sequences \& series - 1

4 questions - progressing from 'accessible' to 'discriminating'

1. How many terms are in the following arithmetic sequence? [calculator allowed]
$-9,-2,5, \ldots, 103$
2. The sum of the first three terms of an arithmetic sequence is 6 and the fourth term is 16 . Find the first term, u_{1}, and the common difference, d, of the sequence. [$\boldsymbol{n} \boldsymbol{n}$ calculator]
3. $a, 1, b$ are three consecutive terms of an arithmetic series, and $b, a, \frac{8}{3}$ are the first three terms of an infinite geometric series that has a sum of S. Find a, b and S.
[calculator allowed]
4. Show that the series $\log _{2} x+\log _{4} x+\log _{16} x+\cdots$ is geometric and find the sum of the series for infinite terms. [no calculator]

sequences \& series - 1

Answers

1. 17 terms
2. $u_{1}=-5, d=7$
3. $a=-4, b=6, S=\frac{18}{5}$
4. $\frac{\log _{4} x}{\log _{2} x}=\frac{\frac{\log _{2} x}{\log _{2} 4}}{\frac{\log _{2} x}{\log _{2} 2}}=\frac{\frac{\log _{2} x}{2}}{\frac{\log _{2} x}{1}}=\frac{1}{2}$ and $\frac{\log _{16} x}{\log _{4} x}=\frac{\frac{\log _{2} x}{\log _{2} 16}}{\frac{\log _{2} x}{\log _{2} 4}}=\frac{\frac{\log _{2} x}{4}}{\frac{\log _{2} x}{2}}=\frac{1}{2} \Rightarrow$ series is geometric

$$
S_{\infty}=2 \log _{2} x\left[\text { or } \log _{2}\left(x^{2}\right)\right]
$$

