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3.1 Thermal concepts
This section is devoted to the connections and the di! erences between 
the basic concepts of temperature, internal energy and heat. This section 
also deals with thermal equilibrium, phase changes and basic calorimetry 
problems.

The particle model of matter
As we look closer and closer into matter we discover smaller and 
smaller structures. We " nd that compounds are made out of molecules, 
molecules are made out of atoms and atoms contain nuclei and electrons. 
Nuclei, in turn, contain protons and neutrons. Today it is believed that 
electrons do not have any substructure but the nucleons (i.e. protons and 
neutrons) are known to be made out of quarks. It is not known if the 
quarks themselves are made out of smaller particles. In thermal physics we 
are mostly interested in molecules, atoms and electrons – we do not need 
to consider any smaller structures. 

In a solid there are forces between the particles that can be modelled 
by springs joining neighbouring particles (Figure 3.1). The springs then 
represent the bonds between the particles. In liquids the forces between 
the particles are weaker. The particles are able to move around the volume 
of the liquid and the liquid will take the shape of the container in which 
it is placed. However, the inter-particle forces between the particles in a 
liquid are su#  ciently strong that the particles cannot move far from each 
other. In gases the inter-particle forces are very weak so as to be almost 
negligible. The only time signi" cant forces exist between the particles is 
during collisions. 

Temperature
We have an intuitive concept of temperature as the ‘coldness’ or ‘hotness’ 
of a body, but it wasn’t until the 19th century that one of the greatest 
discoveries in physics related the concept of temperature to the random 
motion of molecules. This connection, which will be explored in greater 
detail in Subtopic 3.2, is that temperature is proportional to the average 
random kinetic energy of the molecules.

This direct proportionality between temperature and the average 
random kinetic energy is only true for the absolute or kelvin temperature 
scale. In this scale zero is the lowest possible temperature, the absolute 
zero of temperature. There has to be an absolute zero in temperature 
since there is a lowest possible value of the average kinetic energy of 
molecules, namely zero kinetic energy. Since temperature is proportional 
to the average kinetic energy, the temperature must be zero when the 
kinetic energy is zero.

Learning objectives

• Describe solids, liquids and gases 
in terms of atoms and molecules.

• Use the concept of temperature 
and the relation of absolute 
temperature to the average 
kinetic energy of molecules.

• Understand and use the concept 
of internal energy.

• Solve problems in calorimetry 
using the speci" c heat capacities.

• Describe phase change and 
performing calculations using 
the concept of speci" c latent 
heat.

Figure 3.1 Particles in the solid phase 
oscillate about fi xed positions but are not 
free to move inside the solid.
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Many other temperature scales exist. In 1742, Anders Celsius (1701–
1744) created the temperature scale that is still commonly used today 
and is known by his name. On the Celsius scale a value of zero degrees 
is assigned to the freezing point of water (Figure 3.2) and a value of 100 
degrees is assigned to the boiling point of water. The connection between 
the Celsius and Kelvin scales is:

T (in kelvin, K) = T (in degrees Celsius, °C) + 273

The magnitude of a kelvin is the same as that of a degree Celsius.
The lowest possible temperature on the absolute scale is zero kelvin, 

0 K. On the Celsius scale the lowest possible temperature is, therefore, 
−273 °C. (Notice that we never say degrees kelvin, just kelvin.)

Temperature has varied a lot in the life of the Universe: at the time of 
the Big Bang, some 13.8 billion years ago, the temperature of the universe 
was about 1032 K. The Universe has been expanding ever since and so the 
temperature has been dropping. In the emptiness of space, far from stars 
and galaxies, its value today is only 2.7 K.

Worked example
3.1 The temperature of a body increases from 320 K to 340 K. State the temperature increase in degrees Celsius.

The temperature increase in kelvin is 340 − 320 = 20 K. 

Since the magnitude of a kelvin is the same as that of a degree Celsius, the temperature increase is 20 °C.

(Another way to look at this is to convert both temperatures to kelvin. 320 K corresponds to 320 − 273 = 47 °C 
and 340 K corresponds to 340 − 273 = 67 °C, giving a change of 20 °C.)

Measuring temperature
Temperature can be measured with a thermometer, which is simply a device 
that has one property that changes in a predictable way as temperature 
changes. That property is volume in liquid-in-glass thermometers: the liquid 
column changes its volume and hence its length since the cross-sectional 
area stays the same when the temperature changes and so can be used to 
measure temperature if we " rst calibrate the thermometer. But properties 
other than volume can be used, for example, electrical resistance. 

When a thermometer is used to measure the temperature of a body it 
has to come into contact with the body. A thermal interaction takes 
place and energy is transferred until the thermometer and the body are at 
the same temperature. When this happens we say that we have thermal 
equilibrium. The reading on the thermometer is then the temperature 
of the body. (For thermometers such as infrared thermometers thermal 
contact is not necessary – the thermometer absorbs radiation emitted by 
the body whose temperature is to be measured.) The average temperature 
on Earth is di! erent at di! erent locations. Figure 3.3 shows the 
temperature distribution in January. 

Exam tip
The magnitude of a kelvin is the 
same as that of a degree Celsius.

Figure 3.2 A Celsius thermometer shows 
zero when immersed in melting ice.

The need to agree on 
internationally accepted 
units, among them those 

for temperature, is a good example 
of international collaboration to 
establish international systems of 
measurement.
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Figure 3.3 Temperature varies at diff erent locations. This image shows the average 
surface temperature of the Earth in January for the period 1961–1990.

Heat
We have already mentioned that two bodies that are in thermal contact 
and have di! erent temperatures will have a thermal interaction. So when 
a glass of cold water is placed in a warm room, heat % ows from the room 
into the colder water until the temperature of the water becomes equal to 
that of its surroundings. We say that the colder body has been ‘heated’.

Heat is energy that is transferred from one body to another as a 
result of a di! erence in temperature.

Now, all substances consist of particles and, whether in the solid, liquid 
or gas phase, the particles are in constant motion. They therefore have 
kinetic energy. In a gas, the particles move randomly throughout the 
entire volume of the gas. In a solid the motion of the particles is on a very 
much smaller scale – the particles simply vibrate about their equilibrium 
positions. But this also requires kinetic energy. 

In addition, there are forces between particles. For gases, these forces are 
very small – under reasonable conditions they are almost negligible (see 
ideal gases in Subtopic 3.2). But forces between particles are substantial 
for solids. Increasing the average separation of two particles of a solid 
requires work to be done. This work goes into increasing the potential 
energy associated with inter-particle forces. Figure 3.4 shows the potential 
energy EP of one pair of particles as a function of the distance r separating 
the two particles. 

So, to describe the total energy in a substance we need to consider both 
the kinetic energy and the potential energy. We de" ne the internal energy 
of a substance as follows:

Internal energy is the total random kinetic energy of the 
particles of a substance, plus the total inter-particle potential 
energy of the particles.

Heat was once thought 
to be a % uid (called 
‘caloric’) that moved 

from body to body. The more 
caloric a body contained the 
hotter it was, and as caloric left 
a body the body became colder. 
This idea was rejected when it 
was realised that you could warm 
your hands by rubbing them 
together. If caloric entered your 
hands it must have come from 
another body, making it colder. 
But this does not happen. In the 
19th century heat was shown to 
just another form of energy.
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Figure 3.4 The average separation of 
the two particles is the separation at the 
minimum of the curve, i.e. at approximately 
1.1 nm.
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Worked examples
3.2 A quantity of heat equal to 9800 J is absorbed by a piece of iron of 

mass 1.8 kg and speci" c heat capacity 450 J kg−1 K−1. 
a Calculate the temperature increase of the iron. 
b The heat of 9800 J was removed from 3.2 kg of water initially at 48 °C. 

The speci" c heat capacity of water is 4200 J kg−1 K−1. Calculate the " nal 
temperature of the water. 

a We need to use Q = mcΔT. This gives:

  9800 = 1.8 × 450 × ΔT 

 Solving for the change in temperature gives:

  ΔT = 
9800

1.8 × 450 = 12.1 ≈ 12 K 

 (Notice that we do not need to know the initial temperature of the iron to answer this question.)

Energy transferred from a hot to a cold body by heating increases the 
internal energy of the cold body (and decreases the internal energy of the 
hot body by the same amount). Work done on the particles of a 
substance increases the potential energy of the particles, and so increases 
the internal energy.

The internal energy of a system can change as a result of heat 
added or taken out and as a result of work performed. 

Internal energy, heat and work are thus three di! erent concepts. What 
they have in common is that they are all measured in joules. Temperature 
is a measure of the random kinetic energy of a substance – not its internal 
energy.

We de" ne the speci! c heat capacity c of a body to be the energy 
required to increase the temperature of a unit mass of the body by one 
kelvin. So, to increase the temperature of a body of mass m by ΔT degrees 
the heat Q required is:

Q = mcΔT

Exam tip
The term ‘capacity’ implies 
somehow that the body 
contains a certain amount 
of heat just as a water bottle 
contains water. This is incorrect. 
Heat is energy ‘in transit’ 
that moves from one body 
into another; it is not energy 
contained in any one body.

Substance c / J kg−1 K−1

aluminium 900

lead 128

iron 450

copper 385

silver 240

water 4200

ice 2200

ethanol 2430

marble 880

Table 3.1 Specifi c heat capacities 
for several substances.
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b We use Q = mcΔT to get:

  9800 = 3.2 × 4200 × ΔT 

 Solving for the change in temperature gives:

  ΔT = 
9800

3.2 × 4200 = 0.729 ≈ 0.73 K 

 So the " nal temperature of the water is:

  48 − 0.73 ≈ 47 °C 

 (Notice that the temperature changes of the iron and the water are very di! erent. Notice also that it is 
unnecessary to convert between kelvin and °C since the temperature changes are the same in both scales.)

3.3 A piece of iron of mass 200 g and temperature 300 °C is dropped into 1.00 kg of water of temperature 20 °C. 
Predict the final equilibrium temperature of the water. 

 (Take c for iron as 450 J kg−1 K−1 and for water as 4200 J kg−1 K−1.)

Let T be the " nal unknown temperature. The iron will also be at this temperature, so:

amount of thermal energy lost by the iron = mironciron(300 − T )

and

amount of thermal energy gained by the water = mwatercwater(T − 20)

Conservation of energy demands that thermal energy lost = thermal energy gained, so:

mironciron(300 − T ) = mwatercwater(T − 20)

0.200 × 450 × (300 − T ) = 1.0 × 4200 × (T − 20)

⇒ T = 25.9 °C ≈ 26 °C

(Note how the large speci" c heat capacity of water results in a small increase in the temperature of the water 
compared with the huge drop in the temperature of the iron.)

Change of phase
When heat is provided to a body or removed from it, the body may not 
necessarily change its temperature. The body may change phase instead. 
Changes of phase happen at constant temperature (Figure 3.5) and include:
• melting – when a solid changes to a liquid (heat must be provided to 

the solid) 
• freezing – when a liquid changes into a solid (heat must be taken out 

of the liquid)
• vaporisation (or boiling) – when a liquid changes into vapour (by 

giving heat to the liquid)
• condensation – when a vapour changes into a liquid (by taking heat 

out of the vapour).

Figure 3.5 Hot lava turns into a solid upon 
contact with water. The cold water takes heat 
away from the hot lava.
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Why does the heat absorbed or removed not result in a temperature 
change? Consider the process of melting. At the melting temperature, 
changing from solid to liquid means that the average distance between 
the molecules increases. But increasing the separation of the molecules 
requires work (because there are attractive forces between the molecules 
that need to be overcome). This is where heat supplied goes – it is used to 
‘break the bonds’. What the supplied heat does not do is to increase the 
kinetic energy of the molecules – hence the temperature stays the same. 

We de" ne the speci" c latent heat L to be the amount of energy 
required to change the phase of a unit mass at constant temperature. So 
the energy required to change the phase of a mass m is Q = mL. If the 
change is melting or freezing, we call it the speci! c latent heat of 
fusion, LF. If the change is vaporisation or condensing then we call it 
speci! c latent heat of vaporisation, LV.

Substance Specifi c latent heat 
of fusion / kJ kg−1

Melting 
temperature / °C

Specifi c latent heat of 
vaporisation / kJ kg−1

Boiling 
temperature / °C

water 334 0 2260 100

ethanol 109 −114 840 78

aluminium 395 660 10550 2467

lead 23 327 850 1740

copper 205 1078 2600 5190

iron 275 1540 6300 2800

Table 3.2 Specifi c latent heats of fusion and vaporisation together with the melting and boiling temperatures.

Notice from Table 3.2 that the speci" c latent heat for vaporisation is 
greater than that for melting. This is because the increase in separation of 
the molecules is much larger when going from the liquid to the vapour 
phase than when going from the solid to the liquid phase. More work is 
needed to achieve the greater separation, and so more energy is required.

Worked examples
3.4 An ice cube of mass 25.0 g and temperature −10.0 °C is dropped into a glass of water of mass 300.0 g and 

temperature 20.0 °C. Calculate the final temperature. 

 (Speci" c heat capacity of ice = 2200 J kg−1 K−1; speci" c latent heat of fusion of ice = 334 J kg−1 K−1, speci" c heat 
capacity of water = 4200 J kg−1 K−1.)

Let the " nal temperature be T. Ignoring any thermal energy lost by the glass itself, the water will cool down by 
losing thermal energy. 

Using Q = mcΔT, the thermal energy lost by the water is:

0.3 × 4200 × (20 − T ) 
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This thermal energy will be taken up by the ice to:
• increase its temperature from −10 °C to 0 °C: the thermal energy required is 25 × 10−3 × 2200 × 10 J
• melt the ice cube into water at 0 °C: the thermal energy required is 25 × 10−3 × 334 × 103 J
• increase the temperature of the former ice cube from 0 °C to the final temperature T: the thermal energy 

required is 25 × 10−3 × 4200 × T.

Thus:

0.3 × 4200 × (20 − T ) = (25 × 10−3 × 2200 × 10) + (25 × 10−3 × 334 × 103) + (25 × 10−3 × 4200 × T )

Solving for T gives T = 11.9 °C.

3.5 A sample of 120 g of a solid initially at 20 °C is heated by a heater of constant power. The speci" c heat capacity 
of the solid is 2500 J kg−1 K−1. The temperature of the sample varies with time as shown in Figure 3.6.

 Use the graph to determine:
a the power of the heater
b the melting temperature of the sample
c the speci" c latent heat of fusion of the sample
d the speci" c heat capacity of the sample in the liquid phase.

Figure 3.6

a It takes 120 s to raise the temperature of the solid sample from 20 °C to 48 °C. 

 Using Q = mcΔT, the heat required is:

  0.120 × 2500 × (48 − 20) = 8400 J

 So the power is:

  P = 
Q
t  = 

8400
120  = 70 W

Exam tip
You can save yourself time and possible errors if you write this equation, as is, in the equation 
solver of your graphic display calculator (GDC) and ask the GDC to solve it for you.
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b The temperature is constant at melting, shown by the % at part of the graph, so the melting temperature is 48 °C. 

c The sample is melting from 120 s to 560 s, i.e. for 440 s. The heat supplied during this time is therefore:

  Q = Pt = 70 × 440 = 30 800 J

 So the speci" c latent heat of fusion is: 

  LF = 
Q
m  = 

30 800
0.120  = 2.6 × 105 J kg−1

d The liquid increases its temperature from 48 °C to 56 °C in 40 s. In these 40 s the heat provided is: 

  Q = Pt = 70 × 40 = 2800 J

 Using Q = mcΔT:

  0.120 × c × (56 − 48) = 2800 J 

 ⇒ c  = 2.9 × 103 J kg−1 K−1

The method of mixtures
The electrical method described in Worked example 3.5 is one method 
for measuring speci" c heat capacity and latent heat. Another method, the 
method of mixtures, measures the speci" c heat capacity of a solid as 
follows. A solid is put in a container of hot water and allowed time to reach 
a constant temperature. The temperature of the solid is thus that of the water 
and is recorded. The solid is then transferred into a calorimeter of known 
speci" c heat capacity and initial temperature, which contains a liquid such as 
water (Figure 3.7). The calorimeter is insulated. The " nal temperature of the 
water is recorded after thermal equilibrium has been reached. 

For example, consider a mass of 0.400 kg of a solid at 80 °C that is put 
in a 100 g copper calorimeter containing 800 g of water at 20 °C. The 
final temperature of the water is measured to be 22 °C. From these values, 
we may deduce the specific heat capacity of the solid as follows.

Using Q = mcΔT, the amount of thermal energy (in joules) lost by the 
solid is:

0.400 × c   × (80 − 22) = 23.2c 

heating

boiling
water

thermometer thermometer
lid

metal

copper
calorimeter

string
transfer

lagging

Figure 3.7 The hot metal is placed in the cold water in the calorimeter. The hot 
metal is removed from the container of boiling water and is quickly placed inside an 
insulated calorimeter containing cold water.

Exam tip
It is likely that the solid lost 
heat to the surrounding air 
while it was being transferred. 
This means that the actual 
temperature of the solid is 
less than we supposed. The 
actual speci" c heat capacity 
is therefore larger than the 
calculated value.
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The amount of thermal energy gained by the calorimeter (see Table 3.1 
for the value of c for copper) and the water is:

0.100 × 385 × (22 − 20) + 0.800 × 4200 × (22 − 20) = 6797 J
 calorimeter water

Equating the two we " nd that c   = 293 J kg−1 K−1.
The same method can be applied to measure the speci" c latent heat 

of fusion of ice. To do this, place a quantity of ice at 0 °C (the ice must 
therefore come from a mixture with water at 0 °C) into a calorimeter 
containing water at a few degrees above room temperature. Blot the ice 
dry before putting it into the calorimeter. The mass of the ice can be 
determined by weighing the calorimeter at the end of the experiment.

For example, suppose that 25.0 g of ice at 0.00 °C is placed in an 
aluminium calorimeter of mass 250 g containing 300 g of water at 24.0 °C. 
The temperature of the water is measured at regular intervals of time until 
the temperature reaches a minimum value of 17.0 °C. The calorimeter 
and water lost heat, which the ice received. 

Heat lost by calorimeter and water:

0.250 × 900 × (24 − 17) + 0.300 × 4200 × (24 − 17) = 10 395 J

Heat received by ice:

0.025 × LF + 0.025 × 4200 × 17 = 0.025 × LF + 1785

Equating the two gives:

1785 + 0.025 × LF = 10 395 ⇒ L ≈ 344 kJ kg−1

Nature of science
Models change
As already mentioned, heat was once thought to be a % uid (caloric). 
Conservation of energy was a natural consequence of this model of heat: 
a body lost a certain amount of % uid and another gained it. Energy was 
conserved. So the concept of heat as a % uid seemed natural. But there are 
phenomena that cannot be explained with this simple picture. For one 
thing, if heat is a % uid it must have mass. So when heat leaves a body, the 
body must lose mass. This is not observed, so the caloric theory must be 
wrong. The theory has many other failings and was abandoned in the 
19th century. A major problem is that it does not take account the atomic 
theory of matter. The theory we use now is based on statistical mechanics, 
which uses probability theory to predict the average behaviour of very 
large numbers of particles.
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7 How much ice at −10 °C must be dropped into 
a cup containing 300 g of water at 20 °C in order 
for the temperature of the water to be reduced to 
10 °C? The cup itself has a mass of 150 g and is 
made out of aluminium. Assume that no energy is 
lost to the surroundings.

8 The surface of a pond of area 20 m2 is covered by 
ice of uniform thickness 6 cm. The temperature of 
the ice is −5 °C. Calculate how much energy is 
required to melt this amount of ice into water at 
0 °C. (Take the density of ice to be 900 kg m−3.)

9 Radiation from the Sun falls on the frozen 
surface of a pond at a rate of 600 W m−2. The ice 
temperature is 0 °C.
a Calculate how long it will take to melt a 1.0 cm 

thick layer of ice. (Take the density of ice to be 
900 kg m−3.)

b Suggest why the actual mass of ices that melts is 
less than your answer to a. 

 10 a  Calculate how much energy is required to 
warm 1.0 kg ice initially at −10 °C to ice 
at 0 °C.

 b Calculate how much energy is required to 
melt the ice at 0 °C.

 c Calculate how much energy is required to 
further increase the temperature of the water 
from 0 °C to 10 °C.

 d State in which stage (warming the ice, melting 
the ice, warming the water) the energy 
requirement is largest.

 11 Ice at 0 °C is added to 1.0 kg of water at 20 °C, 
cooling it down to 10 °C. Determine how much 
ice was added.

 12 A quantity of 100 g of ice at 0 °C and 50 g steam 
at 100 °C are added to a container that has 150 g 
water at 30 °C. Determine the final temperature 
in the container. Ignore the container itself in 
your calculations.

? Test yourself
1 A hot body is brought into contact with a colder 

body until their temperatures are the same. Assume 
that no other bodies are nearby. 
a Discuss whether the energy lost by one body is 

equal to the energy gained by the other.
b Discuss whether the temperature drop of one 

body is equal to the temperature rise of the other.
2 a A body of mass 0.150 kg has its temperature 

increased by 5.00 °C when 385 J of energy is 
provided to it. Calculate the body’s speci" c heat 
capacity. 

 b Another body of mass 0.150 kg has its 
temperature increased by 5.00 K when 385 J of 
energy is provided to it. Calculate this body’s 
speci" c heat capacity.

3 A calorimeter of mass 90 g and speci" c heat 
capacity 420 J kg−1 K−1 contains 310 g of a liquid at 
15.0 °C. An electric heater rated at 20.0 W warms 
the liquid to 19.0 °C in 3.0 min. Assuming there 
are no energy losses to the surroundings, estimate 
the speci" c heat capacity of the liquid.

4 A calorimeter for which mc = 25 J K−1 contains 
140 g of a liquid. An immersion heater is used to 
provide energy at a rate of 40 W for a total time of 
4.0 min. The temperature of the liquid increases by 
15.8 °C. Calculate the specific heat capacity of the 
liquid. State an assumption made in reaching this 
result.

5 A car of mass 1360 kg descends from a hill of 
height 86 m at a constant speed. Assuming that all 
of the gravitational potential energy lost by the 
car goes into heating the brakes, estimate the rise 
in the temperature of the brakes. (It takes 16 kJ of 
energy to increase the temperature of the brake 
drums by 1 K; ignore any energy losses to the 
surroundings.)

6 A radiator made out of iron of speci" c heat 
capacity 450 J kg−1 K−1 has a mass of 45.0 kg and 
is " lled with 23.0 kg of water of speci" c heat 
capacity 4200 J kg−1 K−1.

 a Determine the energy required to raise the 
temperature of the radiator–water system by 1 K.

 b If energy is provided to the radiator at the rate 
of 450 W, calculate how long it will take for the 
temperature to increase by 20.0 °C.
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3.2 Modelling a gas 
This section introduces the equation of state of an ideal gas, which is the 
equation that relates the pressure, volume, absolute temperature and number 
of moles of an ideal gas. The connection between the average random 
kinetic energy of the molecules and the kelvin temperature is derived.

The Avogadro constant
By de" nition, one mole of any substance contains as many particles as 
there are atoms in 12 g of carbon-12. What we mean by ‘particle’ depends 
on the substance; it can be a single atom or a molecule. For example, in 
carbon the particles are single atoms, the particles in hydrogen gas (H2 ) 
are diatomic molecules, in carbon dioxide gas (CO2 ) they are triatomic 
molecules, and in methane gas (CH4) they are molecules with " ve atoms. 

Experiments show that the number of particles in a mole is 
NA = 6.02 × 1023 mol−1, a number known as the Avogadro constant and 
one of the basic constants of physics. So one mole of carbon, one mole 
of H2, one mole of CO2 and one mole of CH4 all contain 6.02 × 1023 
particles. This means 6.02 × 1023 atoms for carbon, 2 × 6.02 × 1023 atoms 
for H2, 3 × 6.02 × 1023 atoms for CO2 and 5 × 6.02 × 1023 atoms for CH4. 
Figure 3.8 shows one mole of di! erent substances.

If a substance contains N particles (atoms or molecules, as discussed 
above) then the number of moles n is:

n = 
N
NA

The atomic mass scale de" nes one atomic mass unit (1 u) as 1
12 of the 

mass of one atom of carbon-12, 12
6C. The mass of one atom of 12

6C is 
therefore exactly 12 u. The notation 12

6C means that the carbon atom 
has six protons and the number of protons and neutrons combined is 
12 (i.e. six neutrons). The neutral atom also has six electrons. Neglecting 
the mass of the six electrons, the mass of the six protons and six neutrons 
is about 12 u. The proton and the neutron are approximately equal in mass 
and so approximately the mass of one proton and that of one neutron is 
1 u. So an atom of helium (42He) has a mass that is (approximately) 4 u and 
the mass of one atom of  56

26Fe is (approximately) 56 u. 
Now, remember that the mole is de" ned as the number of atoms in 

12 g of  12
6C. We also de" ned the mass of one atom of  12

6C to be 12 u. This 
means that:

 NA × 12u = 12 g
 number of particles in 1 mol mass of 1 atom  mass in g of 1 mol

and so the u (in grams) is given by:

u = 
1 g
NA

 (≈ 1.66 × 10−24 g ≈ 1.66 × 10−27 kg)

Learning objectives

• Use the concept of pressure.
• Solve problems using the 

equation of state of an ideal gas.
• Understand the assumptions 

behind the kinetic model of an 
ideal gas.

• Solve problems using moles, 
molar masses and the Avogadro 
constant.

• Describe di! erences between 
ideal and real gases.

Figure 3.8 One mole of diff erent substances.
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We know that A grams of the element AZ X correspond to one mole of 
element X. So, for substances that are monatomic, one mole of a substance 
is also the quantity of the substance whose mass in grams is equal to the 
atomic mass (in u). Moving on to molecules, the molar mass is the 
sum of the atomic masses of the atoms making up the molecule. So CO2 
has molar mass 12 + 2 × 16 = 44 g mol–1 . There are NA molecules in 44 g of 
CO2 because 44 g of CO2 make one mole. 

So, it is important to know that:

One mole of a substance is a quantity of the substance that 
contains a number of particles equal to the Avogadro constant and 
whose mass in grams is equal to the molar mass of the substance. 

The number of moles in a quantity of m grams of a substance with molar 
mass µ is then n = mµ.

Worked examples
3.6 Estimate the number of atoms of gold in 1.0 kg of gold (197

79 Au).

The molar mass of gold is 197 g mol–1. So 1000 g of gold (= 1 kg) contains 
1000
197  ≈ 5.1 mol of atoms. 

Each mole contains 6.02 × 1023 atoms, so the number of atoms in 1 kg of gold is 6.02 × 1023 × 5.1 = 3 × 1024.

3.7 Calculate how many grams of scandium, 45
21Sc, contain the same number of molecules as 8.0 g of argon, 40

18 Ar.

The molar mass of argon is 40 g mol−1, so a quantity of 8.0 g of argon corresponds to 
8.0
40  = 0.20 mol.

Thus, we need 0.20 mol of scandium. This corresponds to 0.20 × 45 = 9.0 g. 

3.8 Estimate the number of water molecules in an ordinary glass of water.

A glass contains about 200 cm3 of water, which has a mass of 200 g. 

Since the molar mass of water is 18 g mol−1, the glass contains 
200
18  ≈ 10 mol or 6 × 1023 × 10 ≈ 1025 molecules of 

water.

Pressure
Pressure is de" ned as the normal force applied per unit area. In 
Figure 3.9a the force is normal to the area A, so the pressure is:

p = 
F
A
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The force in Figure 3.9b acts at an angle θ, so the pressure on the area A 
is given by the expression:

p = 
F cos θ

A

The unit of pressure is newton per square metre, N m−2, also known as the 
pascal, Pa. Another commonly used non-SI unit is the atmosphere, atm, 
which is equal to 1.013 × 105 Pa.

Worked example
3.9 Two hollow cubes of side 25 cm with one face missing are placed 

together at the missing face (Figure 3.10). The air inside the solid 
formed is pumped out. Determine the force that is necessary to 
separate the cubes.

The pressure inside the solid is zero and outside it equals atmospheric pressure, 1.01 × 105 Pa.

Thus, the force is given by:

F = pA = 1.01 × 105 × (0.25)2 = 6.3 × 103 N

Ideal gases
An ideal gas is a theoretical model of a gas. It helps us to understand 
the behaviour of real, actual gases. We assume that an ideal gas obeys the 
following:
• The molecules are point particles, each with negligible volume.
• The molecules obey the laws of mechanics.
• There are no forces between the molecules except when the molecules 

collide.
• The duration of a collision is negligible compared to the time between 

collisions.
• The collisions of the molecules with each other and with the container 

walls are elastic.
• Molecules have a range of speeds and move randomly.

F

F
A

a

A

F
normal

F cosθ
Ap =p =

b

A

θ

Figure 3.9 Pressure is the normal force per unit area.

Figure 3.10

Exam tip
You must be able to recall 
and describe a few of these 
assumptions in an exam
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An ideal gas (unlike real gases) cannot be lique" ed or solidi" ed. You 
should be able to see how some of these assumptions may not be obeyed 
by a real gas. For example, there will always be forces between molecules 
of a real gas, not just when the molecules are in contact. In general, we 
expect that a real gas will behave like an ideal gas when the density is 
low (so that molecules are not close to each other and hence the forces 
between them are negligible). We do not expect ideal gas behaviour at 
high densities (molecules will be too close to each other and will exert 
forces on each other). Similarly, we do not expect ideal gas behaviour 
from a real gas at very low temperature, because the gas will then become 
a liquid or even a solid!

A real gas may be approximated by an ideal gas when the density 
is low.

Figure 3.11 shows a molecule that collides with a container wall. The 
momentum normal to the wall before the collision is mv cos θ. After the 
collision momentum normal to the wall is −mv cos θ. So the change in 
momentum has magnitude 2mv cos θ. The fact that the momentum of the 
molecule has changed means that a force acted on the molecule (from the 
wall). By Newton’s third law, therefore, the molecule exerted on the wall 
an equal and opposite force. Taking into account the forces due to all the 
molecules colliding with the walls results in a force, and hence pressure, 
on the walls.

The state of a gas is determined when we know the values of the 
pressure, the volume, the temperature and the number of moles present. 
The parameters p, V, T and n are related to each other. The equation 
relating them is called the equation of state. Our objective is to discover 
the equation of state for a gas. To do this a number of simple experiments 
can be performed, as described in the following sections. 

The pressure–volume law
The equipment shown in Figure 3.12 can be used to investigate the 
relationship between pressure and volume of a " xed quantity of gas that is 
kept at constant temperature.

The pump forces oil to move higher, decreasing the volume of the air 
trapped in the tube above the oil. A pressure gauge reads the pressure of 
the trapped air and so the relationship between pressure and volume may 
investigated. The changes in pressure and volume must take place slowly 
so that the temperature stays the same.

Exam tip
You must be able to describe 
the conditions under which a 
real gas may be approximated 
by that of an ideal gas. The 
main idea is that the density 
must be low. For a " xed 
quantity of gas, density will be 
low at low pressure and high 
temperature.

Exam tip
You must be able to give an 
explanation of pressure in 
terms of molecules colliding 
with their container walls.

v

v

θ

Figure 3.11 A molecule has its momentum 
changed when it collides with a wall. A 
force is exerted on the molecule and so the 
molecule exerts an equal and opposite force 
on the wall.

Figure 3.12 Apparatus for investigating the 
pressure–volume law. The pump forces oil 
to move up the tube, decreasing the volume 
of air.

scale

pressure
gauge

valve

to air
pump

air

oil
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The results of a typical experiment are shown in Figure 3.13. We 
have plotted pressure against the inverse of the volume and obtained a 
straight line. 

p/ × 105 Pa

0 200 400 600 800 1000
0
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Figure 3.13 Graph of pressure against inverse volume at constant temperature.

Exam tip
In practice we use the relation 
pV = constant in the equivalent 
form p1V1 = p2V2 when the 
initial pressure and volume 
(p1, V1) change to a new 
pressure and volume (p2, V2) at 
constant temperature.

Exam tip
If you are asked to con" rm the 
relationship pV = constant, 
take three points from a 
pressure–volume graph and 
show that their product is 
the same.
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Figure 3.14 shows the same data now plotted as pressure against volume.
The curve in the pressure–volume diagram is a hyperbola and in 

physics it is known as an isothermal curve or isotherm: the temperature 
at all points on the curve is the same.

Figure 3.14 The relationship between pressure and volume at constant temperature 
for a fi xed quantity of a gas. The product pV is the same for all points on the curve. 

This implies that:

At constant temperature and with a " xed quantity of gas, pressure 
is inversely proportional to volume, that is:

p ∝ 
1
V or pV = constant 

This relationship is known as the Boyle’s law.
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Worked example
3.10 The pressure of a " xed quantity of gas is 2.0 atm and its volume 0.90 dm3. The pressure is increased to 6.0 atm 

at constant temperature. Determine the new volume.

Use p1V1 = p2V2. Substituting the known values we have:

 2.0 × 0.90 = 6.0 × V

⇒ V = 0.30

The new volume is 0.30 dm3.

(Notice that since this problem compares the pressure at two di! erent volumes we do not have to change units to 
SI units.)

The volume–temperature law
The dependence of volume on temperature of a " xed quantity of gas 
kept at constant pressure can be investigated with the apparatus shown 
in Figure 3.15. Air is trapped in a thin capillary tube that is immersed 
in heated water. The air is trapped by a thin thread of very concentrated 
sulfuric acid. The thread is exposed to the atmosphere and so the pressure 
of the trapped air is constant.

It is found that the volume increases uniformly with temperature. The 
striking fact is that when the straight line is extended backwards it always 
crosses the temperature axis at −273 °C, as in Figure 3.16. This suggests 
that there exists a minimum possible temperature, namely −273 °C. (With 
a real gas the experiment cannot be conducted at very low temperatures 
since the gas would liquefy – hence the dotted line. With an ideal gas 
there would be no such restriction.)

Remember that 1 dm3 = 1000 cm3 = 1 litre.

thread of
sulfuric
acid

thermometer

water

thin tube
ruler

trapped
dry air

heating

V/m3

T /°C
50 100

0.5

1.0

1.5

2.5

3.0

0−50−100−150−200−250−300

2.0

Figure 3.15 Apparatus for verifying the 
volume–temperature law.

Figure 3.16 When the graph of volume versus temperature is extended backwards 
the line intersects the temperature axis at −273 °C.
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When the temperature is expressed in kelvin, this experiment 
implies that at constant pressure:

V
T = constant

This relationship is know as Charles’ law.

Figure 3.17 When the graph of volume versus temperature is extended backwards, 
all the lines intersect the temperature axis at the same point.

Figure 3.18 When temperature is expressed in kelvin, the lines start at zero 
temperature.

Exam tip
In practice we use the relation 
V
T  = constant in the equivalent 

form as V1
T1

 = V2
T2 

where the 

initial volume and temperature 
of the gas (V1, T1) change to a 
new volume and temperature 
(V2, T2) at constant pressure.

If this same experiment is repeated with a di! erent quantity of gas, or a 
gas at a di! erent constant pressure, the result is the same. In each case, the 
straight-line graph of volume versus temperature crosses the temperature 
axis at −273 °C (Figure 3.17). In Figure 3.18, the same graphs are drawn 
using the Kelvin temperature scale.
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Worked example
3.11 A gas expands at constant pressure from an original volume of 2.0 dm3 at 22 °C to a volume of 4.0 dm3. 

Calculate the new temperature.

Substituting in 
V2

T1
 = 

V2

T2
 it follows that:

2.0
295

 = 
4.0
T

⇒ T = 590 K or 317 °C

Note that we converted the original temperature into kelvin. (It is very easy to forget this conversion and get the 
incorrect answer of 44 °C.)

heating
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water

pressure
gauge
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Figure 3.19 Investigating the pressure–
temperature law.

The pressure–temperature law
What remains now is to investigate the dependence of pressure on 
temperature of a " xed quantity of gas in a " xed volume. This can be done 
with the apparatus shown in Figure 3.19. The gas container is surrounded 
by water whose temperature can be changed. A pressure gauge measures 
the pressure of the gas. We " nd that pressure increases uniformly with 
increasing temperature, as shown by the graph in Figure 3.20. 

Figure 3.20 The graph of pressure versus temperature is a straight line that, when 
extended backwards, again intersects the temperature axis at −273 °C.
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When the temperature is expressed in kelvin, this experiment 
implies that at constant volume:

p
T

 = constant

This relationship is known as Gay-Lussac’s law or Amontons’ law. 

Figure 3.22 If temperature is expressed in kelvin, the lines start at zero temperature.
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Figure 3.21 When extended backwards, the graphs of pressure versus temperature for 
three diff erent quantities of gas all intersect the temperature axis at the same point.

Exam tip
In practice we use the relation 
p
T = constant in the equivalent 

form as p1
T1

 = p2
T2

 where the 

initial pressure and temperature 
of the gas ( p1, T1) change to a 
new pressure and temperature 
( p2, T2) at constant volume. 
(Remember, T is in kelvin.)

For quantities of gases containing di! erent numbers of moles at 
di! erent volumes the results are the same, as shown in Figure 3.21. When 
the temperature is expressed in kelvin, the straight lines all pass through 
the origin (Figure 3.22).
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Worked example
3.12 A gas in a container of " xed volume is heated from a temperature of 37 °C and pressure 3.0 × 105 Pa to a 

temperature of 87 °C. Calculate the new pressure.

Substituting in 
p1
T1

 = 
p2
T2

 we have:

 
3.0 × 105

310
 =  

p
360 

⇒ p = 3.5 × 105 Pa

(Notice that we had to change the temperature into kelvin.)

The equation of state of an ideal gas
If we combine the results of the three preceding experiments, we " nd that:

pV
T

 = constant

What is the value of the constant? To determine that, we repeat all of 
the preceding experiments, this time using di! erent quantities of the gas. 
We discover that the constant in the last equation is proportional to the 
number of moles n of the gas in question:

pV
T

 = n × constant

We can now measure the pressure, temperature, volume and number of 

moles for a large number of di! erent gases and calculate the value of 
pV
nT . 

We " nd that this constant has the same value for all gases – it is a universal 
constant. We call this the gas constant R. It has the numerical value:

R = 8.31 J K−1 mol−1

Thus, " nally, the equation of state is:

pV = RnT

(Remember that temperature must always be in kelvin.)

Exam tip
In practice we use this in the 

form p1V1
T1

 =  p2V2
T2

 when a gas 

changes from values (p1, V1, T1) 
to (p2, V2, T2). Cancel out any 
quantities that stay the same.
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Worked examples
3.13 Estimate how many molecules there are in a gas of temperature 320 K, volume 0.025 m3 and pressure 

4.8 × 105 Pa.

First we " nd the number of moles:

n = 
pV
RT

n = 
4.8 × 105 × 0.025

8.31 × 320
 = 4.51 mol

Each mole contains the Avogadro number of molecules, so the number of molecules is:

4.51 × 6.02 × 1023 ≈ 2.7 × 1024

3.14 A container of hydrogen of volume 0.10 m3 and temperature 25 °C contains 3.2 × 1023 molecules. Calculate 
the pressure in the container.

The number of moles present is:

 n = 
3.2 × 1023

6.02 × 1023 = 0.53 

So: p = 
RnT
V

 = 
8.31 × 0.53 × 298

0.10
 = 1.3 × 104 Pa

3.15 A " xed quantity of gas of volume 3.0 × 10−3 m3, pressure 3.0 × 105 Pa and temperature 300 K expands to a 
volume of 4.0 × 10−3 m3 and a pressure of 6.0 × 105 Pa. Calculate the new temperature of the gas.

Use 
p1V1

n1T1
 = 

p2V2

n2T2
 to get:

3.0 × 105 × 3.0 × 10−3

300
 = 

6.0 × 105 × 4.0 × 10−3

T

Solving for T gives: T = 800 K
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Figure 3.24 The distribution of speeds at 
two diff erent temperatures.

3.16 Figure 3.23 shows two isothermal 
curves for equal quantities of two ideal 
gases. State and explain which gas is at 
the higher temperature.

Figure 3.23 Two isothermal curves for equal quantities of two gases.

Draw a vertical line that intersects the two isotherms at two points. At these points both gases have the same 
volume, and as the quantities of gas are equal n is the same. So for these points p

T  is constant. The point on the blue 
curve has higher pressure, so it must have the higher temperature.
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The Boltzmann equation
The molecules of a gas move about randomly with a range of speeds. The 
graph in Figure 3.24 shows the distribution of speeds for oxygen molecules 
kept at two di! erent temperatures: the blue curve is at 100 K and the red 
curve at 300 K. The vertical axis shows the fraction of molecules having a 
given speed v. You will not be examined on this graph but knowing a few 
of its features helps a lot in understanding how gases behave.

We see that there is a speed that corresponds to the peak of the 
curve. For the blue curve this is about 225 m s−1 and for the red curve at 
400 m s−1. The speed at the peak represents the most probable speed that 
would be found if you picked a molecule at random. Two other speeds are 
important:
• the average speed of the molecules, v– = 

v1 + v2 + v3 + … + v N
N  

• the r.m.s. speed or root mean square speed c, which is the square root of 
the average of the squares of the speeds of the molecules, i.e.

 c =    
v 12 + v 22 + v 32 + … + v N2 

N  

Why do we bother to work with an r.m.s. speed? Consider the average 
kinetic energy for the N molecules, which is given by:

–EK = 
1
2 mv 12 + 12 mv 22 + 12 v 3

2 + … + mv N2 
N

 = 12 m 
⎛
⎝
v 12 + v 22 + v 32 + … + v N2 

N
⎞
⎠

 = 12 mc2
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So we see that the average kinetic energy involves the r.m.s. speed. These 
three speeds (most probable, average and r.m.s. speed) are all di! erent 
but numerically close to each other. So, even though it is not technically 
correct, we may assume that all three speeds mean the same thing and we 
will use the symbol c for all of them.

Now, it can be proven that the pressure of a gas is p = 13 ρc
2, where 

the quantity c stands for the r.m.s. speed and ρ is the density of the gas. 
(You will not need to know this equation for the exam.) We get a very 
interesting result if we combine this equation with the equation of state 
for an ideal gas, i.e. the equation pV = nRT. There are many steps in the 
derivation in the box below. N stands for the number of molecules and m 
for the mass of one molecule.

Since 12mc 2 is equal to E, the average random kinetic energy of the 
molecules, we can write:

 pV = nRT

 (13  ρc 
2 )V = nRT replacing the pressure with p = 13  ρc

2

 
1
3 

M
Vc 2V = nRT replacing the density by mass ÷ volume

 
1
3Mc 2 = nRT cancelling the volume

 
1
3Nmc 2 = 

N
NA

RT writing M = Nm and n = 
N
NA

 
1
2Nmc 2 = 3 

2 
R
NA

T multiplying both sides by 32

kB  = 
R
NA

 =  
8.31

6.02 × 1023 

 = 1.38 × 10−23 J K−1

The product of all this algebra is the very important result that relates 
the average random kinetic energy to the absolute temperature.

–EK = 
3
2 

R
NA

T

The ratio 
R
NA

 is called the Boltzmann constant, kB. So the " nal result 
is that the average random kinetic energy of the particles is directly 
proportional to the kelvin temperature:

–EK = 
3
2kBT

Using this equation we can " nd an expression for the internal energy of 
an ideal gas. Remember that the internal energy of an ideal gas consists 
only of the random kinetic energy of its molecules and no potential 
energy. Suppose that the gas has N molecules. Then, since the average 



3  THERMAL PHYSICS 139

Exam tip
You must be able to obtain 
an expression for the internal 
energy of an ideal gas even 
though this formula is not in 
the IB data booklet.

kinetic energy is 32kBT, the total random kinetic energy, i.e. the internal 
energy U, is:

U = 32NkBT

But recall that kB = 
R
NA

, so that another expression is:

U = 32nRT

Yet another expression comes from using the equation of state, pV = nRT, 
which gives:

U = 32 pV

Worked examples
3.17 The kelvin temperature of a gas is doubled. By what factor does the average speed increase?

From 12mc2 = 32kBT we " nd that when T is doubled then c2 will double, so c itself will increase by a factor of √2.

3.18 Calculate the ratio of the average speed of oxygen (O2) to carbon dioxide (CO2) molecules when both gases 
are at the same temperature.

Since the temperature is the same for both gases, using 12mc 2 = 32k BT we " nd that:

1
2 
mOc O2

 
= 

1
2 
mCO2c CO2

2 and so 
c O2

c CO2
2 
= 

mCO2

mO

So we need to " nd the ratio of the masses of the molecules. One mole of oxygen has a mass of 32 g so one 

molecule has a mass (in grams) of 
32
NA

. Similarly, the mass in grams of a carbon dioxide molecule is 
44
NA

. So: 

c O2

c CO2
2 
= 

44/NA
32/NA

 = 
44
32 = 1.375 ⇒ 

cO
c CO2 

=   1.375 = 1.17 ≈ 1.2

3.19 Calculate the average speed of helium (42He) molecules at a temperature of −15 °C. 

We use 12mc2 = 32k BT. First we need to " nd the mass m of a helium atom. One mole of helium has a mass of 4.0 g so 
the mass of one molecule is given by:

m = 
4.0
NA

 = 
4.0

6.02 × 1023 = 6.64 × 10−24 g = 6.64 × 10−27 kg

Now remember to convert the temperature into kelvin: 273 − 15 = 258 K. So we have:
1
2 × 6.64 × 10−27 × c2 = 32 × 1.38 × 10−23 × 258

This gives c2 = 1.61 × 106 and so c = 1.3 × 103 m s−1.
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Nature of science
Models must be correct but also simple
Boyle thought that a gas consists of particles joined by springs. Newton 
thought that a gas consists of particles that exert repulsive forces on each 
other. Bernoulli thought that a gas is a collection of a very large number 
of particles that exert forces on each other only when they collide. All 
three could explain why a gas exerts a pressure on its container but it 
is Bernoulli’s picture that is the simplest. We assume that the ordinary 
laws of mechanics apply to the individual particles making up the gas. 
Even though the laws apply to each individual particle we cannot 
observe or analyse each particle individually since there are so many 
of them. By concentrating on average behaviours of the whole gas 
and using probability and statistics, physicists developed a new " eld of 
physics known as statistical mechanics. This has had enormous success in 
advancing our understanding of gases and other systems, including where 
the approximation to an ideal gas breaks down. 

 21 A % ask of volume 300.0 × 10−6 m3 contains air 
at a pressure of 5.00 × 105 Pa and a temperature 
of 27.0 °C. The flask loses molecules at a rate 
of 3.00 × 1019 per second. Estimate how long it 
takes for the pressure in the % ask to fall to half its 
original value. (Assume that the temperature of 
the air remains constant during this time.)

 22 The point marked in the diagram represents 
the state of a " xed quantity of ideal gas 
in a container with a movable piston. The 
temperature of the gas in the state shown is 
600 K. Copy the diagram. Indicate on the 
diagram the point representing the new state of 
the gas after the following separate changes.

 a The volume doubles at constant temperature.
 b The volume doubles at constant pressure.
 c The pressure halves at constant volume.

? Test yourself

p

V

 13 Calculate the number of molecules in 28 g of 
hydrogen gas (molar mass 2 g mol−1).

 14 Calculate the number of moles in 6.0 g of 
helium gas (molar mass 4 g mol−1).

 15 Determine the number of moles in a sample of a 
gas that contains 2.0 × 1024 molecules.

 16 Determine the mass in grams of carbon (molar 
mass 12 g mol−1) that contains as many molecules 
as 21 g of krypton (molar mass 84 g mol−1).

 17 A sealed bottle contains air at 22.0 °C and a 
pressure of 12.0 × 105 Pa. The temperature is 
raised to 120.0 °C. Calculate the new pressure.

 18 A gas has pressure 8.2 × 106 Pa and volume 
2.3 × 10−3 m3. The pressure is reduced to 
4.5 × 106 Pa at constant temperature. Calculate 
the new volume of the gas.

 19 A mass of 12.0 kg of helium is required to " ll a 
bottle of volume 5.00 × 10−3 m3 at a temperature 
of 20.0 °C. Determine the pressure in helium.

 20 Determine the mass of carbon dioxide required 
to " ll a tank of volume 12.0 × 10−3 m3 at 
a temperature of 20.0 °C and a pressure of 
4.00 atm.
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 23 Two ideal gases are kept at the same temperature 
in two containers separated by a valve, as shown in 
the diagram. Estimate the pressure when the valve 
is opened. (The temperature stays the same.)

 24 The diagram shows a cylinder in a vacuum, 
which has a movable, frictionless piston at the 
top. An ideal gas is kept in the cylinder. The 
piston is at a distance of 0.500 m from the 
bottom of the cylinder and the volume of the 
cylinder is 0.050 m3. The weight on top of the 
cylinder has a mass of 10.0 kg. The temperature 
of the gas is 19.0 °C.

 a Calculate the pressure of the gas.
 b Determine how many molecules there are in 

the gas.
 c The temperature is increased to 152 °C. 

Calculate the new volume of the gas.
 25 The molar mass of a gas is 28 g mol−1. A 

container holds 2.00 mol of this gas at 0.00 °C 
and a pressure of 1.00 × 105 Pa. Determine the 
mass and volume of the gas.

 26 A balloon has a volume of 404 m3 and is " lled 
with helium of mass 70.0 kg. The temperature 
inside the balloon is 17.0 °C. Determine the 
pressure inside the balloon.

 27 A % ask has a volume of 5.0 × 10−4 m3 and 
contains air at a temperature of 300 K and a 
pressure of 150 kPa.

 a Calculate the number of moles of air in the 
% ask.

 b Determine the number of molecules in the 
% ask.

 c Estimate the mass of air in the % ask. You may 
take the molar mass of air to be 29 g mol−1.

 28 The molar mass of helium is 4.00 g mol−1.
 a Calculate the volume of 1.0 mol of helium at 

standard temperature and pressure (stp) i.e. at 
T = 273 K, p = 1.0 × 105 Pa.

 b Determine the density of helium at stp.
 c Estimate the density of oxygen gas at stp (the 

molar mass of, oxygen gas is 32 g mol−1).
 29 The density of an ideal gas is 1.35 kg m−3. The 

temperature in kelvin and the pressure are both 
doubled. Calculate the new density of the gas.

 30 Calculate the average speed (r.m.s.) of helium 
atoms at a temperature of 850 K. The molar mass 
of helium is 4.0 g mol−1.

 31 Show that the average (r.m.s.) speed of molecules 
of a gas of molar mass M (in kg mol−1) kept at a 

  temperature T is given by c =    
3RT
M .

 32 a  Calculate the average random kinetic energy 
of a gas kept at a temperature of 300 K.

 b Determine the ratio of the average speeds 
(r.m.s. speeds) of two ideal gases of molar mass 
4.0 g mol−1 and 32 g mol−1, which are kept at 
the same temperature.

6 dm3

12 atm

3 dm3

6 atm

valve

m

0.5 m gas
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Exam-style questions

1 Body X whose temperature is 0 °C is brought into thermal contact with body Y of equal mass and temperature 
100 C. The only exchanges of heat that take place are between X and Y. The speci" c heat capacity of X is greater 
than that of  Y. Which statement about the " nal equilibrium temperature T of the two bodies is correct?

A T = 50 °C 
B 0 < T < 50 °C  
C 100 °C  > T > 50 °C 
D Answer depends on value of mass

2 Energy is provided to a liquid at its boiling point at a rate of P joules per second. The rate at which mass is boiling 
away is µ kg per second. The speci" c latent heat of vaporisation of the liquid is

A µP B 
P
µ  C 

µ
P D 

1
µP

3 The following are all assumptions of the kinetic theory of gases, except which one?

A The duration of a collision is very small compared to the time in between collisions.
B The collisions are elastic.
C The average kinetic energy of molecules is proportional to temperature.
D The volume of molecules is negligible compared to the volume of the gas.

4 In the context of a " xed mass of an ideal gas, the graph could represent the variation of: 

(0, 0)

A pressure with volume at constant temperature
B volume with Celsius temperature at constant pressure
C pressure with Celsius temperature at constant volume
D pressure with inverse volume at constant temperature

5 The temperature of an ideal gas of pressure 200 kPa is increased from 27 °C to 54 °C at constant volume. Which is 
the best estimate for the new pressure of the gas?

A 400 kPa B 220 kPa C 180 kPa D 100 kPa
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 6 A container of an ideal gas that is isolated from its surroundings is divided into two parts. One part has double 
the volume of the other. The pressure in each part is p and the temperature is the same. The partition is removed. 
What is the pressure in the container now?

A p B 2p C 
3p
2  D 4p

 7 Di! erent quantities of two ideal gases X and Y are kept at the same temperature. Which of the following is a 
correct comparison of the average kinetic energy and internal energy of the two gases?

Average kinetic energy Internal energy

A same same
B same di! erent
C di! erent same
D di! erent di! erent

 8 The temperature of an ideal gas is doubled. The average speed of the molecules increases by a factor of

A √2 B 2 C 2 √2 D 4

 9 Two ideal gases X and Y are kept at the same temperature. Gas X has molar mass mX and gas Y has molar mass μY. 
The ratio of average speeds of the molecules of gas X to that of gas Y is 

A 
μX
µY

 B 
μY
µX

 C    
μX
µY

 D    
μY
µX

10 The pressure of a " xed quantity of ideal gas is doubled. The average speed of the molecules is also doubled. 
The original density of the gas is ρ. Which is the new density of the gas?

A 
ρ
2 B ρ C 2ρ D 4ρ

11 a Calculate the volume of 1 mol of helium gas (molar mass 4 g mol−1) at temperature 273 K and 
pressure 1.0 × 105 Pa. [2]

 b  i  Find out how much volume corresponds to each molecule of helium. [2]
   ii  The diameter of an atom of helium is about 31 pm. Discuss whether or not the ideal gas is a good 

approximation to the helium gas in a. [2]

 c Consider now 1 mol of lead (molar mass 207 g mol−1, density 11.3 × 103 kg m−3). How much volume 
corresponds to each atom of lead? [3]

 d Find the ratio of these volumes (helium to lead) and hence determine the order of magnitude of the ratio: 
separation of helium atoms to separation of lead atoms. [2]
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12 a De" ne what is meant by speci! c heat capacity of a substance. [1]

 b  Consider two metals that have di! erent speci" c heat capacities. The energies required to increase the 
temperature of 1 mol of aluminium and 1 mol of copper by the same amount are about the same. Yet the 
speci" c heat capacities of the two metals are very di! erent. Suggest a reason for this. [2]

   A hair dryer consists of a coil that warms air and a fan that blows the warm air out. The coil generates 
thermal energy at a rate of 600 W. Take the density of air to be 1.25 kg m−3 and its speci" c heat capacity 
to be 990 J kg−1 K−1. The dryer takes air from a room at 20 °C and delivers it at a temperature of 40 °C.

 c What mass of air % ows through the dryer per second? [2]

 d What volume of air % ows per second? [1]

 e  The warm air makes water in the hair evaporate. If the mass of water in the air is 180 g, calculate how 
long it will take to dry the hair. (The heat required to evaporate 1 g of water at 40 °C is 2200 J.) [2]

13 The graph shows the variation with time of the speed of an object of mass 8.0 kg that has been dropped 
(from rest) from a certain height. 

 The body hits the ground 12 seconds later. The speci" c heat capacity of the object is 320 J kg−1 K−1.

 a i Explain how we may deduce that there must be air resistance forces acting on the object. [2]
  ii Estimate the height from which the object was dropped. [2]
  iii Calculate the speed the object would have had if there were no air resistance forces. [2]

 b  Estimate the change in temperature of the body from the instant it was dropped to just before impact. 
List any assumptions you make. [4]
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14 A piece of tungsten of mass 50 g is placed over a % ame for some time. The metal is then quickly transferred 
to a well-insulated aluminium calorimeter of mass 120 g containing 300 g of water at 22 °C. After some time 
the temperature of the water reaches a maximum value of 31 °C.

 a State what is meant by the internal energy of a piece of tungsten. [1]

 b  Calculate the temperature of the % ame. You may use these speci" c heat capacities: 
water 4.2 × 103 J kg−1 K−1, tungsten 1.3 × 102 J kg−1 K−1 and aluminum 9.0 × 102 J kg−1 K−1. [3]

 c State and explain whether the actual % ame temperature is higher or lower than your answer to b. [2]

15 a Describe what is meant by the internal energy of a substance. [1]

 b  A student claims that the kelvin temperature of a body is a measure of its internal energy. 
Explain why this statement is not correct by reference to a solid melting. [2]

 c  In an experiment, a heater of power 35 W is used to warm 0.240 kg of a liquid in an uninsulated 
container. The graph shows the variation with time of the temperature of the liquid. 

 The liquid never reaches its boiling point. 

 Suggest why the temperature of the liquid approaches a constant value. [2]

 d  After the liquid reaches a constant temperature the heater is switched o! . The temperature of the liquid 
decreases at a rate of 3.1 K min−1. 

  Use this information to estimate the speci" c heat capacity of the liquid. [3]

16 The volume of air in a car tyre is about 1.50 × 10−2 m3 at a temperature of 0.0 °C and pressure 250 kPa. 

 a Calculate the number of molecules in the tyre. [2]

 b Explain why, after the car is driven for a while, the pressure of the air in the tyre will increase. [3]

 c  Calculate the new pressure of the tyre when the temperature increases to 35 °C and the volume 
expands to 1.60 × 10−2 m3.

 d  The car is parked for the night and the volume, pressure and temperature of the air in the tyre return to 
their initial values. A small leak in the tyre reduces the pressure from 250 kPa to 230 kPa in the course 
of 8 h. Estimate (stating any assumptions you make):

  i the average rate of loss of molecules (in molecules per second) [2]
  ii the total mass of air lost (take the molar mass of air to be 29 g mol−1). [3]


