
number of different design variants for achieving this, some of which use 
lenses and other devices to produce a high-quality image. In this course 
we will examine only two simple systems: the newtonian telescope and 
the cassegrain telescope. Both are named for their inventors.

Newtonian mounting

newtonian mounting

cassegrain mounting
  Figure 8 Newtonian and cassegrain mirror systems.

In this system a small secondary plane mirror diverts the rays from inside 
to outside the tube. Plane mirrors of high quality can be produced that 
introduce little or no distortion to the image. This is one of the cheapest 
designs of telescope and is very popular with amateur astronomers, some 
of whom grind their own mirrors and build their telescopes from scratch. 
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Cassegrain mounting
Replacing the plane mirror with a hyperbolic secondary mirror enables 
the rays to be sent through a hole in the primary mirror surface. This 
means the observer can be in line with the telescope and can look in 
the observing direction. A principal advantage of this mounting is that 
the focal length of the telescope can be effectively longer than the tube 
itself. However, the secondary mirror inside the tube cuts off some of the 
incoming light, and the principal mirror has lost some of its reflecting 
surface. In general, all telescope types have specific observational 
advantages and disadvantages. 

Radio telescopes
Many of the principles of the reflecting telescopes are carried over into 
the single-dish radio telescopes. These instruments are intended to 
collect electromagnetic signals in the radio region that originate from 
astronomical objects.

F

rays from distant object

  Figure 9 Radio telescopes.

A parabolic dish has the property that all rays parallel to the principal 
axis are brought to a focus at the same point. If a radio antenna (aerial) 
is placed at this point then it will collect all the focused radio waves that 
arrive simultaneously. The larger the area of the dish, the greater the 
power collected, so in principle the designer should aim for as large an area 
as possible. Another advantage of a large dish diameter is that, as with the 
optical reflecting telescopes, the resolution of the telescope improves (θ in 
the Rayleigh criterion equation decreases) as the diameter becomes larger. 

Resolution is a particularly important factor as the wavelengths used 
by the telescopes are those of the radio segment of the electromagnetic 
spectrum. These wavelengths are of the order of centimetres to tens of 
metres and are much larger than those of the visible light used with 
optical instruments (order of 10–7 m). So a telescope working at radio 
wavelengths needs to have an aperture at least 100 000 times greater 
than its optical counterpart to have the same resolution.

This raises engineering problems for a dish that has to be steered to 
point at particular objects in the sky. There is the difficulty of moving 
the dish and problems associated with the dish deforming from the 
ideal parabolic shape under its own weight. Some radio telescopes 
get over this problem by building the dish into a cavity in the ground. 

  Figure 10 The Arecibo Observatory, Puerto Rico.
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The disadvantage is that the dish can no longer be steered. Arecibo 
Observatory in Puerto Rico is a good example of this (figure 10). 

Some flexibility can be engineered into the system by moving the 
antenna, which in this telescope is suspended at the focus and can be 
moved on a suspended railway track that can be seen in the photograph.

The Arecibo telescope is 300 m across but a larger telescope of 500 
m diameter, also in a natural crater, is being constructed in Pingtang 
County, Guizhou Province, south-west China. The Chinese telescope is 
designed so that the panels that make up the dish are moveable to allow 
the principal axis of the telescope to be steered within limits. By contrast, 
the largest dish telescope in the world at present is the Green Bank 100 
m diameter telescope in West Virginia USA (figure 11). 

Interferometer telescopes
To overcome the inherent design problems of a dish and the inability 
to steer a telescope built in a crater, a recent trend is to construct 
interferometer telescopes.

baseline

from source

beam
combiner

  Figure 12 Interferometer telescope.

Such telescopes come in various formats with two or more radio 
telescopes combined, but the basic idea behind all of the arrangements 
is that signals from a source are combined in the individual components 
of the telescope to produce a total signal. The signals can be combined in 
such a way that the whole telescope is equivalent to a single dish with 
an effective diameter equal to a baseline B. The baseline is the dimension 
across the individual dishes that make up the telescope. The resolution 
of such an array is sin θ =   λ _ 

B
  . 

One format that is frequently used is a series of small steerable dishes. 
These are individually of low cost and do not have the engineering 
problems associated with large dishes. The signals are combined using 
computers to give a final signal.

  Figure 11 The Green Bank Telescope, 
West Virginia, USA.
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Another approach is to use a very long baseline. Signals from steerable 
dishes situated in different countries can be combined to give a network, 
the baseline of which can approach the size of the planet. For example 
the European Very-long-baseline interferometry Network (EVN) 
is a combination of 12 telescopes and can, itself, be combined with 
interferometers in the UK and the USA to make a global network that 
achieves a very high resolution. 

There are plans to build a square kilometre array (SKA) that will 
combine telescopes in Australia, South Africa and other countries in 
the southern hemisphere with a baseline of the order of 3000 km. The 
telescope is due to be completed by 2024.

Other interferometer formats are possible and these at present include 
linear arrays of two long antennae or arrangements of antennae built in 
the shape of a plus sign.

  Nature of science
Discoveries in radio astromony
Not everyone has to be a professional. Some 
branches of science are known for the number of 
discoveries made by amateurs. Astronomy is one 
of these.

The first radio telescope was constructed in 1931 by 
a radio engineer named Karl Jansky who worked 
in the Bell Telephone Laboratories in the US. He 
studied sources of static noise in radio signals and 
discovered that some of the static originated outside 
the Earth. His telescope was a mobile collection 
of radio antennae (aerials). The first true dish 
radio telescope was built by a North American 
amateur radio enthusiast named Grote Reber 
(call sign W9GFZ) who was inspired by Jansky’s 

work. He spent considerable time (from 1933–38) 
constructing a series of parabolic dish reflectors 
that were eventually sensitive enough to reproduce 
Jansky’s results. Reber and Jansky were the first 
true pioneers of radio astronomy.

Today, amateur astronomers have excellent 
telescopes coupled to digital cameras. This makes 
it possible for them to contribute to science in a 
significant way. Professional astronomers cannot 
view all areas of the sky night after night. For 
example, amateur astronomers discover deep sky 
supernovae in distant galaxies and alert professional 
observers who then make observations using larger 
telescopes.

Earth and satellite-borne telescopes
Recently, high-quality telescopes have been placed in satellite orbit 
above the Earth or on spacecraft that are aimed away from the Earth 
into the Solar System.

Observational astronomy carried out on the surface is subject to a 
number of limitations, as described overleaf:

 ●  When we look at the night sky with the naked eye, the stars 
appear to twinkle. This is because our observations are made 
through tens of kilometres of air. The atmosphere introduces 
brightness variations and position errors into the images of the 
stars through local short-term changes in the air density caused 
by heating and convection effects. A common way to reduce this 
problem is to build optical telescopes on mountain tops in places 
where the atmosphere is relatively stable.
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Some recent telescopes use up-to-date techniques to remove light 
variation using adaptive optics. When viewing a distant dim star 
the optics make reference also to light from a nearby bright star 
that is assumed to have a constant intensity and position. Parts of 
the telescope mirror surfaces are then moved rapidly to correct 
for the distortion of the light, which is assumed to be the same for 
both reference and observed stars. However, observations that are 
made from a satellite platform above the atmosphere do not need 
these corrections. 

 ●  There is an increasing problem of electromagnetic pollution from 
artificial sources of radiation associated with cities on Earth. Optical 
telescopes need to be constructed in increasingly remote areas, and radio 
telescopes also need to be placed in places where the radio spectrum is 
relatively uncluttered.

 ●  Stars emit radiation right across the electromagnetic spectrum, and 
all this information is of value to astronomers. Many wavelengths 
from the stars are absorbed by the atmosphere (figure 13) and 
cannot be detected at the Earth’s surface. The only way to measure 
these is through the use of a telescope or sensor mounted on a 
satellite. X-rays are a particularly important region of the spectrum to 
astronomers and orbiting satellites are almost the only way to study 
emissions at these wavelengths from stars (figure 13).
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  Figure 13 Absorption of the electromagnetic spectrum by the atmosphere. 

 ●  An Earth-based telescope, whether radio or optical, can either be 
fixed or steerable. A fixed telescope can only view the parts of 
the sky that move in front of it. A steerable instrument can view 
(within the limits of the local horizon) the whole of the hemisphere 
on which it is centred. Similarly, some satellite telescopes are fixed 
so that they observe certain sections of the sky. Other sky-survey 
satellites allow the entire sky to be mapped over the period of the 
satellite’s lifetime.

The expense of placing an observing satellite into orbit and the costs 
of building surface-bound telescopes is so great that international 
collaboration is common in astronomy with research groups from 
around the world booking observation time on the instruments.

TOK

What do we see?

Any optical or radio 
instrument extends our 
senses beyond their “design 
limits”. This can be in terms 
of wavelengths to which we 
are not normally sensitive, 
or in terms of magnifying 
beyond what we would 
normally see. To what extent 
do the images we see or 
interpret represent true 
reality?

619

C . 2  I M A G I N G  I N S T R U M E N T A T I O N



C.3 Fibre optics

  Nature of science
Modern communications rely heavily on the use of 
fibre optics. A relatively simple piece of science has 
led through applied science to a transformation of 
all types of communications across the globe.

Understandings
 ➔ Structure of optic fibres
 ➔ Step-index fibres and graded-index fibres
 ➔ Total internal reflection and critical angle
 ➔ Waveguide and material dispersion in  

optic fibres
 ➔ Attenuation and the decibel (dB) scale

  Applications and skills
 ➔ Solving problems involving total internal reflection 

and critical angle in the context of fibre optics
 ➔ Describing how waveguide and material 

dispersion can lead to attenuation and how this 
can be accounted for

 ➔ Solving problems involving attenuation
 ➔ Describing the advantages of fibre optics over 

twisted pair and coaxial cables

Equations
 ➔ critical angle equation n =   1 _ 

sin c
    

 ➔ attenuation (dB) = 10 log   I _ 
 I  0 

  

Structure and use of optic fibres
The concepts of total internal reflection and critical angle were 
introduced in Sub-topic 4.4. These ideas are used in the modern 
technology of fibre optics (Figure 1) which began to be developed for 
communication purposes in the early 1970s. However, the idea of 
sending light along a “light pipe” was first demonstrated by Colladon and 
Babinet as early as 1820. Nowadays, under-sea fibres link nations with 
international collaboration and agreement on common standards for the 
transmission of the information.

cladding

cladding

core

 Figure 1 Total internal reflection in a fibre.

Communications and the advantages of optic fibres
The principal methods using physical links for communication (as 
opposed to the radiation of electromagnetic waves as in radio) are:

 ● Twisted pair. In this technique developed by Alexander Bell, the 
wires connecting one operator with another were twisted together 
(hence the name). External electrical signals can induce an emf 
in both wires and this emf is to some extent cancelled out by the 
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twisting. However, the noise cancellation is not necessarily complete 
and if two pairs of twisted-pair cables are next to each other then 
signals from one pair can be induced in the other cable pair giving 
cross-talk and a lack of security. Twisted-pair cables are generally 
used for low-frequency applications. 

 ● Coaxial cable. This cable is constructed with a central core 
conductor insulated from a metallic shield that is earthed at zero 
potential relative to the changes in the signal voltage (but which 
carries the return current). The cable is completed with a tough 
protective outer cover. Such cable is generally used for radio-
frequency signals. You may well have seen an example of it carrying 
the (very weak) signals from your tv antenna or satellite dish to 
the tv itself. This type of cable rejects outside electrical noise as the 
earth shield acts as the surface of a conducting shell. Little noise 
from outside can distort the weak signal travelling along the cable 
and equally the signal itself cannot radiate significantly beyond the 
earthed conductor. However, the cable is bulky and expensive.

 ● Optic fibres. In this technique the signal to be transmitted down 
the fibre modulates an electromagnetic wave (usually at visible 
or infra-red wavelengths). This modulated wave is shone along a 
very thin glass fibre. The thickness of the fibre is so small that the 
light strikes the walls at angles (much) greater than the critical 
angle and so the light propagates along the fibre. Electrical noise 
does not affect the passage of the light through the fibre. There 
are wavelength windows in optic fibre glasses at which the loss of 
signal with distance (the attenuation of the glass) is very low. The 
fibre is surrounded by a cladding material with a refractive index 
smaller than that of the core in order to ensure that the critical angle 
condition is maintained.

Digital signals are transmitted along the optic fibres. Such signals 
consist of a sequence of changes between two states; these might be 
on/off, variations between two fixed frequencies, or abrupt changes 
in the phase of the signal. For our discussions we will assume a 
simple model where the light is either on or off, so that a series of 
light pulses is transmitted down the cable. 

The advantage of optic fibres over conductors are:

 ● Immunity to electromagnetic interference unlike most electrical 
cables.

 ● Low attenuation loss over long distances in glass compared to metal 
conductors.

 ● Broader bandwidth (total range of usable frequencies) in the glass 
compared to wires. This means that one fibre can carry millions of 
telephone conversations.

 ● Glass is an insulator and does not suffer from the inherent problems 
of a electrical-cable telephone system where electrical connections to 
earth (shorts) are a problem.

 ● Very small diameter so that compact bundles of fibres can be 
constructed thus increasing the capacity of the system even more for 
the same physical space as an electrical cable.

cladding

plastic jacket

twisted pair

co-axial cable

optic fibre

cladding

core

metallic shield

dielectric insulator

centre core

 Figure 2 Physical communication links.

621

C . 3  F I B R E  O P T I C S



 ● Greater security to signal detection from outside the fibre (“fibre 
tapping”). Some optical fibres have been designed with a dual core 
and are said to be completely secure to outside tapping.

The main types of fibre are:

 ● Step-index fibre in which there is an abrupt change in the refractive 
index at the interface between core and cladding.

 ● Graded-index fibre in which there is a gradual reduction in the 
refractive index from the centre to the outside of the core.

 ● Single-mode fibre, which has a diameter of only a few times the 
wavelength of the light used in it. At such small diameters, the rules 
of geometrical optics that we use for our discussion of optic fibres 
break down and wave theories are required. We are not going to 
consider this type of fibre further in this course.

We will look at the behaviour of step- and graded-index fibres in more 
detail later.

Attenuation and dispersion
Optic fibres have very low loss. If sea water had the same optical 
properties as glass used in fibres, then the details at the bottom of the 
11 km deep Mariana Trench, off the coast of Japan, would be clearly 
visible from the ocean surface. Nevertheless, eventually the signal 
weakens (attenuates) so that it needs to be amplified before it can 
continue its journey. The device that carries out this re-amplification is 
known as a repeater.  

At the point where the signal enters the cable, the pulse will have an 
abrupt on/off change in intensity.  

Figure 3 shows how the power of the pulse varies with time before 
and after passing along the cable: the power is reduced (by a very large 
factor) so that the total energy in the pulse (the area under the power–
time curve) is reduced also. This is attenuation; energy has been lost to 
the cable. Separate dispersion effects change the shape and cause the 
pulse to “spread out” as it travels along the fibre. If two pulses that were 
initially separate overlap through dispersion, then the receiving system 
cannot disentangle them from each other. Dispersion imposes an upper 
limit on the rate at which a particular fibre can transmit information.

The repeater needs to do two things: re-shape the pulse into its original 
square format and also boost the amplitude of the signal. We will discuss 
the reasons for the loss of amplitude and the dispersion later, but for the 
moment we concentrate on how attenuation is measured.

The signal amplitude can fall by many orders of magnitude before it 
needs to be boosted. To deal easily with large ratio changes a logarithmic 
scale called the Bel scale is used. In this scale, the attenuation in bels 
(B) is defined to be the logarithm to base 10 of the ratio of the intensity 
(or power) of a signal to a reference level of the signal.

So

attenuation in bel =  log  10    
I _ 
 I  0 

  

  Figure 3 Attenuation with time in an 
optical fibre. The time axes are to 
the same scale.

time

input
power

time

output
power

Note 
This definition uses the 
intensity (or power) of the 
signal. The intensity I of the 
signal is related to its amplitude 
A by I ∝ A2. So

attenuation = 10 log10   I ____  I0
  

translates to 

attenuation = 10 log10   A
2  _____ 

 A  0  2 
  

This can be re-written as 

attenuation = 20 log10   A  ____ A0
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The frequencies most used for fibre optics are in the range 0.8–1.5 µm. 
Attenuations in these ranges arise from two principal causes:

 ● Absorption
This loss arises from the chemical composition of the glass and from 
any impurities that remain in it after manufacture. Glass absorbs 
some infra-red wavelengths strongly and these wavelengths have to 
be avoided for transmission. 

 ● Scattering
Rayleigh scattering (named after the British physicist Lord Rayleigh, 
who developed the ideas of image resolution) is the main scattering 
loss. It is caused by small variations in refractive index of the glass 
introduced during manufacture. Rayleigh scattering accounts for 
about 95% of the attenuation.

1.0 1.2 1.4
wavelength/µm
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/d
B 

km
-1

1.6 1.8
0
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1.0

rayleigh scattering1.5
infrared absorption
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 Figure 4 Attenuation mechanisms in optic fibres.

where I is the attenuated (output) power level of the signal and I0 is the 
input intensity level (the subscript is a zero not a letter ‘o’). This means 
that 10 B is equal to a power ratio  (   I __  I  0 

   )  of 1010, which is a large ratio. As 
power ratios tend to be smaller than this, it is more usual to quote power 
ratios in decibels, where

attenuation in decibel (dB) = 10  log  10    
I _ 
 I  0 

  

A change in power of 10 dB is equivalent to a power ratio of 10 times. A 
change of 3 dB is equivalent to a change by a factor of 2 in the power.

The table shows some typical values for attenuations in optic fibres, 
twisted cable, and coaxial cable.

Worked example
A signal of power 7.5 mW is input to a fibre that 
has an attenuation loss of 3.0 dB km–1. The signal 
needs to be amplified when the power has fallen 
to 1.5 × 10–18 W. Calculate the distance required 
between amplifiers in the system.

Solution 
Power loss = 10  log  10   (   7.5 × 10-3

 ________ 
1.5 ×10-18   )  = 157 dB

The fibre loses 3 dB every kilometre so another 
amplifier will be required in   157

 ___ 3   = 52 km.

Link Attenuation per unit length 
dB/100 m

Coaxial cable 15–300 for frequencies up 
to about 1 GHz depending 
on signal frequency and 
cable design

Twisted pair 5–50 for frequencies up to 
about 300 MHz

Optic fibre 0. 02 at 1014 Hz

TOK

Grace Hopper and her nanoseconds

The US computer scientist Grace Hopper 
was famous as one of the first people 
to construct a compiling language for 
computers. She was also famous for 
her lectures on computer science. To 
illustrate the problem of communication 
at high speed she would hand out 
lengths of wire 30 cm long. This is the 
distance travelled by light in a vacuum 
in one nanosecond. She used this to 
link the speeds and sizes of computers 
in the minds of her audience. 

To what extent does the finite speed of 
light put limitations on our ability to carry 
out computations faster and faster?

 Figure 5
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Light in the core interacts with the molecules of the glass. If 
the light continues in the general forward direction there is no 
attenuation, but if the light is scattered in directions other than  
from which it came, then attenuation occurs. This depends very 
strongly on the size of the small variations in density, etc. in the 
glass and also on the wavelength λ of the light. The loss due to 
Rayleigh scattering is proportional to the λ–4 and is greatest at short 
wavelengths.

The graph (figure 4) shows how the two effects of absorption and 
scattering contribute to the overall attenuation of a typical fibre for 
wavelengths greater than 1 um.

  Nature of science
Why is the sky blue?
Rayleigh scattering is the reason why the sky is 
blue. Because the blue and violet light from the 
Sun have shorter wavelengths than the other 
colours, they are preferentially scattered out of 
the direct beam by the gas molecules in the air 
compared to longer wavelengths. We see the 
Sun as having a yellow disk with a blue sky. At 

sunset, the Sun’s rays pass through a thicker 
atmosphere and the presence of particles in 
the air scatters longer wavelengths too, so the 
Sun and the clouds now appear red. In fact, 
this is a simplistic explanation of a complex 
phenomenon. If you want to know more, 
investigate both Rayleigh and Mie scattering.

 Figure 6 Dispersion.
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acceptance
cone

cladding

core

Two other effects contribute to distortions of the light as it passes 
through the fibre:

 ● Material dispersion
This is similar to the chromatic aberration we met earlier in Sub-
topic C.1. Both occur because the refractive index of the material 
used for the lens or fibre depends on wavelength. Refractive index is 
equal to the ratio of:   

wave speed in vacuun
  _________________________   

wave speed in transmitting medium
  . 

The refractive index of glass decreases as the wavelength increases 
and so the wave speed in the glass also increases with increasing 
wavelength (red light travels faster than violet). 

Using light with a wide range of colours (a large bandwidth) means 
that the long wavelength light will reach the end of the fibre ahead 
of the shorter wavelengths leading to a spreading of the pulse. The 
answer is to restrict the wavelengths but this, at the same time, 
means that fewer wavelengths can be used and so there may be 
fewer channels available for communication.

 ● Waveguide (or modal) dispersion
Even if monochromatic light is used, a large diameter step-index 
optic fibre will still be affected by waveguide dispersion. Rays of 
light that propagate along the fibre can travel by different routes 
depending on their initial angle of incidence at the end of the fibre.

Compare a ray that travels along the central axis of the fibre with 
one that is at a large angle to the axis and reflects many times. 
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Although the scale of this drawing (figure 7) is unrealistic (because, 
to scale, it has far too large a diameter for any real optic fibre), you 
should see that the large-angle ray takes a much longer path than 
the central ray to travel from one end of the fibre to the other. The 
large-angle ray will arrive later and the time difference will appear as 
an increase in the pulse width.

fibre

distance

n

fibre
cross-section

fibre

distance

n

 Figure 7 Graded-index fibres.

To make a correction for this effect, graded-index fibres are used. 
As described earlier the refractive index of the core is not constant. 
It has a high index in the centre of the core and a decreasing index 
towards the core–cladding interface. The speed of the light is slowest 
in the centre with the speed increasing towards the cylinder wall. 
This means that large-angle rays travel more quickly than central 
axis rays during the periods when they are close to the wall. 
Combining this with a smaller overall diameter of core reduces (but 
does not eliminate) the waveguide dispersion effect.
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C.4 Imaging the body (AHL)

  Nature of science
Decisions made by a physician can involve an 
assessment of risk. The doctor will use some 
imaging techniques in the knowledge that the 
ionizing radiations involved can harm the patient. 
The real question is whether the techniques lead to 
a possible overall benefit.

Understanding
 ➔ Detection and recording of X-ray images in 

medical contexts
 ➔ Generation and detection of ultrasound in 

medical contexts
 ➔ Medical imaging techniques (magnetic 

resonance imaging) involving nuclear magnetic 
resonance (NMR)

  Applications and skills
 ➔ Explaining features of X-ray imaging, including 

attenuation coefficient, half-value thickness, 
linear/mass absorption coefficients, and 
techniques for improvements of sharpness and 
contrast

 ➔ Solving X-ray attenuation problems
 ➔ Solving problems involving ultrasound acoustic 

impedance, speed of ultrasound through tissue 
and air, and relative intensity levels

 ➔ Explaining features of medical ultrasound 
techniques, including choice of frequency, use 
of gel, and the difference between A and B scans

 ➔ Explaining the use of gradient fields in NMR
 ➔ Explaining the origin of the relaxation of proton 

spin and consequent emission of signal in NMR
 ➔ Discussing the advantages and disadvantages 

of ultrasound and NMR scanning methods, 
including a simple assessment of risk in these 
medical procedures

Equations
 ➔ Attenuation (dB):  L  I  = 10 log   

 I  1 
 _ 

 I  0 
  

 ➔ Intensity: I =  I  0   e  -µx 
 ➔ Linear absorption: µ x  1/2  = ln2
 ➔ Acoustic impedence: Z = ρc

Introduction
Medicine and physics combine in the world of medical diagnosis and 
treatment. Doctors have come to rely on technology from developments 
in physics. There has been a revolution in the methods that enable a 
doctor to visualize the interior of a patient’s body. 

X-ray images in medicine
Rontgen discovered X-rays in 1895 and, within one month of the 
publication of his original scientific paper, the radiation had been used 
for medical purposes. Nowadays, X-radiation is used both diagnostically 
and therapeutically. Here we concentrate on the use of X-rays to 
generate an image of the interior of the body that will inform doctors in 
making their diagnoses.
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The basic principles behind the imaging are that X-rays are shone through 
part or all of the body. Materials such as bone absorb some of the X-rays 
or scatter them out of the beam, so that a reduced intensity emerges from 
the patient. Other, softer materials such as muscle and tissue do not absorb 
or scatter the rays so well. The X-rays are then incident on a photographic 
plate or a sensor. The plate is developed or a computer computes the data 
from the sensor, in both cases an image on film or monitor is produced. 
Where the intensity of the X-rays is high (not absorbed by the tissue), 
the plate is exposed (darkened) or the sensor detects the arrival of many 
photons. When significant absorption has occurred, fewer photons leave 
the body and the plate is not exposed to the same degree. As X-rays image 
are traditionally viewed as negatives, this means that the photograph is 
darkened where the rays are not absorbed and remains transparent (white) 
where the radiation has been absorbed by the body.

The X-rays themselves are produced when electrons travelling at high 
speed are decelerated in a heavy-metal target such as tungsten. The 
electrons are first accelerated in a vacuum through tens of thousands of 
volts in an electric field and then strike the target. On colliding with the 
target, electrons are slowed down rapidly and as a result lose energy to 
internal energy of the target (99% of the incident energy) and as energy 
in the form of X-ray photons (1%). Given the large amount of internal 
energy, the X-ray tubes need to be cooled and the anode target is often 
rotated to avoid hot spots developing on it. Details of the generation of 
the X-rays are not required for the examination.

X-rays are attenuated as they pass through material, and this means 
that some of the photons are removed. Others change direction (so 
that they can no longer be considered part of the beam). The principal 
mechanisms for removing photons or changing their direction are:

 ● Coherent scattering
A process similar to the scattering mechanisms described in the 
previous sub-topic on fibre optics. It is the predominant mechanism 
for low-energy X-ray photons up to energies of about 30 keV.

 ● Photoelectric effect
This is identical to the effect described in Topic 12. The incoming 
electron has enough energy to remove an inner-shell electron 
from an atom. When other electrons from higher energy states lose 
energy to occupy the inner shell, a photon of light is emitted. This 
mechanism is most important in the energy range 30–100 keV. 
The photoelectric scattering is particularly important as it provides 
contrast on the image between tissue and bone.

 ● Compton scattering
In this mechanism, which occurs at energies generally greater than 
those used in diagnostic X-rays, the high-energy X-ray photon ejects 
an outer-shell electron from an atom and, as a result, a photon of 
lower energy moves off in a different direction to the original photon. 
This scattering mode is of principal importance in therapeutic X-ray 
medicine where X-rays of high energy are involved.

 ● Pair production
As explained in Topic 12, at high energies in excess of 1 MeV, a photon 
can interact with a nucleus to produce an electron–positron pair.

 Figure 1 X-ray images.
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Attenuation also occurs when the intensity of the X-ray beam decreases 
with distance from the X-ray tube as the beam diverges.

For the photons in a monochromatic beam of X-rays, the chance of 
an individual photon being scattered or absorbed is related to the 
probability of this photon interacting with an atom in the material being 
X-rayed. Suppose a photon has a 10% chance of removal by a particular 
thickness of material (figure 2).
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90 000100 000

photons
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 Figure 2 Absorption effects lead to a half thickness.

Then if 100 000 photons are incident on material of this thickness,  
90 000 (90% of 100 000) will remain in the beam when it leaves the 
material. If the material were twice as thick, then 81 000 (90% of 
90 000) will remain after this further thickness. This is an identical 
argument to that used in radioactive decay (except that there the 
argument related the time taken for the ensemble of atoms to decay to 
the probability of decay for one atom). However, this similarity means 
that, like radioactivity, the intensity of the X-rays obeys an exponential 
relationship and we can state that:

I =  I  0   e  - µ  l x 

where I is the intensity of the attenuated beam, I0 is the intensity of the 
incident beam, x is the thickness of the material and  µ  l  is the linear 
absorption coefficient measured in units of metre–1. 

Although the linear absorption coefficient follows directly from the 
way the absorption probability is defined, it is not the most convenient 
absorption coefficient to use as it depends on the density of the 
absorbing material. As an example, compare water vapour (steam) with 
ice. Ice will scatter more effectively than steam because it has a greater 
density and therefore the X-ray photons are more likely to encounter 
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a water molecule every centimetre of travel in ice than in steam. It is 
more convenient to quote a single mass absorption coefficient which 
is density independent and depends only on the element or compound 
that is absorbing the X-rays.

The relationship between the linear absorption coefficient  µ  l  and the 
mass absorption coefficient  µ  m  is 

 µ  m  =   
 µ  l  _ ρ  

where ρ is the density of the material. The units of mass absorption 
coefficient are m2 kg–1.

As a consequence, when the mass absorption coefficient is used, the 
appropriate intensity equation is

I =  I  0   e  - µ  m ρx 

This equation is only strictly correct when the beam is monochromatic 
because values of the absorption coefficient vary with the energy of the 
X-ray photons. Highly penetrating radiation has a short wavelength (about 
0.01 nm) and the absorption coefficients are small at these wavelengths; 
such radiation said to be hard. Long wavelength photons (about 1 nm) are 
termed soft X-rays and the absorption coefficients are much larger. 

In the same way that radioactive materials have a defined half-life, so for 
X-rays the thickness of material required to halve the intensity is called 
the half thickness  x  

  1 _ 
2

  
 .

Again, following radioactive decay:

 x  
1/2

  =   ln 2 _  µ  l    or  x  
1/2

  =   ln 2 _  ρµ  m   

The value of  µ  l  may be determined from the gradient of a graph of ln I 
against x.

Frequently the beam will pass through a number of layers of different 
materials all with different thicknesses and absorption coefficients. This 
is easy to treat mathematically if the layers have parallel plane interfaces.

Suppose that layer 1 has a thickness x' and a linear absorption coefficient  
µ  l ' and that layer 2 has a thickness x'' and a linear absorption coefficient  µ  l ''.
Then the intensity when the beam leaves layer 1, I1 is

I1 = I0  e  -µl'x' 
and the intensity when the beam leaves layer 2, I2 is

I2 = I1  e  -µl''x''  
Therefore 

I2 = I0  e  -µl' x'   e  -µl'' x'' 
or

I2 = I0  e  -(µl' x' + µl'' x'')   

For each layer add the product of the linear absorption coefficient and 
the layer thickness and then use the exponential function to find the 
final intensity of the beam.

When the mass absorption coefficients are known the equation becomes:

I2 = I0 e m  -(ρ' µm'  x' + ρ'' µm''  x'') 
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Improving the image
Collimation
Figure 5 shows a common arrangement used to take diagnostic X-ray 
images. A number of features are used to enhance both the sharpness 
and contrast of the image formed on the photographic plate:

 ●  The X-ray beam is filtered by passing it through a thin plate of 
aluminium. This selectively removes low-energy photons because 
the absorption coefficient is much greater at low energies. These 
low-energy photons would simply be absorbed by the patient 
(adding to the radiation dose) and would serve no useful imaging 
purpose. The plate also reduces the intensity of the beam somewhat, 
but overall the penetrating power of the beam increases and the 
X-rays become harder.

 ●  The beam as it leaves the tube is very divergent. It is collimated 
by passing through a series of channels in lead plates. Off-axis 
rays are absorbed by the lead and do not reach the patient. This 
produces a narrower, more parallel beam. This is beneficial 
because photons scattered from the off-axis angles tend to blur 
the photographic image.

 ●  As for the X-rays that reach the patient: some do not interact, 
some are absorbed and disappear from the system, and others are 
scattered. Again, the scattering leads to blurring on the image. A 
grid system of lead plates below the patient, arranged parallel to the 
beam, is used to absorb the scattered rays but allows the on-axis rays 
to reach the imaging system.

 ●  The X-rays finally arrive at the film cassette and this contains 
two fluorescent screens, one each side of the film. As the X-rays 
interact with these screens they cause the materials in the screens 
to fluoresce and emit light that improves the blackening of the 
photographic negative. Many of the X-rays would not contribute to 
the image without this arrangement.

Worked examples
1 A sample of a metal of density 4000 kg m–3 has 

a half thickness of 12 mm with a particular 
wavelength of radiation. Calculate, for the 
metal, the: 

a) linear absorption coefficient 

b) mass absorption coefficient.

Solution 

a)  µ  l  =   ln 2 _  x  
1/2

    = 58 m-1

b)  µ  m  =   
 µ  l  _ ρ   =   58 _ 

4000
   = 1.4 ×10-2 m2 kg-1

2 Calculate the thickness of muscle tissue that 
will reduce the intensity of a certain X-radiation 
by a factor of 103, assuming that the linear 
absorption coefficient for muscle is 0.035 cm–1.

Solution
I1 = I0  e  - µ  l 'x' 

So 0.001 =  e  -0.035 × x 

ln 0.001 = -0.035 × x

x =   6.9 _ 
0.035

   = 197 cm

About 2 m of muscle tissue is required to 
reduce the intensity by 1000×.

lead plate

collimator

aluminium filter

filmfluorescent
material film cassette

 Figure 5 Contrast techniques in X-ray imaging.
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Contrast 
Some tissues in the body are hard to distinguish on the photographs 
without enhancements to the contrast. Heavy elements with large 
absorption coefficients can be introduced into the body to help with 
this. Barium and bismuth are examples of elements used. Patients 
with stomach disorders may be asked to drink barium sulfate (BaSO4), 
which coats the lining of the stomach and makes its outline very clear 
on the image. Iodine can be introduced intravenously to produce clear 
images of the cardiovascular system.

Other ways to enhance detection include using charge-coupled sensors 
in place of film together with computer systems to form electronic 
images viewed on monitors.

The advantage of X-ray imaging is that it is a quick and inexpensive 
technique, costing far less than an MRI or CT scan. The X-ray machines 
can be highly portable, meaning that patients may not have to travel to a 
central location for a scan.

However, unlike ultrasound and MRI techniques, X-rays involve 
ionizing radiation and this presents a risk to both the patient and the 
radiographer. Techniques to reduce the X-ray intensity and exposure 
time are constantly being improved to reduce the risks. Nevertheless this 
exposure needs to be kept in perspective. The average chest or dental 
X-ray provides a much smaller dose of radiation to the body than a 
commercial intercontinental flight at 12 km above the Earth.

Computed tomography
Computer (computerized) tomography (CT scan), also known as 
computed axial tomography (CAT scan) was introduced during the 
1970s. It gives a much greater range of grey scales to the image and 
provides an axial scan – an image of a slice through the patient. 

X-rays are incident on the area of the patient under investigation 
and the scattered and direct photons are detected by a series of small 
detectors placed in an arc around the patient. After the first exposure the 
X-ray tube and the detectors move around the patient taking exposure 
after exposure until an entire range covering 360° around the body has 
been made (figure 6). 

The detection method uses scintillation counters that respond to the 
presence of a photon by emitting a flash of light, which is then detected 
by a photomultiplier that produces an enhanced electric current for each 
flash that occurs.

A computer builds up the information from each detector and each exposure 
to produce a complete image of the slice of the patient up to a few tens of 
millimetres thick. If further slices are required, the patient can be moved 
under computer control to a new position and the process is repeated.

The sensitivity of the system is very high, and many features can be seen 
and interpreted by doctors. A disadvantage of the CT scan, however, is 
that the cumulative dose to the patient is high, and there is a greater risk 
of damage to the patient than with a normal X-ray. However, exposures 
from the scanners are dropping all the time as improved detection 
techniques are developed.

X-ray tube

beam of X-rays

scattered
X-rays series of rotating

X-ray detectors

 Figure 6 CT scanning.
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Ultrasound in medicine
Generation
Ultrasound is a sound wave generated at a frequency above that at which 
humans hear. The lower frequency limit of ultrasound is taken to be 20 
kHz. The range of frequencies used in medicine is from 2 to 20 MHz.

Like electromagnetic radiation, ultrasound waves can be absorbed by 
matter, and reflected and refracted when they meet a boundary between 
two media. The usual rules for reflection and refraction of light at an 
interface also apply to ultrasound.

Brothers Pierre and Paul-Jacques Curie first observed the piezoelectric 
effect that is used to generate the ultrasound. They found that when 
a quartz crystal is deformed, it produces a small emf between opposite 
faces of the crystal. Conversely, applying a potential difference across 
the crystal causes it to deform and, under the right circumstances, to 
vibrate at high frequencies. This property of piezoelectricity was found 
to be shared by other materials besides quartz including some synthetic 
ceramic materials. These newer materials are now used in preference to 
quartz for producing ultrasound.

To make the scan a piezoelectric transducer (which can both emit and 
receive the ultrasound) is placed in contact with the skin. A gel is used 
between the transducer and skin to prevent a large loss of energy that 
would occur at the transducer–air and air–skin interfaces. A single pulse 
of the ultrasound is transmitted into the tissues and the system then 
waits for the reflected wave (an echo) to return from each interface 
inside the patient. There are a number of ways to display the scan 
but the simplest display (known as an A-scan) is to show a graph of 
reflected signal strength against time. Figure 7(a) shows a typical A-scan 
with the various echo returns labelled. A knowledge of the speed of 
the ultrasound and the time for return enables the size and location 
of an organ to be determined (remembering that, like all echoes, the 
ultrasound has to travel to the interface and return).
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 Figure 7 A and B scans. 

632

C IM A GIN G



A more complex type of scan is known as the B-scan (figure 7(b)). 
This requires a computer to combine a series of scans produced by the 
transducer. The operator rocks the transducer backwards and forwards to 
illuminate the internal surfaces and the computer builds up a slice image 
(in a similar way to the CT scan) through the patient by combining the 
signals from a whole series of A-scans.

The transmitted ultrasound that passes through the patient is not used 
in ultrasound diagnostic techniques, so it is of major importance to 
minimize the absorption of the ultrasound by tissues and to maximize 
the energy in the returned echo. 

To compare the ultrasound performance of different types of material and 
tissue we use the acoustic impedance of the medium. This is a number 
that indicates how easy it is to transmit ultrasound through a particular 
material. The acoustic impedance Z of a material is found to depend on 
the speed of sound c in the material and the density ρ of the material:

Z = ρc

The SI unit for acoustic impedance is kg m–2 s–1 ; this is sometimes 
abbreviated to the non-SI unit the rayl (named for Lord Rayleigh) but 
we will use the SI unit here.

The table gives some typical values for speeds, densities and Z values for 
various tissues, though it should be remembered that c and therefore Z 
depend on the ultrasound frequency being used.

Medium Speed / m s–1 Density / kg m–3 Acoustic 
impedance /  
106 kg m–2 s–1

Bone 4100 1900 7.8
Soft tissue 1500 1050 1.6
Liver 1550 1070 1.7
Muscle 1600 1080 1.7
Water 1480 1000 1.5
Air at 15°C 340 1.21 4.1 × 10–4

The proportion of the incident wave energy that is reflected at an 
interface depends on differences between the acoustic impedances of the 
two media. It can be shown that the ratio of the initial intensity I0 to the 
reflected intensity Ir is:

  
Ir _ 
I0

   =   
(Z2 - Z1)

2

 _ 
(Z2 + Z1)

2
  

where Z1 and Z2 are the acoustic impedances of the first material and the 
second material respectively.

The resolution of the image is of great importance in ultrasound imaging. 
The obvious approach might be to aim for the highest frequency 
possible as this will give the shortest wavelength and the best resolution. 
However, the attenuation of the wave also increases markedly with 
frequency as does the resolution itself (typically about 2 mm) if the 
frequency is taken beyond a certain maximum. Generally the doctor has 
to accept a compromise, but frequencies in the range 2–5 MHz are used 
for most applications.
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Not all medical ultrasound use leads to an image in the conventional sense. 
There are many other diagnostic and therapeutic uses for ultrasound. 
These include the detection of blood flow and measurement of its speed 
using Doppler shifts, and recent innovations where microbubbles of gas are 
introduced to enhance the image of blood vessels (in a similar way to the 
injection of contrast enhancers in X-radiography).

The advantages of ultrasound include:

 ● It is a non-invasive technique.

 ● It is relatively quick and inexpensive.

 ● There are no known harmful effects.

 ● It is of particular value in imaging soft tissues. 

However:

 ● Image resolution can be limited.

 ● Ultrasound does not transmit through bone.

 ● Ultrasound cannot image the lungs and the digestive system as these 
contain gas which strongly reflects at the interface with tissue.

Nuclear magnetic resonance (NMR) in medicine 
Magnetic resonance imaging (MRI scans) are medical diagnostic tools 
that use the phenomenon of nuclear magnetic resonance (NMR).

In use, a patient is placed in a strong uniform magnetic field produced 
by an electromagnet. Other magnetic fields around the patient are 
varied and signals emitted from the tissues are detected, measured and 
transformed into an image using a computer. The images produced have 
good resolution and good contrast for parts of the body that contain large 
proportions of water (and hence hydrogen nuclei). The resolution for 
NMR techniques depends on the resonance frequency of the signal, so the 
resolution is proportional to the magnetic field strength. At the time of 
writing, a typical resolution for NMR imaging is 2 mm. MRI is a technique 
preferred for diagnosis of brain and central nervous system disorders.

An explanation of MRI comes in two parts: the basic NMR effect itself 
and then a description of the way it is modified for medical use. 
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 Figure 8 Larmor precession.

The basic NMR effect
 ● Protons possess the properties of charge and spin and this leads them 

to behave as small magnets. The situation is analogous to charges 
moving around a circular loop of wire producing a magnetic field 
that acts through the centre of the loop.634
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 ● Under normal conditions, hydrogen-rich materials such as water 
have the proton spins arranged randomly to give no overall magnetic 
field. However, when a strong magnetic field is imposed on the 
material the spins of the protons, and thus their magnetic fields, line 
up with the imposed magnetic field.

 ● Normally the protons line up in the lowest energy state, but if a 
radio-frequency (rf) field of an appropriate frequency is applied 
to the system, some of the protons will flip into the opposite high 
energy state. This is analogous to a bar magnet flipping into a state 
where the north-seeking pole of the bar magnet is next to the north-
seeking pole of the field source (see figure 8). 

 ● The appropriate frequency to cause the flip is known as the Larmor 
frequency and, crucially for MRI, is directly proportional to the 
strength of the magnetic field in which the material is placed. The 
Larmor frequency in Hz is 4.26 × 107 B where B is the magnetic field 
strength in T.

 ●  What happens to the spinning protons when the rf is applied can be 
thought of in terms of a spinning child’s top. A top precesses around 
its spin axis in response to the Earth’s gravitational field. The protons 
can be thought of as similarly precessing at the Larmor frequency.

 ●  As the protons precess, the changing direction of the magnetic field 
that they produce induces an emf in a coil of wire nearby.

 ●  When the rf field is switched off, the protons in the high-energy state 
relax (return) to the low-energy state.

MRI modifications
 ● The process is essentially the same as the basic phenomenon. The 

patient is placed in a strong uniform magnetic field. However an 
additional gradient field is added to the strong field.

 Figure 9 A specific Larmor frequency comes from a unique slice in the patient.
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 ●  The gradient field is designed so that the total field (uniform + 
gradient) varies linearly across the patient. The Larmor frequency 
itself depends linearly on B and therefore the Larmor frequency 
varies predictably with position in the body.

 ●  The rf field is switched on and proton precession occurs. The 
relaxation of the protons after the rf field has been removed leads 
to an electromagnetic signal that contains information about 
the number of protons emitting at each Larmor frequency. This 
information is recovered from the signal allowing a computer to plot 
the information spatially on an image.

MRi produces excellent images for diagnostic purpose without exposing 
the patient to radiation (whether from X-rays or radio-isotopes). The 
energy of the photons in MRI are well below the 1 eV levels that 
correspond to molecular bonds and also are below the energies of X-ray 
photons. However, MRi is not entirely without risk. Factors involved in 
the risk include:

 ●  Strong magnetic fields. Some patients are unsuitable for an MRI scan 
if they have, for example, a knee or hip joint replacement that would 
distort the magnetic field or a heart pacemaker that could be severely 
affected by currents induced in it when the strong magnetic fields 
change. There is no known risk from a strong magnetic field by itself.

 ● Radio-frequency (rf) fields. These can lead to local heating in the 
tissues of the patient.

 ●  Noise. The large changes in magnetic field strength within the 
scanner cause parts of it to attempt to change shape during the scan. 
This can give rise to high intensities of sound that patients can find 
disturbing.

 ● Claustrophobia. A strong uniform field is difficult to produce and can 
only be maintained over a small volume of space. This means that, 
typically, the patient is scanned while in a small-diameter tunnel, 
which some people find uncomfortable.

Additionally, there may be elements of discomfort for some patients 
in that a scan can take up to 90 minutes to complete; lying still in 
a confined space may prove difficult for some. In particular, young 
children and babies need to be sedated as they cannot understand the 
need to remain still.

TOK

Henry Thoreau said “It's not 
what you look at that matters, 
it's what you see.” To what 
extent do you agree with this 
comment in the context of 
imaging inside the body?
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Questions
1 Four rays of light from O are incident on a thin 

concave (diverging) lens. The focal points of the 
lens are labelled F. The lens is represented by 
the straight line XY.

 

X

Y

F

F

a) Define the term focal point. 

b) On a copy of the diagram:

 (i)   complete the four rays to locate the 
position of the image formed by the lens

  (ii)  show where the eye must be placed in 
order to view the image.

c) State and explain whether the image is real 
or virtual.

d) The focal length of the lens is 50.0 cm. 
Calculate the linear magnification of an 
object placed 75.0 cm from the lens.

e) Half of the lens is now covered such that 
only rays on one side of the principal axis 
are incident on the lens. Describe the 
effects, if any, that this will have on the 
linear magnification and the appearance  
of the image. (14 marks)

2 (IB)

a)  The diagram shows a small object O 
represented by an arrow placed in front of a 
converging lens. The focal points of the lens 
are labelled F.

L

F FO

     (i)  On a copy of the diagram, draw rays to 
locate the position of the image of the 
object formed by the lens.

  (ii)  Explain whether the image is real 
or virtual.

b) A convex lens of focal length 62.5 cm is 
used to view an insect of length 8.0 mm 
that is crawling on a table. The lens is held 
50 mm above the table.

     (i)  Calculate the distance of the image 
from the lens.

  (ii)  Calculate the length of the image of 
the insect. (8 marks)

3 (IB)

a)  A parallel beam of light is incident on a 
convex lens of focal length 18 cm. The light 
is focused at point X as shown below.

 

X
P

State the value of the distance PX.

b) A diverging lens of focal length 24 cm is 
now placed 12 cm from the convex lens as 
shown below.

 

X

P

12 cm

c) (i)  Explain why point X acts as a virtual 
object for the diverging lens.

   (ii)  Calculate the position of the image as 
produced by the diverging lens.
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d) A lens combination, such as a diverging and 
a convex lens, is referred to as a telephoto 
lens. Suggest why a telephoto lens is 
considered to have a longer focal length 
than that of a single convex lens. (7 marks)

4 (IB) 

The diagram below shows the image of a 
square grid produced by a lens that does not 
cause spherical aberration.

 

a) On a copy of the diagram, draw the shape 
of the image when produced by a lens that 
causes spherical aberration.

b) Describe one way in which spherical 
aberration can be reduced. (4 marks)

5 (IB)

The diagram below shows two lenses arranged 
so as to form an astronomical telescope. The 
two lenses are represented as straight lines.

objective lens

focal length fO focal length fE

eye lens

The focal lengths of the objective lens and of 
the eye lens are fO and fE respectively. Light 
from a distant object is shown focused in the 
focal plane of the objective lens. The final 
image is to be formed at infinity.

a) Complete the ray diagram to show the 
formation of the final image.

b) (i)      State what is meant by angular 
magnification. 

 (ii)  Using the completed ray diagram 
above, derive an expression in terms of 
fO and fE for the angular magnification 
of an astronomical telescope. Assume 
that the final image is at infinity.

c) When specifying an astronomical telescope, 
the diameter of the objective lens is 
frequently quoted. Suggest a reason for 
quoting the diameter.  (8 marks)

6 (IB) 

A compound microscope consists of two convex 
lenses of focal lengths 1.20 cm (lens A) and 
11.0 cm (lens B). The lenses are separated by 
a distance of 23.0 cm as shown below. (The 
diagram is not drawn to scale.)

lens B
f = 11.0 cm

1.30 cm 23.0 cm

lens A
f = 1.20 cm

O

An object O is placed 1.30 cm from lens A. An 
image of O is formed 15.6 cm from A.

a) This image forms an object for lens B. 
Calculate the object distance for lens B.

b) Calculate the distance from lens B of the 
image as produced by lens B.

c) Calculate the magnification of the 
microscope. ( 5 marks)

7 (IB)

a)  State one cause of attenuation and one 
cause of dispersion in an optical fibre.

b) An optical fibre of length 5.4 km has an 
attenuation per unit length of 2.8 dB km–1. 
The signal power input is 80 mW.

 (i)  Calculate the output power of the 
signal.

 (ii)  In order for the power of the output 
signal to be equal to the input power, 
an amplifier is installed at the end of 
the fibre.

   State the gain, in decibels (dB), of the 
amplifier at the end of the fibre.
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c) The signal to noise ratio (SNR), in dB, is 
defined as  

SNR = 10 log   
Psignal

 ____ Pnoise

    where Psignal and Pnoise are 
the powers of the signal and noise respectively.

 The SNR of the signal in (b) before 
amplification was 20 dB. Calculate the SNR 
after amplification.  (7 marks)

8 (IB) 

The variation with time t of the input power to 
an optic fibre is shown in diagram 1.

The variation with time t of the output power 
from the optic fibre is shown in diagram 2.

t0
0

t
diagram 1 diagram 2

0
0

ou
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ut
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pu
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The scales are the same on both diagrams.

a) State and explain the feature of the graphs 
that shows that there is:

 (i) attenuation of the signal 

 (ii) signal noise.

b) The duration (time width) of the signal 
increases as it travels along the optic fibre.

 (i)  State two reasons for this increased 
time duration.

 (ii)  Suggest why this increase in the 
width of the pulse sets a limit on 
the frequency of pulses that can be 
transmitted along an uninterrupted 
length of optic fibre. (7 marks)

9 (IB)

 a) State what is meant by X-ray quality.

A parallel beam of X-rays of intensity I0 is 
incident on a material of thickness x as shown 
below. The intensity of the emergent beam is I.

IO
I

x

 b) Define half-value thickness.

 c)  Draw a sketch-graph to show how intensity  
I varies with distance x.

 d)  Annotate your sketch-graph to show the 
half-value thickness  x  

1/2
  .

 e)  State the name of one of the mechanisms 
responsible for the attenuation of diagnostic 
X-rays in matter. (6 marks)

10 a)  State and explain one situation, in each 
case, where the following diagnostic 
techniques would be used.

   (i) X-rays

   (ii) Ultrasound

   (iii) Nuclear magnetic resonance

 b)  Apart from health hazards, explain  
why different means of diagnosis are 
needed. (6 marks)

11 Beam energies of about 30 keV are used for 
diagnostic X-rays. This results in good contrast 
on the radiogram because the most important 
attenuation mechanism is not simple scattering.

 a)  Outline the most important attenuation 
mechanism that is taking place at this energy.

 b) Explain what is meant by:

   (i) attenuation coefficient

   (ii) half-value thickness.

 c)  The attenuation coefficient at 30 keV varies 
with the atomic number Z as 

 attenuation coefficient ∝ Z3

The data given below list average values of the 
atomic number Z for different biological materials.

Biological material Atomic number Z
fat 5.9

muscle 7.4
bone 13.9

  (i) Calculate the ratio:

   attenuation coefficient for bone   ____   
attenuation coefficient for muscle

  

  (ii)  Suggest why X-rays of 30 keV energy are 
useful for diagnosing a broken bone, but 
a different technique must be used for 
examining a fat-muscle boundary.

 (13 marks)
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12 (IB)

a)  State and explain which imaging technique 
is normally used:

   (i) to detect a broken bone

   (ii) to examine the growth of a fetus.

The graph below shows the variation of the 
intensity I of a parallel beam of X-rays after it has 
been transmitted through a thickness x of lead.
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 b) (i)  Use the graph to estimate the half-value 
thickness  x  

1/2
  for this beam in lead.

   (ii)  Determine the thickness of lead required 
to reduce the intensity transmitted to 
20% of its initial value.

   (iii)  A second metal has a half-value 
thickness  x  

1/2
  for this radiation of 8 mm. 

Calculate what thickness of this metal 
is required to reduce the intensity of 
the transmitted beam by 80%.

  (11 marks)

13 The attenuation of X-rays depends not only 
on the nature of the material through which 
they travel but also on the photon energy. For 
photons with energy of about 30 keV, the half-
value thickness of muscle is about 50 mm and 
for photons of energy 5 keV, it is about 10 mm.

Explain which photon energy would be most 
suitable for obtaining a sharp picture of a 
broken leg.  (2 marks)

14 a)  State a typical value for the frequency of 
ultrasound used in medical scanning.

 b)  The diagram below shows an ultrasound 
transmitter and receiver placed in contact 
with the skin.

ultrasound transmitter
and receiver

d

l
layer of skin and fat

O

The scan is to estimate the depth d of the organ 
labelled O and also to find its length, l.

The pulse strength of reflected pulses is plotted 
against time t where t is the time elapsed 
between the pulse being transmitted and the 
time that the pulse is received.
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   (i)  Identify the origin of the reflected 
pulses A, B and C and D.

   (ii)  The mean speed in tissue and muscle 
of the ultrasound used in this scan is 
1.5 × 103 m s–1. Using data from the 
above graph, estimate the depth d of 
the organ beneath the skin and the 
length l of the organ O.

 c)  The above scan is known as an A-scan. 
State one way in which a B-scan differs 
from an A-scan.

 d)  State one advantage and one disadvantage 
of using ultrasound as opposed to using 
X-rays in medical diagnosis. (10 marks)

15 State and explain the use of:

 a) a barium meal in X-ray diagnosis

 b)  a gel on the skin during ultrasound  
imaging

 c)  a non-uniform magnetic field 
superimposed on a much larger constant 
field in diagnosis using nuclear magnetic 
resonance. (7 marks)
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HEAD A_UND

OBJ TEXT_UND

D  A S T R O P H Y S I C S
Introduction
Astrophysics probes some of the most 
fundamental questions that humanity has sought 
to answer since the dawn of civilization. It links 
the experimental discipline of astronomy with 
the theoretical understanding of everything in the 
universe – cosmology. It offers insights into the 
universe and provides answers, albeit tentatively, 
to its size, age, and content. Astrophysicists 

can theorize on the life cycles of stars and gain 
an appreciation of how the universe looked 
at the dawn of time. The weakest of the four 
fundamental forces, gravity, comes into its own on 
an astronomic scale. It provides the mechanism 
to attach planets to stars, stars to other stars (in 
galaxies), and galaxies to other galaxies (in clusters 
and super clusters).

HEAD A_UNDD.1 Stellar quantities

OBJ TEXT_UND  Applications and skills
 ➔ Identifying objects in the universe
 ➔ Qualitatively describing the equilibrium 

between pressure and gravitation in stars
 ➔ Using the astronomical unit (AU), light year (ly) 

and parsec (pc)
 ➔ Describing the method to determine distance to 

stars through stellar parallax
 ➔ Solving problems involving luminosity, 

apparent brightness, and distance

Equations
 ➔ parsec definition: d (parsec) =   1 ___ 

p (arc-second)
  

 ➔ luminosity equation: L = σ AT  4 

 ➔ apparent brightness equation: b =   L __ 
4π d  2 

  

Understandings
 ➔ Objects in the universe
 ➔ The nature of stars
 ➔ Astronomical distances
 ➔ Stellar parallax and its limitations
 ➔ Luminosity and apparent brightness

  Nature of science
When we look upwards, away from the Earth, on a 
dark clear night we see many points of light in the sky. 
Some of these, such as the planets, artificial satellites, 
and aircraft, are visible because they are reflecting 
light from the Sun. Others, such as stars and galaxies, 
are visible because of the light that they emit. The 
light from distant stars and galaxies has travelled truly 
astronomical distances to reach us and we are able to 
construct a historical account of space from analysing 
this. However, the light from the different sources will 
have travelled varying distances to reach us and have 
been emitted at a range of times. This is analogous to 
looking at a family photograph containing a mixture 
of many generations of a family at different stages in 
their lives. It is a credit to humanity that we are able to 
conjecture so much about space when we can only 
justify our reasoning with circumstantial evidence. In 
this way astrophysics mirrors forensic science – we 
can never obtain evidence at the actual time an event 
happens.
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Introduction
In this first sub-topic we rapidly move outwards from our solar system 
to the remainder of our galaxy and beyond. In doing this we briefly 
examine some of the objects that make up the universe. We then 
consider the range of units that we use for astronomical measurements. 
We end by considering how we can estimate the distance and luminosity 
of relatively near stars by treating them as black-body radiators and 
using their apparent brightness.

Objects that make up the universe
The solar system

Sun

Mercury

Venus

Earth

Mars Jupiter

Saturn

comets

asteroids

Uranus

Neptune

Pluto

(not drawn to scale)

  Figure 1 The solar system.

The solar system is a collection of planets, moons, asteroids, comets, 
and other rocky objects travelling in elliptical orbits around the Sun 
under the influence of its gravity. The Sun is a star formed, we believe, 
from a giant cloud of molecular hydrogen gas that gravitated together, 
forming clumps of matter that collapsed and heated up. A gas disc 
around the young, spinning Sun evolved into the planets. It is thought 
that the planets were formed about 4.6 ×  10  9  years ago (see figure 1).

The high temperature close to the Sun permitted only those compounds 
with high condensation temperatures to remain solid, gradually 
accreting (sticking together) particles to form the four terrestrial planets: 
Mercury, Venus, Earth, and Mars. Further away from the Sun the “Gas 
Giants” or “jovian” planets comprising of Jupiter, Saturn, Uranus, and 
Neptune were formed from cores of rock and metal and an abundance 
of ice. The huge quantity of ice meant that these planets became very 
large and produced strong gravitational fields that captured the slow 
moving hydrogen and helium. Pluto used to be called “the ninth planet” 
but, in 2006, it was downgraded to a “dwarf planet”. The planets move 
in elliptical orbits round the Sun with only Mercury occupying a plane 
significantly different to that of the other planets. Further out from the 
Sun, beyond Neptune, is the Kuiper belt. This is similar to the asteroid 
belt but much larger; it is the source of short-period comets and contains 
dwarf planets (including Pluto). The Kuiper belt is set to be the next 
frontier of exploration in our solar system.

  Figure 2 Thermal emission from 
the young star Fomalhaut and the 
debris disc surrounding it.
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gas and radiation pressure
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Six of the planets have moons orbiting them: Mars has two moons, 
while Jupiter has at least 50 acknowledged moons with several 
provisional ones that might be asteroids captured by its gravitational 
field. About 4.5 billion years ago, the Earth’s moon is believed to have 
been formed from material ejected when a collision occurred between a 
Mars-size object and the Earth. 

Asteroids are rocky objects orbiting the Sun – with millions of them 
contained in solar orbit in the asteroid belt situated between Mars and 
Jupiter. Those of size less than 300 km have irregular shape because 
their gravity is too weak to compress them into spheres. Some of the 
asteroids, such as Ceres with a diameter of about  10  6  m, are large 
enough to be considered as “minor planets”. 

Comets are irregular objects a few kilometres across comprising 
frozen gases, rock, and dust. Observable comets travel around the Sun 
in sharply elliptical orbits with periods ranging from a few years to 
thousands of years. As they draw near to the Sun the gases in the comet 
are vaporized, forming the distinctive comet tail that can be millions of 
kilometres long and always points away from the Sun.

Stars
Like the Sun, all stars initially form when gravity causes the gas in a 
nebula to condense. As the atoms move towards one another, they lose 
gravitational potential energy that is converted into kinetic energy. This 
raises the temperature of the atoms which then form a protostar. When 
the mass of the protostar is large enough, the temperature and pressure 
at the centre will be sufficient for hydrogen to fuse into helium, with the 
release of very large amounts of energy – the star has “ignited”. Ignition 
produces emission of radiation from the core, producing a radiation 
pressure that opposes the inward gravitational forces. When this is 
balanced the star is in a state of hydrostatic equilibrium and will remain 
stable for up to billions of years because it is on the “main sequence”. As 
the hydrogen is used up the star will eventually undergo changes that 
will move it from the main sequence. During these changes the colour of 
the star alters as its surface temperature rises or falls and it will change 
size accordingly. The original mass of material in the star determines 
how the star will change during its lifetime.

Groups of stars
Despite the difficulties in assessing whether stars exist singly or in groups 
of two or more, it is thought that around fifty per cent of the stars 
nearest to the Sun are part of a star system comprising two or more stars. 
Binary stars consist of two stars that rotate about a common centre of 
mass. They are important in astrophysics because their interactions allow 
us to measure properties that we have no other way of investigating. 
For example, careful measurement of the motion of the stars in a binary 
system allows their masses to be estimated. 

A stellar cluster is a group of stars that are positioned closely enough to 
be held together by gravity. Some clusters contain only a few dozen stars 
while others may contain millions. All of the stars in a star cluster were 
formed at the same time from the same nebula. The Pleiades (figure 5) is 
a stellar cluster of about 500 stars that can be seen with the naked eye; 

  Figure 4 Hydrostatic equilibrium.

  Figure 3 Comet Hale-Bopp.
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this is an example of an open cluster. Open clusters consist of up to 
several hundred stars that are younger than ten billion years and may 
still contain some gas and dust. They are located within our galaxy, the 
Milky Way, and so lie within a single plane. Globular clusters contain 
many more stars and are older than eleven billion years and, therefore, 
contain very little gas and dust. There are 150 known globular clusters 
lying just outside the Milky Way in its galactic halo. Globular clusters are 
essentially spherically shaped.

A constellation, unlike a stellar cluster, is a pattern formed by stars that 
are in the same general direction when viewed from the Earth. They are 
more significant historically than physically as many ancient societies 
attributed them with religious importance. Today, the patterns made by 
the constellations are helpful to astronomers in locating areas of the sky 
for telescopic study. Naturally, some of the stars in a constellation are 
much closer to the Earth than others. Because of proper motion they 
will appear very different in, say, ten thousand years time. Such stars are 
not held together by gravity.

Nebulae
Regions of intergalactic cloud of dust and gas are called nebulae 
(singular is nebula). As all stars are “born” out of nebulae, these 
regions are known as stellar nurseries. There are two different origins 
of nebulae. The first origin of nebulae occurred in the “matter era” 
around 380 000 years after the Big Bang. Dust and gas clouds were 
formed when nuclei captured electrons electrostatically and produced 
the hydrogen atoms that gravitated together. The second origin of 
nebulae is from the matter which has been ejected from a supernova 
explosion. The Crab Nebula, shown in figure 6, is a remnant of such 
a supernova. Other nebulae can form in the final, red giant, stage of a 
low mass star such as the Sun.

Galaxies
A galaxy is a creation of stars, gas, and dust held together by gravity and 
containing billions of stars. The Milky Way contains about 3 ×  10  11  stars 
and, probably, at least this number of planets. Some galaxies exist in 
isolation but the majority of them occur in groups known as clusters that 
have anything from a few dozen to a few thousand members. The Milky 
Way is part of a cluster of about 30 galaxies called the “Local Group” 
which includes Andromeda (figure 7) and Triangulum. Regular clusters 
consist of a concentrated core and are spherical in shape. Irregular 
clusters also exist, with no apparent shape and a lower concentration of 
galaxies within them. Since the launch of the Hubble Space Telescope it 
has been observed that even larger structures, called superclusters, form 
a network of sheets and filaments; approximately 90% of galaxies can 
be found within these. In between the clusters there are voids that are 
apparently empty of galaxies.

The Milky Way and Andromeda are members of the most common class 
of galaxies – spiral galaxies. These are characterized by having a disc-
shape with spiral arms spreading out from a central galactic bulge that 
contains the greatest density of stars. It is increasingly speculated that, 
at the centre of the galactic bulge, there is a black hole. The spiral arms 

  Figure 5 The Pleiades.

  Figure 6 The Crab Nebula.

  Figure 7 The Andromeda galaxy with 
two smaller satellite galaxies.
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contain many young blue stars and a great deal of dust and gas. Other 
galaxies are elliptical in shape, being ovoid or spherical – these contain 
much less gas and dust than spiral galaxies; they are thought to have 
been formed from collisions between spiral galaxies. Irregular galaxies 
are shapeless and may have been stretched by the presence of other 
massive galaxies – the Milky Way appears to be having this effect on 
some nearby dwarf galaxies.

Astronomical distances
Resulting from the huge distances involved in astronomical 
measurements, some unique, non-SI units have been developed. This 
avoids using large powers of ten and allows astrophysicists to gain a feel 
for relative sizes and distances.

The light year (ly): The speed of light is one of the most fundamental 
constants in physics; all inertial observers measure light as travelling at 
the same speed (see Option A for a background to this). This property can 
be used to define a set of units based on the speed of light. For example, 
the distance travelled by light in one minute is called a light minute. As it 
takes light approximately 8 minutes to travel from the Sun to the Earth, 
the distance between them is 8 light minutes. The light year (ly) is a more 
commonly used unit and is the distance travelled by light in one year.

 1 ly = 9.46 ×  10  15 m

The astronomical unit (AU): This is the average distance between the 
Sun and the Earth. It is really only useful when dealing with the distances 
of planets from the Sun.

 1 AU = 1.50 ×  10  11  m ≈ 8 light minutes

The parsec (pc): This is the most commonly used unit of distance in 
astrophysics. 

 1 pc = 3.26 ly = 3.09 ×  10  16  m

Distances between nearby stars are measured in pc, while distances 
between distant stars within a galaxy will be in kiloparsecs (kpc), and 
those between galaxies in megaparsecs (Mpc) or gigaparsecs (Gpc).

The distances used in astronomy are truly enormous, and this has 
meant that a variety of indirect methods have been developed for 
their measurement. The method used to measure the distance of an 
astronomical object from the Earth is dependent on its proximity.

Stellar parallax
On Earth, surveyors measure distances by using the method of 
triangulation. A known or measured length is taken as a baseline. The 
angles that a distant object makes at either end of the baseline are then 
measured (using a theodolite). From these angles the distance of the 
object can be calculated. When measuring the distance of a star from the 
Earth (in parsec) a similar technique is employed. Parallax is based on the 
fact that nearby objects will appear to cross distant objects when viewed 
from different positions. This can be seen from inside a moving car when 
fence posts by the roadside appear to speed by but distant hills hardly 
move. As the Earth orbits the Sun, the stars that are quite close to us 
appear to move across the distant “fixed” stars as shown in figure 8.
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  Figure 8 Stellar parallax.

When the image of a nearby star is recorded in both January and July 
the star appears to have moved across the fixed stars in the background. 
Using the equation

 d =   1 _ p  

gives the distance d in parsecs when p is the parallax angle in arcsecond. 

This simple relationship is used for defining the parsec:  when a star 
is at a distance of 1 pc from the Earth the parallax angle given by the 
equation will be one arcsecond. 

In a circle there are 360 degrees. In every degree there are 60 arcminutes 
and 60 arcseconds in every arcminute. Thus 1 arcsecond is very small 
being just   1

 ____ 3600   of a degree.

There is a limit to the distance that can be measured using stellar 
parallax – parallax angles of less than 0.01 arcsecond are difficult to 
measure from the surface of the Earth because of the absorption and 
scattering of light by the atmosphere. Turbulence in the atmosphere 
also limits the resolution because it causes stars to “twinkle”. Using the 
parallax equation, gives a maximum range of d =   1

 ____ 0.01   = 100 pc.

In 1989, the satellite Hipparcos (an acronym for High Precision Parallax 
Collecting Satellite) was launched by the European Space Agency 
(ESA). Being outside the atmosphere, Hipparcos was able to measure 
the parallaxes of 118 000 stars with an accuracy of 0.001 arcsecsond (to 
distances 1000 pc); its mission was completed in 1993. Gaia (figure 9), 
Hipparcos’s successor, was launched in 2013 and is charged with the task 
of producing an accurate three-dimensional map showing the positions 
of about a billion stars in the Milky Way. This is about one per cent of 
the total number of stars in the galaxy! Gaia is able to resolve a parallax 
angle of 10 microarcsecond measuring stars at a distance of 100 000 pc. 
Amateur astronomers taking images will be working at approximately 
1 arcsecond per pixel.  Figure 9 The Gaia mission.
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Luminosity and apparent brightness of stars
In Sub-topic 4.3 we looked at the intensity of a wave at a point distance r 
from the source. Intensity was defined as the power emitted by a source 
divided by the area of the sphere over which the energy is spread equally. 

 I =   P _ 
4π r  2 

  

For stars P is called the luminosity (L) of the star and represents the total 
energy emitted by the star per second in watt. I in this context is the 
apparent brightness (b) and is measured in watts per square metre  
(W  m  –2 ); the distance from the star is usually denoted by d. This version 
of the equation is written as:

 b =   L _ 
4π d  2 

  

The luminosity of a star is a very important quantity in establishing the 
nature of a star. Hence, the equation is particularly useful because, although 
we are not in a position to measure the luminosity of the star, we can 
measure its apparent brightness (for example, by using a telescope and a 
charge-coupled device). If we also calculate the distance of the star we can 
then work out its luminosity. Alternatively, when we know the luminosity of 
a star (because it is similar to other stars of known luminosity) we are able to 
use the measurement of its apparent brightness to estimate the star’s distance.

Worked example
a) For a star, state the meaning of the following 

terms:

(i) Luminosity

(ii) Apparent brightness.

b) The spectrum and temperature of a certain 
star are used to determine its luminosity to 
be approximately 6.0 ×  10  31  W. The apparent 
brightness of the star is 1.9 ×  10  -9  W m  –2 .  
These data can be used to determine the 
distance of the star from Earth. Calculate the 
distance of the star from Earth in parsec.

c) Distances to some stars can be measured by 
using the method of stellar parallax.

(i) Outline this method.

(ii) Modern techniques enable the 
measurement from Earth’s surface of 
stellar parallax angles as small as 5.0 ×  10  –3  
arcsecond. Calculate the maximum distance 
that can be measured using the method of 
stellar parallax.

Solution
a) (i)  The luminosity is the total power emitted 

by the star.

 (ii)  The apparent brightness is the incident 
power per unit area received at the surface 
of the Earth.

b) Using b =   L _ 
4π d  2 

   we rearrange to get 

 d =  √___
   L

 ___ 
4πb

     =  √__________
    6.0 ×  10  31 
 ____________  

4π × 1.9 ×  10  -9  
     = 5.0 ×  10  19  m

  As 1 pc = 3.26 ly and 1 ly = 9.46 ×  10  15  m 
then 1 pc = 3.26 × 9.46 ×  10  15  m 

 = 3.08 ×  10  16  m.

  5.0 ×  10  19  m is   5.0 ×  10  19 
 ________ 

3.08 ×  10  16 
    or 1623 pc  

≈1600 pc

c) (i)  The angular position of the star against the 
background of fixed stars is measured at 
six month intervals. The distance d is then 
found using the relationship d =   1 __ p   (this is 
shown in figure 6.)

 (ii) d =   1
 _______ 

5 ×  10  -3 
   = 200 pc.
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Black-body radiation and stars
In Sub-topic 8.2 we considered black bodies as theoretical objects that 
absorb all the radiation that is incident upon them. Because there is no 
reflection or re-emission they appear completely black – as their name 
suggests. Such bodies would also behave as perfect emitters of radiation, 
emitting the maximum amount of radiation possible at their temperature. 
All objects at temperatures above absolute zero emit black-body 
radiation. This type of radiation consists of every wavelength possible but 
containing different amounts of energy at each wavelength for a particular 
temperature. Although stars are not perfect black-bodies they are capable 
of emitting and absorbing all wavelengths of electromagnetic radiation. 
Figure 10 shows the black-body radiation curves for the Sun, the very hot 
star Spica, and the cold star Antares. Because each of the stars will produce 
different intensities, the curves have been normalized by dividing the 
intensity emitted at a given wavelength by the maximum intensity that the 
star yields – this means the vertical scale has no unit and the maximum 
value it can take is 1.00. The maximum intensity of radiation emitted by 
the Sun has a wavelength of just over 500 nm making it appear yellow; the 
peak intensity for Spica is in the ultraviolet region, but there is sufficient 
intensity in the blue region for it to appear blue; the peak for Antares is in 
the near infra-red but, with plenty of red light emitted, it appears to be red 
to the naked eye.
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  Figure 10 Black-body radiation curves for three stars.

For a star the Stefan–Boltzmann law is written as

 L = σA T  4 

where L is the luminosity in watt, A the surface area of the star in square 
metres, and T the temperature in kelvin. σ is the Stefan–Boltzmann 
constant = 5.67 ×  10  –8   Wm  −2   K  −4 . 

When we assume that a star is spherical we can use this equation in 
the form:

 L = σ4 πR  2   T  4 

where R is the radius of the star.

We can see that the luminosity of a star depends on its temperature and 
its size (measured here by its surface area). In the next sub-topic we will 
see how the balance between temperature and surface star size is used to 
categorize star type.

Worked example
Some data for the variable star 
Betelgeuse are given below.

Average apparent brightness  
= 1.6 ×  10  –7   Wm  –2 

Radius = 790 solar radii

Earth–Betelgeuse separation  
= 138 pc

The luminosity of the Sun is  
3.8 ×  10  26  W and it has a surface 
temperature of 5800 K.

a) Calculate the distance between 
the Earth and Betelgeuse in 
metres.

b) Determine, in terms of the 
luminosity of the Sun, the 
luminosity of Betelgeuse.

c) Calculate the surface 
temperature of Betelgeuse.

Solution
a) As 1 pc = 3.1 ×  10  16  m,  

138 pc = 138 × 3.1 ×  10  16  
    = 4.3 ×  10  18  m

b) b =   L
 ____ 

4π d  2 
   ∴ L = 4π d  2 b  

= 4π[4.3 ×  10  18  ]  2  × 1.6 ×  10  -7  

= 3.7 ×  10  31  W

  Dividing by the luminosity of 
the Sun gives 

   3.7 ×  10  31 
 ________ 

3.8 ×  10  26 
   = 9.7 ×  10  4 .

  So Betelgeuse has a luminosity 
of 9.7 ×  10  4   L  Sun 

c) As L = σ4π R  2  T   4 , by taking 
ratios we get

   
 L  Sun 
 _______  L  Betelgueuse 

   =   
σ4π  R  Sun   

2   T  Sun   
4 
  _______________  σ4π  R  Betelgeuse   

2   T  Betelgeuse   
4 
  

    
 T  Betelgeuse 

 ______  T  Sun 
   =   4 √_________

     
 L  Betelgeuse    R  Sun   

2 
 _________ 

 L  Sun    R  Betelgeuse   
2 
    

 =   4 √_______
    9.8 × 104

 _______ 
7902     = 0.63

  T  Betelgeuse  = 0.63 × 5800 K 

     = 3700 K
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  Applications and skills
 ➔ Explaining how surface temperature may be 

obtained from a star’s spectrum
 ➔ Explaining how the chemical composition of 

a star may be determined from the star’s 
spectrum

 ➔ Sketching and interpreting HR diagrams
 ➔ Identifying the main regions of the HR diagram 

and describing the main properties of stars in 
these regions

 ➔ Applying the mass–luminosity relation
 ➔ Describing the reason for the variation of 

Cepheid variables
 ➔ Determining distance using data on Cepheid 

variables
 ➔ Sketching and interpreting evolutionary paths 

of stars on an HR diagram
 ➔ Describing the evolution of stars off the main 

sequence
 ➔ Describing the role of mass in stellar evolution

Equations
 ➔ Wien’s law: λmaxT = 2.9 ×  10  -3  mK
 ➔ luminosity-mass relationship: L ∝  M  3.5 

Understandings
 ➔ Stellar spectra
 ➔ Hertzsprung–Russell (HR) diagram
 ➔ Mass–luminosity relation for main sequence stars
 ➔ Cepheid variables
 ➔ Stellar evolution on HR diagrams
 ➔ Red giants, white dwarfs, neutron stars, and 

black holes
 ➔ Chandrasekhar and Oppenheimer–Volkoff limits

  Nature of science
In 1859, the physicist Gustav Kirchhoff and 
chemist Robert Bunsen worked at the University 
of Heidelberg in Germany. Having developed 
the first spectroscope, they repeated Foucault’s 
experiment of passing sunlight through a bright 
sodium flame to find the absorption lines seen 
in the solar spectrum. They then repeated their 
experiment with other alkali metals and were able 
to show that the solar absorption spectra were the 
reverse of emission spectra. Kirchhoff went on to 
provide strong evidence for the presence of iron, 
magnesium, sodium, nickel, and chromium in the 
atmosphere of the Sun. Their experiments paved 
the way for our understanding of many of the 
properties of stars.

D.2 Stellar characteristics and stellar evolution

Introduction
The magnitude of the distance between stars is unimaginable with the 
nearest star (ignoring the Sun) being so distant that, even with the 
fastest rocket ever built, it would take almost a hundred thousand years 
for us to reach it. The curiosity of the human race knows no bounds 
and we have striven to find out all we can about stars – their life cycles 
and their distances from the Earth. In this sub-topic we investigate 
how it is possible to estimate the distance of stars more than 100 pc 
from the Earth, and explore the lives of stars of different mass, radius, 
temperature, and colour.
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Stellar spectra
In Sub-topic 7.1 we considered emission and absorption spectra 
occurring as electrons make transitions between energy levels. Such 
spectra provide important information about the chemical composition, 
density, surface temperature, rotational and translational velocities of 
stars. When we observe the spectrum of stars using a spectrometer we 
find that nearly all stars show a continuous spectrum which is crossed 
by dark absorption lines; some stars also show bright emission lines. 
Seeing absorption lines across a continuous stellar spectrum tells us that 
the stars have a hot dense region (to produce the continuous spectrum) 
surrounded by cooler, low-density gas (to produce the absorption lines). 
In general, the density and temperature of a star decreases with distance 
from its centre. Because its temperature is so high, a star’s core has to 
be composed of high-pressure gases and not of molten rock, unlike the 
cores of some planets.

Composition of stars
Absorption of certain wavelengths is apparent when we observe the 
intensity–wavelength relationship for stars. The smooth theoretical 
black-body curve is modified by absorption dips as can be seen in 
figure 1. The graph shows the variation with wavelength of the intensity 
for the Sun and Vega (which is much hotter than the Sun having a 
surface temperature of 9600 K). In the case of Vega, the cooler hydrogen 
in the star’s outer layers (the photosphere) absorbs the photons emitted 
by hydrogen. The clear pattern between the wavelengths absorbed and 
those of the visible part of the hydrogen absorption spectrum shown 
in figure 2 strongly suggests that Vega’s photosphere is almost entirely 
made up of hydrogen. 
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  Figure 1 Intensity–wavelength relation for Vega and the Sun.
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The absorption lines correspond to those of hydrogen shown in the 
spectrum of figure 2.

hydrogen absorption spectrum

400 nm 700 nm

  Figure 2 Atomic hydrogen absorption spectrum.

It also implies that the transitions occur in agreement with the Balmer 
series from level n = 2 to higher levels. On the other hand, the Sun 
has some of the visible hydrogen lines. Because the Sun is cooler than 
Vega, many of its hydrogen atoms are in the ground state producing 
absorption lines that are in the ultraviolet region of the spectrum 
(corresponding to transitions from level n = 1 in the Lyman series). Stars 
that are even hotter than Vega tend not to produce hydrogen absorption 
lines in the visible spectrum because their high temperatures mean 
that the hydrogen in the photosphere is ionized (and therefore has no 
electron to become excited by the absorption of a photon).

  Nature of science
Spectral classes
Stars were originally categorized in terms of the 
strength of the hydrogen absorption lines – with 
the stars producing the darkest absorption lines 
being called type ‘A’ and those with successively 
weaker lines type ‘B’, ‘C’ etc. Within the last 
century astronomers recognized that the line 
strength depended on temperature of the stars 
rather than their composition. Subsequently, the 

whole system of classification was revised with 
the result that many categories were abandoned 
and many others reordered – as shown in the 
table below. This form of star classification will 
not be included in your IB Physics’ examinations, 
but is included here for historical interest and to 
indicate how many scientists have a reluctance to 
abandon a well-loved system!

  Nature of science
Spectral classes
Stars were originally categorized in terms of the 
strength of the hydrogen absorption lines – with 
the stars producing the darkest absorption lines 
being called type A and those with successively 
weaker lines type B and C etc. Within the last 
century astronomers recognized that the line 
strength depended on temperature of the stars 
rather than their composition. Subsequently, the 

whole system of classification was revised with the 
result that many categories were abandoned and 
many others reordered – as shown in the table 
below. This form of star classification will not be 
included in your IB Diploma Programme Physics 
examinations, but is included here for historical 
interest and to indicate how many scientists have 
a reluctance to abandon a well-loved system!

Main sequence star properties

Colour Class Solar masses Solar diameters Temperature/K Prominent lines

bluest O 20–100 12–25 40 000 ionized helium

bluish B 4–20 4–12 18 000 neutral helium, neutral hydrogen

blue-white A 2–4 1.5–4 10 000 neutral hydrogen

white F 1.05–2 1.1–1.5 7000 neutral hydrogen, ionized calcium

yellow-white G 0.8–1.05 0.85–1.1 5500 neutral hydrogen, strongest ionized calcium

orange K 0.5–0.8 0.6–0.85 4000 neutral metals (calcium, iron), ionized 
calcium

red M 0.08–0.5 0.1–0.6 3000 molecules and neutral metals

651

D . 2  S T E L L A R  C H A R A C T E R I S T I C S  A N D  S T E L L A R  E V O L U T I O N



Using the absorption spectrum to determine the chemical elements in 
a particular star is not easy as the spectra of many elements (differently 
ionized) are superimposed on one another. Although the lines present 
in an absorption spectrum tell us quite a lot about the temperature of 
the photosphere (as described above), they are difficult to interpret in 
terms of the abundance of elements. The movement of the gas atoms 
in the star causes the photons of light emitted to undergo both red and 
blue Doppler shifts. In hotter stars, the atoms move faster than in cooler 
stars and, therefore, the Doppler broadening is more pronounced. The 
rotation of the stars themselves means that the light reaching us will 
come from different parts of the star – one edge moving towards us, 
the other moving away from us and the central region rotationally 
stationary. This, of course, adds to the thermal Doppler broadening.

Wien’s displacement law and star temperature
By treating a star as a black body it is possible to estimate its surface 
temperature using Wien’s law – as discussed in Sub-topic 8.2. Stars range 
in surface temperature from approximately 2000 K to 40 000 K. The 
temperature T of the star in kelvin is given by: 

 T =   2.9 ×  10  -3  mK  __ 
 λ  max 

   

where  λ  max  is the wavelength in metres at which the black-body 
radiation is of maximum intensity and T is in kelvin.

Worked example
a) Explain the term black-body radiation.

 The diagram is a sketch graph of the black-
body radiation spectrum of a certain star.
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b) Copy the graph and label its horizontal axis.

c) On your graph, sketch the black-body 
radiation spectrum for a star that has a lower 
surface temperature and lower apparent 
brightness than this star.

d) The star Betelgeuse in the Orion constellation 
emits radiation approximating to that emitted 
by a black-body radiator with a maximum 
intensity at a wavelength of 0.97 µm.

  Calculate the surface temperature of Betelgeuse.

Solution
a) Black-body radiation is that emitted by 

a theoretical perfect emitter for a given 
temperature. It includes all wavelengths of 
electromagnetic waves from zero to infinity.

b) and c)

 

in
te

ns
ity

wavelength  

 The red line intensity should be consistently 
lower and the maximum shown shifted to a 
longer wavelength.

d) T =   2.9 ×  10  -3  mK  __ 
 λ  max 

   =   2.9 ×  10  -3  __  
0.97 ×  10  -6 

   

 = 2.99 ×  10  3  K ≈ 3000K
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Cepheid variables
Cepheid variables are extremely luminous stars that undergo regular 
and predictable changes in luminosity. Because they are so luminous 
it means that very distant Cepheids can be observed from the Earth. In 
1784, the periodic pulsation of the supergiant star, Delta Cephei, was 
discovered by the English amateur astronomer, John Goodricke. This 
star has a period of about 5.4 days – as seen in figure 3.
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  Figure 3 Luminosity–time relationship for Delta Cephei.

In 1908, the American astronomer, Henrietta Leavitt, was working at the 
Harvard College Observatory. She published an article describing the linear 
relationship between the luminosity and period of pulsation for 25 stars, 
all practically the same distance from the Earth, in the Small Magellanic 
Cloud – a galaxy that orbits the Milky Way. This relationship allows us to 
estimate the luminosity of a given star by measuring its period of pulsation. 
It is now known that there are many more of these variable stars – 
collectively known as Cepheids. The period of these stars varies between 
twelve hours and a hundred days. Although the period is regular it is not 
sinusoidal and it takes less time for the star to brighten than it does to fade.

Figure 4 shows the relative luminosity–period relationship for Cepheid 
stars. The relative luminosity is the ratio of the luminosity of the star to 
that of the Sun. The Sun’s luminosity is conventionally written as  L  ⊙ 
Cepheid stars are stars that have completed the hydrogen burning phase 
and moved off the main sequence (see later for an explanation of this). 
The variation in luminosity occurs because the outer layers within the 
star expand and contract periodically. This is shown diagrammatically 
in figure 5. If a layer of an element loses hydrostatic equilibrium 
(between the gas and radiation pressure and that due to gravity) and is 
pulled inwards by gravity (1), the layer becomes compressed and less 
transparent to radiation (2); this means that the temperature inside 
the layer increases, building up the internal pressure (3) and causing 
the layer to be pushed outwards (4). During expansion the layer cools, 
becoming less dense (5) and more transparent, allowing radiation 
to escape and letting the pressure inside fall (6). Subsequently the 
layer falls inwards under gravity (1) and the cycle repeats causing the 
pulsation of the radiation emitted by the star.

Cepheid variable stars are known as “standard candles” because 
they allow us to measure the distances to the galaxies containing 
Cepheid variable stars. The distances, d, of the Cepheids can be 
calculated from the apparent brightness–luminosity equation: 

b =   L _ 
4π d  2 

  . 

The apparent brightness is measured using a telescope and CCD and the 
luminosity is calculated from a measurement of the period of the Cepheid. 

  Figure 4 Relative luminosity – period 
relationships for Cepheid stars.
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  Figure 5 Cycle in a Cepheid star. 
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TOK

Women in science, technology, and engineering

Over the ages there have been few women scientists,   
and physics has been no exception. Astronomy, however, 
is one of the areas in which women have shone. Many 
women have made significant contributions. For example, 
in astrophysics, we have the German–British astronomer 
Caroline Herschel (who discovered several comets), 
Agnes Clerk, Maria Mitchell, Annie Jump Cannon, and 
Henrietta Leavitt. Even today, there continues to be 
fewer women following careers in science, and fewer 
opportunities for them to gain promotion to senior roles. 
Why should women be so under- represented in science, 
technology, and engineering?

Worked example
a) Define (i) luminosity (ii) apparent brightness.

b) State the mechanism for the variation in the 
luminosity of the Cepheid variable.

The variation with time t, of the apparent 
brightness b, of a Cepheid variable is shown below.

1.3

time/days

b/
10

-
10

 W
 m

-
2

1.2

1.1

1.0

0.9

0.8
0 1 2 3 4 5 6 7 8 9 10

A

B

Two points in the cycle of the star have been 
marked A and B.

c) (i)  Assuming that the surface temperature of 
the star stays constant, deduce whether the 
star has a larger radius after two days or 
after six days.

 (ii)  Explain the importance of Cepheid variables 
for estimating distances to galaxies.

d) (i)  The maximum luminosity of this Cepheid 
variable is 7.2 ×  10  29  W. Use data from 
the graph to determine the distance of the 
Cepheid variable. 

 (ii)  Cepheids are sometimes referred to as 
“standard candles”. Explain what is meant 
by this.

Solution
a) (i)  Luminosity is the total power radiated by 

a star.

 (ii)  Apparent brightness is the power from a 
star received by an observer on the Earth 
per unit area of the observer’s instrument 
of observation.

b) Outer layers of the star expand and contract 
periodically due to interactions of the 
elements in a layer with the radiation emitted.

c) (i)  The radius is larger after two days (point A) 
because, at this time the luminosity is higher 
and so the star’s surface area is larger.

 (ii)  Cepheid variables show a regular relationship 
between period of variation of the luminosity 
and the luminosity. By measuring the period 
the luminosity can be calculated and, by 
using the equation b =   L _ 

4π d  2 
  , the distances 

to the galaxy can be measured. This assumes 

that the galaxy contains the Cepheid star.

d) (i)  b =   L _ 
4π d  2 

   thus 1.25 ×  10  –10  =   7.2 ×  10  29  _ 
4π d  2 

   

 d =  √_______________
    7.2 ×  10  29   __  

4π × 1.25 ×  10  -10 
    

 d = 2.14 ×  10  19  m

 (ii)  A standard candle is a light source of known 
luminosity. Measuring the period of a 
Cepheid allows its luminosity to be estimated. 
From this, other stars in the same galaxy can 
be compared to this known luminosity.
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Hertzsprung-Russell (HR) diagram
We saw in Sub-topic D.1 that the luminosity of a star is proportional 
both to its temperature to the fourth power and to its radius squared. 
Clearly, large hot stars are the most inherently bright, but how do other 
combinations of temperature and radius compare to these?

In the early 1900s, two astronomers, Ejnar Hertzsprung in Denmark 
and Henry Norris Russell in America, independently devised a pictorial 
way of illustrating the different types of star. By plotting a scattergram 
of the luminosities of stars against the stars’ temperatures, clear patterns 
emerged. These scattergrams are now known as Hertzsprung-Russell 
(HR) diagrams. In general, cooler red stars tend to be of relatively low 
luminosity, while hotter blue stars tend to be of high luminosity. With 
high temperature conventionally drawn to the left of the horizontal 
axis, the majority of stars create a diagonal stripe which goes from top 
left to bottom right – this is known as the main sequence. A small number 
of stars do not follow the main sequence pattern but, instead, form 
island groups above and below the main sequence. The vertical axis 
is commonly modified to show the ratios of star luminosity to that of 
the Sun (denoted as  L  ⊙ ) as shown in figure 6 – in this case the axis is 
logarithmic and has no unit. The temperature axis is also logarithmic 
and doubles with every division from right to left.

The HR diagram shows the position of many stars of different ages; during 
the lifetime of a star its position will move on the diagram as its temperature 
and luminosity changes. We know from black-body radiation that the 
luminosity depends on the size of a star and its temperature. Small, cool 
stars will be dim and be positioned to the bottom right of the diagram – 
from Wien’s law we know they will be red. Large, hot stars will be of high 
luminosity and blue or blue-white in colour thus placing them at the top left 
of the diagram. A modification of the HR diagram to include the different 
star classes is shown in figure 7.

Main sequence stars are ordinary stars, like the Sun, that produce 
energy from the fusion of hydrogen and other light nuclei such as 
helium and carbon. Nearly 90% of all stars fit into this category.  
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  Figure 6 Hertzsprung–Russell diagram.
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  Figure 7 Hertzsprung–Russell diagram showing the different 
classes of stars.
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Red giants are cooler than the Sun and so emit less energy per square 
metre of surface. However, they have a higher luminosity, emitting up 
to 100 times more energy per second than the Sun. This means that 
they must have a much greater surface area to be able to emit such large 
energies. They, therefore, have a much larger diameter than the Sun – 
making them “giant” stars.  

Supergiant stars are gigantic and very bright. A supergiant emitting 
100 000 times the energy per second and at the same temperature of 
the Sun must have a surface area 100 000 times larger. This leads to a 
diameter that is over 300 times the diameter of the Sun. Only about 1% 
of stars are giants and supergiants.

White dwarfs are the remnants of old stars and constitute about 9% 
of all stars. Although they were very hot when they finally stopped 
producing energy, they have a relatively low luminosity showing them 
to have a small surface area. These very small, hot stars are very dense 
and take billions of years to cool down.

Mass–luminosity relation for main sequence stars
Not all main sequence stars are the same as the Sun – some are smaller 
and cooler while others are larger and hotter. High mass stars have 
shorter lifetimes – a star with a mass of 10 times the solar mass might 
only live 10 million years compared to the expected lifetime of around 
10 billion years for the Sun. Observations of thousands of main sequence 
stars have shown there to be a relationship between the luminosity and 
the mass. For such stars this takes the form

 L ∝  M  3.5 

where L is the luminosity in W (or multiples of the Sun’s luminosity,  L  ⊙ ) 
and M is the mass in kg (or multiples of the Sun’s mass,  M  ⊙ ).
Because mass is raised to a positive power greater than one, this means that 
even a slight difference in the masses of stars results in a large difference in 
their luminosities. For example, a main sequence star of 10 times the mass 
of the Sun has a luminosity of  (10)  3.5  ≈ 3200 times that of the Sun.

For a star to be stable it needs to be in hydrostatic equilibrium, where 
the pressure due to the gravitational attraction of inner shells is equalled 
by the thermal and radiation pressure acting outwards. For a stable star 
of higher mass there will be greater gravitational compression and so the 
core temperature will be higher. Higher temperatures make the fusion 
between nuclei in the core more probable giving a greater rate of nuclear 
reaction and emission of more energy; thus increasing the luminosity. 
The mass of a star is fundamental to the star’s lifetime – those with 
greater mass have far shorter lives.

Stellar evolution 
Formation of a star
We saw in Sub-topic D.1 that the initial process in the formation of a star 
is the gravitational attraction of hydrogen nuclei. The loss of potential 
energy leads to an increase in the gas temperature. The gas becomes 
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denser and, when the protostar has sufficient mass, the temperature 
becomes high enough for nuclear fusion to commence. The star moves 
onto the main sequence where it remains for as long as its hydrogen 
is being fused into helium – this time occupies most of a star’s life. 
Eventually when most the hydrogen in the core has fused into helium 
the star moves off the main sequence. 

The fate of stars
All stars collapse when most of the hydrogen nuclei have fused into 
helium. Gravity now outweighs the radiation pressure and the star shrinks 
in size and heats up. The hydrogen in the layer surrounding the shrunken 
core is now able to fuse, raising the temperature of the outer layers which 
makes them expand, forming a giant star. Fusion of the hydrogen adds 
more helium to the core which continues to shrink and heat up, forming 
heavier elements including carbon and oxygen. The very massive stars will 
continue to undergo fusion until iron and nickel (the most stable elements) 
are formed. What happens at this stage depends on the mass of the star.

A. Sun-like stars
For stars like the Sun of moderate mass (up to about 4 solar masses) the 
core temperature will not be high enough to allow the fusion of carbon. 
This means that, when the helium is used up, the core will continue 
to shrink while still emitting radiation. This “blows away” outer layers 
forming a planetary nebula around the star. When the remnant of the 
core has shrunk to about the size of the Earth it consists of carbon and 
oxygen ions surrounded by free electrons. It is prevented from further 
shrinking by an electron degeneracy pressure. Pauli’s exclusion 
principle prevents two electrons from being in the same quantum state 
and this means that the electrons provide a repulsive force that prevents 
gravity from further collapsing the star. The star is left to cool over 
billions of years as a white dwarf. Such stars are of very high density of 
about  10  9  kg  m  –3 . Figure 8 shows Sirius B, the companion star of Sirius 
A, and the first white dwarf to be identified. 

The probable future for the Sun is shown as the purple line on the HR 
diagram figure 9.
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  Figure 9 Hertzsprung–Russell diagram showing the Sun’s path.

  Figure 8 Sirius A and B.
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B. Larger stars
The core of a star that is much bigger than the Sun undergoes a different 
evolutionary path from that of a Sun-like star. When such stars are 
in the red giant phase, the core is so large that the resulting high 
temperature causes the fusion of nuclei to create elements heavier than 
carbon. The giant phase ends with the star having layers of elements 
with proton numbers that decrease from the core to the outside (much 
like layers in an onion – see Sub-topic D.4, figure 8). The dense core 
causes gravitational contraction which, as for lighter stars, is opposed 
by electron degeneracy pressure. Even with this pressure, massive 
stars cannot stabilize. The Chandrasekhar limit stipulates that it is 
impossible for a white dwarf to have a mass of more than  1.4 times 
the mass of the Sun. When the mass of the core reaches this value the 
electrons combine with protons to form neutrons – emitting neutrinos 
in the process. The star collapses with neutrons coming as close to each 
other as in a nucleus. The outer layers of the star rush in towards the 
core but bounce off it in a huge explosion – a supernova. This blows 
off the outer layers and leaves the remnant core as a neutron star. In a 
quantum mechanical process similar to that of electron degeneracy, the 
neutrons provide a neutron degeneracy pressure that resists further 
gravitational collapse. The Oppenheimer–Volkoff limit places an 
upper value on a neutron star for which neutron degeneracy is able to 
resist further collapse into a black hole. This value is currently estimated 
at between 1.5 and 3 solar masses.
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  Figure 11 The evolution of Sun-like and more massive stars.

Black holes
Black holes are discussed in more detail in Sub-topic A.5 but here we 
discuss their importance in astrophysics. It is not possible to form a 
neutron star having a mass greater than the Oppenheimer–Volkoff limit 
– instead the remnant of a supernova forms a black hole. Nothing can 
escape from a black hole – including the fastest known particles, photons. 
For this reason it is impossible to see a black hole directly but their 
existence can be strongly inferred by the following.

  Figure 10 Supernova 1987A with the right 
hand image the region of the sky taken just 
before the event
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 ● The X-rays emitted by matter spiralling towards the edge of a 
black hole and heating up. X-ray space telescopes, such as NASA’s 
Chandra, have observed such characteristic radiation.

 ● Giant jets of matter have been observed to be emitted by the cores 
of some galaxies. It is suggested that only spinning black holes are 
sufficiently powerful to produce such jets.

 ● The unimaginably strong gravitational fields have been seen to 
influence stars in the vicinity, causing them to effectively spiral. A 
black hole has been detected in the centre of the Milky Way and 
it has been suggested that there is a black hole at the centre of 
every galaxy.

Worked example
A partially completed Hertsprung–Russell (HR) 
diagram is shown below.

F
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S

I

The line indicates the evolutionary path of the 
Sun from its present position, S, to its final 
position, F. An intermediate stage in the Sun’s 
evolution is labelled by I.

a) State the condition for the Sun to move from 
position S.

b) State and explain the change in the luminosity 
of the Sun that occurs between positions S and I.

c) Explain, by reference to the Chandrasekhar 
limit, why the final stage of the evolutionary 
path of the Sun is at F.

d) On the diagram, draw the evolutionary path 
of a main sequence star that has a mass of 30 
solar masses.

Solution
a) Most of the Sun’s hydrogen has fused into 

helium.

b) Both the luminosity and the surface area 
increase as the Sun moves from S to I.

c) White dwarfs are found in region F of the HR 
diagram. Main sequence stars that end up 
with a mass under the Chandrasekhar limit 
of 1.4 solar masses will become white dwarfs.

d) The path must start on the main sequence 
above the Sun. This should lead to the super 
red giant region above I and either stop there 
or curve downwards towards and below white 
dwarf in the region between F and S.
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D.3 Cosmology

  Applications and skills
 ➔ Describing both space and time as originating 

with the Big Bang
 ➔ Describing the characteristics of the CMB 

radiation
 ➔ Explaining how the CMB radiation is evidence for 

a hot big bang
 ➔ Solving problems involving z, R, and 

Hubble’s law
 ➔ Estimating the age of the universe by assuming 

a constant expansion rate

Equations
 ➔ the redshift equation: z =   %λ _______  λ  0    ≈   v ___ c  

 ➔ relation between redshift and cosmic scale factor: 
z =   R _____  R  0    -1

 ➔ Hubble’s law: v =  H  0 d
 ➔ age of the universe estimate: T ≈   1 ______  H  0    

Understandings
 ➔ The Big Bang model
 ➔ Cosmic microwave background (CMB) radiation
 ➔ Hubble’s law
 ➔ The accelerating universe and redshift (Z)
 ➔ The cosmic scale factor (R)

  Nature of science
Cosmology and particle physics
When we look at astronomical objects we see them 
as they were in the past. The Sun is always viewed 
as it was 8 minutes earlier and the most distant 
galaxies appear as they were more than 10 billion 
( 10  10 ) years ago. The further away the galaxy, the 
further back in time we are looking. Cosmology 
is a way of studying the history of the universe. 
Particle physicists study the universe in a different 
way, but they have the same objectives. They use 
particle accelerators, such as the Large Hadron 
Collider (LHC) or the Relativistic Heavy Ion Collider 
(RHIC), to attempt to recreate events that mimic 
conditions in the very early universe.

Introduction
Sir Isaac Newton believed that the universe was infinite and static. In 
his model of the universe he argued that the stars would exert equal 
gravitational attractions on each other in all directions, and this would 
provide a state of equilibrium. In 1823, the German astronomer, 
Heinrich Olbers, suggested that Newton’s view of an infinite universe 
conflicted with observation; when we look up into the night sky we 
see darkness but, in an infinite universe, we should be able to see a star 
in every direction and, therefore, the night sky should be uniformly 
bright on a cloudless night. In 1848, the America author, Edgar Allan 
Poe, suggested that the universe, although infinite, was simply not 
old enough to have allowed the light to travel from the most far-flung 
regions to reach us. Although Poe was a naive scientist, he had suggested 
a theory that was a forerunner of the Big Bang model. In this sub-topic 
we will consider how the (inflationary) Big Bang model has developed 
into the most probable explanation of the beginning of the universe.  
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The redshift and Hubble’s law
In the 1920s, the American astronomer, Edwin Hubble, was working 
at the Mount Wilson Observatory in California. He set out to find an 
additional way of gauging the distance of remote galaxies that would 
supplement using Cepheid stars. Following on from the work of others 
Hubble started to compare the spectra of distant galaxies with their 
Earth-bound equivalents. He found that the spectra from the galaxies 
invariably appeared to be redshifted in line with the Doppler effect. Such 
consistent results could only mean that all the galaxies were moving 
away from the Earth. Figure 1 shows the typical absorption spectra for a 
range of sources.
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  Figure 1 Redshifted absorption spectra.

For optical spectra the wavelengths are moved towards the red end 
of the spectrum. The shift applies to all waves in the spectrum, so the 
absorption lines in the spectrum can be seen to have shifted. 

In addition to recognizing the consistent redshift, Hubble showed that 
the further away the galaxy the greater the redshift. To do this he used 
the standard candles available to him, Cepheid variables. Although 
his data had large uncertainties (see figure 2) he suggested that the 
recessional speed of a galaxy is proportional to its distance from Earth. 
Hubble’s law is written as

 v =  H  0 d

where v is the velocity of recession and d is the distance of the galaxy 
(both measured from Earth),  H  0  is the Hubble constant.

v is usually being measured in km  s  −1  and d in Mpc,  H  0  is usually 
measured in km  s  −1  Mp c  −1 .

From the gradient of the graph of Hubble’s data you will see that it 
gives a value for  H  0  of about 500 km  s  −1   Mpc  −1 . Now that we have more 
reliable data we can see that Hubble’s intuition was valid but, by using 
1355 galaxies, data give a modern value for  H  0  that is much closer to 
70 km  s  −1   Mpc  −1 . However, it can be seen in figure 3 that there is still 
uncertainty in the value of the Hubble constant.

Note
 ● In the case of infra-red or 

microwaves the radiation 
already has wavelengths 
that are longer than red 
light. For these, the term 
redshift is ambiguous 
because “redshift” changes 
their wavelengths to even 
longer wavelengths and not 
towards the wavelength of 
red light. 

 ● Stars within the Milky Way 
and, therefore, relatively 
close to the Earth might 
actually be moving towards 
us and could show a 
blueshift – this is simply a 
local phenomenon.

  Figure 2 Recreation of Hubble’s 
original 1929 data.
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  Figure 3 More recent velocity– 
distance plot.
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The Big Bang model and the age of the universe
Hubble’s conclusion that the galaxies are moving further apart provides 
compelling evidence that they were once much closer together. 
According to the Standard Model, about 13.7 billion years ago the 
universe occupied a space smaller than the size of an atom. At that 
instant the entire universe exploded in a Big Bang, undergoing an 
immense expansion in which both time and space came into being. 
Starting off at a temperature of  10  32  K, the universe rapidly cooled so 
that one second after the Big Bang it had fallen to  10  10  K. In the time 
since the Big Bang, the universe has continued to cool to 2.7 K. In this 
time there has been an expansion of the fabric of space – the universe 
has not been expanding into a vacuum that was already there. As the 
galaxies move apart the space already between them becomes stretched. 
This is what we mean by “expansion” and why we believe the redshift 
occurs. The space through which the electromagnetic radiation travels is 
expanding and it stretches out the wavelength of the light. The further 
away the source of the light, the greater space becomes stretched, 
resulting in a more stretched-out wavelength and increasing the 
cosmological redshift – not to be confused with local redshift due to 
the Doppler effect.

Cosmologists have spent a great deal of time considering what happened 
between the time that the Big Bang occurred and the present day. One 
of the key questions is “how did the universe appear in the distant past?” 
Hubble’s law certainly suggests that the galaxies were closer together than 
they are now and, logically, it follows that there must have been a point 
in time when they were all in the same place – that time being the Big 
Bang. It is possible to estimate the age of the universe using Hubble’s law.

Worked example
a) The value of the Hubble constant  H  0  is 

accepted by some astronomers to be in the  
range 60 km  s  −1   Mpc  −1  to 90 km  s  −1   Mpc  −1 .

 (i)  State and explain why it is difficult to 
determine a precise value of  H  0 .

 (ii)  State one reason why it would be 
desirable to have a precise value of  H  0 . 

b) The line spectrum of the light from the quasar 
3C 273 contains a spectral line of wavelength 
750 nm. The wavelength of the same line, 
measured in the laboratory, is 660 nm.

Using a value of  H  0  equal to 70 km  s  –1   Mpc  –1 , 
estimate the distance of the quasar from Earth. 

Solution
a) (i)  The Hubble constant is the constant of 

proportionality between the recessional 
velocity of galaxies and their distance from 
Earth. The further galaxies are away (from 
Earth) the more difficult it is to accurately 

determine how far away they are. This is 
because of the difficulty of both locating a 
standard candle, such as finding a Cepheid 
variable within the galaxy, and the difficulties 
of accurately measuring its luminosity.

 (ii)  Having a precise value of  H  0  would 
allow us to gain an accurate value of 
the rate of expansion of the universe 
and to determine an accurate value to 
distant galaxies. It would also allow us to 
determine a more reliable value for the age 
of the universe.

b) From the Doppler shift equation (see Topic 9 
and later in this topic)   %λ ___ 

 λ  0    ≈   v _ c  

∆λ = 90 ×  10  −9  m

 v = 3 ×  10  8  ×   90 ×  10  -9  __  
660 ×  10  -9 

   

  = 4.1 ×  10  7  m  s  –1 

 d =   v __ H0

   =   4.1 ×  10  4  _ 
70

   = 590 Mpc 

TOK

Values for  H  0 

There is still much debate 
about the value of the 
Hubble constant. Using 
better data has brought 
Hubble’s original value down 
by a factor of almost 10 but 
the nature of measurement 
of intergalactic distances 
means that there are 
inevitable uncertainties. 
In December 2012, NASA’s 
Wilkinson Microwave 
Anisotropy Probe (WMAP) 
gave a value for  H  0  of (69.32 
± 0.80) km  s  −1   Mpc  −1  but, 
in March 2013, the Planck 
Mission provided a value 
of (67.80 ± 0.77) km  
s  −1   Mpc  −1 . With two very 
credible scientific projects 
providing values that barely 
overlap at their extreme 
values, should we believe 
scientists’ claims? 
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Assuming that Hubble’s law has held true for all galaxies at all times, the 
light from the most distant star (at the edge of the observable universe) 
has taken the age of the universe to travel to us. If the light was emitted 
immediately after the time of the Big Bang, the space between the galaxy 
and the Earth must have expanded at slightly less than the speed of light 
for the light to have just reached us. This makes the recessional speed of 
the galaxy (almost) that of the speed of light, c. The distance that light 
has travelled from the galaxy = c × T where T is the age of the universe

 v =  H  0  d

 c ≈  H  0  cT

 T ≈   1 _ 
 H  0 

   

Using a value for  H  0  of 70 km  s  −1   Mpc  −1 

from the IB Physics data booklet 

1 ly = 9.46 ×  10  15  m and 1 pc = 3.26 ly

so 1 Mpc =  10  6  × 9.46 ×  10  15  × 3.26 

               ≈ 3.1 ×  10  22  m

  1 _ 
 H  0 

   =   3.1 ×  10  22  _ 
70 ×  10  3 

   = 4.4 ×  10  17  s

                            ≈ 1.4 ×  10  10  yr (or 14 billion years)

The derivation of the age of the universe equation assumes that the galaxy 
and the Earth are moving at a relative constant speed of c and that there is 
nothing in their way to slow them down. In Sub-topic D.5 we consider a 
range of possibilities for the continued expansion of the universe.

The importance of the cosmic microwave background (CMB)
Until the 1960s there were two competing theories of the origin of the 
universe. One was the Big Bang theory and the other was known as the 
steady state theory. One aspect of the Big Bang theory is that it suggested a 
very high temperature early universe that cooled as the universe expanded. 
In 1948, Gamow, Alpher, and Herman predicted that the universe should 
show the spectrum of a black-body emitter at a temperature of about 3 K. 
In the Big Bang model, at approximately 4 ×  10  5  years after the formation 
of the universe, the temperature had cooled to about 3000 K and the 
charged ion matter was able to attract electrons to form neutral atoms. This 
meant that space had become transparent to electromagnetic radiation, 
allowing radiation to escape in all directions (previously, when matter was 
ionic, it had been opaque to radiation). The expansion of the universe has 
meant that each of the photons emitted at this time has been shifted to 
a longer wavelength that now peaks at around 7 cm – in the microwave 
region of the spectrum. At earlier times the photons would have been 
much more energetic and of far shorter wavelengths, peaking in the visible 
or ultraviolet region of the electromagnetic spectrum.

The CMB in the sky looks essentially the same in all directions (it 
is “isotropic”) and does not vary with the time of day; this provides 
compelling support for the Big Bang model. With the discovery of 
CMB, the advocates of the steady state theory were forced to concede 
to the strength of evidence. The Wilkinson Microwave Anisotropy 
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  Nature of science
The discovery of CMB
Discoveries in science are sometimes made by 
serendipity. The predictions of cosmologists were 
confirmed by two radio engineers, Arno Penzias 
and Robert Wilson, when setting up a new 
microwave receiver at the Bell Laboratories in 
the USA. They verified that a 7.4 cm wavelength 
signal, being picked up by their aerial, was not a 
fault with their electronics (as they first thought) 
but was coming from space and was equally 

strong in all directions. To support the Big Bang 
theory, however, it was necessary to look for the 
distribution of energy for other wavelengths, some 
of which did not penetrate the Earth’s atmosphere. 
The Cosmic Background Explorer (COBE) satellite 
was launched in 1989 and enabled a team of 
scientists from Berkeley to show that the radiation 
was black-body radiation at a temperature of 2.7 K.

Probe (WMAP) was able to show that, on a finer scale, there are some 
fluctuations in the isotropy of the CMB; this indicates the seeds of 
galaxies in the early universe.

Figure 4 is an image produced by the European Space Agency’s Planck 
mission team showing an all-sky image of the infant universe created 
from 15.5 months of data. The radiation is essentially uniform but shows 
tiny variations in temperature (<0.2 mK) – the false colours in the image 
have been enhanced to show these minute fluctuations. The temperature 
differences show where galaxies are likely to have had a higher probability 
of forming. The effect of the Milky Way has been removed from the image.

The redshift equation and the cosmic scale factor
We met the Doppler Effect for electromagnetic radiation in Sub-topic 9.5.  
Although the cause of the redshift is the stretching of space rather than 
a constantly moving source, the electromagnetic Doppler equation 
holds true and can be used in astrophysics where the redshift ratio   %λ ___ 

 λ  0    is 
denoted by the symbol z, giving

 z =   %λ _ 
 λ  0    ≈   v _ c  

Because CMB suggests that the universe is essentially isotropic and 
homogenous at any point in space at a chosen (proper) time after the Big 
Bang, it is essentially true that the density of matter should be the same 
throughout the universe. Soon after the Big Bang the density would have 
been greater and at later times smaller. The expansion of the universe can 
be considered to be a rescaling of it.  As the universe expands, all distances 
are stretched with the cosmic scale factor R. In other words, if the radiation 
had wavelength  λ  0  when it was emitted but λ when it was detected, the 
cosmic scale factor would have changed from  R  0  to R. This means that 
space has stretched by an amount %R in the time that the wavelength 
has stretched by the amount %λ. Hubble’s law holds because, rather 
than galaxies receding from one another, space is expanding; this results 
in the redshift being a Hubble redshift as opposed to a Doppler redshift.

   %λ _ 
 λ  0    ≈   v _ c  

and

 z =   %λ _ 
 λ  0    =   %R _ 

 R  0 
   =   

R -  R  0  _ 
 R  0 

   =   R _ 
 R  0 

   -1

  Figure 4 The CMB sky.
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Worked example
A distant quasar is detected to have a redshift of 
value = 5.6.

a) Calculate the speed at which the quasar is 
currently moving relative to the Earth.

b) Estimate the ratio of the current size of the 
universe to its size when the quasar the 
emitted photons that were detected.

Solution
a) z =   %λ _ 

 λ  0    ≈   v _ c   = 5.6

v = 5.6c

b)   R _ 
 R  0 

   -1 = 5.6 ∴   R _ 
 R  0 

   = 6.6

  
 R  0 

 __ R   =   1
 ___ 6.6   = 0.15 so the universe was 

approximately 15% of its current size.

Type Ia supernovae and the accelerating universe
In the late 1990s, Type Ia supernovae (discussed in more detail in Sub-
topic D.4) were found to offer key evidence regarding the expansion 
of the universe. By using Type Ia supernovae as standard candles to 
estimate galactic distances up to around 1000 Mpc and measuring their 
redshifts, strong evidence was obtained suggesting the universe might 
currently be undergoing an accelerated expansion. The universe is 
known to contain a significant amount of ordinary matter that has a 
tendency to slow down its expansion. Acceleration, therefore, would 
require some sort of invisible energy source and, although none has 
been directly observed, it has been named “dark energy”. Figure 5 
shows a NASA/WMAP graphic illustrating the evolution of the universe 
including the latter day acceleration.

  Figure 5 Evolution of the accelerating universe.

Note
 ● The exception to universal 

expansion is any 
gravitationally bound 
system such as the stars 
within a galaxy or a galaxy 
within a cluster. 

 ● The expansion of spacetime 
is not bound by the speed 
of light.  This is because 
expansion of spacetime does 
not correspond to material 
objects moving within a 
single reference frame.

 ● With the distant universe 
expanding faster than the 
speed of light, there is an 
effective “event horizon”. 
This means that, because 
the space between the 
Earth and the distant 
galaxies is expanding faster 
than the speed of light, it 
will never be possible for 
us to see photons emitted 
from this distance.
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Understandings
 ➔ The Jeans criterion
 ➔ Nuclear fusion
 ➔ Nucleosynthesis off the main sequence
 ➔ Type Ia and II supernovae

D.4 Stellar processes AHL

  Applications and skills
 ➔ Applying the Jeans criterion to star formation
 ➔ Describing the different types of nuclear fusion 

reactions taking place off the main sequence
 ➔ Applying the mass–luminosity relation to 

compare lifetimes on the main sequence 
relative to that of our Sun

 ➔ Describing the formation of elements in 
stars that are heavier than iron, including the 
required increases in temperature

 ➔ Qualitatively describing the s and r processes 
for neutron capture

 ➔ Distinguishing between Type Ia and II 
supernovae

  Nature of science
As a carbon-based life form we are composed of 
much more than hydrogen and helium. Because 
supernovae are responsible for the nucleosynthesis 
and distribution of the heavy elements we can 
justifiably say that we are all stars – or at least made 
of the material produced in stars. The iconic Canadian 
composer/musician/artist Joni Mitchell wrote the 
song “Woodstock” in 1969. One of the lyrics in this 
song echoed the view of the great cosmologist, Carl 
Sagan: “We are stardust...”. Sadly Joni missed the 
mark at being a physicist with a later song that was 
called “You Turn Me On, I’m A Radio”!

Introduction
This sub-topic builds on some of the ideas and concepts that we have 
met previously. We discuss how interstellar material can aggregate 
to form a star and how fusion in stars synthesizes all the naturally 
occurring elements. We look at the two main types of supernova and see 
how Type Ia can be used as a standard candle to allow us to measure the 
distance of galaxies as far away as 1000 Mpc.

The Jeans Criterion for star formation
We have seen in Sub-topic D.1 how stars form out of nebulae – 
interstellar clouds of dust, hydrogen, helium, and heavier elements such 
as in the Helix nebula shown in figure 1.

Such clouds might exist for many millions of years in a relatively 
constant state (although they will be constantly losing and gaining gas 
from the region around them). Eventually something happens to disturb 
the calm – this could be a collision with another cloud or a shockwave 
given out by a supernova exploding in the vicinity of the cloud. The 
result is that the cloud can become unstable and could collapse. By 
examining the spectra of such gas clouds we know that they are often 
very cold – sometimes just a few kelvin above absolute zero.
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  Figure 1 The Helix Nebula.

Whether or not the gravitational attraction of the gas is sufficient for star 
formation depends on how quickly the gas temperature rises to prevent 
the gas freefalling into the centre of the cloud. Compressions in the gas 
travel at the speed of sound. With small quantities of gas, the compressions 
pass through it quickly enough to prevent it from collapsing – the gas 
oscillates and stabilizes. With large quantities of gas the compressions 
travel too slowly to prevent collapse. Whether there is sufficient mass 
for gravity to overcome radiation pressure is given by Jeans’ criterion 
(named after the British astrophysicist Sir James Jeans, who developed the 
first workable theory of star formation). The total energy of a gas cloud 
is a combination of positive kinetic energy and negative gravitational 
potential energy. At infinite separation of the gas particles the total energy 
is kinetic and they are not bound together. When they are close and the 
potential energy dominates the particles are bound (the total energy being 
negative). The Jeans criterion for the gas to collapse is simply that the 
magnitude of the potential energy must be greater than the kinetic energy. 
This depends on the temperature and the particle density in the cloud. A 
cold, dense gas is far more likely to collapse than a hot low-density gas (which will 
have too much kinetic energy and too little gravitational potential energy).

Typically in a cool cloud, the density of gas is about 3 ×  10  7  particles per 
cubic metre and the local temperature will be around 100 K. Under these 
circumstances the “Jeans mass” must be nearly four hundred thousand 
solar masses to facilitate star formation ( M  J  > 400 000  M  ⊙ ). Given 
such mass, it is no surprise that stars form in clusters in these regions – 
individual stars have a mass between 0.1  M  ⊙  and 150  M  ⊙ . In even cooler 
regions of space, with higher gas densities of  10  11  particles per cubic metre 
and temperatures of 10 K, the Jeans mass falls to approximately 50  M  ⊙ 
. With these masses, short-lived giant stars are formed. The atmospheric 
number density close to the surface of the Earth is of the order of 1025 
molecules per cubic metre. But, with the high temperature and low mass 
of gas, you need not worry that a star will form in the atmosphere!

Nuclear fusion
We have seen that the energy generated by a star is the result of 
thermonuclear fusion reactions that take place in the core of the star. The 
process that occurs during the main sequence is known as “hydrogen 
burning”; here hydrogen fuses into helium. For Sun-like stars the process 
advances through the proton–proton chain but stars of greater than 
four solar masses undergo a series of reactions known as the CNO cycle.
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   Figure 2 The proton–proton chain.
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The proton–proton chain has three stages: 

 ●     1  
1 H +    1  1 H →    1  2 H +    1  0 e +    0  0 ν  [two protons (hydrogen-1 nuclei) 

fuse into a hydrogen-2 nucleus (plus 
a positron and a neutrino)]

 ●     1  
1 H +    1  2 H →    2  3 He + γ   [a third proton fuses with the 

hydrogen-2 to form  a helium-3 
nucleus + a gamma-ray photon]

 ●     2  
3 He +    2  3 He →    2  4 He +    1  1 H +    1  1 H  [two helium-3 nuclei fuse to produce 

helium-4 and two hydrogen-1nuclei]

Thus, in order to produce a helium nucleus, four hydrogen nuclei are 
used in total (six are used in the fusion reactions and two are generated).

The CNO process occurs in the larger stars with a minimum core 
temperature of 2 ×  10  7  K and involves six stages:

 ●     1  
1 H +     6  

12 C →     7  
13 N + γ   [proton fuses with carbon-12 to give unstable 

nitrogen-13 + a gamma-ray photon]

 ●      7  
13 N →     6  

13 C +    1  0 e +    0  0 ν  [nitrogen-13 undergoes positron decay into 
carbon-13]

 ●     1  
1 H +     6  

13 C →     7  
14 N + γ   [carbon-13 fuses with proton to give 

nitrogen-14 + a gamma-ray photon]

 ●     1  
1 H +     7  

14 N →     8  
15 O + γ   [nitrogen-14 fuses with proton to give 

unstable oxygen-15 + a gamma-ray photon]

 ●      8  
15 O →     7  

15 N +    1  0 e +    0  0 ν  [oxygen-15 undergoes positron decay into 
nitrogen-15]

 ●     1  
1 H +     7  

15 N →     6  
12 C +    2  4 He  [nitrogen-15 fuses with proton to give 

carbon-12 (again) and helium-4]

Again, four protons are used to undergo the fusion process; carbon-12 
is both one of the fuels and one of the products. Two positrons, two 
neutrinos and three gamma-ray photons are also emitted in the overall 
process. The fusing of hydrogen into helium takes up the majority of a 
star’s lifetime and is the reason why there are far more main sequence 
stars than those in other phases of their life-cycle.

Fusion after the main sequence
We saw in Sub-topic D.2 that, once the hydrogen in a star’s core is used up, 
the core converts into helium. The lack of radiation pressure causes the core 
to shrink and heat up. The hot core instigates the fusion and expansion of the 
hydrogen surrounding it, causing the red giant phase. Eventually, the core’s 
rising temperature becomes high enough to make the star move off the main 
sequence. Helium now fuses into the unstable beryllium which then fuses 
with a further helium nucleus to produce carbon and then oxygen:

 ●     2  
4 He +    2  4 He →    4  8 Be  [two helium nuclei fuse to produce unstable 

beryllium-8]

 ●     2  
4 He +    4  8 Be →     6  

12 C  [a helium nucleus quickly fuses with beryllium-8 
to produce carbon-12]

 ●     2  
4 He +     6  

12 C →     8  
16 O  [a further helium nucleus fuses with carbon-12 

to produce oxygen-16]

Note
The CNO cycle is part of the 
main sequence and no heavy 
elements are synthesized in 
this process.

  Figure 3 CNO chain.
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You can see from these reactions that nucleosynthesis (the production of 
different nuclides by the fusion of nuclei) is not a simple process. Eventually, 
both the carbon and oxygen produced will undergo fusion and form nuclei 
of silicon, magnesium, sodium, and so on until iron-56 is reached. This 
element represents one of the most stable of all the elements (nickel-62 
is the most stable nuclide but is far less abundant in stars than iron-56). 
These nuclides have the highest binding energy per nucleon. Energy cannot 
be released by further fusions of these elements to produce even heavier 
nuclides, instead energy will need to be taken in to allow fusion to occur.

If nickel-62 is the most stable nuclide then how are heavier nuclides made? 
This is where neutron capture comes in. Neutrons, being uncharged, do 
not experience electrostatic repulsion and can approach so close to nuclei 
that the strong nuclear force is able to capture them. The capture of a 
neutron increases the nucleon number by one and so does not produce a 
new element, just a heavier isotope of the original element (isotopes of X 
in figure 4). The newly created isotope will be excited and decay to a less 
energetic sibling by emitting a gamma-ray photon. The neutron in the 
newly formed nucleus might be stable or it could decay into a proton, an 
electron and antineutrino (by negative beta decay). This raises the proton 
number of the nucleus by one and produces the nucleus of a new element 
(Y in figure 4). The new nuclide will initially be excited and releases a 
gamma-ray photon in decaying into a less energetic nuclide. The half-life 
of beta decay depends solely on the nature of the particular parent nuclide. 
Whether or not there is sufficient time for a nucleus to capture a further 
neutron depends on the density of neutrons bombarding the nuclei.
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nucleus

gamma
radiation

beta decay

  Figure 4 Neutron capture.

In a massive star, heavy nuclides (up to bismuth-209) can be produced 
by slow neutron capture or the “s-process”. These stars provide a 
fairly small neutron flux as a by-product of carbon, oxygen, and silicon 
burning. This means that there is time for nuclides to undergo beta 
decay before further neutron captures build up their nucleon number – 
producing successively heavier isotopes of the original element. 

In rapid neutron capture, or the “r-process”, there is insufficient time for 
beta decay to occur so successively heavier isotopes are built up very quickly, 
one neutron at a time. Type II supernovae produce a very high neutron flux 
and form nuclides heavier than bismuth-209 in a matter of minutes (and 
well before there is any likelihood of beta decay occurring). This is something 

  Figure 5 Neutrino interacts with 
neutron.
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Worked example
a) Suggest why nuclear fusion processes inside 

stars can only synthesize elements with a 
nucleon number less than 63.

b) Outline how heavier elements could be 
produced by stars.

Solution
a) Energy is released when the binding energy 

per nucleon increases. The binding energy per 
nucleon is a maximum at nucleon number 62 

(nickel) and so further fusions would require 
energy to be supplied. This means that, in a star 
producing heavier elements, fusion is no longer 
energetically favourable.

b) With a strong neutron flux, nuclei can absorb 
neutrons. This can either be a slow process in 
massive stars, which are capable of producing 
nuclei no more massive than bismuth-209, or 
it can be a rapid process in a supernova, that is 
able to produce still more massive nuclei. 

Lifetimes of main sequence stars
It might appear that the more matter a star contains the longer it can exist. 
However, this takes no account of stars having different luminosities and, in 
fact, the more massive a star is, the shorter its lifetime! Massive stars need 
higher core temperatures and pressures to prevent them from collapsing 
under gravity. This means that fusion proceeds at a faster rate than in stars 
with lower mass. Therefore, massive stars use up their core hydrogen more 
quickly and spend less time on the main sequence than stars of lower mass.

In Sub-topic D.2 we saw that the luminosity of a main sequence star is 
related to its mass by the relationship:

 L ∝  M  3.5 

Luminosity is the total energy E released by the star per unit time while 
hydrogen is being fused or

 L =   E _ t  

While fusion occurs, the energy emitted is accompanied by a loss of 
mass. This will amount to a proportion κ of the total star mass during 
its lifetime – so a star of mass M loses a mass κM. Using Einstein’s mass–
energy relationship E =  mc  2 , this makes the energy emitted during 
the hydrogen burning phase of the star’s life E =  κMc  2 . Its average 
luminosity will be given by:

 L =    κMc  2  _ τ  
where τ is the lifetime of the star.

This can be rearranged to give: 

 τ =    κMc  2  _ 
L

  

and because 

 L ∝  M  3.5 

that does not appear to happen in the massive stars. There is also a high 
neutrino flux in a supernova and this has the effect of causing neutrons to 
convert into protons through the weak interaction, forming new elements. 
This weak interaction is shown in the Feynman diagram, figure 5.
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we can deduce that 

 τ ∝   M _ 
 M  3.5 

   

or

 τ ∝  M  -2.5 

It is useful to compare the mean lifetime of a star with that of the Sun 
and so, using the normal notation for solar quantities, we have:

   τ _  τ  ⊙    =   (   M _ 
 M  ⊙    )   -2.5

 

The Sun is expected to have a lifetime of approximately ten billion years 
(=  10  10  years). A bigger star of, say, 10 solar masses would start with 
ten times the Sun’s hydrogen but it would have a much shorter lifetime 
given by

   
 τ  star  _ 
 10  10 

   =   (   10 M  ⊙  _ 
 M  ⊙    )  -2.5

  = 3.2 ×  10  -3 

This gives  τ  star  = 3.2 ×  10  7 years. We can see from this that although it has 
ten times the Sun’s mass it only lives for 0.3% of the lifetime of the Sun.

Figure 6 is a HR diagram showing the masses and lifetimes of a number 
of stars. This HR diagram is for interest only and there is no need to try to 
learn it; however, the various regions should make sense to you.
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  Figure 6 HR diagram.

Note
You will not be tested on this 
relationship in your IB Physics 
examinations, but it is included 
here to help explain the basic 
ideas, as these might be tested.
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Supernovae
We now delve into supernovae a little more because of their importance 
to astrophysics. Supernovae are very rare events in any given galaxy but, 
because there are billions of galaxies, they are detected quite regularly. 
They appear as very bright stars in positions that were previously 
unremarkable in brightness. The advent of high-powered automated space 
telescopes has meant that astrophysicists are no longer dependent on 
observing supernovae as random events within or close to the Milky Way. 
Until recently amateur astronomers had discovered more supernovae than 
the professionals. With several automated surveys, such as the Catalina 
Real-Time Survey, more and more supernovae are being detected so that 
the number detected in the last ten years is greater than the total detected 
before ten years ago. Supernovae are classified as being Type I or Type II in 
terms of their absorption spectra (Type I have no hydrogen line but Type II 
do. This is because Type I are produced by old, low-mass stars and Type II 
by young, massive stars.). Type I supernovae are subcategorized as Ia, Ib, 
Ic, etc. depending on other aspects of their spectra.

Type Ia supernovae result from accretion of matter between two stars in 
a binary star. One of the stars is a white dwarf and the other is either a 
giant star or a smaller white dwarf. The formation of these supernovae 
show up as a rapid increase in brightness followed by a gradual tapering 
off. Type II supernovae have been discussed briefly in Sub-topic D.2 and 
consist of single massive stars in the final stages of their evolution. These 
classes of supernovae produce light curves with different characteristics 
as shown in figure 9.

Type Ia supernovae 
These are very useful to astrophysicists as they always emit light in a 
predictable way and behave as a standard candle for measuring the distance 
of the galaxy in which the supernova occurs. Given the immense density 
of the material within a white dwarf, the gravitational field is unimaginably 
strong and attracts matter from the companion star. When the mass of the 

  Figure 7 An artist’s impression of the accretion 
of stellar matter leading to a Type Ia supernova. 
The white dwarf is the star on the right, while 
the left-hand star is a red giant.

Worked example
a) Explain why a star having a mass of 50 times 

the solar mass would be expected to have a 
lifetime of many times less than that of the Sun.

b) By referring to the mass–luminosity 
relationship, suggest why more massive stars 
will have shorter lifetimes.

Solution
a) The more massive stars will have much more 

nuclear material (initially hydrogen). Massive 
stars have greater gravity so equilibrium is 
reached at a higher temperature at which the 
outward pressure due to radiation and the 
hot gas will  balance the inward gravitational 

pressure. This means that fusion proceeds at 
a faster rate than in stars with lower mass – 
meaning that the nuclear fuel becomes used 
up far more rapidly.

b) As the luminosity of the star is the energy 
used per second, stars with greater luminosity 
are at higher temperatures and will use up 
their fuel in shorter periods of time. The 
luminosity of a star is related to its mass by the 
relationship L ∝  M  3.5 . Therefore, increasing the 
mass raises the luminosity by a much larger 
factor which in turn means the temperature is 
much higher. At the higher temperature the 
fuel will be used in a much shorter time.
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growing white dwarf exceeds the Chandrasekhar limit of 1.4 solar masses, 
the star collapses under gravity. The fusion of carbon and oxygen into nickel 
generates such radiation pressure that the star is blown apart, reaching 
a luminosity of  10  10  times that of the Sun. Because the chain reaction 
always occurs at this mass we know how bright the supernova actually 
is and, by comparing it with the apparent brightness observed on Earth, 
we can estimate the distance of the supernova’s galaxy up to distances of 
1000 Mpc. After the explosion the ejected material continues to expand in 
a shell around the remnant for thousands of years until it mixes with the 
interstellar material – giving the potential to form a new generation of stars.

Type II supernovae
After approximately 10 million years (for stars of 8–10 solar masses) all the 
hydrogen in the core has converted into helium and hydrogen fusion can 
now only continue in a shell around the helium core. The core undergoes 
gravitational collapse until its temperature is high enough for fusion of 
helium into carbon and oxygen. This phase lasts for about a million years 
until the core’s helium is exhausted; it will then contract again under 
gravity, causing it to heat up and allowing the fusion of carbon into heavier 
elements. It takes about 10 thousand years until the carbon is exhausted. 
This pattern continues, with each heavier element lasting for successively 
shorter lengths of time, until silicon is fused into iron-56 – taking a few days 
(see figure 8). At this point the star is not in hydrostatic equilibrium because 
there is now little radiation pressure to oppose gravity. On reaching the 
Chandrasekhar limit of 1.4  M  ⊙ , electron degeneracy pressure is insufficient 
to oppose the collapse and the star implodes producing neutrons and 
neutrinos. The implosion is opposed by a neutron degeneracy pressure that 
causes an outward shock wave. This passes through the outer layers of the 
star causing fusion reactions to occur. Although this process lasts just a few 
hours it results in the heavy elements being formed. As the shock wave 
reaches the edge of the star, the temperature rises almost instantly to 
20 000 K and the star explodes, blowing material off as a supernova.

non-burning hydrogen

hydrogen fusion

helium fusion

oxygen fusion

carbon fusion

neon fusion

magnesium
fusion

silicon fusion

iron ash

  Figure 8 The onion model of a massive star before it goes supernova.

  Figure 9 Light curves for class Ia 
and II supernovae.
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Type Ia and Type II supernovae can be distinguished by observers on 
Earth from the manner in which the stars emit light. The Type Ia emits 
light up to  10  10  times the luminosity of the Sun; this rapidly reaches a 
maximum and then gradually tails off over six months or so. The Type II 
emits light up to  10  9  times the luminosity of the Sun; however, the burst 
falls a little before reaching a slight plateau where it stays for some days 
before falling away more rapidly. The light curves for these supernovae are 
shown in figure 9.

Worked example
a) Outline the difference between a Type Ia and a Type II supernova.

b) (i)  What is meant by a standard candle?

 (ii)  Explain how a Type Ia supernova can be used as a standard 
candle.

Solution
a) A Type Ia supernova results from a white dwarf in a binary star 

system accreting material from its companion giant or smaller white 
dwarf star. Eventually, when the mass of the white dwarf passes 
the Chandrasekhar limit, the star collapses and is blown apart as a 
supernova by the huge temperature generated. Type II supernovae 
occur in stars having masses between 8 and 50 times the mass of the 
Sun. When the core has changed into inert iron and nickel, with no 
further fusion occurring, gravity collapses the core. Again, on reaching 
the Chandrasekhar limit of 1.4  M  ⊙ , electron degeneracy pressure is 
insufficient to oppose the collapse and the star implodes producing 
neutrons and neutrinos. The implosion is opposed by a neutron 
degeneracy pressure that causes an outward shock wave blowing away 
the surrounding material as a supernova.

b) (i)  A standard candle is a star of known luminosity that, when 
compared with its apparent brightness, can be used to 
calculate its distance.

 (ii)  As all Type Ia supernova occur when the mass reaches the 
Chandrasekhar mass they are all (essentially) of the same 
peak luminosity. By measuring the apparent brightness, the 
distance of the supernova (and the galaxy in which it is a 
member) can be calculated (from b =   L

 ____ 
4 πd  2 

  ).
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Introduction
In Sub-topic D.3 we saw that the Big Bang should correspond to the 
simultaneous appearance of space and time (spacetime). Hubble’s law 
and the expansion of the universe tell us that the observable universe is 
certainly larger than it was in the past and that it can be traced back to 
something smaller than an atom, containing all the matter and energy 
currently in the universe. There is no special place in the universe that 
would be considered to be the source of the Big Bang, it expanded 
everywhere in an identical manner. It is not possible to use the Big Bang 
model to speculate about what is beyond the observable universe – it 
should not be thought of as expanding into some sort of vacuous void. In 
this sub-topic we will consider ways in which the universe might continue 
to expand and look at possible models for flat, open, and closed universes.

D.5 Further cosmology AHL

  Nature of science
How constant is the Hubble constant?
...or when is a constant not a constant? The Hubble 
constant H0 is a quantity that we have used in Sub-
topic D.3 to estimate the age of the universe. This is 
a very important cosmological quantity, indicating 
the rate of expansion of the universe. The current 
value is thought to be around 70 km s−1 Mpc−1, but 
it has not always been this value and will not be 
in the future. So it is a constant in space but not in 
time and it would be more appropriately named the 
“Hubble parameter”. The zero subscript is used to 
indicate that we are talking about the present value 
of the constant – in general use we should omit the 
subscript. In the IB Physics course, H0 is used to 
indicate all values of the Hubble constant.

Understanding
 ➔ The cosmological principle
 ➔ Rotation curves and the mass of galaxies
 ➔ Dark matter
 ➔ Fluctuations in the CMB
 ➔ The cosmological origin of redshift
 ➔ Critical density
 ➔ Dark energy

  Applications and skills
 ➔ Describing the cosmological principle and its 

role in models of the universe
 ➔ Describing rotation curves as evidence for dark 

matter
 ➔ Deriving rotational velocity from Newtonian 

gravitation
 ➔ Describing and interpreting the observed 

anisotropies in the CMB
 ➔ Deriving critical density from Newtonian 

gravitation
 ➔ Sketching and interpreting graphs showing the 

variation of the cosmic scale factor with time
 ➔ Describing qualitatively the cosmic scale factor 

in models with and without dark energy

Equations
 ➔ velocity of rotating galaxies: v =  √____

   4πGρ _________ 3     r

 ➔ critical density of universe: ρc =   3H2

 _______ 8πG  
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The Cosmological Principle
Buoyed up by the success of his general theory of relativity in 1915, Einstein 
sought to extend this theory to explain the dynamics of the universe or 
“cosmos”. In order to make headway, because he recognized that this would 
be a complex matter, he made two simplifying assumptions – these have 
subsequently been shown to be essentially true on a large scale:

 ● the universe is homogenous

 ● the universe is isotropic

The first of these requirements simply says that the universe is the same 
everywhere – which, when we ignore the lumpiness of galaxies, it is. The 
second requirement is that the universe looks the same in all directions. 
Although this may not seem too different from the homogeneity idea it 
actually is! It really says that we are not in any special place in the universe – 
and ties in with the theory of relativity that says there is no special universal 
reference frame. Imagine that we are positioned towards the edge of a 
closed universe and we look outward – there would be a limited number 
of galaxies to send photons to us. If we look inward there would be an 
immense number of galaxies to send us photons. The two situations would 
appear very different. The isotropicity says that this isn’t the case. Jointly, 
these two prerequisites of Einstein’s theory are known as the “Cosmological 
Principle”. These assumptions underpin the Big Bang cosmology and lead to 
specific predictions for observable properties of the universe.

Figure 1 shows an image produced by the Automated Plate 
Measurement (APM) Galaxy survey of around 3 million galaxies in the 
Southern Hemisphere sky. The image shows short-range patterns but, in 
line with the cosmological principal, on a large scale the image shows no 
special region or place that is different from any other.

Using the cosmological principle and the general theory of relativity it can 
be shown that matter can only distort spacetime in one of three ways. 
This is conventionally shown diagrammatically by visualizing the impact 
of the third dimension on a flat surface; however, the fourth dimension 
of time is also involved and this makes visualization even more complex.

 ● The flat surface can be positively curved into a spherical shape of a finite 
size. This means that, by travelling around the surface of the sphere, 
you could return to your original position or, by travelling through the 
universe, you could return to your original position in spacetime.

  Nature of science
Philosophy or cosmology?
Although there is substantial evidence leading 
us to believe in the Big Bang model nobody 
actually knows what instigated the Big Bang. 
We have explained that this was the beginning 
of space and time and so we cannot ask “what 
happened before the Big Bang?” There are a 

number of theories that reflect on why the Big 
Bang occurred – such as fluctuations in gravity 
or quantum fluctuations but these theories 
stimulate other questions such as “what caused 
this?” As of yet these theories cannot be put to 
the test. 

▲  Figure 1 APM Galaxy survey image.
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 ● The flat surface can be negatively curved like the shape of a saddle 
and have an infinite size. In this universe you would never return to 
the same point in spacetime.

 ● The surface could also remain flat and infinite as given in our 
everyday experiences. Again, you would never return to the same 
position in spacetime.

Knowledge of the amount of matter within the universe is essential 
when determining which model is applicable. There is a critical density 
(ρc) of matter that would keep the universe flat and infinite – this 
density would provide a gravitational force large enough to prevent 
the universe running away but just too little to pull it back to its initial 
state. With less than the critical density the universe would be open and 
infinite. With greater density than the critical value the universe would 
be closed and finite – with gravity pulling all matter back to the initial 
state of spacetime. The critical density of matter appears to be no greater 
than ten particles per cubic metre and current research suggests that the 
average density is very close to this critical value. 

The implications of the density of intergalactic matter
As can be seen in figure 5 in Sub-topic D.3, theory suggests that, after the 
initial inflationary period following the Big Bang, the rate of expansion 
of the universe has been slowing down. Instrumental to the fate of the 
universe is the uncertainty about how much matter is available to provide 
a strong enough gravitational force to reverse the expansion and cause 
a gravitational collapse. As discussed in Sub-topic D.3, data from Type Ia 
supernovae has suggested that the universe may actually be undergoing 
an accelerated expansion caused by mysterious “dark energy”.

We can derive a relationship for the critical density using Newtonian 
mechanics:

Imagine a homogenous sphere of gas of radius r and density ρ. A galaxy of 
mass m at the surface of the sphere will be moving with a recessional speed 
v away from the centre of the sphere along a radius as shown in figure 3.

By Hubble’s law the velocity of the galaxy is given by: 

v = H0r

The total energy of the galaxy is the sum of its kinetic energy and its  
gravitational potential energy (relative to the centre of mass of the 
sphere of gas).

ET = EK + EP

ET =   1 __ 2   mv2 - G   Mm _ r  

remembering that potential energy is always negative for objects 
separated by less than infinity.

The mass M is that of the sphere of gas is given by

M =   4 _ 
3

   πr3ρ
ET =   1 _ 

2
   m(H0r)

2 - G   
  4 __ 3  πr3ρm

 _ r  

▲  Figure 2 The visualizations of 
closed, open, and flat universes.

▲  Figure 3  Critical density for the universe.

r

m v
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The galaxy will continue to move providing that it has sufficient kinetic 
energy, thus making ET positive. In the limit ET = 0 this gives

  1 _ 
2

  m(H0r)
2 = G   

  4 __ 3  πr3 ρcm _ r  

where ρc is the critical density of matter.

Simplifying this equation gives

ρc =   3H0
2

 _ 
8πG

  

The cosmic scale factor and time
The ratio of the actual density of matter in the universe (ρ) to the critical 
density is called the density parameter (indicated in figure 2) and is 
given the symbol Ω0. 

Ω0 =   
ρ _ ρc

  

There are three possibilities (shown in figure 4) for the fate of the 
universe, depending on the density parameter of the universe:  

1 If Ω0 = 1 (or ρ = ρc) the density must equal the critical density and 
must be the value for a flat universe in which there is just enough 
matter for the universe to continue to expand to a maximum limit. 
However, the rate of expansion would decrease with time. This is 
thought to be the least likely option. 

2 If Ω0 < 1 (or ρ < ρc) the universe would be open and would continue 
to expand forever.

3 If Ω0 > 1 (or ρ > ρc) then the universe would be closed. It would 
eventually stop expanding and would then collapse and end with a 
“Big Crunch”. 

An accelerated expansion of the universe (shown by the red line on 
figure 4) might be explained by the presence of dark energy. This offers 
an interesting and, increasingly likely, prospect. 

In Sub-topic D.3 we considered the cosmic scale factor (R). This 
is essentially the relative size, or “radius”, of the universe. Figure 4 
shows how R varies with time for the different density parameters. Each 
of the models gives an Ω0 value that is based on the total matter in the 
universe. An explanation for the accelerated universe depends on the 
concept of the (currently) hypothetical dark energy outweighing the 
gravitational effects of baryonic and dark matter.

The cosmic scale factor and temperature
The wavelength of the radiation emitted by a galaxy will always be in line 
with the cosmic scale factor (R). So, as space expands, the wavelength 
will expand with it. We know from Wien’s law that the product of the 
maximum intensity wavelength and the temperature is a constant. 
Assuming that the spectrum of a black body retains its shape during the 
expansion this means that Wien’s law has been valid from the earliest 

Note
 ● This equation contains 

nothing but constants. 
Any value for the critical 
density of the material of 
the universe is dependent 
on how precisely the 
Hubble constant can be 
determined.

 ● A more rigorous derivation 
of this equation requires 
the use of general relativity.

▲  Figure 4 Variation of R for different 
density parameters.
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times following the Big Bang. Thus, the wavelength and the cosmic scale 
factor are both inversely proportional to the absolute temperature. 

T ∝   1 _ 
R

   (and T ∝   1 _ λ  )

Worked example
The diagram below shows the variation of the 
cosmic scale factor R of the universe with time t. 
The diagram is based on a closed model of the 
universe. The point t = T is the present time.

tT

R

a) Explain what is meant by a closed universe.

b) On a copy of the diagram, draw the variation 
based on an open model of the universe. 

c) Explain, by reference to your answer to b), 
why the predicted age of the universe depends 
upon the model of the universe chosen. 

d) (i)  What evidence suggests that the 
expansion of the universe is accelerating? 

(ii) What is believed to be the cause of the 
acceleration? 

Solution
a) A closed universe is one that will stop expanding 

at some future time. It will then start to contract 
due to gravity.

b) 

tT

R

The graph should start at an early time 
(indicating an older universe) and touch 
the closed universe line at T. It should show 
curvature but not flatten out as a flat universe 
would do. 

c) We only know the data for the present time so 
all curves will cross at T. By tracing the curve 
back to the time axis, we obtain the time for 
the Big Bang. This extrapolation will give a 
different time for the different models. 

d) (i)  The redshift from distant type Ia 
supernovae has suggested that the 
expansion of the universe is now 
accelerating. 

(ii) The cause of this is thought to be 
dark energy – something of unknown 
mechanism but opposing the gravitational 
attraction of matter (both dark and 
baryonic).

Evidence for dark matter 
Let us imagine a star of mass m near the centre of a spiral galaxy of total 
mass M. In this region the average density of matter is ρ. The star moves 
in a circular orbit with an orbital velocity v and radius r. By equating 
Newton’s law of gravitation to the centripetal force we obtain

G   Mm _ 
r2

   =   mv2
 _ r  

Cancelling m and r

G   M _ r    = v2

679

D . 5  F U R T H E R  C O S M O L O G Y  A H L



In terms of the density and taking the central hub to be spherical, this gives

G   
  4 __ 3  πr3ρ _ r   = v2

This means that v =  √_____
   

G4πρ _ 
3

     r  or  v = constant × r

From this we can see that the velocity is directly proportional to the 
radius.

What if the star is in one of the less densely populated arms of the 
galaxy? In this case we would expect the star to behave in a similar 
manner to the way in which planets rotate about the Sun. The galaxy 
would behave as if its total mass was concentrated at its centre; the stars 
would be free to move with nothing to impede their orbits. This gives

G   M _ r   = v2

and so

v ∝   1 _ 
 √

_ r  
  

When the rotational velocity is plotted against the distance from the 
centre of the galaxy, we would expect to see a rapidly increasing linear 
section that changes to a decaying line at the edge of the hub. This is 
shown by the broken line in figure 6. What is actually measured (by 
measuring the speed from the redshifts of the rotating stars) is the 
upper observed line. This is surprising because this “flat” rotation curve 
shows that the speed of stars, far out into the region beyond the arms 
of the galaxy, are moving with essentially the same speed as those well 
inside the galaxy. One explanation for this effect is the presence of dark 
matter forming a halo around the outer rim of the galaxy (as shown in 
figure 6). This matter is not normal “luminous” or “baryonic” matter and 
emits no radiation and, therefore, its presence cannot be detected.

▲  Figure 7 The rotation curve for the spiral galaxy M33.
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▲  Figure 6 Dark matter halo surrounding a galaxy.

▲  Figure 5 The spiral galaxy M81.
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In figure 8, the experimental curve has been modelled by assuming that 
the halo adds sufficient mass to that of the galactic disc. This maintains 
the high rotational speeds well away from the galactic centre.
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▲  Figure 8 distribution of dark matter in NGC 3198.

Other evidence for the presence of dark matter comes from:

 ● the velocities of galaxies orbiting each other in clusters – these 
galaxies emit far less light than they ought to in relation to the 
amount of mass suggested by their velocities

 ● the gravitational lensing effect of radiation from distant objects 
(such as quasars) – because the radiation passes through a cluster of 
galaxies it becomes much more distorted than would be expected by 
the luminous mass of the cluster

 ● the X-ray images of elliptical galaxies show the presence of haloes of hot 
gas extending well outside the galaxy. For this gas to be bound to the 
galaxy, the galaxy must have a mass far greater than that observed – up 
to 90% of the total mass of these galaxies is likely to be dark matter.

At the moment no one knows the nature of dark matter but there are 
some candidates:

 ● MACHOs are MAssive Compact Halo Objects that include black 
holes, neutron stars, and small stars such as brown dwarfs. These are 
all high density (compact) stars at the end of their lives and might 
be hidden by being a long way from any luminous objects. They are 
detected by gravitational lensing, but it is questionable whether or 
not there are sufficient numbers of MACHOs to be able to provide 
the amount of dark matter thought to be in the universe.

 ● WIMPs are Weakly Interacting Massive Particles – subatomic particles 
that are not made up of ordinary matter (they are non-baryonic). They 
are weakly interacting because they pass through ordinary, baryonic, 
matter with very little effect. Massive does not mean “big”, it means that 
these particle have mass (albeit very small mass). To produce the amount 
of mass needed to make up the dark matter there would need to be 
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unimaginably large quantities of WIMPs. In 1998, neutrinos with very 
small mass were discovered and these are possible candidates for dark 
matter; other than this the theory depends on hypothetical particles called 
axions and neutralinos that are yet to be discovered experimentally.

Dark energy
In 1998, observations by the Hubble Space Telescope (HST) of a very 
distant supernova showed that the universe was expanding more slowly 
than it is today. Although nobody has a definitive explanation of this 
phenomenon its explanation is called “dark energy”. ESA’s Planck 
mission has provided data that suggest around 68% of the universe 
consists of dark energy (while 27% is dark matter leaving only 5% as 
normal “baryonic” matter – see figure 9).

before Planck after Planck

dark matter
22.7%

ordinary 
matter
4.5%

ordinary 
matter
4.9%

dark energy
72.8%

dark matter
26.8%

dark energy
68.3%

▲  Figure 9 The mass/energy recipe for the universe.

It has been suggested that dark energy is a property of space and so, with 
the expansion of the universe as space expands, so too does the amount 
of dark energy, i.e. more dark energy coming into existence along with 
more space. This form of energy would subsequently cause the expansion 
of the universe to accelerate. Nobody knows if this model is viable. It is 
possible that an explanation for the accelerated expansion of the universe 
requires a new theory of gravity or a modification of Einstein’s theory – 
such a theory would still need to be able to account for all the phenomena 
that are, at the moment, correctly predicted by the current theory.

  Nature of science
The Dark Energy Survey (DES)
With dark energy being one of the most up-
to-the-minute research topics in the whole of 
science, it is unsurprising that international 
collaboration is prolific. The DES is a survey 
with the aim of gaining the best possible data 
for the rate of expansion of the universe. This 
is being carried out by observing around 3000 
distant supernovae, the most distant of which 
exploded when the universe was about half 

its current size. Using the Victor M. Blanco 
Telescope at Cerro Tololo Inter-American 
Observatory (CTIO) in Chile, 120 collaborators 
from 23 institutions in 5 countries are using a 
specially developed camera to obtain images in 
the near infra-red part of the visible spectrum. 
The survey will take five years to complete and 
will add to the sky-based research of missions 
such as WMAP and Planck.
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Anisotropies in the CMB
In Sub-topic D.3 we discussed the importance of the cosmic 
microwave background with regard to the Big Bang. In this model, 
the universe came into being almost 13.8 billion years ago when its 
density and temperature were both very high (this is often referred to 
as the hot Big Bang). Since then the universe has both expanded and 
cooled. The Planck satellite image in Sub-topic D.3, figure 4 showed 
that, although the CMB is essentially isotropic, there are minute 
temperature fluctuations; these variations are called anisotropies. 
In the early 1990s, the Cosmic Background Explorer (COBE) satellite 
provided the first evidence of these anisotropies but, with the launch 
of NASA’s WMAP in 2001 and the ESA’s Planck satellite in 2009, 
the resolution has been improved dramatically. Both these missions 
have shown significant low-level temperature fluctuations. It is 
thought that these fluctuations appear as the result of tiny, random 
variations in density, implanted during cosmic inflation – the period of 
accelerated expansion that occurred immediately after the Big Bang. 
When the universe was 380 000 years old and became transparent, 
the radiation emitted from the Big Bang was released and it has 
travelled outwards through space and time, including towards the 
Earth. This radiation was in the red part of the electromagnetic 
spectrum when it was released, but its wavelength has now been 
stretched with the expansion of the universe so that it corresponds to 
microwave radiation. The pattern shown in the variation demonstrates 
the differences present on the release of the radiation: fluctuations 
that would later grow into galaxies and galaxy clusters under the 
influence of gravity.

The information extracted from the Planck sky map shows isotropy 
on a large scale but with a lack of symmetry in the average 
temperatures in opposite hemispheres of the sky. The Standard 
Model suggests that the universe should be isotropic but, given these 
differences, this appears not to be the case. There is also a cold spot 
(circled in Sub-topic D.3, figure 4) extending over a patch of sky 
and this is larger than WMAP had previously shown. The concepts 
of dark matter and dark energy have already been added to the 
Standard Model as additional parameters. The evidence from the 
CMB anisotropies may require further tweaks to the theory or even a 
major re-think because of this. 

The Planck data also identify the Hubble constant to be 
67.15 km s−1 Mpc−1 (significantly less than the current standard value 
in astronomy of around 100 km s−1 Mpc−1). The data imply that the 
age of the universe is 13.82 billion years. Over the next few years this 
value may well be modified because of additional  data being collected 
by this mission and from orbiting telescopes – including the James 
Webb space telescope (figure 10) and the joint NASA/ESA Euclid 
mission. There has, arguably, never been a more productive time in the 
history of cosmology.

▲  Figure 10 The James Webb space 
telescope – artist’s impression.
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Questions
1 (IB)

a) The star Wolf 359 has a parallax angle of 
0.419 arcsecond.

(i) Describe how this parallax angle is 
measured.

(ii) Calculate the distance in light-year 
from Earth to Wolf 359.

(iii) State why the method of parallax can 
only be used for stars at a distance less 
than a few hundred parsecond from 
Earth.

b) The ratio

     
apparent brightness of Wolf 359

   ______________________   
apparent brightness of the Sun

   is 3.7 ×  10  –15 .

 Show that the ratio

     
luminosity of Wolf 359

  ________________  
luminosity of the Sun

   is 8.9 ×  10  –4 . 

 (11 marks)

2 The average intensity of the Sun’s radiation at 
the surface of the Earth is  1.37 ×  10  3  W m  -2 . 
Calculate (a) the luminosity and (b) the surface 
temperature of the Sun.

 The mean separation of the Earth and  
the Sun = 1.50 ×  10  11  m, radius of  
the Sun = 6.96 ×  10  8  m, Stefan–Boltzmann 
constant = 5.67 ×  10  -8  W m  −2   K  −4 . (4 marks)

3 (IB)

The diagram below is a flow chart that shows 
the stages of evolution of a main sequence 
star such as the Sun. (Mass of the Sun, the 
solar mass =  M  ⊙ )

main 
sequence 
star mass 
≈  M  ⊙ 

red giant 
nebula

planetary 
nebula

white 
dwarf

a) Copy nad complete the boxes below to show 
the stages of evolution of a main sequence 
star that has a mass greater than 8 M  ⊙ .

main 
sequence 
star mass 
>8 M  ⊙ 

b) Outline why:

 (i)     white dwarf stars cannot have a greater 
mass than 1.4 M  ⊙ 

 (ii)  it is possible for a main sequence star 
with a mass equal to 8 M  ⊙  to evolve into 
a white dwarf. (6 marks)

4 (IB)

 a)  Define luminosity.

b) The sketch-graph below shows the intensity 
spectrum for a black body at a temperature 
of 6000 K.

 
in
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00

 On a copy of the axes, draw a sketch-graph 
showing the intensity spectrum for a black 
body at 8000 K.

c) A sketch of a Hertzsprung–Russell diagram 
is shown below.
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 Copy the diagram above and identify the:

 (i)  main sequence (label this M)

 (ii)   red giant region (label this R)

 (iii) white dwarf region (label this W).

d) In a Hertzsprung–Russell diagram, luminosity 
is plotted against temperature. Explain 
why the diagram alone does not enable 
the luminosity of a particular star to be 
determined from its temperature. (8 marks)
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5 (IB)

The diagram below shows the grid of a 
Hertzsprung–Russell (HR) diagram on which 
the positions of the Sun and four other stars A, 
B, C and D are shown.
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a) Name the type of stars shown by A, B, C, 
and D.

b) Explain, using information from the 
HR diagram and without making any 
calculations, how astronomers can deduce 
that star B is larger than star A.

c) Using the following data and information 
from the HR diagram, show that star B is at 
a distance of about 700 pc from Earth.

  Apparent brightness of the Sun =  
1.4 ×  10  3  W  m  –2 

  Apparent brightness of star B =  
7.0 ×  10  –8  W  m  –2 

  Mean distance of the Sun from Earth =  
1.0 AU

 1 parsec = 2.1 ×  10  5  AU  (11 marks)

6 (IB)

 a)  State what is meant by cosmic microwave 
background radiation.

b) Describe how the cosmic microwave 
background radiation provides evidence for 
the expanding universe. (5 marks)

7 (IB)

a) In an observation of a distant galaxy, spectral 
lines are recorded. Spectral lines at these 
wavelengths cannot be produced in the 
laboratory. Explain this phenomenon.

b) Describe how Hubble’s law is used to 
determine the distance from the Earth to 
distant galaxies.

c) Explain why Hubble’s law is not used to 
measure distances to nearby stars or nearby 
galaxies (such as Andromeda). (6 marks)

8 (IB)

One of the most intense radio sources is the 
Galaxy NGC5128. Long exposure photographs 
show it to be a giant elliptical galaxy crossed by 
a band of dark dust. It lies about 1.5 ×  10  7  light 
years away from Earth.

a) Describe any differences between this galaxy 
and the Milky Way.

 Hubble’s law predicts that NGC5128 is 
moving away from Earth.

b) (i)   State Hubble’s law.

 (ii)  State and explain what experimental 
measurements need to be taken in order 
to determine the Hubble constant.

c) A possible value for the Hubble constant is  
68 km  s  –1   Mpc  –1 . Use this value to estimate:

 (i)     the recession speed of NGC5128

 (ii) the age of the universe. (10 marks)

9 a)  Describe what is meant by a nebula.

b) Explain how the Jeans criterion applies to 
star formation. (3 marks)

10 Outline how hydrogen is fused into helium in:

a) stars of mass similar to that of the Sun

b) stars of mass greater than ten solar 
masses. (6 marks)
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11 a)  (i)     Explain what is meant by neutron 
capture.

  (ii)  Write a nuclear equation to show 
nuclide A capturing a neutron to 
become nuclide B.

b) Outline the difference between s and r 
processes in nucleosynthesis. (8 marks)

12 Explain why the lifetimes of more massive 
main sequence stars are shorter than those of 
less massive ones. (4 marks)

13 Briefly explain the roles of electron degeneracy, 
neutron degeneracy and the Chandrasekhar 
limit in the evolution of a star that goes 
supernova. (6 marks)

14 (IB)

 a)  Explain the significance of the critical density 
of matter in the universe with respect to the 
possible fate of the universe.

  The critical density ρc of matter in the 
universe is given by the expression:

 ρc =   
3H0

2

 _ 
8πG

  

  where H0 is the Hubble constant and G is 
the gravitational constant.

 An estimate of H0 is 2.7 × 10–18 s–1.

b)  (i)   Calculate a value for ρc.

(ii) Using your value for H0, determine  
the equivalent number of nucleons per 
unit volume at this critical density.

(5 marks)

15 (IB)

 a)  Describe the observational evidence in 
support of an expanding universe. 

b) Explain what is meant by the term  
critical density of the universe.

c) Discuss the significance of comparing 
the density of the universe to the critical 
density when determining the future  
of the universe.  (6 marks)

16 (IB)

 a)  Recent measurements suggest that the 
mass density of the universe is likely to be 
less than the critical density. State what 
this observation implies for the evolution 
of the universe in the context of the Big 
Bang model.

b) (i)  Outline what is meant by dark matter.

         (ii)  Give two possible examples of  
dark matter.  (5 marks)
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Introduction
In this chapter you will discover the important 
role of experimental work in physics. It guides 
you through the expectations and requirements 
of an independent investigation called the 

internal assessment (IA). The investigation itself 
is likely to occur late in your second year, so 
you do not need to read this chapter until your 
teacher advises you to.

INTERNAL ASSESSMENT

Advice on the internal assessment

  Nature of science
Empirical evidence is a key to objectivity in science. 
Evidence is obtained by observation, and the details 
of observation are embedded in experimental work. 
Theory and experiment are two sides of the same 
coin of scientific knowledge.

Understanding
 ➔ theory and experiment
 ➔ internal assessment requirements
 ➔ internal assessment guidance
 ➔ internal assessment criteria

  Applications and skills
 ➔ to appreciate the interrelationship of theory 

and experiment
 ➔ ability to plan your internal assessment
 ➔ understand teacher guidance
 ➔ appreciate the formal requirements of an 

internal assessment
 ➔ to be critically aware of academic honesty
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Theory and experiment
The sciences use a wide variety of methodologies and there is no single agreed 
scientific method. However, all sciences are based on evidence obtained by experiment. 
Evidence is used to develop theories, which then form laws. Theories and laws are 
used to make predictions that can be tested in experiments. Science moves in a cycle 
that moves between theory and experiment. Observations inform theory. However, 
the refinement of a theory and improvements in instrumentation re-focus on more 
observation. Experimentation allows us to have confidence that a theory is not merely 
pure speculation.

Consider a famous analogy used by Albert Einstein of a man trying to understand the 
mechanism of a pocket watch. In the following quote, Einstein illustrates that our 
scientific knowledge can be tested against reality. He shows that we can confirm or 
deny a theory by experiment, but we can never know reality itself. There is a continual 
dance between theory and experiment.

“Physical concepts are free creations of the human mind, and are not, however 
it may seem, uniquely determined by the external world. In our endeavor to 
understand reality we are somewhat like a man trying to understand the mechanism 
of a closed watch. He sees the face and the moving hands, even hears it ticking, but 
he has no way of opening the case if he is ingenious he may form some picture of 
the mechanism which could be responsible for all the things he observes, but he may 
never be quite sure his picture is the only one which could explain his observations. 
He will never be able to compare his picture with the real mechanism and he cannot 
even imagine that possibility of the meaning of such a comparison. But he certainly 
believes that, as his knowledge increases, his picture of reality will become simpler 
and simpler and will explain a wider and wider range of his sensuous impressions. 
He may also believe in the existence of the ideal limit of knowledge and that it is 
approached by the human mind. He may call this ideal limit the objective truth.”

—Albert Einstein and Leopold Infeld, “The Evolution of Physics.”

The internal assessment requirements
Experimental work is not only an essential part of the dynamic of scientific knowledge 
it also plays a key role in the teaching and learning of physics. Experimental 
work should be an integral and regular part of your physics lessons consisting of 
demonstrations, hands-on group work, and individual investigations. It may include 
computer simulations, mathematical models, and online databases resources. It is only 
natural then that time should be allocated to you in order to formulate, design, and 
implement your own physics experiment. You will produce a single investigation that 
is called an internal assessment. This means that your teacher will assess your report 
using IB criteria, and the IB will externally moderate your teacher’s assessment. 

Your investigation will consist of:

 ● selecting an appropriate topic

 ● researching the scientific content of your topic

 ● defining a workable research question

 ● adapting or designing a methodology

 ● obtaining, processing, and analysing data

 ● appreciating errors, uncertainties, and limits of data

 ● writing a scientific report 6–12 A4 pages long

 ● receiving continued guidance from your teacher.
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Planning and guidance
After your teacher introduces the idea of an internal assessment investigation, you will 
have an opportunity to discuss your investigation topic with your teacher. Through 
dialogue with your teacher you can select an appropriate topic, define a workable 
research question, and begin by doing research into what is already known about your 
topic. You will not be penalized for seeking your teacher’s advice.

It is your teacher’s responsibility to provide you with a clear understanding of the IA 
expectations, rules, and requirements.

Your teacher will:

 ● provide you with continued guidance at all stages of your work

 ● help you focus on a topic, then a research question, and then an appropriate methodology

 ● provide quidance as you work and read a draft of your report, making general 
suggestions for improvements or completeness.

Your teacher will not, however, edit your report nor give you a tentative grade or achieving 
level for your report until it is finally completed. Once your report is completed and 
formally submitted you are not allowed to make any changes.

Your teacher is responsible for your guidance, making sure you understand the IA 
expectations, and that your work is your own.

As the student it is your responsibility to appreciate the meaning of academic 
honesty, especially authenticity and the respect of intellectual property. You are also 
responsible for initiating your research question with the teacher, seeking help when 
in doubt, and demonstrating independence of thought and initiative in the design 
and implementation of your investigation. You are also responsible for meeting the 
deadlines set by your teacher.

The internal assessment report
There is no prescribed format for your investigation report. However, the IA 
criteria encourage a logical and justified approach, one that demonstrates personal 
involvement and exhibits sound scientific work.

The style and form of your report for the IA investigation should model a scientific 
journal article. You should be familiar with a number of high school level physics 
journal articles. For example, journals like the British “Physics Education” publication 
(http://iopscience.iop.org) or the American “The Physics Teacher” publication (http://
tpt.aapt.org) often have articles that are appropriate for high school work. Moreover, 
many of these articles can provide good ideas for an investigation. 

There is no prescribed narrative mode, and your teacher will direct you to the style that 
they wish you to use. However, because a report describes what you have done, it is 
reasonable to write in the past tense. Descriptions are always clearer to understand if 
you avoid the use of pronouns (usually 'it') and refer specifically to the relevant noun 
('the wire', 'the ammeter', 'a digital caliper', etc.).

Academic honesty
The IB learner profile (page iii) describes IB students as aspiring to develop many 
qualities, including that of being “principled”. This means that you act with 
integrity and honesty, with a strong sense of fairness and justice, and that you take 
responsibility for your actions and their consequences. The IA is your responsibility, 
and it is your work. Plagiarism and copying others’ work is not permissible. You must 
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clearly distinguish between your own words and thoughts and those of others by the 
use of quotation marks (or other methods like indentation) followed by an appropriate 
citation that denotes an entry in the bibliography.

Although the IB does not prescribe referencing style or in-text citation, certain styles 
may prove most commonly used; you are free to choose a style that is appropriate. 
It is expected that the minimum information included is: name of author, date of 
publication, title of source, and page numbers as applicable.

Types of investigations
After you have covered a number of physics syllabus topics and performed a number 
of hands-on experiments in class, you will be required to research, design, perform, 
and write up your own investigation. This project, known as an internal assessment, 
will count for 20% of your grade, so it is important that you make the most of your 
opportunity to do well. You will have 10 hours of class time, be able to consult with 
your teacher at all stages of your work, and research and write your report out of class. 
Your IA investigation may not be used as part of a physics extended essay.

The variety and range of possible investigations is large, you could choose from: 

 ● Traditional hands-on experimental work. You may want to measure the 
acceleration of gravity using Atwood's approach, or determine the gas constant 
using standard Boyle’s law equipment.

 ● Database investigations. You may obtain data from scientific websites and 
process and analyse the information for your investigation. Perhaps you find a 
pattern in the ebb and flow of the ocean tides, or process information on global 
warming, or use an astronomical database to confirm Kepler’s law.

 ● Spreadsheet. You can make use of a spreadsheet with data from any type of 
investigation. You can process the data, graph the results, even design a simple 
model to compare textbook theory with your experimental values.

 ● Simulations. It may not be feasible to perform some investigations in the classroom, 
but you may be able to find a computer simulation. The data from a simulation 
could then be processed and presented in such a way that something new is 
revealed. Perhaps you might determine the universal gravitation constant through a 
simulation (an experiment too sensitive to perform in most school laboratories). Or 
you might investigate the effect of air resistance on projectile motion.

Combinations of the above are also possible. The subject matter of your investigation 
is up to you. It may be something within the syllabus, something you have already 
studied or are about to study, or it can be within or outside the syllabus. The depth of 
understanding should be, however, commensurate with the course you are taking. 
This means that your knowledge of IB Physics (either SL or HL) will be sufficient to 
achieve maximum marks when assessed. 

The assessment criteria
Your IA consists of a single investigation with a report 6–12 pages long. The report 
should have an academic and scholarly presentation, and demonstrate scientific rigor 
commensurate with the course. There is the expectation of personal involvement, an 
understanding of physics, and that the study is set within a known academic context. 
This means you need to research your topic and find out what is already known about it.

There are six assessment criteria, ranging in weight from 8–25% of the total possible 
marks. Each criterion reflects a different aspect of your overall investigation.

690

I N T E R N A L  A SS E SS M E N T



Criterion Points Weight

Personal engagement 0–2 8%
Exploration 0–6 25%
Analysis 0–6 25%
Evaluation 0–6 25%
Communication 0–4 17%
Total 0–24 100%

The IA grade will count for 20% of your total physics grade. The criteria are the same 
for standard and higher level students. We will now consider each criterion in detail.

PERSONAL ENGAGEMENT. This criterion assesses the extent to which you engage with 
the investigation and make it your own. Personal engagement may be recognized in different 
attributes and skills. These include thinking independently and/or creatively, addressing personal 
interests, and presenting scientific ideas in your own way.

For maximum marks under the personal engagement criterion, you must provide clear 
evidence that you have contributed significant thinking, initiative, or insight to your 
investigation: that you take the responsibility for ownership of your investigation. Your 
research question could be based upon something covered in class or an extension of 
your own interest.

For example, you may be a keen music student and your teacher may have 
demonstrated resonance with a wine glass whilst studying sound. You could have been 
fascinated with this phenomenon and decide to design and perform an investigation 
on the resonance of a wine glass. Personal significance, interest, and curiosity are 
expressed here.

You may also demonstrate personal engagement by showing personal input and 
initiative in the design, implementation, or presentation of the investigation. Perhaps you 
designed an improved method for measuring the timing of a bouncing ball or devised an 
interesting method for the analysis of data. You are not to simply perform a cookbook-like 
experiment.

The key here is to be involved in your investigation, to contribute something that 
makes it your own.

EXPLORATION. This criterion assesses the extent to which you establish the scientific context 
for your work, state a clear and focused research question, and use concepts and techniques 
appropriate to the course you are studying. Where appropriate, this criterion also assesses 
awareness of safety, environmental, and ethical considerations.

For maximum marks under the exploration criterion, your topic must be appropriately 
identified and you must describe a relevant and fully focused research question. 
Background information about your investigation must be appropriate and relevant, 
and the methodology must be suitable to address your research question. Moreover, 
for maximum marks, your research must identify significant factors that may influence 
the relevance, reliability, and sufficiency of your data. Finally, your work must be safe 
and it must demonstrate a full awareness of relevant environmental and ethical issues.

The key here is your ability to select, develop, and apply appropriate methodology and 
produce a scientific work.
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ANALYSIS. This criterion assesses the extent to which your report provides evidence that you 
have selected, processed, analysed, and interpreted the data in ways that are relevant to the 
research question and can support a conclusion.

For maximum marks under the analysis criterion, your investigation must include 
sufficient raw data to support a detailed and valid conclusion to your research question. 
Your processing of the data must be carried out with sufficient accuracy. Moreover, your 
analysis must take a full and appropriate account of experimental uncertainty. Finally, 
for maximum marks, you must correctly interpret your data, so that completely valid 
and detailed conclusions to the research questions can be deduced.

The key here is to make an appropriate and justified analysis of your data that is 
focused on your research question.

EVALUATION. This criterion assesses the extent to which your report provides evidence of 
evaluation of the investigation and results with regard to the research question and the wider world.

For maximum marks under the evaluation criterion, you must describe a detailed 
and justified conclusion that is entirely relevant to the research question, and fully 
supported by your analysis of the data presented. You should make a comparison 
to the accepted scientific context if relevant. The strengths and weakness of your 
investigation, such as the limitations of data and sources of uncertainty, must 
be discussed and you must provide evidence of a clear understanding of the 
methodological issues involved in establishing your conclusion. Finally, to earn 
maximum marks for evaluation, you must discuss realistic and relevant improvements 
and possible extensions to your investigation.

The key here is different from the analysis criterion. The focus of evaluation is to 
incorporate the methodology and to set the results within a a wider scientific context 
while making reference to your research topic.

COMMUNICATION. This criterion assesses whether the investigation is presented and reported 
in a way that supports effective communication of the investigation’s focus, process, and outcomes.

For maximum marks under the communication criterion, your report must be clear 
and easy to follow. Although your writing does not have to be perfect, any mistakes 
or errors should not hamper the understanding, focus, process, and outcomes of 
your investigation. Your report must be well structured and focused on the necessary 
information, the process and outcomes must be presented in a logical and coherent 
way. Your text must be relevant and avoid wandering off onto tangential issues. 
Your use of specific physics terminology and conventions must be appropriate and 
correct. Graphs, tables, and images must all be well presented. Your lab report should 
be 6–12 pages long. Excessive length (beyond 12 pages) will be penalized under the 
communication criterion.

The key here is to demonstrate a concise, logical, and articulate report, one that is 
easy to follow and is written in a scientific context. This is not an assessed criterion but 
nevertheless is likely to be key to the fulfilment of a successful IA.  In conclusion, the IA 
represents a unique opportunity for you to take ownership of your physics learning by 
investigating something that matters to you. It is a chance for you to work independently 
and to follow your own scientific instincts.  True, you should heed the advice and 
experience of your teacher and be guided so that you don't go off down a blind alley; 
however you should be prepared to research your topic independently and approach 
your teacher full of ideas and suggestions. Experience suggests that those students brim 
full of proposals are likely to be successful, providing they stick to the physics skills and 
principles that have been encouraged to develop throughout the course.
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 force–distance graphs  61, 65
division  8, 13
Doppler effect  381
 astronomy  385
 light  384–5
 measuring rate of blood flow  386
 moving observer and stationary source  382–3
 radar  385–6
 sound waves  381–3
double-slit interference  152–4, 367, 368
 intensity variation with the double-slit  368–9
drag force  59
drift speed  169, 184–6, 238
Earth  262, 329, 333
 energy balance in surface–atmosphere system  

329, 342–3, 347–9
 gases in the atmosphere  419
 greenhouse effect  329, 343–7
 orbit  341–2
Edison, Thomas  198, 453
efficiency  61, 72
Einstein, Albert  48, 61, 63, 79, 134, 284, 285, 

340, 475, 507, 508, 512, 517, 688
 Einstein’s photoelectric equation  478
 equivalence principle  534–5
 general theory of relativity  534, 538, 539, 540, 

542–3
elastic potential energy  61, 70–2
electric cells  217–18, 240–4
 anodes and cathodes  218
 capacity  220–1
 discharge  217, 221–2
 electromotive force (emf)  217, 223–6
 internal resistance  217, 223–6
 lead-acid cells  219–20
 Leclanché cells  218–19
 power supplied by a cell  226
 primary and secondary cells  217, 218–221, 

223
 recharging secondary cells  223
 terminal potential difference  217, 221, 222, 

224, 225
electric current  169, 183–6, 240–4
 charge  184
 chemical effect  192, 217
 circuit diagrams  192, 193–6
 conventional and electron current  188
 conventional current  187, 230–1
 direction rules  230–1, 238, 431
 eddy currents  446
 Edison vs Westinghouse  453
 effects  192–3
 full-wave rectification  439, 451–2
 half-wave rectification  439, 450–1
 heating effect  192, 211–12
 high-voltage direct-current transmission 

(HVDC)  449
 Kirchhoff’s laws  192, 212–15
 magnetic effect  192, 227
 magnets  229
 mechanism for electric current  181–2
 rectifying  ac  450
 resistance  192, 196–202
 resistivity  192, 202–12
 Wheatstone bridge circuits  453–4
 Wien bridge circuits  454
electric fields  169, 175, 240–4, 392, 406, 426
 charge moving in magnetic and electric fields  

422–3
 charged parallel plates  407
 charges moving in electric fields  421–2
 close to a conductor  178–9
 comparison of gravitational and electric fields  

424–5
 conducting sphere  179–80
 electric field strength  177–8, 392
 electric field strength and potential gradient  

408–9
 electric field strength and surface charge 

density  409
 graphical interpretations of electric field 

strength and potential  410–11
 plotting electric fields  176
 potential difference  391, 393
 potential inside a hollow conducting charged 

sphere  412–13
electric lighting  198
electrical breakdown  182
electromagnetic force  290, 298–9, 300
electromagnetic induction  427, 428, 471–4
 applications  438
 electromagnetic force  430
 Lenz’s law  427, 430–2
 magnetic flux  427, 432–5
 making a current  428–30  
electromagnetism  227, 240–4
 catapult field  235
 Fleming’s left-hand rule  235, 430–1
 force between bar magnet field and current-

carrying wire  234–6
 force on a current-carrying conductor  236–9
 forces between two current-carrying wires  

233–4
 magnetic field due to current in conductors  

230–2
 magnetic field patterns  227–9
 motor effect  235
electromotive force [emf]  189, 217, 223–6, 427
 changing fields and moving coils  436
 coil moving  437
 inducing an emf  428–30
 magnetic field changes  437–8
 straight wire moving in uniform field  437
electron microscopes  610
electrons  292–3
 charge carriers  182
 conduction electrons  182
 electron degeneracy pressure  657
 electron diffraction  481–2
 free electrons  331
electronvolts  169, 190–1
electrostatics  170–1, 391, 392, 393
 field between parallel plates  394–5, 407

 linking electrostatics and gravity  412
emissivity  329, 339–40
empirical versus theoretical models  112
energy density  308, 311–12
energy sources  307, 350–2
 fossil fuels  308, 317
 nuclear fuel  317–22
 primary sources  308, 309–10, 317–22
 pumped storage  308, 324–6
 renewable and non-renewable energy sources  

307, 308–9
 Sankey diagrams  308, 314–16
 secondary sources  308
 solar energy 308,  326–8
 specific energy and energy density  307, 311–

13
 types of energy sources  309–11
 wind generators  322–4
energy transfers  61
 doing work  61, 63–5
 efficiency  72
 elastic potential energy  70–2
 energy forms and transfers  62–3
 energy moving between GPE and KE  68–70
 KE and GPE  66–7, 67–8
 power  61, 65–6
energy-momentum relation  531
engineering physics  549, 589–92
engines  564–7
entropy  559, 567–8
 entropy as a measure of disorder  568–9
equilibrium position  116
equipotentials  391, 396, 398–9
 field and equipotential in  gravitation  399–401
equivalence principle  534–5
errors  8
 error bars  8, 14
 propagation of errors  17
 random errors  8, 10–11
 systematic errors  8, 9–10, 11
 zero error  9
escape speed  405, 417–19
estimation  1, 7–8
event horizon  541
exchange particles  290, 299–300
experiment  688, 690
explosions  73, 80
exponential decay  466, 470

falsifiability  77
Faraday, Michael  427, 435–6, 439
Faraday’s law of induction  427, 435
farads  456
Feynman diagrams  290, 300–1
fibre optics  620
 attenuation and dispersion  622–4
 structure and use of optic fibres  620–2
field lines  391, 394, 395
 field and equipotential in  gravitation  399–401
 field between a point charge and a charged 

plate  399
 field due to a charged sphere  399
 field due to a co-axial conductor  399
 field due to a single point charge  398
 field due to two point charges  399
 measuring potential in two dimensions  395–7
fields  391, 392, 393, 405
 comparison of gravitational and electric fields  

424–5
 concept map for field theory  424
 edge effects  395
 field strength  392
 radial fields  398
fluid dynamics  570, 573
 continuity equation  570, 574
 streamline or laminar flow  570, 573–4
fluid resistance and terminal speed  27, 59
 maximum speed of a car  60–1
 skydiving  59–60
fluids  570, 571
 Archimedes’ principle  570, 572–3
 Bernoulli equation  570, 575–9

694

I N D E X



 measuring density of immiscible liquids using a 
U-tube  572

 measuring the coefficient of viscosity of oil  
580

 Pascal’s principle  570, 572
 static fluids – density and pressure  571
 Stokes’ law  579–80
 turbulent flow  580–1
 viscosity of fluids  579
flux  427, 432–4, 434–5
focal length  594, 599
focal point  594, 599
forces  44, 391
 Aristotle and the concept of force  44–5
 conservative forces  68
 force–distance graphs  61, 65
 force–time graphs  73, 83–4
 force, mass and acceleration  47
 forces and inverse-square law behaviour  405, 

406–7
 forces between charged objects  172–3
 free-body force diagrams  44, 49–51
 identifying force pairs  44, 48
 Newton’s first law of motion  44, 45–6
 Newton’s second law of motion  44, 46–7, 124
 Newton’s third law of motion  44, 48–9, 124
 representing forces as vectors  44, 53
 resultant force  44, 52
 translational equilibrium  44, 52–4
 triangle of forces  53
fossil fuels  308, 309, 311
Fourier synthesis  158, 353
Franklin, Benjamin  170, 179, 188, 238
free-body force diagrams  44, 49–51
frequency  115, 117, 123, 125, 354
 angular speed or frequency [w]  354
 Larmor frequency  635
 natural frequency  147
 period-frequency relationship  115, 245, 248
 threshold frequency  477
friction  58
 coefficients of friction  44, 55, 56, 57
 dynamic friction  44, 56, 57
 solid friction  44, 54–5
 static friction  44, 55–6, 57
 values for pairs of surfaces  56
full scale deflections (fsd)  194
full-wave rectification  439, 451–2
fusion (melting)  97

G–M tubes  279, 502
galaxies  641, 644–5
Galileo Galilei  44, 45, 258
 Galilean relativity and Newton’s postulates  

507, 508–10
 Galilean transformations  509–10
gamma rays  133, 267, 274–5
gases  91, 100, 113–14, 169
 Boltzmann constant  100, 109, 110
 Boyle’s law  101, 103–4
 Brownian motion  106
 Charles’s law  102, 104–5
 differences between real and ideal gases  100, 

111–12
 diffusion  106
 first law of thermodynamics  563
 gas laws  101–5
 ideal gas equation  100, 102, 107–8, 109, 110
 kinetic model of an ideal gas  73, 100, 107, 

112, 329
 Maxwell–Boltzmann distribution  110–11
 molar mass 100, 103
 mole and Avrogado constant  100, 102–3
 pressure  100, 102
 third gas law  102, 105
 total internal energy of an ideal gas  109
gauge bosons  299
Geiger, Johannes  290, 291–2, 492
generators  439
 alternating current [ac] generators  439–41
 measuring alternating currents and voltages  

443–4

 modelling an ac generator  441–3
 transformers  439, 444–9
global warming  329, 348–9
GPS (global positioning system)  521, 537
gradient fields  635–6
graphs  14
 adding and subtracting vectors  20–3
 calculating gradient of a graph  32
 describing motion with graphs  27, 31, 34–6
 displacement–distance graphs  126–7
 displacement–time graphs  127
 drawing graphs manually  16
 false origin  16
 force–distance graphs  61, 65
 force–time graphs  73, 83–4
 graphical interpretations of electric field 

strength and potential  410–11
 linearizing graphs  17
 SHM (Simple Harmonic Motion)  119–21
gravitation  245, 265–6
 field and equipotential in  gravitation  399–401
 Newton’s law of gravitation  257, 260–1, 263, 

264, 402
 universal gravitational constant  261
gravitational field strength  257, 258, 392
 defining gravitational field strength  259–60
 field strength at a distance r from a point mass, 

M  261–2
 field strength at a distance r from the centre 

outside a sphere of mass M  262
 g and the acceleration due to gravity  260
 inside the Earth  262
 linking orbits and gravity  262–3  
gravitational fields  391, 392, 405, 406, 426
 comparison of gravitational and electric fields  

424–5
 escaping the Earth  417–19
 orbiting Earth  415–17
 potential  413–15
 potential energy  391, 393
 potential inside a planet  415
gravitational force  298–9, 300
gravitational potential energy (GPE)  61, 68–70
gravitational time dilation  539
greenhouse effect  329, 343–4
 modelling climate balance  345–7
 why greenhouse gases absorb energy  344–5

hadrons  290, 296
 Large Hadron Collider (LHC)  492, 660
half-wave rectification  439, 450–1
hard radiation  629
harmonics  158, 160
 harmonics in pipes  162–3
 harmonics on strings  161
Hawking, Stephen 542
heat pumps  566–7
Heisenberg uncertainty principle  475, 487–8, 489
Hertzsprung–Russell [HR] diagram  649, 655–6
Higgs boson  290, 303
Hooke, Robert  70, 71, 130
Hooke’s law  70–2
Hopper, Grace  623
Hubble’s law  660, 661–2, 662–3
Huygens, Christiaan  130, 134, 145
hydrostatic equilibrium  570

imaging  593, 637–40
 converging and diverging mirrors  593, 594–8
 converging and diverging thin lenses  593, 

599–606
 imaging instrumentation  608
 real images  593, 596
 spherical and chromatic aberrations  593, 

606–7, 614
 virtual images  593, 597
impulse  73, 82–3
inertia  45
inertial frame of reference  508, 510
infra-red radiation  132
interference  145, 367
 constructive and destructive interference  152

 double-slit interference  152–4, 368–9
 interference by division of amplitude  373
 measuring wavelength of laser light using 

double slit  156
 measuring wavelength of microwaves using 

double slit  157
 multiple-slit interference  367, 369–71
 path difference and the double-slit equation  

154–6
interferometer telescopes  617–18
internal assessment requirements  688–9
 academic honesty  689–90
 assessment criteria  690–2
 internal assessment report  689
 planning and guidance  689
 types of investigations  690
internal energy  91, 95
invariant quantities  517–21
inverse-square relationships  138, 171, 260–1
 forces and inverse-square law behaviour  405, 

406–7
isobaric change  559, 561–2
 work done for non-isobaric changes  562
isothermal changes  559, 562–3
isotopes  268
isovolumetric changes  559, 563–4

Jeans criterion  666–7
joule (J)  63, 169

kelvin (K)  3, 339
Kepler, Johannes  258, 260, 264
kilogram (kg)  3
kinetic energy (KE)  61, 66–7, 68–70
 KE and momentum  80
Kirchhoff’s laws  212–14
 ideal and non-ideal meters  214–16

Large Hadron Collider (LHC)  492, 660
Larmor frequency  635
lasers  156
length contraction  526–7
lenses  374–5, 593, 599
 aspherical shape  599
 converging and diverging thin lenses  599
 doublets lens  606
 eyepiece lenses  608–9, 613
 finding approximate value for focal length of a 

convex lens  600
 lens equation  602–4
 magnifying glasses  601, 604–6
 objective lenses  608, 613
 relationship between object and image for a 

thin convex lens  600–2
 same travel times  607
 thin-lens theory  599
Lenz’s law  427, 430–2
leptons  290, 294, 297
light  145
 interface between two media  147
 polarization of light  142
 reversibility of light  148
linear magnification  593, 597
light year (ly)  645
liquids  91
Lorentz transformations  513, 514–16
 inverse Lorentz transformation  515
 Lorentz factor  514
luminosity  641, 647–8

MACHOs (Massive Compact Halo Objects)  681
magic numbers  283
magnetic field lines  228
magnetic field patterns  227–9
magnetic fields  227
 charge moving in magnetic and electric fields  

422–3
 charges moving in magnetic fields  419–21
 magnetic field due to current in conductors  

230–2
 magnetic field strength  237–8
magnetic flux  427
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 flux density  432–4
 flux linkage  427, 434–5
magnetic forces  227
 force between bar magnet field and current-

carrying wire  234–6
 force on a current-carrying conductor  236–9
 forces between two current-carrying wires  

233–4
magnetic poles  228–9
magnets  229, 232, 234–6, 236
 hard and soft magnetic materials  447
magnifying glasses  601, 604–6
magnitude, orders of  1, 7
main sequence stars  649, 655, 656
  lifetimes of main sequence stars  670–2
Malus’s law  133, 142–3
Marsden, Ernest  290, 291–2, 492
mass  46
 force, mass and acceleration  47
 inertial and gravitational mass  46
 mass–spring system  361, 362
matter  290
 states of matter  91
matter waves  475, 480–1
 electron diffraction  481–2
Maxwell, James  177, 507, 512
measurements  1–4, 24–6
 uncertainties in measurement  9–11
mechanics  27, 87–90
medical imaging  626
 computed tomography (CT)  631
 nuclear magnetic resonance (NMR) in 

medicine  626, 634–6
 ultrasound in medicine  632–4
 X-ray images in medicine  626–31
Melde’s string  159–60
melting (fusion)  97
Mendeleev, Dmitri  282
mesons  290, 295, 297
metabolism  561
metallic bond  181–2
meters  214–16
metre (m)  3, 63
metric multipliers  1, 7
microscopes
 electron microscopes  610
 make a microscope  610
 normal adjustment  609
 optical compound microscopes  608–9
 resolution of a microscope  610–12
microwaves  132–3, 157
Minkowski diagrams see spacetime diagrams
mirrors  594
 aberrations in a mirror  597–598
 caustic curves  597
 images from a mirror  595
 linear and angular magnification  593, 597
 pole P  594
modelling  100, 224
mole (mol)  3
 mole and Avrogado constant  100, 102–3
moment of inertia  549, 552, 557–58
momentum  73–4
 collisions and changing momentum  74–5
 impulse  73, 82–3
 KE and momentum  80
 momentum and safety  73, 85–6
  momentum and sport  73, 86
 Newton’s second law of motion  73, 84–5
 relativistic momentum  529, 530–1
 two objects colliding  78
 two objects when energy is gained  79
 two objects with different masses  77–8
 two objects with same mass  76–7
momentum conservation  74–5
 helicopters  82, 85
 recoil of gun  80
 rocketry  82, 85
 water hoses  81–2
Moon 343, 346, 419
motion  27
 describing motion with graphs  27, 31, 34–6

 Newton’s laws of motion  44, 45–6, 46–7, 48–9
 objects and motion  44–5, 45
 suvat/kinematic equations of motion  27, 36–8
MRI scans  635–6
multiple-slit interference  367, 369–71
multiplication  8, 13
muons  293

nanoseconds  623
near point  604
nebulae  644
Neumann’s equation  427, 435
neutrinos  293, 499
neutron capture  669
 r-process  669–70
 s-process  669
neutron stars  494
neutrons  293
 neutron degeneracy pressure  658
 thermal neutrons  318
newton (N)  4, 63 
Newton, Isaac  44, 134, 145, 258, 614, 660
 Newton’s law of gravitation  257, 260–1, 263, 

264, 402
 Newton’s laws of motion  44, 45–6, 46–7, 

48–9, 73, 84–5, 124, 510
 Principa Mathemetica  509
night vision  133
nuclear fusion  282, 286–7
 CNO cycle  667, 668
 proton–proton chain  667–8
 star formation  667–8, 668–70
nuclear interactions  73
nuclear magnetic resonance (NMR) in medicine  

626, 634
 basic NMR effect  634–5
 MRI modifications  635–6
nuclear physics  267, 304–6, 476, 493, 504–6
 alternative nuclear binding energy plot  289
 energy levels in the nucleus  468–9
 fission chain reaction  288–9
 law of radioactive decay  500–5
 mass and energy units for nuclear changes  

285
 mass defect and nuclear binding energy  282, 

284–5
 nuclear fission  287–8
 nuclear fusion  282, 286–7
 nuclides  274, 282–3
 Rutherford scattering and the nuclear radius  

492, 493–6
 unified atomic mass unit  282, 283–4
 using electrons of higher energies  496–8
 variation of nuclear binding energy per 

nucleon  285–6
nuclear power  317–22
 fast breeder reactors  320
 safety issues  321
 society and nuclear power  321–2
nucleosynthesis  668, 671
nuclides  274, 282
 patterns for stability  282–3

Ohm’s law  192, 198–200
Oppenheimer–Volkoff limit  649, 658
optic fibres  621–2
 graded-index fibre  621
 single-mode fibre  621
 step-index fibre  621
optical centre  599
optical compound microscopes  608–9
orbital energy  405
orbital motion  405
orbital speed  405, 415–16, 418
orbits 263–4
 satellites of Jupiter  264
oscillations  115, 164–8, 353
 describing periodic motion  116–18
 isochronous oscillations  116–18
 oscillations and damping  583–4

pair annihilation  293, 475, 489

pair production  293, 475, 488–9
 pair production and the Heisenberg 

uncertainty principle  489
 X-rays  627
paradigm shifts  507, 512
parsec (pc)  645
particle acceleration  532
 particle accelerators  531
particle physics  267, 290, 291–4, 304–6, 660
 annihilation and pair production  293
 classification of particles – the Standard Model  

294–8
 conservation rules  297–8
 exchange particles  290, 299–300
 Feynman diagrams  290, 300–1
 fundamental forces  290, 298–9, 300
 international collaboration  303
 particle properties  290
 strangeness  290, 301–2
Pascal’s principle  570, 572
path difference  154–6
pendulums  358–60, 586
period  115, 116, 123
 period-frequency relationship  115
periodic motion  115, 116–18
Periodic Table  282
phase and phase difference  121–2
 in phase  121
phase change  91
 molecular exchange of phase change  99
photoelectric effect  475
 demonstration of the photoelectric effect   

476–7
 Einstein’s photoelectric equation  478
 explanation of the photoelectric effect  477
 gold leaf experiment  477–8
 Millikan’s photoelectric experiment  479
 wave theory and the photoelectric effect  480
 X-rays  629
photons  269, 475, 534–5
photovoltaic cells  308, 327
pitch  163
Planck, Max  340, 476
polarization  134, 141–2, 144
 Malus’s law  133, 142–3
 partial polarization  141
 polarimeters  143
 polarization of light  142
 Polaroids  142, 143
positrons  292
potential  405
 graphical interpretations of electric field 

strength and potential  410–11
 potential and potential energy  405, 413
 potential inside a hollow conducting charged 

sphere  412–13
potential difference [pd]  169, 186–8, 190, 393, 

405
 electrical potential  391, 404
 electromotive force [emf]  189
 gravitational potential  391, 401–4
 measuring pd  194–5
 power, current and pd  189–90
 using a potential divider to give a variable pd  

209–11
potential gradient  405, 408–9
 electric field strength and potential gradient  

408–9
potentiometers  196
potter’s kiln  338
power  61, 65–6, 439
 power dissipation  192
power stations  308
 baseload stations  325
 control rods  319
 enriched fuel  318
 fossil fuels  317
 heat exchangers  319
 nuclear fuel  317–22
 thermal power stations  312–13
precision  10, 11
pressure  570, 571
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 electron degeneracy pressure  657
 gases  100, 102
 neutron degeneracy pressure  658
principal axis  594, 599
principal focus  594
principle quantum number  484
projectile motion  27
 falling (moving vertically)  39–41, 42
 moving horizontally  42–3
proper length  520–1
proper time  518–20
pumped storage hydroelectric systems  308, 

324–6

Q factor  584–6
quantities  1–3
 fundamental and derived quantities 2
 invariant quantities  517–21
 scalar quantities  18–19
 vector quantities  18–19, 19–20, 21, 22–3
quantum  269
quantum mechanics  484
quantum physics  476, 504–6
 Heisenberg uncertainty principle  487–8
 matter waves  480–7
 pair production and annihilation  488–90
 photoelectric effect  476–80
 quantum tunnelling  475, 490–1
quarks  290, 294–5, 500
 quark confinement  290, 295

radar  133
radio telescopes  616–17
 discoveries in radio astronomy  618
radio waves  132
radioactive decay  267, 273–4, 499–1
 alpha decay  274–5
 decay constant and half-life  501
 decay in height of water column  503–4
 gamma ray emission  275–6
 measuring long half-lives  502–3
 measuring radioactive decay  279
 measuring short half-lives  501
 modelling radioactive decay  278–9
 negative beta decay  275, 498
 nuclide nomenclature  274
 positron decay  275
raising to a power  8, 1–14
rarefactions  126
ratios  1
ray diagrams  593, 595–7, 600–2
 predictable rays  595
Rayleigh criterion  340, 376, 377, 610, 616
Rayleigh scatter  623–4
Rayleigh–Jeans law  476
rays  134–5
real-is-positive  603
red giants  649, 656
redshift  660, 661–2
 cosmological redshift  662
 gravitational redshift  537–9
 redshift equation and the cosmic scale factor  

664–5
reflection  145, 146
 total internal reflection  145, 148–50
refraction  145, 146
 reflection and refraction of waves  146
 refractive index 146, 147, 150
refrigerators  566–7
Relativistic Heavy Ion Collider [RHIC]  660
relativistic mechanics  529
 particle acceleration  532
 photons  532–3
 relativistic momentum  529, 530–1
 total energy and rest energy  529–30
relativity  507, 544–48
 applications of general relativity to the 

universe as a whole  542–3
 bending of light  539–40
 charges and currents – a puzzle  510–12
 clock synchronization  521
 equivalence principle  534–5

 Galilean relativity and Newton’s postulates  
507, 508–10

 GPS (global positioning system)  521, 537
 gravitational redshift  536–9
 gravitational time dilation  537
 invariant quantities  517–21
 Lorentz transformations  513, 514–16
 Maxwell and electromagnetism  507, 512
 reference frames  507, 58
 Schwarzchild black holes  540–2
 two postulates of special relativity  513–14
 velocity addition  516–17
renewable energy  308–9
repeaters  624
resistance  192, 196–7
 diodes and thermistors  200–1
 how resistance depends on size and shape  202
 measuring internal resistance of a fruit cell  

225
 Ohm’s law  192, 198–200
 resistance of metal wire  197
 variation of resistance of a lamp filament  199
resistivity  192, 202–3
 combining resistors  204–5
 complicated networks  207
 heating effect equations  211–12
 potential dividers  208
 practical resistors  204
 resistivity of pencil lead  203
 resistors in parallel  205, 206–7
 resistors in series  205, 205–6
 thermal and electric resistivity  331–2
 using a potential divider to give a variable pd  

209–11
 using a potential divider with sensors  208–9
 variable resistor or potential divider?  211
resistor–capacitor [RC] series circuits  455
resolution  376, 377, 387–90
 diffraction and resolution  377
 resolution equation  378
 resolution in a CCD (charge-coupled device)  

380
 resolvance of diffraction gratings  379
resonance  584
 examples of resonance  587
 resonance of a hacksaw blade  587–88
rest mass  528
rheostats 210
root mean square (rms)  444
rotational dynamics  549, 550
 angular acceleration  550–1
 equations of motion  551
 uniform motion in a circle  550
Rutherford, Ernest  290, 291–2, 493

Sankey diagrams  308, 314–16
satellite dishes  378–9
satellites  415–16, 417–19
 geostationary orbit  417
 geosynchronous satellites  416–17
 GPS (global positioning system)  521, 537
 orbit shapes  418–19
 polar orbit  416
scalars  18, 239
 scalar quantities  18–19
scattering  291–2, 492, 493, 623–4
 deviations from Rutherford scattering  495
 electron diffraction  495–6
 method of closest approach  493–4
 nuclear density  494
 why is the sky blue?  624
Schrödinger’s equation  485–6
Schwarzchild black holes  540–2
Schwarzchild radius  541
scientific notation  1, 5–7
second (s)  3
serendipity  44, 664
SHM (Simple Harmonic Motion)  115, 118–19, 

353, 354
 angular speed or frequency [ʘ]  354
 circular motion and SHM  354–5
 energy changes in SHM  122–3, 353, 362–3

 graphing SHM  119–22
 iteration with damped SHM  583
 mass–spring system  361, 362
 modelling SHM with a spreadsheet  355–7
 relationship between displacement, velocity 

and acceleration  355
 SHM equation and ʘ2  357
 simple pendulums  358–60
 velocity equation  353, 358
SI units  1–3
 capital or lower case?  3 
 fundamental and derived SI units  1, 3–4, 184
sign conventions  607
significant figures  1, 4–5
simulations  690
single-slit diffraction  364
 graph of intensity against angle  364
 single slit with monochromatic and white light  

366–7
 single-slit equation  365–6
 small angle approximation  365
Snell’s law  145, 146, 147
soap films  375–6
solar constant  329, 341–2
solar energy  308
 solar heating panels  326–7
 solar photovoltaic panels  327–8
solar system  642–3
solids  91
sound waves  123
 bell jar experiment  130–1
 measuring speed of sound  129–30
spacecraft  419
 Earth’s rotation  419
 slingshots  419
spacetime diagrams  522–3
 simultaneity  524–5
 time dilation and length contraction  525–7
 twin paradox  527–28
spacetime interval  517–18
 time travel  518
specific energy  308, 311–12
specific heat capacity  91, 95–7
specific latent heat  91, 97–9
spectrometers  373
 Bainbridge mass spectrometer  423
speed  27, 30
 instantaneous and average values  32–3
 terminal speed  27, 60
spherical aberrations  606–7
spreadsheet models  34, 355–7
spreadsheets  692
springs  70, 117–18, 124–5
 extension  71–2
 mass–spring system  361, 362
 spring constant  71
stars  641, 643
 binary stars  643
 black-body radiation and stars  648
 Cepheid variables  649, 653–4
 composition of stars  650–2
 fate of stars  657
 formation of a star  656–7
 groups of stars  643–4
 Hertzsprung–Russell [HR] diagram  649, 655–6
 Jeans criterion for star formation  666–7
 larger stars  658
 luminosity and apparent brightness of stars  

641, 647–49
 main sequence stars  649, 655, 656, 670–2
 mass–luminosity relation for main sequence 

stars  649, 656
 spectral classes  651
 stellar evolution  649, 656–59
 stellar parallax  641, 645–6
 stellar spectra  649, 650–2
 Sun-like stars  657
 Wien’s displacement law and star temperature  

652
stellar clusters  643
 globular clusters  644
 open clusters 643–4
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stellar evolution  649, 656–59
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