Find the derivative of $y = \tan \left(4x^2 - 3x + 1\right)$.

[Show/Hide Solution]

CHECKPOINT 3.41

Use Leibniz's notation to find the derivative of $y = \cos(x^3)$. Make sure that the final answer is expressed entirely in terms of the variable *x*.

Section 3.6 Exercises

For the following exercises, given y = f(u) and u = g(x), find $\frac{dy}{dx}$ by using Leibniz's notation for the chain rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$.

214.
$$y = 3u - 6, u = 2x^2$$

215. $y = 6u^3, u = 7x - 4$
216. $y = \sin u, u = 5x - 1$
217. $y = \cos u, u = \frac{-x}{8}$
218. $y = \tan u, u = 9x + 2$
219. $y = \sqrt{4u + 3}, u = x^2 - 6x$

For each of the following exercises,

a. decompose each function in the form y = f(u) and u = g(x), and b. find $\frac{dy}{dx}$ as a function of x.

220.
$$y = (3x - 2)^{6}$$

221. $y = (3x^{2} + 1)^{3}$
222. $y = \sin^{5}(x)$
223. $y = (\frac{x}{7} + \frac{7}{x})^{7}$
224. $y = \tan(\sec x)$
225. $y = \csc(\pi x + 1)$
226. $y = \cot^{2} x$

227.
$$y = -6(\sin)^{-3}x$$

For the following exercises, find $\frac{dy}{dx}$ for each function.

228.
$$y = (3x^2 + 3x - 1)^4$$

229. $y = (5 - 2x)^{-2}$
230. $y = \cos^3 (\pi x)$
231. $y = (2x^3 - x^2 + 6x + 1)^3$
232. $y = \frac{1}{\sin^2(x)}$
233. $y = (\tan x + \sin x)^{-3}$
234. $y = x^2 \cos^4 x$
235. $y = \sin (\cos 7x)$
236. $y = \sqrt{6 + \sec \pi x^2}$
237. $y = \cot^3 (4x + 1)$
238. Let $y = \int f(x)^2$ and suppose that $f'(x) = 4$ and y

238. Let $y = [f(x)]^2$ and suppose that f'(1) = 4 and $\frac{dy}{dx} = 10$ for x = 1. Find f(1).

239 . Let $y = (f(x) + 5x^2)^4$ and suppose that f(-1) = -4 and $\frac{dy}{dx} = 3$ when x = -1. Find f'(-1)

240. Let $y = (f(u) + 3x)^2$ and $u = x^3 - 2x$. If f(4) = 6 and $\frac{dy}{dx} = 18$ when x = 2, find f'(4).

<u>241</u>. **[T]** Find the equation of the tangent line to $y = -\sin\left(\frac{x}{2}\right)$ at the origin. Use a calculator to graph the function and the tangent line together.

242. **[T]** Find the equation of the tangent line to $y = (3x + \frac{1}{x})^2$ at the point (1, 16). Use a calculator to graph the function and the tangent line together.

<u>243</u>. Find the *x*-coordinates at which the tangent line to $y = \left(x - \frac{6}{x}\right)^8$ is horizontal.

244. **[T]** Find an equation of the line that is normal to $g(\theta) = \sin^2(\pi\theta)$ at the point $(\frac{1}{4}, \frac{1}{2})$. Use a calculator to graph the function and the normal line together.

For the following exercises, use the information in the following table to find h'(a) at the given value for *a*.

3.6 The Chain Rule - Calculus Volume 1 | OpenStax

Х	f(x)	$f'(\mathbf{x})$	g(x)	g'(x)
0	2	5	0	2
1	1	-2	3	0
2	4	4	1	-1
3	3	-3	2	3

245. h(x) = f(g(x)); a = 0246. h(x) = g(f(x)); a = 0247. $h(x) = (x^4 + g(x))^{-2}; a = 1$ 248. $h(x) = (\frac{f(x)}{g(x)})^2; a = 3$ 249. h(x) = f(x + f(x)); a = 1250. $h(x) = (1 + g(x))^3; a = 2$ 251. $h(x) = g(2 + f(x^2)); a = 1$ 252. $h(x) = f(g(\sin x)); a = 0$

<u>253</u>. **[T]** The position function of a freight train is given by $s(t) = 100(t + 1)^{-2}$, with *s* in meters and *t* in seconds. At time t = 6 s, find the train's

- a. velocity and
- b. acceleration.
- c. Using a. and b. is the train speeding up or slowing down?

254 . **[T]** A mass hanging from a vertical spring is in simple harmonic motion as given by the following position function, where t is measured in seconds and s is in inches:

$$s(t) = -3\cos\left(\pi t + \frac{\pi}{4}\right).$$

- a. Determine the position of the spring at t = 1.5 s.
- b. Find the velocity of the spring at t = 1.5 s.

<u>255</u>. **[T]** The total cost to produce x boxes of Thin Mint Girl Scout cookies is C dollars, where $C = 0.0001x^3 - 0.02x^2 + 3x + 300$. In t weeks production is estimated to be x = 1600 + 100t boxes.

- a. Find the marginal cost C'(x).
- b. Use Leibniz's notation for the chain rule, $\frac{dC}{dt} = \frac{dC}{dx} \cdot \frac{dx}{dt}$, to find the rate with respect to time *t* that the cost is changing.

c. Use b. to determine how fast costs are increasing when t = 2 weeks. Include units with the answer.

256. **[T]** The formula for the area of a circle is $A = \pi r^2$, where *r* is the radius of the circle. Suppose a circle is expanding, meaning that both the area *A* and the radius *r* (in inches) are expanding.

a. Suppose $r = 2 - \frac{100}{(t+7)^2}$ where *t* is time in seconds. Use the chain rule

 $\frac{dA}{dt} = \frac{dA}{dr} \cdot \frac{dr}{dt}$ to find the rate at which the area is expanding.

b. Use a. to find the rate at which the area is expanding at t = 4 s.

<u>257</u>. **[T]** The formula for the volume of a sphere is $S = \frac{4}{3}\pi r^3$, where *r* (in feet) is the radius of the sphere. Suppose a spherical snowball is melting in the sun.

a. Suppose $r = \frac{1}{(t+1)^2} - \frac{1}{12}$ where *t* is time in minutes. Use the chain rule dS = dS = dr to find the rate at which the growthall is realized.

 $\frac{dS}{dt} = \frac{dS}{dr} \cdot \frac{dr}{dt}$ to find the rate at which the snowball is melting.

b. Use a. to find the rate at which the volume is changing at t = 1 min.

258. **[T]** The daily temperature in degrees Fahrenheit of Phoenix in the summer can be modeled by the function $T(x) = 94 - 10\cos\left[\frac{\pi}{12}(x-2)\right]$, where x is hours after midnight. Find the rate at which the temperature is changing at 4 p.m.

<u>259</u>. **[T]** The depth (in feet) of water at a dock changes with the rise and fall of tides. The depth is modeled by the function $D(t) = 5 \sin \left(\frac{\pi}{6}t - \frac{7\pi}{6}\right) + 8$, where *t* is the number of hours after midnight. Find the rate at which the depth is changing at 6 a.m.