Proof [182 marks]

la. Show that $(2 n-1)^{2}+(2 n+1)^{2}=8 n^{2}+2$, where $n \in \mathbb{Z}$.
[2 marks]

1b. Hence, or otherwise, prove that the sum of the squares of any two
[3 marks] consecutive odd integers is even.

2a. Explain why any integer can be written in the form $4 k$ or $4 k+1$ or
[2 marks] $4 k+2$ or $4 k+3$, where $k \in \mathbb{Z}$.

2b. Hence prove that the square of any integer can be written in the form $4 t$ [6 marks] or $4 t+1$, where $t \in \mathbb{Z}^{+}$.

The function f is defined by $f(x)=\frac{a x+b}{c x+d}$, for $x \in \mathbb{R}, x \neq-\frac{d}{c}$.

The function g is defined by $g(x)=\frac{2 x-3}{x-2}, x \in \mathbb{R}, x \neq 2$
3. Express $g(x)$ in the form $A+\frac{B}{x-2}$ where A, B are constants.
[2 marks]

4a. Show that $\frac{1}{\sqrt{n}+\sqrt{n+1}}=\sqrt{n+1}-\sqrt{n}$ where $n \geq 0, n \in \mathbb{Z}$.
[2 marks]

4b. Hence show that $\sqrt{2}-1<\frac{1}{\sqrt{2}}$.
[2 marks]

4c. Prove, by mathematical induction, that $\sum_{r=1}^{r=n} \frac{1}{\sqrt{r}}>\sqrt{n}$ for $n \geq 2, n \in \mathbb{Z}$.
5. Use mathematical induction to prove that $\frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}}\left(x \mathrm{e}^{p x}\right)=p^{n-1}(p x+n) \mathrm{e}^{p x} \quad$ [7 marks] for $n \in \mathbb{Z}^{+}, p \in \mathbb{Q}$.
6. Consider the function $f(x)=x \mathrm{e}^{2 x}$, where $x \in \mathbb{R}$. The $n^{\text {th }}$ derivative of [7 marks] $f(x)$ is denoted by $f^{(n)}(x)$.

Prove, by mathematical induction, that $f^{(n)}(x)=\left(2^{n} x+n 2^{n-1}\right) \mathrm{e}^{2 x}, n \in \mathbb{Z}^{+}$.

7a. Solve the inequality $x^{2}>2 x+1$.

7b. Use mathematical induction to prove that $2^{n+1}>n^{2}$ for $n \in \mathbb{Z}, n \geqslant 3$. [7 marks]
8.

Use mathematical induction to prove that $\sum_{r=1}^{n} r(r!)=(n+1)!-1$, for $n \in \mathbb{Z}^{+}$.
9. Use the principle of mathematical induction to prove that
[7 marks] $1+2\left(\frac{1}{2}\right)+3\left(\frac{1}{2}\right)^{2}+4\left(\frac{1}{2}\right)^{3}+\ldots+n\left(\frac{1}{2}\right)^{n-1}=4-\frac{n+2}{2^{n-1}}$, where $n \in \mathbb{Z}^{+}$.
10. Use mathematical induction to prove that $(1-a)^{n}>1-n a$ for
[7 marks] $\left\{n: n \in \mathbb{Z}^{+}, n \geqslant 2\right\}$ where $0<a<1$.

Consider the function $f_{n}(x)=(\cos 2 x)(\cos 4 x) \ldots\left(\cos 2^{n} x\right), n \in \mathbb{Z}^{+}$.

11a. Determine whether f_{n} is an odd or even function, justifying your
[2 marks] answer.

11b. By using mathematical induction, prove that
[8 marks] $f_{n}(x)=\frac{\sin 2^{n+1} x}{2^{n} \sin 2 x}, x \neq \frac{m \pi}{2}$ where $m \in \mathbb{Z}$.

11c. Hence or otherwise, find an expression for the derivative of $f_{n}(x)$ with [3 marks] respect to x.

11d. Show that, for $n>1$, the equation of the tangent to the curve $y=f_{n}(x)$ at $x=\frac{\pi}{4}$ is $4 x-2 y-\pi=0$.
12. Use the method of mathematical induction to prove that $4^{n}+15 n-1$ is [6 marks] divisible by 9 for $n \in \mathbb{Z}^{+}$.
13. Prove by mathematical induction that
[9 marks]

$$
\binom{2}{2}+\binom{3}{2}+\binom{4}{2}+\ldots+\binom{n-1}{2}=\binom{n}{3}, \text { where } n \in \mathbb{Z}, n \geqslant 3
$$

14a. Find the value of $\sin \frac{\pi}{4}+\sin \frac{3 \pi}{4}+\sin \frac{5 \pi}{4}+\sin \frac{7 \pi}{4}+\sin \frac{9 \pi}{4}$.
[2 marks]

14b. Show that $\frac{1-\cos 2 x}{2 \sin x} \equiv \sin x, x \neq k \pi$ where $k \in \mathbb{Z}$.
[2 marks]

14c. Use the principle of mathematical induction to prove that
[9 marks] $\sin x+\sin 3 x+\ldots+\sin (2 n-1) x=\frac{1-\cos 2 n x}{2 \sin x}, n \in \mathbb{Z}^{+}, x \neq k \pi$ where $k \in \mathbb{Z}$.

14d. Hence or otherwise solve the equation $\sin x+\sin 3 x=\cos x$ in the [6 marks] interval $0<x<\pi$.

15a. Use de Moivre's theorem to find the value of $\left(\cos \left(\frac{\pi}{3}\right)+\mathrm{i} \sin \left(\frac{\pi}{3}\right)\right)^{3}$. [2 marks]

15b. Use mathematical induction to prove that
[6 marks]

$$
(\cos \theta-\mathrm{i} \sin \theta)^{n}=\cos n \theta-\mathrm{i} \sin n \theta \text { for } n \in \mathbb{Z}^{+}
$$

Let $z=\cos \theta+i \sin \theta$.

15c. Find an expression in terms of θ for $(z)^{n}+\left(z^{*}\right)^{n}, n \in \mathbb{Z}^{+}$where z^{*} is [2 marks] the complex conjugate of z.

15d. (i) Show that $z z^{*}=1$.
[5 marks]
(ii) Write down the binomial expansion of $\left(z+z^{*}\right)^{3}$ in terms of z and z^{*}.
(iii) Hence show that $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$.

15e. Hence solve $4 \cos ^{3} \theta-2 \cos ^{2} \theta-3 \cos \theta+1=0$ for $0 \leqslant \theta<\pi$.
16. Use mathematical induction to prove that $n\left(n^{2}+5\right)$ is divisible by 6 for [8 marks] $n \in \mathbb{Z}^{+}$.

17a. Show that $\sin \left(\theta+\frac{\pi}{2}\right)=\cos \theta$.
[1 mark]

17b. Consider $f(x)=\sin (a x)$ where a is a constant. Prove by mathematical [7 marks] induction that $f^{(n)}(x)=a^{n} \sin \left(a x+\frac{n \pi}{2}\right)$ where $n \in \mathbb{Z}^{+}$and $f^{(n)}(x)$ represents the $\mathrm{n}^{\text {th }}$ derivative of $f(x)$.

Let $y(x)=x e^{3 x}, x \in \mathbb{R}$.

18a. Find $\frac{d y}{d x}$.
[2 marks]

18b. Prove by induction that $\frac{\mathrm{d}^{n} y}{\mathrm{~d} x^{n}}=n 3^{n-1} \mathrm{e}^{3 x}+x 3^{n} \mathrm{e}^{3 x}$ for $n \in \mathbb{Z}^{+}$.
[7 marks]

18c. Find the coordinates of any local maximum and minimum points on the [5 marks] graph of $y(x)$.
Justify whether any such point is a maximum or a minimum.

18d. Find the coordinates of any points of inflexion on the graph of $y(x)$. [5 marks] Justify whether any such point is a point of inflexion.

