Learning objectives

e Use the concept of pressure.

e Solve problems using the
equation of state of an ideal gas.

e Understand the assumptions
behind the kinetic model of an
ideal gas.

e Solve problems using moles,
molar masses and the Avogadro
constant.

e Describe differences between
ideal and real gases.

Figure 3.8 One mole of different substances.
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3.2 Modelling a gas

This section introduces the equation of state of an ideal gas, which is the
equation that relates the pressure, volume, absolute temperature and number
of moles of an ideal gas. The connection between the average random
kinetic energy of the molecules and the kelvin temperature is derived.

The Avogadro constant

By definition, one mole of any substance contains as many particles as
there are atoms in 12 g of carbon-12. What we mean by ‘particle’ depends
on the substance; it can be a single atom or a molecule. For example, in
carbon the particles are single atoms, the particles in hydrogen gas (H»)
are diatomic molecules, in carbon dioxide gas (CO5) they are triatomic
molecules, and in methane gas (CHy) they are molecules with five atoms.

Experiments show that the number of particles in a mole is
NA=6.02% 10*mol ™', a number known as the Avogadro constant and
one of the basic constants of physics. So one mole of carbon, one mole
of H,, one mole of CO, and one mole of CHy all contain 6.02 x 10>
particles. This means 6.02 X 10% atoms for carbon, 2 X 6.02 X 10** atoms
for Ho, 3% 6.02 X 10% atoms for CO5 and 5 X 6.02 X 10> atoms for CH,.
Figure 3.8 shows one mole of different substances.

If a substance contains N particles (atoms or molecules, as discussed
above) then the number of moles # is:

. . . 1
The atomic mass scale defines one atomic mass unit (1u) as 75 of the

mass of one atom of carbon-12, '2C. The mass of one atom of '2C is
therefore exactly 12u.The notation '2C means that the carbon atom
has six protons and the number of protons and neutrons combined is
12 (i.e. six neutrons). The neutral atom also has six electrons. Neglecting
the mass of the six electrons, the mass of the six protons and six neutrons
is about 12u.The proton and the neutron are approximately equal in mass
and so approximately the mass of one proton and that of one neutron is
1u. So an atom of helium (3He) has a mass that is (approximately) 4u and
the mass of one atom of 3¢Fe is (approximately) 56 u.

Now, remember that the mole is defined as the number of atoms in
12 g of '3C.We also defined the mass of one atom of '3C to be 12u.This
means that:

Na X 12u = 12¢g

number of particles in 1mol mass of 1 atom mass in g of 1 mol

and so the u (in grams) is given by:

1
u=-2 (= 1.66x10*g=1.66x 10" kg)



We know that A grams of the element 2X correspond to one mole of
element X. So, for substances that are monatomic, one mole of a substance
is also the quantity of the substance whose mass in grams is equal to the
atomic mass (in u). Moving on to molecules, the molar mass is the
sum of the atomic masses of the atoms making up the molecule. So CO,
has molar mass 12+2x 16=44gmol ™' . There are N molecules in 44 g of
CO; because 44 g of CO, make one mole.

So, it is important to know that:

One mole of a substance is a quantity of the substance that
contains a number of particles equal to the Avogadro constant and
whose mass in grams is equal to the molar mass of the substance.

The number of moles in a quantity of m grams of a substance with molar

. m
mass p is then n=7..

Worked examples
3.6 Estimate the number of atoms of gold in 1.0kg of gold (17]Au).

1
The molar mass of gold is 197 gmol™. So 1000 g of gold (= 1kg) contains % =~5.1mol of atoms.

Each mole contains 6.02 X 10* atoms, so the number of atoms in 1kg of gold is 6.02 X 102 X 5.1=3x 10%*.

3.7 Calculate how many grams of scandium, 43Sc, contain the same number of molecules as 8.0 g of argon, 40 Ar.

_ 8.0
The molar mass of argon is 40 gmol ™!, so a quantity of 8.0g of argon corresponds to 30 0.20 mol.

Thus, we need 0.20mol of scandium. This corresponds to 0.20 X45=9.0¢.
3.8 Estimate the number of water molecules in an ordinary glass of water.

A glass contains about 200 cm® of water, which has a mass of 200 g,

. - . 0
Since the molar mass of water is 18 gmol ™', the glass contains T 10mol or 6 X 10% x 10=10? molecules of

water.

Pressure

Pressure is defined as the normal force applied per unit area. In
Figure 3.9a the force is normal to the area A, so the pressure is:

=
I}
SN
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Worked example

a b
Figure 3.9 Pressure is the normal force per unit area.

The force in Figure 3.9b acts at an angle 6, so the pressure on the area A
is given by the expression:

__FcosH
P=4

The unit of pressure is newton per square metre, Nm™ >, also known as the
pascal, Pa. Another commonly used non-SI unit is the atmosphere, atm,
which is equal to 1.013 X 10° Pa.

3.9 Two hollow cubes of side 25 cm with one face missing are placed

together at the missing face (Figure 3.10). The air inside the solid
formed is pumped out. Determine the force that is necessary to

separate the cubes.

Figure 3.10

The pressure inside the solid is zero and outside it equals atmospheric pressure, 1.01 X 10° Pa.

Thus, the force is given by:

F=pA=1.01x10°%(0.25)>=6.3x10°N

“L

Exam tip

—

You must be able to recall
and describe a few of these

assumptions in an exam

Ideal gases

An ideal gas is a theoretical model of a gas. It helps us to understand

the behaviour of real, actual gases. We assume that an ideal gas obeys the

following:

e The molecules are point particles, each with negligible volume.

e The molecules obey the laws of mechanics.

e There are no forces between the molecules except when the molecules
collide.

e The duration of a collision is negligible compared to the time between
collisions.

e The collisions of the molecules with each other and with the container
walls are elastic.

e Molecules have a range of speeds and move randomly.

D




An ideal gas (unlike real gases) cannot be liquefied or solidified. You
should be able to see how some of these assumptions may not be obeyed
by a real gas. For example, there will always be forces between molecules
of a real gas, not just when the molecules are in contact. In general, we
expect that a real gas will behave like an ideal gas when the density is
low (so that molecules are not close to each other and hence the forces
between them are negligible). We do not expect ideal gas behaviour at
high densities (molecules will be too close to each other and will exert
forces on each other). Similarly, we do not expect ideal gas behaviour
from a real gas at very low temperature, because the gas will then become
a liquid or even a solid!

A real gas may be approximated by an ideal gas when the density
is low.

Figure 3.11 shows a molecule that collides with a container wall. The
momentum normal to the wall before the collision is mvcos 6. After the
collision momentum normal to the wall is —mwvcos@. So the change in
momentum has magnitude 2mvp cos 8. The fact that the momentum of the
molecule has changed means that a force acted on the molecule (from the
wall). By Newton’s third law, therefore, the molecule exerted on the wall
an equal and opposite force. Taking into account the forces due to all the
molecules colliding with the walls results in a force, and hence pressure,
on the walls.

The state of a gas is determined when we know the values of the
pressure, the volume, the temperature and the number of moles present.
The parameters p, I/, T and n are related to each other. The equation
relating them is called the equation of state. Our objective is to discover
the equation of state for a gas.To do this a number of simple experiments
can be performed, as described in the following sections.

The pressure-volume law

The equipment shown in Figure 3.12 can be used to investigate the
relationship between pressure and volume of a fixed quantity of gas that is
kept at constant temperature.

The pump forces oil to move higher, decreasing the volume of the air
trapped in the tube above the oil. A pressure gauge reads the pressure of
the trapped air and so the relationship between pressure and volume may
investigated. The changes in pressure and volume must take place slowly
so that the temperature stays the same.

Exam tip
You must be able to describe
the conditions under which a
real gas may be approximated
by that of an ideal gas. The
main idea is that the density
must be low. For a fixed
quantity of gas, density will be
low at low pressure and high
temperature.

Exam tip

You must be able to give an
explanation of pressure in
terms of molecules colliding

with their container walls.

Figure 3.11 A molecule has its momentum
changed when it collides with a wall. A
force is exerted on the molecule and so the
molecule exerts an equal and opposite force
on the wall.

scale
air
pressure
oil —— gauge
to air
1 D ——
AN pump
valve

Figure 3.12 Apparatus for investigating the
pressure—volume law. The pump forces oil
to move up the tube, decreasing the volume
of air.
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Exam tip

In practice we use the relation
pV=constant in the equivalent
form p1 V1 =p, V> when the
initial pressure and volume

(p1, V1) change to a new
pressure and volume (p,, 15) at
constant temperature.

Exam tip

If you are asked to confirm the
relationship pl”’= constant,

take three points from a
pressure—volume graph and
show that their product is

the same.

The results of a typical experiment are shown in Figure 3.13.We

have plotted pressure against the inverse of the volume and obtained a
straight line.

p/x10°Pa 25

20

15 /
10 _—

0 200 400 600 800 1000
1 -3
—/m
4

Figure 3.13 Graph of pressure against inverse volume at constant temperature.
This implies that:

At constant temperature and with a fixed quantity of gas, pressure
is inversely proportional to volume, that is:

1
pey, or pV = constant

This relationship is known as the Boyle’s law.

p/x10°Pa 25 \

20 \
15

10
5
R S S
0
0 2 4 6 8 10
V/x1073m3

Figure 3.14 The relationship between pressure and volume at constant temperature
for a fixed quantity of a gas. The product pV is the same for all points on the curve.

Figure 3.14 shows the same data now plotted as pressure against volume.

The curve in the pressure—volume diagram is a hyperbola and in
physics it is known as an isothermal curve or isotherm: the temperature
at all points on the curve is the same.



Worked example

3.10 The pressure of a fixed quantity of gas is 2.0atm and its volume 0.90 dm?>. The pressure is increased to 6.0atm
at constant temperature. Determine the new volume.

Use py V1 =po . Substituting the known values we have: Remember that 1dm®=1000cm>=1 litre.
2.0x0.90=6.0X IV

= 1’=0.30

The new volume is 0.30 dm?.

(Notice that since this problem compares the pressure at two different volumes we do not have to change units to
ST units.)

The volume-temperature law thermometer
ruler ————

The dependence of volume on temperature of a fixed quantity of gas thin tube —1

kept at constant pressure can be investigated with the apparatus shown

in Figure 3.15. Air is trapped in a thin capillary tube that is immersed zzzfj:iic‘)f 1 1

in heated water. The air is trapped by a thin thread of very concentrated acid
. . . water

sulfuric acid. The thread is exposed to the atmosphere and so the pressure g

.. trappe
of the trapped air is constant. dryp;r

It is found that the volume increases uniformly with temperature. The
striking fact is that when the straight line is extended backwards it always Z/ t \&
heating

crosses the temperature axis at —273°C, as in Figure 3.16.This suggests
Figure 3.15 Apparatus for verifying the

that there exists a minimum possible temperature, namely —273 °C. (With
volume-temperature law.

a real gas the experiment cannot be conducted at very low temperatures
since the gas would liquefy — hence the dotted line. With an ideal gas
there would be no such restriction.)
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Figure 3.16 When the graph of volume versus temperature is extended backwards
the line intersects the temperature axis at —273°C.
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Exam tip
In practice we use the relation

V_ : .
= = constant in the equivalent

v,V
form as ——=+= where the
T T>

N o
initial volume and temperature
of the gas (171, T1) change to a
new volume and temperature
/
N

(V2. T7) at constant pressure.

—

If this same experiment is repeated with a different quantity of gas, or a

gas at a different constant pressure, the result is the same. In each case, the
straight-line graph of volume versus temperature crosses the temperature
axis at —273°C (Figure 3.17). In Figure 3.18, the same graphs are drawn
using the Kelvin temperature scale.
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Figure 3.17 When the graph of volume versus temperature is extended backwards,
all the lines intersect the temperature axis at the same point.
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T/K
Figure 3.18 When temperature is expressed in kelvin, the lines start at zero
temperature.

When the temperature is expressed in kelvin, this experiment
implies that at constant pressure:

4 tant
+ = constan
T

This relationship is know as Charles’ law.




Worked example

3.11 A gas expands at constant pressure from an original volume of 2.0 dm? at 22°C to a volume of 4.0 dm”.
Calculate the new temperature.

Substituting in B _Ih it follows that:
T T,

20_40
295 T

= T =590K or 317°C

Note that we converted the original temperature into kelvin. (It is very easy to forget this conversion and get the
incorrect answer of 44°C.)

The pressure-temperature law

‘What remains now is to investigate the dependence of pressure on
temperature of a fixed quantity of gas in a fixed volume.This can be done v
with the apparatus shown in Figure 3.19.The gas container is surrounded pressure H_ thermometer
by water whose temperature can be changed. A pressure gauge measures gauge =¥
the pressure of the gas. We find that pressure increases uniformly with

increasing temperature, as shown by the graph in Figure 3.20.

air
ptatm-—20 water
15 /
o / [ 1
IS 10 Z/ heating \&
,/‘/ Figure 3.19 Investigating the pressure—
Pl s temperature law.
-300 -250 -200 -150 -100 =50 0 50 100
T/°C

Figure 3.20 The graph of pressure versus temperature is a straight line that, when
extended backwards, again intersects the temperature axis at —273°C.
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Exam tip

In practice we use the relation
#=constant in the equivalent
form as ‘%= ‘% where the

initial pressure and temperature
of the gas (p1, T1) change to a
new pressure and temperature
(p2. T) at constant volume.
(Remember, T is in kelvin.)

For quantities of gases containing different numbers of moles at
different volumes the results are the same, as shown in Figure 3.21. When
the temperature is expressed in kelvin, the straight lines all pass through
the origin (Figure 3.22).
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Figure 3.21 When extended backwards, the graphs of pressure versus temperature for
three different quantities of gas all intersect the temperature axis at the same point.
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Figure 3.22 If temperature is expressed in kelvin, the lines start at zero temperature.

When the temperature is expressed in kelvin, this experiment
implies that at constant volume:

p

— = constant
T

This relationship is known as Gay-Lussac’s law or Amontons’ law.



Worked example

3.12 A gas in a container of fixed volume is heated from a temperature of 37 °C and pressure 3.0 X 10°Pa to a

temperature of 87 °C. Calculate the new pressure.

Substituting in % = %We have:
3.0x10° _ p
310 360
= p=3.5%10°Pa

(Notice that we had to change the temperature into kelvin.)

The equation of state of an ideal gas

If we combine the results of the three preceding experiments, we find that:

v _

= constant

‘What is the value of the constant? To determine that, we repeat all of
the preceding experiments, this time using different quantities of the gas.
We discover that the constant in the last equation is proportional to the
number of moles n of the gas in question:

pV

“—=n X constant
T

We can now measure the pressure, temperature, volume and number of
pV
nT”
We find that this constant has the same value for all gases — it is a universal

moles for a large number of different gases and calculate the value of

constant. We call this the gas constant R. It has the numerical value:
R=8.31JK 'mol™!

Thus, finally, the equation of state is:
I pV=RnT

(Remember that temperature must always be in kelvin.)

Exam tip

In practice we use this in the

1V pl
form pT] = % when a gas

changes from values (p1, 17, T1)
to (p2, V2, T5). Cancel out any
quantities that stay the same.
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Worked examples

3.13 Estimate how many molecules there are in a gas of temperature 320K, volume 0.025m? and pressure
4.8%10°Pa.

First we find the number of moles:

_rv
"TRT

_4.8x10°%0.025
8.31%320

=4.51 mol

Each mole contains the Avogadro number of molecules, so the number of molecules is:

4.51%X6.02X102~2.7%x10*

3.14 A container of hydrogen of volume 0.10m> and temperature 25°C contains 3.2 X 10* molecules. Calculate
the pressure in the container.

The number of moles present is:

_32x%x10%

"oozx107

_RnT_8.31X0.53%298

=1. X 4
V 0.10 1.3X10"Pa

So: p

3.15 A fixed quantity of gas of volume 3.0 X 107> m?, pressure 3.0 X 10° Pa and temperature 300K expands to a
volume of 4.0x 10> m? and a pressure of 6.0 X 10> Pa. Calculate the new temperature of the gas.

piVi_p2l

U
3¢ n T1 ny T2

to get:

3.0x10°%3.0x107° _6.0%x10°x4.0x 107
300 T

Solving for T gives: T=800K




3.16 Figure 3.23 shows two isothermal p/x10°Pa 25

curves for equal quantities of two ideal \
gases. State and explain which gas is at 20 \
the higher temperature. 15
10
5
0
0 2

4 6 8 10
V/x10= m?

Figure 3.23 Two isothermal curves for equal quantities of two gases.

Draw a vertical line that intersects the two isotherms at two points. At these points both gases have the same

volume, and as the quantities of gas are equal n is the same. So for these points 4 is constant. The point on the blue

curve has higher pressure, so it must have the higher temperature.

The Boltzmann equation

The molecules of a gas move about randomly with a range of speeds. The
graph in Figure 3.24 shows the distribution of speeds for oxygen molecules
kept at two different temperatures: the blue curve is at 100K and the red
curve at 300K. The vertical axis shows the fraction of molecules having a
given speed v.You will not be examined on this graph but knowing a few
of its features helps a lot in understanding how gases behave.

We see that there is a speed that corresponds to the peak of the
curve. For the blue curve this is about 225ms ' and for the red curve at
400ms ™" The speed at the peak represents the most probable speed that
would be found if you picked a molecule at random. Two other speeds are

important:
V1+V2+1/3+ +1/]\r

o the average speed of the molecules,v = N
e the r.m.s. speed or root mean square speed ¢, which is the square root of
the average of the squares of the speeds of the molecules, i.e.

_ 1/12+1/22+1/32+"'+1)N2
c=
N

Why do we bother to work with an r.m.s. speed? Consider the average
kinetic energy for the N molecules, which is given by:

1 1 1
— gmvlz + Emvzz +§1/32 +eeet muNz

K= N

(V12+V22+V32+"'+V1\]2)

1
am N

= e

Fraction of molecules
with speed v

T T T T 1
0 200 400 600 800 10001200
v/ms™!

Figure 3.24 The distribution of speeds at
two different temperatures.
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" Na 6.02x102

So we see that the average kinetic energy involves the r.m.s. speed. These
three speeds (most probable, average and r.m.s. speed) are all different
but numerically close to each other. So, even though it is not technically
correct, we may assume that all three speeds mean the same thing and we
will use the symbol ¢ for all of them.

Now, it can be proven that the pressure of a gas is p Z%pcz, where
the quantity ¢ stands for the r.m.s. speed and p is the density of the gas.
(You will not need to know this equation for the exam.) We get a very
interesting result if we combine this equation with the equation of state
for an ideal gas, i.e. the equation pl’=nRT.There are many steps in the
derivation in the box below. N stands for the number of molecules and m
for the mass of one molecule.

. 1 . . .
Since 3mc* is equal to E, the average random kinetic energy of the
molecules, we can write:

pV=nRT
(%pcz) V'=nRT replacing the pressure with p =%p62
M . A .
3,20 nRT replacing the density by mass — volume
%Mc2 =nRT cancelling the volume
1 _ N . _ _ N
3Nmc* = VART writing M= Nm and n= Na
5Nmc™ = ZVAT multiplying both sides by 5

The product of all this algebra is the very important result that relates
the average random kinetic energy to the absolute temperature.
= _3R

Ex = EVAT

. R .
The ratio < is called the Boltzmann constant, kg. So the final result
. A o R
is that the average random kinetic energy of the particles is directly
proportional to the kelvin temperature:

EK = %kBT

Using this equation we can find an expression for the internal energy of
an ideal gas. Remember that the internal energy of an ideal gas consists
only of the random kinetic energy of its molecules and no potential
energy. Suppose that the gas has N molecules. Then, since the average

o D




kinetic energy is %kB T, the total random kinetic energy, i.e. the internal

energy U, is:
U=3NkyT
R .
But recall that kBZV, so that another expression is:
A Exam tip
U:%ﬂRT You must be able to obtain

. . , an expression for the internal
Yet another expression comes from using the equation of state, pI"=nRT, .
. . energy of an ideal gas even
which gives: . . .

though this formula is not in

U= %pV the IB data booklet.

Worked examples

3.17 The kelvin temperature of a gas is doubled. By what factor does the average speed increase?

From 3mc =3k T we find that when T'is doubled then & will double, so c itself will increase by a factor of V2.

3.18 Calculate the ratio of the average speed of oxygen (O;) to carbon dioxide (CO,) molecules when both gases
are at the same temperature.

Since the temperature is the same for both gases, using %mc2 =%kBTwe find that:

2
1 21 2 d 0 _ mMco,
21’1’!0[0 - 2mCOZCC02 ana so 2
(Co, mo

So we need to find the ratio of the masses of the molecules. One mole of oxygen has a mass of 32 g so one

molecule has a mass (in grams) of N Similarly, the mass in grams of a carbon dioxide molecule is N So:
A A

2
cO 44/NA 44 %)
CCng 32/Np 32 CCO; \/7

3.19 Calculate the average speed of helium (5He) molecules at a temperature of —15°C.

We use %mcz =%kB T. First we need to find the mass m of a helium atom. One mole of helium has a mass of 4.0 g so
the mass of one molecule is given by:

_40_ 40

" NA 6.02%107

=6.64x10 Hg=6.64%x10" kg

Now remember to convert the temperature into kelvin: 273 — 15 =258 K. So we have:
3X6.64x 107X 2=3x1.38% 10723 x 258

This gives #=1.61%10° and so ¢=1.3%x10°ms "
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Nature of science

Models must be correct but also simple

Boyle thought that a gas consists of particles joined by springs. Newton
thought that a gas consists of particles that exert repulsive forces on each
other. Bernoulli thought that a gas is a collection of a very large number

?

13
14
15

16
17

18

19

20

of particles that exert forces on each other only when they collide. All

three could explain why a gas exerts a pressure on its container but it

is Bernoulli’s picture that is the simplest. We assume that the ordinary

laws of mechanics apply to the individual particles making up the gas.

Even though the laws apply to each individual particle we cannot

observe or analyse each particle individually since there are so many

of them. By concentrating on average behaviours of the whole gas

and using probability and statistics, physicists developed a new field of

physics known as statistical mechanics. This has had enormous success in

advancing our understanding of gases and other systems, including where

the approximation to an ideal gas breaks down.

.’ Test yourself

Calculate the number of molecules in 28 g of
hydrogen gas (molar mass 2gmol ™).

Calculate the number of moles in 6.0 g of
helium gas (molar mass 4 gmol ™).

Determine the number of moles in a sample of a
gas that contains 2.0 X 10** molecules.
Determine the mass in grams of carbon (molar
mass 12gmol™") that contains as many molecules
as 21 g of krypton (molar mass 84 gmol ).

A sealed bottle contains air at 22.0°C and a
pressure of 12.0 X 10° Pa. The temperature is
raised to 120.0°C. Calculate the new pressure.
A gas has pressure 8.2 10°Pa and volume
2.3%x107*m?>. The pressure is reduced to

4.5 % 10°Pa at constant temperature. Calculate
the new volume of the gas.

A mass of 12.0kg of helium is required to fill a
bottle of volume 5.00 X 107> m? at a temperature
of 20.0°C. Determine the pressure in helium.
Determine the mass of carbon dioxide required
to fill a tank of volume 12.0% 107> m” at

a temperature of 20.0°C and a pressure of

4.00 atm.

21

22

A flask of volume 300.0 X 10"°m? contains air
at a pressure of 5.00 X 10> Pa and a temperature
of 27.0°C. The flask loses molecules at a rate
of 3.00% 10" per second. Estimate how long it
takes for the pressure in the flask to fall to half its
original value. (Assume that the temperature of
the air remains constant during this time.)

The point marked in the diagram represents

the state of a fixed quantity of ideal gas

in a container with a movable piston. The
temperature of the gas in the state shown is
600K. Copy the diagram. Indicate on the
diagram the point representing the new state of’
the gas after the following separate changes.

a The volume doubles at constant temperature.
b The volume doubles at constant pressure.

c The pressure halves at constant volume.

p




23 Two ideal gases are kept at the same temperature 26
in two containers separated by a valve, as shown in
the diagram. Estimate the pressure when the valve

is opened. (The temperature stays the same.)

27
valve
6dm? ﬂ 3dm?
)
12 atm 6 atm

24 The diagram shows a cylinder in a vacuum,

which has a movable, frictionless piston at the 28
top. An ideal gas is kept in the cylinder. The

piston is at a distance of 0.500m from the

bottom of the cylinder and the volume of the

cylinder is 0.050 m>. The weight on top of the

cylinder has a mass of 10.0kg. The temperature

of the gas is 19.0°C.

. 29
\/— . 30
%@% 31

03m 1 32
Sl

a Calculate the pressure of the gas.
b Determine how many molecules there are in
the gas.
c The temperature is increased to 152 °C.
Calculate the new volume of the gas.
25 The molar mass of a gas is 28 gmol . A
container holds 2.00mol of this gas at 0.00°C
and a pressure of 1.00 X 10° Pa. Determine the

mass and volume of the gas.

A balloon has a volume of 404m?> and is filled

with helium of mass 70.0kg. The temperature

inside the balloon is 17.0°C. Determine the

pressure inside the balloon.

A flask has a volume of 5.0x 10~ *m? and

contains air at a temperature of 300K and a

pressure of 150 kPa.

a Calculate the number of moles of air in the
flask.

b Determine the number of molecules in the
flask.

c Estimate the mass of air in the flask.You may
take the molar mass of air to be 29 gmol ™"

The molar mass of helium is 4.00 gmol .

a Calculate the volume of 1.0mol of helium at
standard temperature and pressure (stp) i.e. at
T=273K, p=1.0x10Pa.

b Determine the density of helium at stp.

c Estimate the density of oxygen gas at stp (the
molar mass of, oxygen gas is 32 gmol ).

The density of an ideal gas is 1.35kgm ™. The

temperature in kelvin and the pressure are both

doubled. Calculate the new density of the gas.

Calculate the average speed (r.m.s.) of helium

atoms at a temperature of 850 K. The molar mass

of helium is 4.0 gmol .

Show that the average (r.m.s.) speed of molecules

of a gas of molar mass M (in kgmol ') kept at a

L 3RT
temperature T is given by ¢= M

a Calculate the average random kinetic energy
of a gas kept at a temperature of 300K.

b Determine the ratio of the average speeds
(r.m.s. speeds) of two ideal gases of molar mass
4.0gmol ! and 32gmol ™!, which are kept at
the same temperature.
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