Topic #1: Measurements and Uncertainties—5 Hours for Both SL and HL

Subtopic	Subtopic Number	IB Points to Understand
Measurements in physics	1.1	 Fundamental and derived SI units Scientific notation and metric multipliers Significant figures Orders of magnitude Estimation
Uncertainties and errors	1.2	 Random and systematic errors Absolute, fractional and percentage uncertainties Error bars Uncertainty of gradient and intercepts
Vectors and scalars	1.3	Vector and scalar quantitiesCombination and resolution of vectors

Subtopic Subtopic IB Points to Understand Number • Distance and displacement Speed and velocity • Acceleration 2.1 Graphs describing motion Motion • Equations of motion for uniform acceleration Projectile motion • Fluid resistance and terminal speed • Objects as point particles • Free-body diagrams 2.2 Translational equilibrium Forces Newton's laws of motion Solid friction Kinetic energy Gravitational potential energy • Elastic potential energy Work, energy and • Work done as energy transfer 2.3 power Power as rate of energy transfer Principle of conservation of energy • Efficiency Newton's second law expressed in terms of rate of change of momentum Impulse and force-time graphs Momentum and 2.4 Conservation of linear momentum impulse • Elastic collisions, inelastic collisions and explosions

Topic #2: Mechanics—22 Hours for Both SL and HL

Subtopic	Subtopic Number	IB Points to Understand
Thermal concepts	3.1	 Molecular theory of solids, liquids and gases Temperature and absolute temperature Internal energy <u>Specific heat capacity</u> Phase change Specific latent heat
Modelling a gas	3.2	 Pressure Equation of state for an ideal gas Kinetic model of an ideal gas Mole, molar mass and the Avogadro constant Differences between real and ideal gases

Topic #3: Thermal Physics—11 Hours for Both SL and HL

Topic #4: Waves—15 Hours for Both SL and HL

Subtopic	Subtopic Number	IB Points to Understand
Oscillations	4.1	 Simple harmonic oscillations Time period, frequency, amplitude, displacement and phase difference Conditions for simple harmonic motion
Travelling waves	4.2	 Travelling waves Wavelength, frequency, period and wave speed Transverse and longitudinal waves The nature of electromagnetic waves The nature of sound waves
Wave characteristics	4.3	 Wavefronts and rays Amplitude and intensity Superposition Polarization
Wave behaviour	4.4	 Reflection and refraction Snell's law, critical angle and total internal reflection Diffraction through a single-slit and around objects Interference patterns Double-slit interference Path difference
Standing waves	4.5	The nature of standing wavesBoundary conditionsNodes and antinodes

Topic #5: Electricity and Magnetism—15 Hours for Both SL and HL

Subtopic	Subtopic Number	IB Points to Understand
Electric fields	5.1	 Charge Electric field Coulomb's law Electric current Direct current (dc) Potential difference
Heating effect of electric currents	5.2	 Circuit diagrams Kirchhoff's circuit laws Heating effect of current and its consequences Resistance expressed as R = V/I Ohm's law Resistivity Power dissipation
Electric cells	5.3	 Cells Internal resistance Secondary cells Terminal potential difference Electromotive force (emf)
Magnetic effects of electric currents	5.4	Magnetic fieldsMagnetic force

Topic #6: Circular Motion and Gravitation—5 Hours for Both SL and HL

Subtopic	Subtopic Number	IB Points to Understand
Circular motion	6.1	 Period, frequency, angular displacement and angular velocity Centripetal force Centripetal acceleration
Newton's law of gravitation	6.2	Newton's law of gravitationGravitational field strength

Topic #7: Atomic, Nuclear and Particle Physics—14 Hours for Both SL and HL

Subtopic	Subtopic Number	IB Points to Understand
Discrete energy and radioactivity	7.1	 Discrete energy and discrete energy levels Transitions between energy levels Radioactive decay Fundamental forces and their properties Alpha particles, beta particles and gamma rays Half-life Absorption characteristics of decay particles Isotopes Background radiation
Nuclear reactions	7.2	 The unified atomic mass unit Mass defect and nuclear binding energy Nuclear fission and nuclear fusion
The structure of matter	7.3	 Quarks, leptons and their antiparticles Hadrons, baryons and mesons The conservation laws of charge, baryon number, lepton number and strangeness The nature and range of the strong nuclear force, weak nuclear force and electromagnetic force Exchange particles Feynman diagrams Confinement The Higgs boson

Subtopic	Subtopic Number	IB Points to Understand
Energy sources	8.1	 Specific energy and energy density of fuel sources Sankey diagrams Primary energy sources Electricity as a secondary and versatile form of energy Renewable and non-renewable energy sources
Thermal energy transfer	8.2	 Conduction, convection and thermal radiation Black-body radiation Albedo and emissivity The solar constant The greenhouse effect Energy balance in the Earth surface- atmosphere system

Topic #8: Energy Production—8 Hours for Both SL and HL

Subtopic	Subtopic Number	IB Points to Understand
Simple harmonic motion (HL ONLY)	9.1	The defining equation of SHMEnergy changes
Single-slit diffraction (HL ONLY)	9.2	• The nature of single-slit diffraction
Interference (HL ONLY)	9.3	 Young's double-slit experiment Modulation of two-slit interference pattern by one-slit diffraction effect Multiple slit and diffraction grating interference patterns Thin film interference
Resolution (HL ONLY)	9.4	 The size of a diffracting aperture The resolution of simple monochromatic two- source systems
Doppler effect (HL ONLY)	9.5	 The Doppler effect for sound waves and light waves

Topic #9: Wave Phenomena—17 Hours for HL Only

Topic #10: Fields—11 Hours for HL only

Subtopic	Subtopic Number	IB Points to Understand
Describing fields (HL ONLY)	10.1	 Gravitational fields Electrostatic fields Electric potential and gravitational potential Field lines Equipotential surfaces
Fields at work (HL ONLY)	10.2	 Potential and potential energy Potential gradient Potential difference Escape speed Orbital motion, orbital speed and orbital energy Forces and inverse-square law behaviour

Topic #11: Electromagnetic Induction—16 Hours for HL Only

Subtopic	Subtopic Number	IB Points to Understand
Electromagnetic induction (HL ONLY)	11.1	 Electromotive force (emf) Magnetic flux and magnetic flux linkage Faraday's law of induction Lenz's law
Power generation and transmission (HL ONLY)	11.2	 Alternating current (ac) generators Average power and root mean square (rms) values of current and voltage Transformers Diode bridges Half-wave and full-wave rectification
Capacitance (HL ONLY)	11.3	 Capacitance Dielectric materials Capacitors in series and parallel Resistor-capacitor (RC) series circuits Time constant

Subtopic	Subtopic Number	IB Points to Understand
The interaction of matter with radiation (HL ONLY)	12.1	 Photons The photoelectric effect Matter waves Pair production and pair annihilation Quantization of angular momentum in the Bohr model for hydrogen The wave function The uncertainty principle for energy and time and position and momentum Tunnelling, potential barrier and factors affecting tunnelling probability
Nuclear physics (HL ONLY)	12.2	 Rutherford scattering and nuclear radius Nuclear energy levels The neutrino The law of radioactive decay and the decay constant

Topic #12: Quantum and Nuclear Physics—16 Hours for HL Only

Option A: Relativity—15	Hours for SL and HL
-------------------------	---------------------

Subtopic	Subtopic Number	IB Points to Understand	
The beginnings of relativity	A.1	 Reference frames Galilean relativity and Newton's postulates concerning time and space Maxwell and the constancy of the speed of light Forces on a charge or current 	
Lorentz transformations	A.2	 The two postulates of special relativity Clock synchronization The Lorentz transformations Velocity addition Invariant quantities (spacetime interval, proper time, proper length and rest mass) Time dilation Length contraction The muon decay experiment 	
Spacetime diagrams	A.3	Spacetime diagramsWorldlinesThe twin paradox	

Subtopic	Subtopic Number	IB Points to Understand	
Relativistic mechanics (HL ONLY)	A.4	 Total energy and rest energy Relativistic momentum Particle acceleration Electric charge as an invariant quantity Photons MeV c^-2 as the unit of mass and MeV c^-1 as the unit of momentum 	
General Relativity (HL ONLY)	A.5	 The equivalence principle The bending of light Gravitational redshift and the Pound-Rebka- Snider experiment Schwarzschild black holes Event horizons Time dilation near a black hole Applications of general relativity to the universe as a whole 	

Additional HL Relativity Topics—10 More Hours for HL

Option B: Engineering Physics—15 Hours for SL and HL

Subtopic	Subtopic Number	IB Points to Understand
Rigid bodies and rotational dynamics	B.1	 Torque Moment of inertia Rotational and translational equilibrium Angular acceleration Equations of rotational motion for uniform angular acceleration Newton's second law applied to angular motion Conservation of angular momentum
Thermodynamics	B.2	 The first law of thermodynamics The second law of thermodynamics Entropy Cyclic processes and pV diagrams Isovolumetric, isobaric, isothermal and adiabatic processes Carnot cycle Thermal efficiency

Subtopic	Subtopic Number	IB Points to Understand
Fluids and fluid dynamics (HL ONLY)	В.З	 Density and pressure Buoyancy and Archimedes' principle Pascal's principle Hydrostatic equilibrium The ideal fluid Streamlines The continuity equation The Bernoulli equation and the Bernoulli effect Stokes' law and viscosity Laminar and turbulent flow and the Reynolds number
Forced vibrations and resonance (HL ONLY)	B.4	 Natural frequency of vibration Q factor and damping Periodic stimulus and the driving frequency Resonance

Additional HL Engineering Physics Topics—10 More Hours for HL

Option C: Imaging—15 Hours for SL and HL

Subtopic	Subtopic Number	IB Points to Understand
Introduction to imaging	C.1	 Thin lenses Converging and diverging lenses Converging and diverging mirrors Ray diagrams Real and virtual images Linear and angular magnification Spherical and chromatic aberrations
Imaging instrumentation	C.2	 Optical compound microscopes Simple optical astronomical refracting telescopes Simple optical astronomical reflecting telescopes Single-dish radio telescopes Radio interferometry telescopes Satellite-borne telescopes
Fibre optics	C.3	 Structure of optic fibres Step-index fibres and graded-index fibres Total internal reflection and critical angle Waveguide and material dispersion in optic fibres Attenuation and the decibel (dB) scale

Subtopic	Subtopic Number	IB Points to Understand	
Medical imaging (HL ONLY)	C.4	 Detection and recording of X-ray images in medical contexts Generation and detection of ultrasound in medical contexts Medical imaging techniques (magnetic resonance imaging) involving nuclear magnetic resonance (NMR) 	

Additional HL Imaging Topics—10 More Hours for HL

Option D: Astrophysics—15 Hours for SL and HL

Subtopic	Subtopic Number	IB Points to Understand
Stellar quantities	D.1	 Objects in the universe The nature of stars Astronomical distances Stellar parallax and its limitations Luminosity and apparent brightness
Stellar characteristics and stellar evolution	D.2	 Stellar spectra Hertzsprung-Russell (HR) diagram Mass-luminosity relation for main sequence stars Cepheid variables Stellar evolution on HR diagrams Red giants, white dwarfs, neutron stars and black holes Chandrasekhar and Oppenheimer- Volkoff limits
Cosmology	D.3	 The Big Bang model Cosmic microwave background (CMB) radiation Hubble's law The accelerating universe and redshift (z) The cosmic scale factor (R)

Additional HL Astrophysics Topics—10 More Hours for HL

Subtopic	Subtopic Number	IB Points to Understand
Stellar processes (HL ONLY)	D.4	 The Jeans criterion Nuclear fusion Nucleosynthesis off the main sequence Type Ia and II supernovae
Further cosmology (HL ONLY)	D.5	 The cosmological principle Rotation curves and the mass of galaxies Dark matter Fluctuations in the CMB The cosmological origin of redshift Critical density Dark energy