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Chapter 7: Gravitation

7.1: Central Forces
A central force on a particle is directed toward or away from a fixed point in three dimensions 
and is spherically symmetric about that point. For example, gravitational attraction force 
between earth and sun is a central force, where   is equal to:

The corresponding gravitational potential energy is”

with the choice  . Similarly, for a spring, we have:

7.2: The Two Body Problem
The section shows that the two body problem is equivalent to a one-body central force problem 
with the right choice of coordinate. For a two body system, there is a kinetic energy for each 
body and a potential energy between two bodies. Altogether, there are six coordinates: three 
coordinates   for the first body and three coordinates   for 
the second body.

In order to reduce a two-body problem to a one-body central force problem, we use center of 
mass   with three coordinates.

There are also three relative coordinates:
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where the relative coordinate vector points from the first body to the second, and the length is 
the distance between the

Vectors   and  can be expressed in terms of   and  , giving us:

Derivation

Let   and   be positions of   and   and the CM frame. By vector decompositions, 
we know that

Substituting the expression for  , equations are simplified into:

Then,   and   are equal to:
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The total kinetic energy of the two bodies is equal to:

This is equal to:

where   is the reduced mass and is equal to:

The Lagrangian   is equal to:

The Lagrangian shows that   is cyclic, so the corresponding momentum   is 
conserved. This means that the center of mass of the two-body system drifts through space with 
a constant velocity and momentum, reducing the two-body system to a one-body central force 
problem (The statement is explained further in the following section). 

7.21: Interpretation of the Lagrangian(CM Frame)
he Lagrangian is we derived has two portions: the Lagrangian of the center of mass and the 
Lagrangian for  , the relative motion between   and  . 

The portion of the Lagrangian   has the same form as that a single particle 
with mass   orbiting around a force centered at the origin.  Using spherical coordinates, 
position   and velocity is equal to  . 

Written in spherical coordinates and let  , the Lagrangian is equal to:
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The notion simplifies the two-body problem significantly if considering the inertial CM frame. 
The center of mass drifts with a constant velocity. In the CM frame,  , so  . The 
Lagrangian is simplified into:

Interpretation of the Lagrangian and Motion in CM Frame

In the CM frame, the center of mass is stationary, and we treat it as a fixed origin. Because 
momentum   is conserved, masses   and   move with an equal and opposite 
momentum.  If   (the mass of a planet is is much smaller than mass of a star), 
the CM is close to   and   has a much smaller speed)

We make several observations from the Lagrangian:

i.   is not an explicit function of time, so Hamiltonian   is conserved, which in this case is 
the sum of kinetic and potential energies:

ii. The angle   is cyclic, so the corresponding angular momentum   is conserved.

7.3: The Effective Potential Energy
Recall that in section 7.2, we have derived the equation

where angular momentum   is conserved. Expanding the expression,   is 
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p = MṘ m  1 m  2

m  >>2 m  1

m  2 m  2

L H

E = H =  μ( +
2
1
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The first term is similar   for linear kinetic energy, and the second term   
rotational kinetic energy. We rewrite the equation in the form

and defined effective potential as:

Then, energy   is equal to:

The angular momentum   allows us to convert rotational kinetic energy   into a term 
depending on position   only, which behaves like a potential energy. The sum of this term and 
the “real” potential energy is defined as effective potential energy. The “fake” potential energy 
is called centrifugal potential

Because its corresponding “force”   tends to push the 
orbiting particle away from the force center at the origin (this can be seen by having a positive 
sign. An attractive force towards the origin is defined as the negative direction and vice versa). 
In general,   has a minimum:

the system admits circular orbit at  . Such an orbit would be stable if   and 
unstable if  .
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7.31: Radial Motion for the Central-Spring Problem
Recall that effective potential energy is defined as:

where   for a spring. Then,   is equal to:

For  , the angular momentum barrier vanishes, corresponding to a particle moving toward 
the origin. The motion is then entirely radial (truly on-dimensional) and the particle oscillates 
back and force through the origin. 

From equation (8), we can see that energy   is equal to:
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where  . Solving for  , we get:

Using separable integration, the time   to move from radius   to   is equal to:

7.32: Radial Motion in Central Gravity
The effective potential energy of a particle in a central gravitational field is:

There are two types of orbits: bound orbits with energy   and unbound orbits with energy 
 . 

Bound Orbits:

Bound orbits do not escaped to infinity. They includes circular orbits with an energy   
corresponding to the energy at the bottom of the potential well, where only one radius is 
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possible (circular motion). 

The minimum radius is called the periapse for orbits around an arbitrary object.

The maximum radius   is called the apoapse in general

Unbound Orbits

Unbound orbits are those with no outer turning point: these orbits extend out infinitely far. 
There are orbits with   that are barely unbounded. In this case, kinetic energy goes to 
zero in the limiting case as the orbiting particle infinitely far from the origin. Trajectories 
are parabolas

For orbits with  , the orbiting particle has a positive kinetic energy when infinitely 
far from the origin. Trajectories are hyperbolas

Energy   is equal to:

where  . Solving for  , we get:

with the fact  . Using separable integration,   is equal to:

7.4: The Shape of Central-Force Orbits
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In this section, we want to determine the shape of the orbits for the time evolution determined 
above. To do this, we will eliminate   from the equations and find equations involving   and   
only. Recall that energy   is equal to:

and  . Because we want to find equations involving   and   only (this is done by 
finding differential equations first), we use separable integration. We first find  . Using 
chain rule, we get

Solving for   using   and   using angular momentum  ,    is equal to:

Using separable integration,   is equal to:

7.41: Central Spring-Force Orbits
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7.42: The Shape of Gravitational Orbits

7.421: By Integration
Gravitational potential energy is equal to  , so   is equal to:

In order to simplify the integral, we use the technique that:
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where   is defined as the eccentricity:

Solving for  , we get:

By convention, we choose the plus sign in the denominator with  , which in effect 
locates   at the point of closest approach to the center, the periapse of the ellipse. The 
choice changes sine to cosine, giving us:

7.422: By Differentiation
Return to the step for  

Let  . Using chain rule, the equation is equal to:
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ϕ =  sin (  )
 l /2m2

1 −1

r  G M m + 2l E/m2 2 2 2

GMmr − l /m2

=  sin (   )
 l /2m2

1 −1

r  1 + 2El /G M m2 2 2 3

GMmr − l /m2

GMm

1

=  sin (   )
 l /2m2

1 −1

rϵ

GMm r − l2 2

GMm2

1

=  sin (  )
 l /2m2

1 −1

ϵGMm r2

GMm r − l2 2

ϵ

 ϵ =  1 +  

G M m2 2 3

2El2
(21)

r

 r =  

1 ± ϵ sin(ϕ− ϕ  )0

l /GMm2 2

(22)

ϕ =0 π/2
ϕ = 0

 r =  

1 + ϵ cos(ϕ)
l /GMm2 2

(23)

dr/dϕ

 =
dϕ

dr
 r   

l2
2m 2 E − l /2mr − U(r)2 2

u = 1/r

 =
dt

d(1/u)
−   

u2

1
dϕ

du

d d



Chapter 7 Gravitation 12

which is equal to:

Differentiating both sides again, we get:

This gives us a second order differential equation:

Then, eccentricity is equal to:

Conic sections:

For circles, eccentricity is zero, so radius  , a constant independent of  

ellipses:  

The long axis of the ellipse is called the major axis, and half of this distance is the semi-major 
axis, denoted by  . The shorter axis is the minor axis, and half of this distance is the semi-minor 
axis, denoted by  . 
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One can derive several properties of the ellipses using the equation for eccentricity. 

The periapse and apoapse of the ellipses (the shortest and farthest points of the orbit from 
the right-hand focus) are given by:

The sum of distances   and   from the two foci to a point on the ellipses is the same for 
all points on the ellipses.

The distance between the two foci is  , so the eccentricity of an ellipses is the ratio 
of this interfocal distance to the length of the major axis.

The semi-major and semi-minor axes is related by:

The are is the ellipse is  , where   and   are the semi-major and semi-minor axes. 

The shape of an orbit is entirely is through two parameters we choose: energy   and 
angular momentum  , or eccentricity   and the periapse radius    (shortest point of the 
orbit from the right-hand focus), or semi-major and semi-minor axes   and  .

 r  = a(1 − ϵ), r  = a(1 + ϵ)p a (26)

d  1 d  2

d = 2aϵ

ϵ =  

2a
d

b = a  1 − ϵ2

A = πab a b

 A = πab (27)

E

l ϵ r  p

a b



Chapter 7 Gravitation 14

Example 7.1: Orbital Geometry and Orbital Physics
Let us relate the geometrical parameters of a gravitational orbit to the physical parameters, the 
energy   and angular momentum  . The relationships follow from equations we derived. We 
first consider circles and ellipses, and then parabolas and hyperbolas. Find energy  .

Solution

Recall that eccentricity   is defined as:

As mentioned before, the shape of an orbit can be determined using two parameters, such 
as energy and angular momentum, eccentricity and peripase radius, and semi-major and 
semi-minor axes. Because we want to relate eccentricity to semi-major axis  , we need to 
think about an equation that includes both   and  , reminding us about the peripase radius. 

However, because  we wan to get rid of the square root in  , we will use  
  as we derived in section 7.422. Solving for  , we get:

Substituting the equation for   into  , the expression becomes:

From the equation, we can see that the semi-major axis depends on energy   only and not 
angular momentum  . In summary, for ellipses and circles, the geometric parameters are 
related to physical parameters by:
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These can be inverted to give physical parameters in terms of the geometric parameters, 
giving us:

For a circular orbit, eccentricity  , giving us  , so

We want to express energy in term of angular momentum, so we will replace  , giving us: 

7.5: Bertrand’s Theorem

Betrand’s theorem: The only central force potential   for which all bounded orbits are 
closed are the following:

1. The gravitational potential   is directly proportional to  

2. The central spring potential   is directly proportional to  

7.6: Orbital Dynamics
Recall from chapter 5 From Classical to Quantum Back, Kepler identified three laws governing 
planetary motion.

1. Planets move in elliptical orbits, which the sun at one focus.

2. Planetary orbits sweep out equal areas in equal time. 

3. The periods squared of planetary orbits are proportional to their semi-major axes cubed. 
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7.61: Kepler’s Second Law
Kepler’s law states that planetary orbits sweep out equal areas in equal time. The theorem is 
purely a result of angular momentum conservation with some approximations. 

For a thin slice of triangle, where angle   approaches zero,  area   is equal to 
. Because   is small, base is approximated using the orbit’s 

arc length and height is approximately equal to radius  . Then, area   is equal to:

Differentiating   with respect to time   (notice we have assumed radius   as a constant), we 
get:

Using separable integration, the area swiped between   and   is equal to:

which is equal to the area sweeped between   and   if time intervals are equal. Thus, we have 
proved Kepler’s second law. 

7.62: Kepler’s Third Law
Period   is equal to:
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Example 7.2: 
From the comet’s (Halley’s Comet) current period of   and observed 
perihelion distance   (which lies between the orbits of Mercury and Venus), we 
can calculate the orbit’s (a) semi-major axis  , (b) aphelion distance   , and (c) eccentricity  . 
(Note that 1 AU is the length of the semi-major axis of earth’s orbit,  .)

Solution

(a) Recall from Kepler’s third law, we know that the period of an orbit directly proportional 
to the   power of its semi-major axis. This gives us:

where   is the period is earth and is equal to one year. Solving for  , we get:

Substituting numbers, we get

(b)

7.6.3: Minimum Energy Transfer Orbits
When sending a spacecraft, we want to find a trajectory requiring least fuel (ignoring 
gravitational assist from other planets). The trajectory is called minimum-energy transfer orbit 
or or Hohmann transfer orbit, taking advantages to earth’s motion.

Typically, the spacecraft is first lifted into low-earth orbit (LEO), where it circles the earth a few 
hundred kilometers above the surface. Then, at the right time, the spacecraft is given a velocity 
boost   the sends it away from the earth and into an orbit around the sun that reaches all the 
way to its destination. Once the spacecraft coasts far enough from earth and the sun’s gravity 
dominates, it obeys central motion we have discussed so far, including Kepler’s law. It coasts 
towards its destination in an elliptical orbit with the sun at one focus.
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7.6.3.1: Time Taking to Reach the Destination
We will find the time taking to reach the destination using Kepler’s third law. The major axis of 
the craft’s orbit is  , where   is the distance between the earth and the sun and 

  is the distance between the sun and the planet. The semi-major axis is equal to:

From Kepler’s third law, we know that  , where   is the craft’s 
elliptical orbit period and   is the period when orbiting around earth. However, because the 
craft only use one half of the period when traveling from earth to planet, indicated by dotted 
lines in the figure, period   is equal to:

7.6.3.2: Velocity When   Away

Now, we can outline the steps required for the spacecraft to reach Mars or an outer planet.

1. Orbital velocity    when   away from earth: As mentioned before, the craft is lifted to 
lower orbits first with a orbital speed  , so it is in circular motion at a distance   around 
earth. By equalizing centripetal and gravitational attraction force,   is equal to:
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2. Velocity when escapes earth’s gravity: Then, at the right moment, a rocket provides a 
boost velocity   in the same direction of  , so the craft has a velocity  . The 
applied velocity at the right moment allows the craft to escape from earth in the most 
efficient way. Using energy conservation, we get

where   is the speed at the destination. Solving for  , we get:

3. If the boost velocity   is provided at the time when the spacecraft is moving in the same 
direction as earth’s velocity   around the same, the craft’s velocity in the sun’s frame of 
reference is:

4. The velocity   we have just calculated will be the speed of the spacecraft at the perihelion 
point of some elliptical Hohmann transfer orbit. The required velocity   to reach the 
desired orbit for the semi-major axis is calculated using energy conservation, giving us
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Thus, the required velocity for craft to be injected from Earth is equal to:

Example 7.3: A Voyage to Marts
We will use this scenario to plan a trip to Mars by Hohmann transfer orbit. First, we can use 
Kepler’s third law to find how long it will take for the spacecraft to arrive and the boost velocity 

 . Earth and Mar have radius of   and  .

Solution

The length of the semi-major axis of the elliptical orbit is equal to:

The craft travels through half of the period, so the travel is   is equal to:

As derived in the pervious section, we know that the craft has a velocity   when it is 
distance   away from earth, where   is calculated using:

In this problem,   is the earth’s radius and   is the length of the orbit’s semi-major axis (the 
distance between earth and the craft). When reaching Mars, the craft is   
away from Earth. Substituting   and   in to 
the equation, velocity   is equal to:

In order to find boost velocity  , we need to think about an equation relating   and  , 
reminding us about equation (29), where   is the craft’s orbital velocity and   is equal to:

 v = GM(  −  )2

r

2
a

1
(36)

Δv 1.5 × 10 m8 2.28 × 10 m8

a  =c  ×
2

1.5 + 2.28
10 m =8 1.89 × 10 m8

T

T =  T  =
2
1

c  (  ) T  

2
1

2r  e

r  + r  e p 3/2
e

T =  T  =
2
1

c  (  ) (1year) =
2
1

2 × 1.5 × 108

1.89 × 10 /28
3/2 258days

v

a v

v =2 GM(  −
r

2
 )

a

1

r a

1.89 × 10 m8

r = r  =e 1.5 × 10 m8 a = 1.89 × 10 m8

v

v =  =GM(  −  )
1.5 × 108

2
1.89 × 108

1
32.7km/s

Δv v Δv

v  0 v
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Given earth’s radius, we can calculated   and thus find  , which is equal to:

Solving for  , we get:

Ignoring earth’s speed, we approximated  . Then,   is equal to: 

Example 7.4: Gravitational Assists
Suppose we want to send a heavy spacecraft to Saturn, but it has only enough room for fuel to 
make it to Jupiter. If the timing is just right and the planets are also aligned just right, it is 
possible to aim for Jupiter, causing the spacecraft to fly just behind Jupiter as it swings by that 
planet. Jupiter can pull on the spacecraft, turning its orbit to give it an increased velocity in the 
sun’s frame of reference, sufficient to propel it out to Saturn. Explain how.

Solution

v  =∞  (v  + Δv) − 2v  0
2

0
2

v  0 v  0

v  =0  =
r  e

GM
7.5km/s

Δv

Δv =  −v  + 2v  ∞
2

0
2 v  0

v ≈ v  ∞ Δv

Δv =  −(32.7) + 2(7.5)2 7.5 = 3.5km/s
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7.7: The Virial Theorem in Astrophysics
Consider a collection of   point like non-relativistic partiles, where the   particle is at 
position  , has momentum  , and is subject to a net force  . We define a quantity 

 , whose time derivative is:

We know that   and  . Then, the time derivative is equal to:

We then take the time average of each term in the equation, where the total time is  . This gives 
us:

If the motion is periodic such that  , the average of time derivatives is equal to 
zero. This is true for central force motion, such as central gravitational or spring force, where   
is the orbital period. More generally, suppose all motion are at least bounded, with an upper 
limit to  . Then, over a long period of time, the left-hand side of the equation is zero, such that

N ith

r  i p  i F  i G ≡
 p  ⋅∑i i r  i

 

 =    ⋅ r  +  p  ⋅  

dt

dG

i

∑ ṗi i

i

∑ i ṙi (37)

  =ṗi F  i p  ⋅i r  =i m  v  =i i
2 2T  i

2

 

=  F  ⋅ r  +  2T  =  F  ⋅ r  + 2T
dt

dG

i

∑ i i

i

∑ i

i

∑ i i (38)

τ

 ⟨  ⟩ =    dt =  (G(t) − G(0))
dt

dG

τ

1
∫

0

τ

dt

dG

τ

1
(39)

G(t) = G(0)
τ

G

dG
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💡  More generally, suppose all motion are at least bounded, with an upper limit to  . 
Then, over a long period of time, the average of time derivatives  . 

Because  , the expression becomes:

Example 7.5:
Now consider   particles that pull on one another with central gravitational forces, so all forces 
on a particle are due to other particles in the system. This might be a good approximation for the 
gravitational attractions of stars on one another in a globular cluster, for example, or for entire 
galaxies attracting one another in a cluster of galaxies like the Coma Cluster or the Virgo 
Cluster. Let us start simply, by considering the case  . The force of particle 2 on particle 
1 is   , and the force of particle 1 on particle 3 is  , and so on. Therefore counting all six 
interactions:

Solution

Summary

Key Equations

 ⟨  ⟩ = −  ⟨ F  ⋅ r  ⟩
dt

dG

2
1

∑ i i (40)

G

dG/dt = 0

F = −∇U

 ⟨  ⟩ = −  ⟨− ∇U ⋅ r⟩ = −  ⟨(−dU/dr) ⋅ r⟩
dt

dG

2
1

2
1

(41)

N

N = 3
F  12 F  31

2



Chapter 7 Gravitation 24

Practice Problems

Chapter 7 Practice Problems

E =  μ +
2
1

ṙ2
 +

2μr2

l2
U(r)

t(r) = ±     

μ

2
∫
r  0

r

 Er + GMμr − l /2μ2 2

rdr

r  =p  , r  =
1 + ϵ

l /GMm2 2

p a(1 − ϵ)

Eccentricity: ϵ =  1 +  

G M m2 2 3

2El2

Semi-major axis: a = −  

2E
GMm

Required injection velocity from earth: v =2 GM(  −
r

2
 )

a

1

https://www.notion.so/Chapter-7-Practice-Problems-8492f11eb23049e7be0dc185709f395f?pvs=21

