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PREFACE

Welcome to University Physics, an OpenStax
resource. This textbook was written to increase
student access to high-quality learning materials,
maintaining highest standards of academic rigor at
little to no cost.

About OpenStax

OpenStax is a nonprofit based at Rice University,
and it’s our mission to improve student access to
education. Our first openly licensed college textbook
was published in 2012 and our library has since
scaled to over 25 books used by hundreds of
thousands of students across the globe. OpenStax
Tutor, our low-cost personalized learning tool, is
being used in college courses throughout the
country. The OpenStax mission is made possible
through the generous support of philanthropic
foundations. Through these partnerships and with
the help of additional low-cost resources from our
OpenStax partners, OpenStax is breaking down the
most common barriers to learning and empowering
students and instructors to succeed.

About OpenStax's resources

Customization

University Physics is licensed under a Creative
Commons Attribution 4.0 International (CC BY)
license, which means that you can distribute, remix,
and build upon the content, as long as you provide
attribution to OpenStax and its content contributors.

Because our books are openly licensed, you are free
to use the entire book or pick and choose the
sections that are most relevant to the needs of your
course. Feel free to remix the content by assigning
your students certain chapters and sections in your
syllabus in the order that you prefer. You can even
provide a direct link in your syllabus to the sections
in the web view of your book.

Instructors also have the option of creating a
customized version of their OpenStax book. The
custom version can be made available to students in
low-cost print or digital form through their campus
bookstore. Visit your book page on OpenStax.org for
more information.

Errata

All OpenStax textbooks undergo a rigorous review
process. However, like any professional-grade
textbook, errors sometimes occur. Since our books

are web based, we can make updates periodically
when deemed pedagogically necessary. If you have a
correction to suggest, submit it through the link on
your book page on OpenStax.org. Subject matter
experts review all errata suggestions. OpensStax is
committed to remaining transparent about all
updates, so you will also find a list of past errata
changes on your book page on OpenStax.org.

Format

You can access this textbook for free in web view or
PDF through OpenStax.org, and for a low cost in
print.

About University Physics

University Physics is designed for the two- or three-
semester calculus-based physics course. The text
has been developed to meet the scope and sequence
of most university physics courses and provides a
foundation for a career in mathematics, science, or
engineering. The book provides an important
opportunity for students to learn the core concepts
of physics and understand how those concepts apply
to their lives and to the world around them.

Due to the comprehensive nature of the material, we
are offering the book in three volumes for flexibility
and efficiency.

Coverage and scope

Our University Physics textbook adheres to the
scope and sequence of most two- and three-
semester physics courses nationwide. We have
worked to make physics interesting and accessible
to students while maintaining the mathematical
rigor inherent in the subject. With this objective in
mind, the content of this textbook has been
developed and arranged to provide a logical
progression from fundamental to more advanced
concepts, building upon what students have already
learned and emphasizing connections between
topics and between theory and applications. The
goal of each section is to enable students not just to
recognize concepts, but to work with them in ways
that will be useful in later courses and future
careers. The organization and pedagogical features
were developed and vetted with feedback from
science educators dedicated to the project.

VOLUME 1

Unit 1: Mechanics
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Pedagogical foundation

Throughout University Physics you will find
derivations of concepts that present classical ideas
and techniques, as well as modern applications and
methods. Most chapters start with observations or
experiments that place the material in a context of
physical experience. Presentations and explanations
rely on years of classroom experience on the part of
long-time physics professors, striving for a balance
of clarity and rigor that has proven successful with
their students. Throughout the text, links enable
students to review earlier material and then return
to the present discussion, reinforcing connections
between topics. Key historical figures and
experiments are discussed in the main text (rather
than in boxes or sidebars), maintaining a focus on
the development of physical intuition. Key ideas,
definitions, and equations are highlighted in the text
and listed in summary form at the end of each
chapter. Examples and chapter-opening images
often include contemporary applications from daily
life or modern science and engineering that
students can relate to, from smart phones to the
internet to GPS devices.

Assessments that reinforce key concepts
In-chapter Examples generally follow a three-part
format of Strategy, Solution, and Significance to
emphasize how to approach a problem, how to work
with the equations, and how to check and generalize
the result. Examples are often followed by Check
Your Understanding questions and answers to help
reinforce for students the important ideas of the
examples. Problem-Solving Strategies in each
chapter break down methods of approaching
various types of problems into steps students can
follow for guidance. The book also includes
exercises at the end of each chapter so students can
practice what they’ve learned.

« Conceptual questions do not require
calculation but test student learning of the key
concepts.

- Problems categorized by section test student
problem-solving skills and the ability to apply
ideas to practical situations.

« Additional Problems apply knowledge across
the chapter, forcing students to identify what



concepts and equations are appropriate for
solving given problems. Randomly located
throughout the problems are Unreasonable
Results exercises that ask students to evaluate
the answer to a problem and explain why it is
not reasonable and what assumptions made
might not be correct.

« Challenge Problems extend text ideas to
interesting but difficult situations.

Answers for selected exercises are available in an
Answer Key at the end of the book.

Additional resources

Student and instructor resources

We’ve compiled additional resources for both
students and instructors, including Getting Started
Guides, PowerPoint slides, and answer and solution
guides for instructors and students. Instructor
resources require a verified instructor account,
which you can apply for when you log in or create
your account on OpenStax.org. Take advantage of
these resources to supplement your OpenStax book.

Community Hubs

OpenStax partners with the Institute for the Study of
Knowledge Management in Education (ISKME) to
offer Community Hubs on OER Commons — a
platform for instructors to share community-created
resources that support OpenStax books, free of
charge. Through our Community Hubs, instructors
can upload their own materials or download
resources to use in their own courses, including
additional ancillaries, teaching material,
multimedia, and relevant course content. We
encourage instructors to join the hubs for the
subjects most relevant to your teaching and
research as an opportunity both to enrich your
courses and to engage with other faculty.

To reach the Community Hubs, visit
www.oercommons.org/hubs/OpenStax
(https://www.oercommons.org/hubs/OpenStax) .

Partner resources

OpensStax partners are our allies in the mission to
make high-quality learning materials affordable and
accessible to students and instructors everywhere.
Their tools integrate seamlessly with our OpenStax
titles at a low cost. To access the partner resources
for your text, visit your book page on OpenStax.org.
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CHAPTER 1
Units and Measurement

Figure 1.1 This image might be showing any number of things. It might be a whirlpool in a tank of water or perhaps
a collage of paint and shiny beads done for art class. Without knowing the size of the object in units we all recognize,
such as meters or inches, it is difficult to know what we’re looking at. In fact, this image shows the Whirlpool Galaxy
(and its companion galaxy), which is about 60,000 light-years in diameter (about 6 X 107km across). (credit:
modification of work by S. Beckwith (STScI) Hubble Heritage Team, (STScI/AURA), ESA, NASA)

Chapter Outline

1.1 The Scope and Scale of Physics

1.2 Units and Standards

1.3 Unit Conversion

1.4 Dimensional Analysis

1.5 Estimates and Fermi Calculations

1.6 Significant Figures

1.7 Solving Problems in Physics




INTRODUCTION As noted in the figure caption, the chapter-opening image is of the Whirlpool Galaxy, which
we examine in the first section of this chapter. Galaxies are as immense as atoms are small, yet the same laws
of physics describe both, along with all the rest of nature—an indication of the underlying unity in the universe.
The laws of physics are surprisingly few, implying an underlying simplicity to nature’s apparent complexity. In
this text, you learn about the laws of physics. Galaxies and atoms may seem far removed from your daily life,
but as you begin to explore this broad-ranging subject, you may soon come to realize that physics plays a much
larger role in your life than you first thought, no matter your life goals or career choice.

1.1 The Scope and Scale of Physics

Learning Objectives
By the end of this section, you will be able to:
e Describe the scope of physics.
e Calculate the order of magnitude of a quantity.
e Compare measurable length, mass, and timescales quantitatively.
e Describe the relationships among models, theories, and laws.

Physics is devoted to the understanding of all natural phenomena. In physics, we try to understand physical
phenomena at all scales—from the world of subatomic particles to the entire universe. Despite the breadth of
the subject, the various subfields of physics share a common core. The same basic training in physics will
prepare you to work in any area of physics and the related areas of science and engineering. In this section, we
investigate the scope of physics; the scales of length, mass, and time over which the laws of physics have been
shown to be applicable; and the process by which science in general, and physics in particular, operates.

The Scope of Physics

Take another look at the chapter-opening image. The Whirlpool Galaxy contains billions of individual stars as
well as huge clouds of gas and dust. Its companion galaxy is also visible to the right. This pair of galaxies lies a
staggering billion trillion miles (1.4 X 102! mi) from our own galaxy (which is called the Milky Way). The stars
and planets that make up the Whirlpool Galaxy might seem to be the furthest thing from most people’s
everyday lives, but the Whirlpool is a great starting point to think about the forces that hold the universe
together. The forces that cause the Whirlpool Galaxy to act as it does are thought to be the same forces we
contend with here on Earth, whether we are planning to send a rocket into space or simply planning to raise
the walls for a new home. The gravity that causes the stars of the Whirlpool Galaxy to rotate and revolve is
thought to be the same as what causes water to flow over hydroelectric dams here on Earth. When you look up
at the stars, realize the forces out there are the same as the ones here on Earth. Through a study of physics, you
may gain a greater understanding of the interconnectedness of everything we can see and know in this
universe.

Think, now, about all the technological devices you use on a regular basis. Computers, smartphones, global
positioning systems (GPSs), MP3 players, and satellite radio might come to mind. Then, think about the most
exciting modern technologies you have heard about in the news, such as trains that levitate above tracks,
“invisibility cloaks” that bend light around them, and microscopic robots that fight cancer cells in our bodies.
All these groundbreaking advances, commonplace or unbelievable, rely on the principles of physics. Aside
from playing a significant role in technology, professionals such as engineers, pilots, physicians, physical
therapists, electricians, and computer programmers apply physics concepts in their daily work. For example, a
pilot must understand how wind forces affect a flight path; a physical therapist must understand how the
muscles in the body experience forces as they move and bend. As you will learn in this text, the principles of
physics are propelling new, exciting technologies, and these principles are applied in a wide range of careers.

The underlying order of nature makes science in general, and physics in particular, interesting and enjoyable
to study. For example, what do a bag of chips and a car battery have in common? Both contain energy that can
be converted to other forms. The law of conservation of energy (which says that energy can change form but is
never lost) ties together such topics as food calories, batteries, heat, light, and watch springs. Understanding
this law makes it easier to learn about the various forms energy takes and how they relate to one another.
Apparently unrelated topics are connected through broadly applicable physical laws, permitting an



understanding beyond just the memorization of lists of facts.

Science consists of theories and laws that are the general truths of nature, as well as the body of knowledge
they encompass. Scientists are continuously trying to expand this body of knowledge and to perfect the
expression of the laws that describe it. Physics, which comes from the Greek phtsis, meaning “nature,” is
concerned with describing the interactions of energy, matter, space, and time to uncover the fundamental
mechanisms that underlie every phenomenon. This concern for describing the basic phenomena in nature
essentially defines the scope of physics.

Physics aims to understand the world around us at the most basic level. It emphasizes the use of a small
number of quantitative laws to do this, which can be useful to other fields pushing the performance
boundaries of existing technologies. Consider a smartphone (Figure 1.2). Physics describes how electricity
interacts with the various circuits inside the device. This knowledge helps engineers select the appropriate
materials and circuit layout when building a smartphone. Knowledge of the physics underlying these devices
is required to shrink their size or increase their processing speed. Or, think about a GPS. Physics describes the
relationship between the speed of an object, the distance over which it travels, and the time it takes to travel
that distance. When you use a GPS in a vehicle, it relies on physics equations to determine the travel time from
one location to another.

Figure 1.2 The Apple iPhone is a common smartphone with a GPS function. Physics describes the way that electricity flows through the
circuits of this device. Engineers use their knowledge of physics to construct an iPhone with features that consumers will enjoy. One
specific feature of an iPhone is the GPS function. A GPS uses physics equations to determine the drive time between two locations on a

map. (credit: Jane Whitney)

Knowledge of physics is useful in everyday situations as well as in nonscientific professions. It can help you
understand how microwave ovens work, why metals should not be put into them, and why they might affect
pacemakers. Physics allows you to understand the hazards of radiation and to evaluate these hazards
rationally and more easily. Physics also explains the reason why a black car radiator helps remove heat in a car
engine, and it explains why a white roof helps keep the inside of a house cool. Similarly, the operation of a car’s
ignition system as well as the transmission of electrical signals throughout our body’s nervous system are
much easier to understand when you think about them in terms of basic physics.

Physics is a key element of many important disciplines and contributes directly to others. Chemistry, for
example—since it deals with the interactions of atoms and molecules—has close ties to atomic and molecular
physics. Most branches of engineering are concerned with designing new technologies, processes, or
structures within the constraints set by the laws of physics. In architecture, physics is at the heart of structural



stability and is involved in the acoustics, heating, lighting, and cooling of buildings. Parts of geology rely
heavily on physics, such as radioactive dating of rocks, earthquake analysis, and heat transfer within Earth.
Some disciplines, such as biophysics and geophysics, are hybrids of physics and other disciplines.

Physics has many applications in the biological sciences. On the microscopic level, it helps describe the
properties of cells and their environments. On the macroscopic level, it explains the heat, work, and power
associated with the human body and its various organ systems. Physics is involved in medical diagnostics,
such as radiographs, magnetic resonance imaging, and ultrasonic blood flow measurements. Medical therapy
sometimes involves physics directly; for example, cancer radiotherapy uses ionizing radiation. Physics also
explains sensory phenomena, such as how musical instruments make sound, how the eye detects color, and
how lasers transmit information.

It is not necessary to study all applications of physics formally. What is most useful is knowing the basic laws of
physics and developing skills in the analytical methods for applying them. The study of physics also can
improve your problem-solving skills. Furthermore, physics retains the most basic aspects of science, so it is
used by all the sciences, and the study of physics makes other sciences easier to understand.

The Scale of Physics

From the discussion so far, it should be clear that to accomplish your goals in any of the various fields within
the natural sciences and engineering, a thorough grounding in the laws of physics is necessary. The reason for
this is simply that the laws of physics govern everything in the observable universe at all measurable scales of
length, mass, and time. Now, that is easy enough to say, but to come to grips with what it really means, we need
to get a little bit quantitative. So, before surveying the various scales that physics allows us to explore, let’s first
look at the concept of “order of magnitude,” which we use to come to terms with the vast ranges of length,
mass, and time that we consider in this text (Figure 1.3).

{a) (b) (€
Figure 1.3 (a) Using a scanning tunneling microscope, scientists can see the individual atoms (diameters around 1072% m) that compose
this sheet of gold. (b) Tiny phytoplankton swim among crystals of ice in the Antarctic Sea. They range from a few micrometers (1 um is 107°
m) to as much as 2 mm (1 mm is 1073 m) in length. (c) These two colliding galaxies, known as NGC 4676A (right) and NGC 4676B (left), are
nicknamed “The Mice” because of the tail of gas emanating from each one. They are located 300 million light-years from Earth in the
constellation Coma Berenices. Eventually, these two galaxies will merge into one. (credit a: modification of work by
"Erwinrossen"/Wikimedia Commons; credit b: modification of work by Prof. Gordon T. Taylor, Stony Brook University; NOAA Corps
Collections; credit c: modification of work by NASA, H. Ford (JHU), G. Illingworth (UCSC/LO), M. Clampin (STScl), G. Hartig (STScI), the ACS

Science Team, and ESA)

Order of magnitude

The order of magnitude of a number is the power of 10 that most closely approximates it. Thus, the order of
magnitude refers to the scale (or size) of a value. Each power of 10 represents a different order of magnitude.
For example, 10!, 102, 103 , and so forth, are all different orders of magnitude, as are 100 = 1,107, 10_2, and
1073, To find the order of magnitude of a number, take the base-10 logarithm of the number and round it to
the nearest integer, then the order of magnitude of the number is simply the resulting power of 10. For
example, the order of magnitude of 800 is 10° because log;(800 = 2.903, which rounds to 3. Similarly, the



order of magnitude of 450 is 102 because log; (450 ~ 2.653, which rounds to 3 as well. Thus, we say the
numbers 800 and 450 are of the same order of magnitude: 103. However, the order of magnitude of 250 is 102
because log;(;250 ~ 2.397, which rounds to 2.

An equivalent but quicker way to find the order of magnitude of a number is first to write it in scientific
notation and then check to see whether the first factor is greater than or less than \/E =109 % 3. The idea
is that \/ﬁ = 107 is halfway between 1 = 10° and 10 = 10! on a log base-10 scale. Thus, if the first factor is
less than 4/10, then we round it down to 1 and the order of magnitude is simply whatever power of 10 is

required to write the number in scientific notation. On the other hand, if the first factor is greater than \/E,
then we round it up to 10 and the order of magnitude is one power of 10 higher than the power needed to write
the number in scientific notation. For example, the number 800 can be written in scientific notation as

8 x 10%. Because 8 is bigger than \/E ~ 3, we say the order of magnitude of 800 is 102! = 103. The number
450 can be written as 4.5 X 102, so its order of magnitude is also 10% because 4.5 is greater than 3. However,
250 written in scientific notation is 2.5 X 102 and 2.5 is less than 3, so its order of magnitude is 102,

The order of magnitude of a number is designed to be a ballpark estimate for the scale (or size) of its value. It is
simply a way of rounding numbers consistently to the nearest power of 10. This makes doing rough mental
math with very big and very small numbers easier. For example, the diameter of a hydrogen atom is on the
order of 10710 m, whereas the diameter of the Sun is on the order of 10° m, so it would take roughly

10°/10719 = 10!° hydrogen atoms to stretch across the diameter of the Sun. This is much easier to do in your
head than using the more precise values of 1.06 X 10~1%m fora hydrogen atom diameter and 1.39 X 10°m
for the Sun’s diameter, to find that it would take 1.31 x 10!° hydrogen atoms to stretch across the Sun’s
diameter. In addition to being easier, the rough estimate is also nearly as informative as the precise
calculation.

Known ranges of length, mass, and time

The vastness of the universe and the breadth over which physics applies are illustrated by the wide range of
examples of known lengths, masses, and times (given as orders of magnitude) in Figure 1.4. Examining this
table will give you a feeling for the range of possible topics in physics and numerical values. A good way to
appreciate the vastness of the ranges of values in Figure 1.4 is to try to answer some simple comparative
questions, such as the following:

+ How many hydrogen atoms does it take to stretch across the diameter of the Sun?
(Answer: 10° m/10719 m = 10° hydrogen atoms)

+ How many protons are there in a bacterium?
(Answer: 1071° kg/10727 kg = 1012 protons)

+ How many floating-point operations can a supercomputer do in 1 day?
(Answer: 10° s/10717 s = 1022 floating-point operations)

In studying Figure 1.4, take some time to come up with similar questions that interest you and then try
answering them. Doing this can breathe some life into almost any table of numbers.
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1 ¢ Units and Measurement

Length in Meters (m) Masses in Kilograms (kg) Time in Seconds (s)

1022 5 = mean lifetime of very

=15 = tli 30 =
1075 m = diameter of proton 10~ kg = mass of electron unstable nucleus

10-17 5 = time for single floating-point
operation in a supercomputer

10715 5 = time for one oscillation of
visible light

1071 m = diameter of large nucleus | 10727 kg = mass of proton

1010 m = diameter of hydrogen atom | 10715 kg = mass of bacterium

10-12 5 = time for one vibration of an
atom in a solid

10-% s = duration of a nerve impulse

10" m = diameter of typical virus 107 kg = mass of mosquito

10-% m = pinky fingernail width 1072 kg = mass of hummingbird
10% m = height of 3 i 100 kg = mass of 109 s = time for
4 year old child ‘ liter of water one heartbeat

10° 5 = one day

10 m = length of football field 107 kg = mass of person
' [ 107 5 =
107 m = diameter of Earth 10 kg = mass of atmosphere R e OO Y00
10" m = diameter of solar system 1072 kg = mass of Moon 10% s = human lifetime
1016 m = distance light rravels ' B 10* 5 = recorded human history
in a year {one light-year) 107 kg = mass of Earth
102 m = Milky Way diameter 10%° kg = mass of Sun 10% 5 =-ageof Earh
10?6 m = distance to edge of 1053 kg = upper limit on mass of 108 5 = age of the universe
observable universe known universe

Figure 1.4 This table shows the orders of magnitude of length, mass, and time.

@ INTERACTIVE

Visit this site (https://openstax.org/l/21scaleuniv) to explore interactively the vast range of length scales in our
universe. Scroll down and up the scale to view hundreds of organisms and objects, and click on the individual
objects to learn more about each one.

Building Models

How did we come to know the laws governing natural phenomena? What we refer to as the laws of nature are
concise descriptions of the universe around us. They are human statements of the underlying laws or rules
that all natural processes follow. Such laws are intrinsic to the universe; humans did not create them and
cannot change them. We can only discover and understand them. Their discovery is a very human endeavor,
with all the elements of mystery, imagination, struggle, triumph, and disappointment inherent in any creative
effort (Figure 1.5). The cornerstone of discovering natural laws is observation; scientists must describe the
universe as it is, not as we imagine it to be.

Access for free at openstax.org.


https://openstax.org/l/21scaleuniv

{a) Enrico Fermi (k) Marie Curie

Figure 1.5 (a) Enrico Fermi (1901-1954) was born in Italy. On accepting the Nobel Prize in Stockholm in 1938 for his work on artificial
radioactivity produced by neutrons, he took his family to America rather than return home to the government in power at the time. He
became an American citizen and was a leading participant in the Manhattan Project. (b) Marie Curie (1867-1934) sacrificed monetary
assets to help finance her early research and damaged her physical well-being with radiation exposure. She is the only person to win Nobel
prizes in both physics and chemistry. One of her daughters also won a Nobel Prize. (credit a: modification of work by United States

Department of Energy)

A model is a representation of something that is often too difficult (or impossible) to display directly. Although
a model is justified by experimental tests, it is only accurate in describing certain aspects of a physical system.
An example is the Bohr model of single-electron atoms, in which the electron is pictured as orbiting the
nucleus, analogous to the way planets orbit the Sun (Figure 1.6). We cannot observe electron orbits directly, but
the mental image helps explain some of the observations we can make, such as the emission of light from hot
gases (atomic spectra). However, other observations show that the picture in the Bohr model is not really what
atoms look like. The model is “wrong,” but is still useful for some purposes. Physicists use models for a variety
of purposes. For example, models can help physicists analyze a scenario and perform a calculation or models
can be used to represent a situation in the form of a computer simulation. Ultimately, however, the results of
these calculations and simulations need to be double-checked by other means—namely, observation and
experimentation.

A
\ AE =i

n=2
.. ". 1 .. ¥
J +E£F_'«

Figure 1.6 What is a model? The Bohr model of a single-electron atom shows the electron orbiting the nucleus in one of several possible

circular orbits. Like all models, it captures some, but not all, aspects of the physical system.

The word theory means something different to scientists than what is often meant when the word is used in



everyday conversation. In particular, to a scientist a theory is not the same as a “guess” or an “idea” or even a
“hypothesis.” The phrase “it’s just a theory” seems meaningless and silly to scientists because science is
founded on the notion of theories. To a scientist, a theory is a testable explanation for patterns in nature
supported by scientific evidence and verified multiple times by various groups of researchers. Some theories
include models to help visualize phenomena whereas others do not. Newton’s theory of gravity, for example,
does not require a model or mental image, because we can observe the objects directly with our own senses.
The kinetic theory of gases, on the other hand, is a model in which a gas is viewed as being composed of atoms
and molecules. Atoms and molecules are too small to be observed directly with our senses—thus, we picture
them mentally to understand what the instruments tell us about the behavior of gases. Although models are
meant only to describe certain aspects of a physical system accurately, a theory should describe all aspects of
any system that falls within its domain of applicability. In particular, any experimentally testable implication of
a theory should be verified. If an experiment ever shows an implication of a theory to be false, then the theory
is either thrown out or modified suitably (for example, by limiting its domain of applicability).

Alaw uses concise language to describe a generalized pattern in nature supported by scientific evidence and
repeated experiments. Often, a law can be expressed in the form of a single mathematical equation. Laws and
theories are similar in that they are both scientific statements that result from a tested hypothesis and are
supported by scientific evidence. However, the designation law is usually reserved for a concise and very
general statement that describes phenomena in nature, such as the law that energy is conserved during any
process, or Newton’s second law of motion, which relates force (F), mass (im), and acceleration (a) by the simple
equation F' = ma. A theory, in contrast, is a less concise statement of observed behavior. For example, the
theory of evolution and the theory of relativity cannot be expressed concisely enough to be considered laws.
The biggest difference between a law and a theory is that a theory is much more complex and dynamic. A law
describes a single action whereas a theory explains an entire group of related phenomena. Less broadly
applicable statements are usually called principles (such as Pascal’s principle, which is applicable only in
fluids), but the distinction between laws and principles often is not made carefully.

The models, theories, and laws we devise sometimes imply the existence of objects or phenomena that are as
yet unobserved. These predictions are remarkable triumphs and tributes to the power of science. It is the
underlying order in the universe that enables scientists to make such spectacular predictions. However, if
experimentation does not verify our predictions, then the theory or law is wrong, no matter how elegant or
convenient it is. Laws can never be known with absolute certainty because it is impossible to perform every
imaginable experiment to confirm a law for every possible scenario. Physicists operate under the assumption
that all scientific laws and theories are valid until a counterexample is observed. If a good-quality, verifiable
experiment contradicts a well-established law or theory, then the law or theory must be modified or
overthrown completely.

The study of science in general, and physics in particular, is an adventure much like the exploration of an
uncharted ocean. Discoveries are made; models, theories, and laws are formulated; and the beauty of the
physical universe is made more sublime for the insights gained.

1.2 Units and Standards

Learning Objectives

By the end of this section, you will be able to:
e Describe how Sl base units are defined.
e Describe how derived units are created from base units.
e Express quantities given in Sl units using metric prefixes.

As we saw previously, the range of objects and phenomena studied in physics is immense. From the incredibly
short lifetime of a nucleus to the age of Earth, from the tiny sizes of subnuclear particles to the vast distance to
the edges of the known universe, from the force exerted by a jumping flea to the force between Earth and the
Sun, there are enough factors of 10 to challenge the imagination of even the most experienced scientist. Giving
numerical values for physical quantities and equations for physical principles allows us to understand nature
much more deeply than qualitative descriptions alone. To comprehend these vast ranges, we must also have
accepted units in which to express them. We shall find that even in the potentially mundane discussion of



meters, kilograms, and seconds, a profound simplicity of nature appears: all physical quantities can be
expressed as combinations of only seven base physical quantities.

We define a physical quantity either by specifying how it is measured or by stating how it is calculated from
other measurements. For example, we might define distance and time by specifying methods for measuring
them, such as using a meter stick and a stopwatch. Then, we could define average speed by stating that it is
calculated as the total distance traveled divided by time of travel.

Measurements of physical quantities are expressed in terms of units, which are standardized values. For
example, the length of a race, which is a physical quantity, can be expressed in units of meters (for sprinters) or
kilometers (for distance runners). Without standardized units, it would be extremely difficult for scientists to
express and compare measured values in a meaningful way (Figure 1.7).

| wonder
how big
a cable is?

Figure 1.7 Distances given in unknown units are maddeningly useless.

Two major systems of units are used in the world: SI units (for the French Systéme International d’Unités),
also known as the metric system, and English units (also known as the customary or imperial system). English
units were historically used in nations once ruled by the British Empire and are still widely used in the United
States. English units may also be referred to as the foot—pound-second (fps) system, as opposed to the
centimeter—-gram-second (cgs) system. You may also encounter the term SAFE units, named after the Society of
Automotive Engineers. Products such as fasteners and automotive tools (for example, wrenches) that are
measured in inches rather than metric units are referred to as SAE fasteners or SAE wrenches.

Virtually every other country in the world (except the United States) now uses SI units as the standard. The
metric system is also the standard system agreed on by scientists and mathematicians.

S| Units: Base and Derived Units

In any system of units, the units for some physical quantities must be defined through a measurement process.
These are called the base quantities for that system and their units are the system’s base units. All other
physical quantities can then be expressed as algebraic combinations of the base quantities. Each of these
physical quantities is then known as a derived quantity and each unit is called a derived unit. The choice of
base quantities is somewhat arbitrary, as long as they are independent of each other and all other quantities
can be derived from them. Typically, the goal is to choose physical quantities that can be measured accurately
to a high precision as the base quantities. The reason for this is simple. Since the derived units can be

expressed as algebraic combinations of the base units, they can only be as accurate and precise as the base
units from which they are derived.

Based on such considerations, the International Standards Organization recommends using seven base
quantities, which form the International System of Quantities (ISQ). These are the base quantities used to
define the SI base units. Table 1.1 lists these seven ISQ base quantities and the corresponding SI base units.



ISQ Base Quantity Sl Base Unit

Length meter (m)
Mass kilogram (kg)
Time second (s)
Electrical current ampere (A)

Thermodynamic temperature | kelvin (K)

Amount of substance mole (mol)

Luminous intensity candela (cd)

Table 1.1 ISQ Base Quantities and Their SI Units

You are probably already familiar with some derived quantities that can be formed from the base quantities in
Table 1.1. For example, the geometric concept of area is always calculated as the product of two lengths. Thus,
area is a derived quantity that can be expressed in terms of SI base units using square meters (m X m = mz).
Similarly, volume is a derived quantity that can be expressed in cubic meters (m3). Speed is length per time; so
in terms of SI base units, we could measure it in meters per second (m/s). Volume mass density (or just
density) is mass per volume, which is expressed in terms of SI base units such as kilograms per cubic meter
(kg/m3). Angles can also be thought of as derived quantities because they can be defined as the ratio of the arc
length subtended by two radii of a circle to the radius of the circle. This is how the radian is defined. Depending
on your background and interests, you may be able to come up with other derived quantities, such as the mass
flow rate (kg/s) or volume flow rate (m?/s) of a fluid, electric charge (A - s), mass flux density [kg/(m2 -s)], and
so on. We will see many more examples throughout this text. For now, the point is that every physical quantity
can be derived from the seven base quantities in Table 1.1, and the units of every physical quantity can be
derived from the seven SI base units.

For the most part, we use SI units in this text. Non-SI units are used in a few applications in which they are in
very common use, such as the measurement of temperature in degrees Celsius (°C), the measurement of fluid
volume in liters (L), and the measurement of energies of elementary particles in electron-volts (eV). Whenever

non-SI units are discussed, they are tied to SI units through conversions. For example, 1 L is 1073 m3.

INTERACTIVE

Check out a comprehensive source of information on SI units (https://openstax.org/1/21SIUnits) at the National
Institute of Standards and Technology (NIST) Reference on Constants, Units, and Uncertainty.

Units of Time, Length, and Mass: The Second, Meter, and Kilogram

The initial chapters in this textbook are concerned with mechanics, fluids, and waves. In these subjects all
pertinent physical quantities can be expressed in terms of the base units of length, mass, and time. Therefore,
we now turn to a discussion of these three base units, leaving discussion of the others until they are needed
later.

The second

The SI unit for time, the second (abbreviated s), has a long history. For many years it was defined as 1/86,400
of a mean solar day. More recently, a new standard was adopted to gain greater accuracy and to define the
second in terms of a nonvarying or constant physical phenomenon (because the solar day is getting longer as a
result of the very gradual slowing of Earth’s rotation). Cesium atoms can be made to vibrate in a very steady


https://openstax.org/l/21SIUnits

way, and these vibrations can be readily observed and counted. In 1967, the second was redefined as the time
required for 9,192,631,770 of these vibrations to occur (Figure 1.8). Note that this may seem like more
precision than you would ever need, but it isn’t—GPSs rely on the precision of atomic clocks to be able to give
you turn-by-turn directions on the surface of Earth, far from the satellites broadcasting their location.

Figure 1.8 An atomic clock such as this one uses the vibrations of cesium atoms to keep time to a precision of better than a microsecond
per year. The fundamental unit of time, the second, is based on such clocks. This image looks down from the top of an atomic fountain

nearly 30 feet tall. (credit: Steve Jurvetson)

The meter

The SI unit for length is the meter (abbreviated m); its definition has also changed over time to become more
precise. The meter was first defined in 1791 as 1/10,000,000 of the distance from the equator to the North
Pole. This measurement was improved in 1889 by redefining the meter to be the distance between two
engraved lines on a platinum—iridium bar now kept near Paris. By 1960, it had become possible to define the
meter even more accurately in terms of the wavelength of light, so it was again redefined as 1,650,763.73
wavelengths of orange light emitted by krypton atoms. In 1983, the meter was given its current definition (in
part for greater accuracy) as the distance light travels in a vacuum in 1/299,792,458 of a second (Figure 1.9).
This change came after knowing the speed of light to be exactly 299,792,458 m/s. The length of the meter will
change if the speed of light is someday measured with greater accuracy.

Light travels a distance of 1 meter
in 1/299,792,458 of a second

Figure 1.9 The meter is defined to be the distance light travels in 1/299,792,458 of a second in a vacuum. Distance traveled is speed

multiplied by time.

The kilogram

The SI unit for mass is the kilogram (abbreviated kg); From 1795-2018 it was defined to be the mass of a
platinum—iridium cylinder kept with the old meter standard at the International Bureau of Weights and
Measures near Paris. However, this cylinder has lost roughly 50 micrograms since it was created. Because this
is the standard, this has shifted how we defined a kilogram. Therefore, a new definition was adopted in May
2019 based on the Planck constant and other constants which will never change in value. We will study
Planck’s constant in quantum mechanics, which is an area of physics that describes how the smallest pieces of
the universe work. The kilogram is measured on a Kibble balance (see Figure 1.10). When a weight is placed on
a Kibble balance, an electrical current is produced that is proportional to Planck’s constant. Since Planck’s
constant is defined, the exact current measurements in the balance define the kilogram.



Figure 1.10 Redefining the SI unit of mass. The U.S. National Institute of Standards and Technology’s Kibble balance is a machine that

balances the weight of a test mass with the resulting electrical current needed for a force to balance it.

Metric Prefixes

SI units are part of the metric system, which is convenient for scientific and engineering calculations because
the units are categorized by factors of 10. Table 1.2 lists the metric prefixes and symbols used to denote
various factors of 10 in SI units. For example, a centimeter is one-hundredth of a meter (in symbols, 1 cm =
1072 m) and a kilometer is a thousand meters (1 km = 10° m). Similarly, a megagram is a million grams (1 Mg =
10° g), a nanosecond is a billionth of a second (1 ns = 1077 s), and a terameter is a trillion meters (1 Tm = 1012
m).



Prefix Symbol Meaning Prefix Symbol Meaning

yotta- | Y 1024 yocto- |y 1024
zetta- | Z 1021 zepto- | z 10721
exa- E 1018 atto- a 10-18
peta- | P 10%° femto- | f 10715
tera- T 1012 pico- D 10712
giga- | G 10° nano- | n 1079
mega- | M 100 micro- | u 1076
kilo- k 103 milli- | m 1073
hecto- | h 102 centi- | c 1072
deka- | da 10! deci- | d 10-1

Table 1.2 Metric Prefixes for Powers of 10 and Their Symbols

The only rule when using metric prefixes is that you cannot “double them up.” For example, if you have
measurements in petameters (1 Pm = 10° m), it is not proper to talk about megagigameters, although

10° x 10° = 10'. In practice, the only time this becomes a bit confusing is when discussing masses. As we
have seen, the base SI unit of mass is the kilogram (kg), but metric prefixes need to be applied to the gram (g),
because we are not allowed to “double-up” prefixes. Thus, a thousand kilograms (103 kg) is written as a
megagram (1 Mg) since

10°kg = 10° x 10°g = 10°g = 1 Mg.

Incidentally, 103 kg is also called a metric ton, abbreviated t. This is one of the units outside the SI system
considered acceptable for use with SI units.

As we see in the next section, metric systems have the advantage that conversions of units involve only powers
of 10. There are 100 cm in 1 m, 1000 m in 1 km, and so on. In nonmetric systems, such as the English system
of units, the relationships are not as simple—there are 12 in. in 1 ft, 5280 ft in 1 mi, and so on.

Another advantage of metric systems is that the same unit can be used over extremely large ranges of values
simply by scaling it with an appropriate metric prefix. The prefix is chosen by the order of magnitude of
physical quantities commonly found in the task at hand. For example, distances in meters are suitable in
construction, whereas distances in kilometers are appropriate for air travel, and nanometers are convenient in
optical design. With the metric system there is no need to invent new units for particular applications. Instead,
we rescale the units with which we are already familiar.

@ EXAMPLE 1.1

Using Metric Prefixes
Restate the mass 1.93 X 1013kg using a metric prefix such that the resulting numerical value is bigger than
one but less than 1000.




Strategy

Since we are not allowed to “double-up” prefixes, we first need to restate the mass in grams by replacing the
prefix symbol k with a factor of 103 (see Table 1.2). Then, we should see which two prefixes in Table 1.2 are
closest to the resulting power of 10 when the number is written in scientific notation. We use whichever of
these two prefixes gives us a number between one and 1000.

Solution
Replacing the k in kilogram with a factor of 103, we find that

1.93 x 101%kg =1.93 x 101 x 1032 =1.93 x 10'°g.

From Table 1.2, we see that 101° is between “peta-” (101°) and “exa-” (1018). If we use the “peta-” prefix, then
we find that 1.93 x 10'®g = 1.93 x 10'Pg, since 16 = 1 + 15. Alternatively, if we use the “exa-" prefix we find
that 1.93 x 1016g =193 x 10_2Eg, since 16 = —2 + 18. Because the problem asks for the numerical value
between one and 1000, we use the “peta-” prefix and the answer is 19.3 Pg.

Significance

It is easy to make silly arithmetic errors when switching from one prefix to another, so it is always a good idea
to check that our final answer matches the number we started with. An easy way to do this is to put both
numbers in scientific notation and count powers of 10, including the ones hidden in prefixes. If we did not
make a mistake, the powers of 10 should match up. In this problem, we started with 1.93 X 1013kg, so we have
13 + 3 =16 powers of 10. Our final answer in scientific notation is 1.93 X 10! Pg,sowehavel +15=16
powers of 10. So, everything checks out.

If this mass arose from a calculation, we would also want to check to determine whether a mass this large
makes any sense in the context of the problem. For this, Figure 1.4 might be helpful.

CHECK YOUR UNDERSTANDING 1.1

Restate 4.79 x 10° kg using a metric prefix such that the resulting number is bigger than one but less than
1000.

1.3 Unit Conversion

Learning Objectives
By the end of this section, you will be able to:
e Use conversion factors to express the value of a given quantity in different units.

It is often necessary to convert from one unit to another. For example, if you are reading a European cookbook,
some quantities may be expressed in units of liters and you need to convert them to cups. Or perhaps you are
reading walking directions from one location to another and you are interested in how many miles you will be
walking. In this case, you may need to convert units of feet or meters to miles.

Let’s consider a simple example of how to convert units. Suppose we want to convert 80 m to kilometers. The
first thing to do is to list the units you have and the units to which you want to convert. In this case, we have
units in meters and we want to convert to kilometers. Next, we need to determine a conversion factor relating
meters to kilometers. A conversion factor is a ratio that expresses how many of one unit are equal to another
unit. For example, there are 12 in. in 1 ft, 1609 m in 1 mi, 100 cm in 1 m, 60 s in 1 min, and so on. Refer to
Appendix B for a more complete list of conversion factors. In this case, we know that there are 1000 m in 1 km.
Now we can set up our unit conversion. We write the units we have and then multiply them by the conversion
factor so the units cancel out, as shown:

1 km

Note that the unwanted meter unit cancels, leaving only the desired kilometer unit. You can use this method to



convert between any type of unit. Now, the conversion of 80 m to kilometers is simply the use of a metric
prefix, as we saw in the preceding section, so we can get the same answer just as easily by noting that

80m=28.0 x 10'm =8.0 x 1072km = 0.080 km,

since “kilo-” means 10° (see Table 1.2) and 1 = =2 + 3. However, using conversion factors is handy when
converting between units that are not metric or when converting between derived units, as the following
examples illustrate.

@ EXAMPLE 1.2

Converting Nonmetric Units to Metric

The distance from the university to home is 10 mi and it usually takes 20 min to drive this distance. Calculate
the average speed in meters per second (m/s). (Note: Average speed is distance traveled divided by time of
travel.)

Strategy

First we calculate the average speed using the given units, then we can get the average speed into the desired
units by picking the correct conversion factors and multiplying by them. The correct conversion factors are
those that cancel the unwanted units and leave the desired units in their place. In this case, we want to convert
miles to meters, so we need to know the fact that there are 1609 m in 1 mi. We also want to convert minutes to
seconds, so we use the conversion of 60 s in 1 min.

Solution

1. Calculate average speed. Average speed is distance traveled divided by time of travel. (Take this definition
as a given for now. Average speed and other motion concepts are covered in later chapters.) In equation

form,
Distance
Average speed = ——
Time
2. Substitute the given values for distance and time:
A J 10 mi mi
verage speed = — =0.50 —.

£e 5P 20 min min

3. Convert miles per minute to meters per second by multiplying by the conversion factor that cancels miles
and leave meters, and also by the conversion factor that cancels minutes and leave seconds:

; 1 i .
050 e 1609 m Thig  (0.50)(1609) s — 13 s,

S 1 gee . 60s 60

Significance
Check the answer in the following ways:

1. Be sure the units in the unit conversion cancel correctly. If the unit conversion factor was written upside
down, the units do not cancel correctly in the equation. We see the “miles” in the numerator in 0.50 mi/
min cancels the “mile” in the denominator in the first conversion factor. Also, the “min” in the
denominator in 0.50 mi/min cancels the “min” in the numerator in the second conversion factor.

2. Check that the units of the final answer are the desired units. The problem asked us to solve for average
speed in units of meters per second and, after the cancellations, the only units left are a meter (m) in the
numerator and a second (s) in the denominator, so we have indeed obtained these units.

CHECK YOUR UNDERSTANDING 1.2

Light travels about 9 Pm in a year. Given that a year is about 3 X 107s, what is the speed of light in meters per
second?



@ EXAMPLE 1.3

Converting between Metric Units
The density of iron is 7.86 g/cm3 under standard conditions. Convert this to kg/m3.

Strategy

We need to convert grams to kilograms and cubic centimeters to cubic meters. The conversion factors we need
are 1 kg = 103 gand l cm = 10~2m. However, we are dealing with cubic centimeters

(cm3 =cm X cm X cm), so we have to use the second conversion factor three times (that is, we need to cube
it). The idea is still to multiply by the conversion factors in such a way that they cancel the units we want to get
rid of and introduce the units we want to keep.

Solution

keg/m® =7.86 x 10° kg/m’

3
k V3] .
7.86 /g’ X £ X < > = 786
w107y 102m (10%)(107%)
Significance
Remember, it’s always important to check the answer.

1. Be sure to cancel the units in the unit conversion correctly. We see that the gram (“g”) in the numerator in
7.86 g/cm? cancels the “g” in the denominator in the first conversion factor. Also, the three factors of “cm”
in the denominator in 7.86 g/cm? cancel with the three factors of “cm” in the numerator that we get by
cubing the second conversion factor.

2. Check that the units of the final answer are the desired units. The problem asked for us to convert to
kilograms per cubic meter. After the cancellations just described, we see the only units we have left are
“kg” in the numerator and three factors of “m” in the denominator (that is, one factor of “m” cubed, or
“m3”). Therefore, the units on the final answer are correct.

CHECK YOUR UNDERSTANDING 1.3

We know from Figure 1.4 that the diameter of Earth is on the order of 107 m, so the order of magnitude of its
surface area is 101% m2. What is that in square kilometers (that is, km?)? (Try doing this both by converting 107
m to km and then squaring it and then by converting 10** m2 directly to square kilometers. You should get the
same answer both ways.)

Unit conversions may not seem very interesting, but not doing them can be costly. One famous example of this
situation was seen with the Mars Climate Orbiter. This probe was launched by NASA on December 11, 1998.
On September 23, 1999, while attempting to guide the probe into its planned orbit around Mars, NASA lost
contact with it. Subsequent investigations showed a piece of software called SM_FORCES (or “small forces”)
was recording thruster performance data in the English units of pound-seconds (lb-s). However, other pieces
of software that used these values for course corrections expected them to be recorded in the SI units of
newton-seconds (N-s), as dictated in the software interface protocols. This error caused the probe to follow a
very different trajectory from what NASA thought it was following, which most likely caused the probe either to
burn up in the Martian atmosphere or to shoot out into space. This failure to pay attention to unit conversions
cost hundreds of millions of dollars, not to mention all the time invested by the scientists and engineers who
worked on the project.

CHECK YOUR UNDERSTANDING 1.4

Given that 1 1b (pound) is 4.45 N, were the numbers being output by SM_FORCES too big or too small?



1.4 Dimensional Analysis

Learning Objectives
By the end of this section, you will be able to:
e Find the dimensions of a mathematical expression involving physical quantities.
e Determine whether an equation involving physical quantities is dimensionally consistent.

The dimension of any physical quantity expresses its dependence on the base quantities as a product of
symbols (or powers of symbols) representing the base quantities. Table 1.3 lists the base quantities and the
symbols used for their dimension. For example, a measurement of length is said to have dimension L or L1, a
measurement of mass has dimension M or M1, and a measurement of time has dimension T or T!. Like units,
dimensions obey the rules of algebra. Thus, area is the product of two lengths and so has dimension L?, or
length squared. Similarly, volume is the product of three lengths and has dimension L3, or length cubed. Speed
has dimension length over time, L/T or LT!. Volumetric mass density has dimension M/L3 or ML=3, or mass
over length cubed. In general, the dimension of any physical quantity can be written as L“M?T19@¢N/J¢ for
some powers a, b, ¢, d, e, f, and g. We can write the dimensions of a length in this form with @ = 1 and the
remaining six powers all set equal to zero: L! = L'MOTO19@ON0 50, Any quantity with a dimension that can
be written so that all seven powers are zero (that is, its dimension is LOMOTO0 ®0NOJ0) is called
dimensionless (or sometimes “of dimension 1,” because anything raised to the zero power is one). Physicists
often call dimensionless quantities pure numbers.

Base Quantity Symbol for Dimension
Length L
Mass M
Time T
Current I

Thermodynamic temperature | ®

Amount of substance N

Luminous intensity J

Table 1.3 Base Quantities and Their Dimensions

Physicists often use square brackets around the symbol for a physical quantity to represent the dimensions of
that quantity. For example, if 7 is the radius of a cylinder and 4 is its height, then we write [r] = Land [h] = L
to indicate the dimensions of the radius and height are both those of length, or L. Similarly, if we use the
symbol A for the surface area of a cylinder and V for its volume, then [A] = L2 and [V] = L3. If we use the symbol
m for the mass of the cylinder and p for the density of the material from which the cylinder is made, then

[m] = M and [p] = ML 3.

The importance of the concept of dimension arises from the fact that any mathematical equation relating
physical quantities must be dimensionally consistent, which means the equation must obey the following
rules:

- Every term in an expression must have the same dimensions; it does not make sense to add or subtract
quantities of differing dimension (think of the old saying: “You can’t add apples and oranges”). In
particular, the expressions on each side of the equality in an equation must have the same dimensions.

« The arguments of any of the standard mathematical functions such as trigonometric functions (such as



sine and cosine), logarithms, or exponential functions that appear in the equation must be dimensionless.
These functions require pure numbers as inputs and give pure numbers as outputs.

If either of these rules is violated, an equation is not dimensionally consistent and cannot possibly be a correct
statement of physical law. This simple fact can be used to check for typos or algebra mistakes, to help
remember the various laws of physics, and even to suggest the form that new laws of physics might take. This
last use of dimensions is beyond the scope of this text, but is something you will undoubtedly learn later in
your academic career.

@ EXAMPLE 1.4

Using Dimensions to Remember an Equation

Suppose we need the formula for the area of a circle for some computation. Like many people who learned
geometry too long ago to recall with any certainty, two expressions may pop into our mind when we think of
circles: zr% and 2zr. One expression is the circumference of a circle of radius rand the other is its area. But
which is which?

Strategy

One natural strategy is to look it up, but this could take time to find information from a reputable source.
Besides, even if we think the source is reputable, we shouldn’t trust everything we read. It is nice to have a way
to double-check just by thinking about it. Also, we might be in a situation in which we cannot look things up
(such as during a test). Thus, the strategy is to find the dimensions of both expressions by making use of the
fact that dimensions follow the rules of algebra. If either expression does not have the same dimensions as
area, then it cannot possibly be the correct equation for the area of a circle.

Solution

We know the dimension of area is L2. Now, the dimension of the expression rlis

(zr?)=[x]-[r? =1-L2 =12,

since the constant z is a pure number and the radius r is a length. Therefore, 7r? has the dimension of area.
Similarly, the dimension of the expression 2zr is

2zr]=[2] - [#]-[r]=1-1-L =L,

since the constants 2 and z are both dimensionless and the radius r is a length. We see that 2zr has the
dimension of length, which means it cannot possibly be an area.

We rule out 2zr because it is not dimensionally consistent with being an area. We see that ot is dimensionally
consistent with being an area, so if we have to choose between these two expressions, 7r? is the one to choose.

Significance

This may seem like kind of a silly example, but the ideas are very general. As long as we know the dimensions
of the individual physical quantities that appear in an equation, we can check to see whether the equation is
dimensionally consistent. On the other hand, knowing that true equations are dimensionally consistent, we
can match expressions from our imperfect memories to the quantities for which they might be expressions.
Doing this will not help us remember dimensionless factors that appear in the equations (for example, if you
had accidentally conflated the two expressions from the example into 27r?, then dimensional analysis is no
help), but it does help us remember the correct basic form of equations.

CHECK YOUR UNDERSTANDING 1.5

Suppose we want the formula for the volume of a sphere. The two expressions commonly mentioned in
elementary discussions of spheres are 47r? and 4713 /3. One is the volume of a sphere of radius rand the other
is its surface area. Which one is the volume?



@ EXAMPLE 1.5

Checking Equations for Dimensional Consistency

Consider the physical quantities s, v, a, and ¢t with dimensions [s] = L, [v] = LT, [a] = LT_Z, and [t] =T.
Determine whether each of the following equations is dimensionally consistent: (a) s = vt + 0.5a1‘2; (b)
s=uvt + 0.5at;and (c) v = sin(atzls).

Strategy

By the definition of dimensional consistency, we need to check that each term in a given equation has the same
dimensions as the other terms in that equation and that the arguments of any standard mathematical
functions are dimensionless.

Solution

a. There are no trigonometric, logarithmic, or exponential functions to worry about in this equation, so we
need only look at the dimensions of each term appearing in the equation. There are three terms, one in the
left expression and two in the expression on the right, so we look at each in turn:

[s]=L
[vt]=[v]-[{]=LT!-T=LT° =L
[0.5ar’] = [a] - [t]> =LT2 -T2 =LT? = L.

All three terms have the same dimension, so this equation is dimensionally consistent.
b. Again, there are no trigonometric, exponential, or logarithmic functions, so we only need to look at the
dimensions of each of the three terms appearing in the equation:
[s]=L
(o2 =[v]- [/ =LT ! -T2 =LT
lat] = [a] - [{]=LT2-T=LT"L.

None of the three terms has the same dimension as any other, so this is about as far from being
dimensionally consistent as you can get. The technical term for an equation like this is nonsense.

c. This equation has a trigonometric function in it, so first we should check that the argument of the sine
function is dimensionless:

3 = = = =

[ﬁ] _ la? _ L1212 L
[s] L L=

The argument is dimensionless. So far, so good. Now we need to check the dimensions of each of the two
terms (that is, the left expression and the right expression) in the equation:
[v] = LT}

in ()]

The two terms have different dimensions—meaning, the equation is not dimensionally consistent. This
equation is another example of “nonsense.”

Significance

If we are trusting people, these types of dimensional checks might seem unnecessary. But, rest assured, any
textbook on a quantitative subject such as physics (including this one) almost certainly contains some
equations with typos. Checking equations routinely by dimensional analysis save us the embarrassment of
using an incorrect equation. Also, checking the dimensions of an equation we obtain through algebraic
manipulation is a great way to make sure we did not make a mistake (or to spot a mistake, if we made one).

CHECK YOUR UNDERSTANDING 1.6

Is the equation v = at dimensionally consistent?



One further point that needs to be mentioned is the effect of the operations of calculus on dimensions. We have
seen that dimensions obey the rules of algebra, just like units, but what happens when we take the derivative of
one physical quantity with respect to another or integrate a physical quantity over another? The derivative of a
function is just the slope of the line tangent to its graph and slopes are ratios, so for physical quantities vand t,
we have that the dimension of the derivative of v with respect to tis just the ratio of the dimension of vover

that of t:
vl _ Ll
dt | [’

Similarly, since integrals are just sums of products, the dimension of the integral of vwith respect to tis simply
the dimension of vtimes the dimension of t:
[/ vdt] = [v] - [£].

By the same reasoning, analogous rules hold for the units of physical quantities derived from other quantities
by integration or differentiation.

1.5 Estimates and Fermi Calculations

Learning Objectives
By the end of this section, you will be able to:
e Estimate the values of physical quantities.

On many occasions, physicists, other scientists, and engineers need to make estimates for a particular
quantity. Other terms sometimes used are guesstimates, order-of-magnitude approximations, back-of-the-
envelope calculations, or Fermi calculations. (The physicist Enrico Fermi mentioned earlier was famous for his
ability to estimate various kinds of data with surprising precision.) Will that piece of equipment fit in the back
of the car or do we need to rent a truck? How long will this download take? About how large a current will there
be in this circuit when it is turned on? How many houses could a proposed power plant actually power if it is
built? Note that estimating does not mean guessing a number or a formula at random. Rather, estimation
means using prior experience and sound physical reasoning to arrive at a rough idea of a quantity’s value.
Because the process of determining a reliable approximation usually involves the identification of correct
physical principles and a good guess about the relevant variables, estimating is very useful in developing
physical intuition. Estimates also allow us to perform “sanity checks” on calculations or policy proposals by
helping us rule out certain scenarios or unrealistic numbers. They allow us to challenge others (as well as
ourselves) in our efforts to learn truths about the world.

Many estimates are based on formulas in which the input quantities are known only to a limited precision. As
you develop physics problem-solving skills (which are applicable to a wide variety of fields), you also will
develop skills at estimating. You develop these skills by thinking more quantitatively and by being willing to
take risks. As with any skill, experience helps. Familiarity with dimensions (see Table 1.3) and units (see Table
1.1 and Table 1.2), and the scales of base quantities (see Figure 1.4) also helps.

To make some progress in estimating, you need to have some definite ideas about how variables may be
related. The following strategies may help you in practicing the art of estimation:

« Get biglengths from smaller lengths. When estimating lengths, remember that anything can be a ruler.
Thus, imagine breaking a big thing into smaller things, estimate the length of one of the smaller things,
and multiply to get the length of the big thing. For example, to estimate the height of a building, first count
how many floors it has. Then, estimate how big a single floor is by imagining how many people would have
to stand on each other’s shoulders to reach the ceiling. Last, estimate the height of a person. The product
of these three estimates is your estimate of the height of the building. It helps to have memorized a few
length scales relevant to the sorts of problems you find yourself solving. For example, knowing some of the
length scales in Figure 1.4 might come in handy. Sometimes it also helps to do this in reverse—that is, to
estimate the length of a small thing, imagine a bunch of them making up a bigger thing. For example, to
estimate the thickness of a sheet of paper, estimate the thickness of a stack of paper and then divide by the



number of pages in the stack. These same strategies of breaking big things into smaller things or
aggregating smaller things into a bigger thing can sometimes be used to estimate other physical
guantities, such as masses and times.

« Get areas and volumes from lengths. When dealing with an area or a volume of a complex object,
introduce a simple model of the object such as a sphere or a box. Then, estimate the linear dimensions
(such as the radius of the sphere or the length, width, and height of the box) first, and use your estimates to
obtain the volume or area from standard geometric formulas. If you happen to have an estimate of an
object’s area or volume, you can also do the reverse; that is, use standard geometric formulas to get an
estimate of its linear dimensions.

« Get masses from volumes and densities. When estimating masses of objects, it can help first to estimate its
volume and then to estimate its mass from a rough estimate of its average density (recall, density has
dimension mass over length cubed, so mass is density times volume). For this, it helps to remember that
the density of air is around 1 kg/m?, the density of water is 102 kg/m?, and the densest everyday solids
max out at around 104 kg/m?®. Asking yourself whether an object floats or sinks in either air or water gets
you a ballpark estimate of its density. You can also do this the other way around; if you have an estimate of
an object’s mass and its density, you can use them to get an estimate of its volume.

- Ifall else fails, bound it. For physical quantities for which you do not have a lot of intuition, sometimes the
best you can do is think something like: Well, it must be bigger than this and smaller than that. For
example, suppose you need to estimate the mass of a moose. Maybe you have a lot of experience with
moose and know their average mass offhand. If so, great. But for most people, the best they can do is to
think something like: It must be bigger than a person (of order 102 kg) and less than a car (of order 10° kg).
If you need a single number for a subsequent calculation, you can take the geometric mean of the upper
and lower bound—that is, you multiply them together and then take the square root. For the moose mass
example, this would be

)% = 1025 = 10°% x 10> ~ 3 x 10%ke.

(10* x 10°
The tighter the bounds, the better. Also, no rules are unbreakable when it comes to estimation. If you think
the value of the quantity is likely to be closer to the upper bound than the lower bound, then you may want
to bump up your estimate from the geometric mean by an order or two of magnitude.

» One “sig. fig.” is fine. There is no need to go beyond one significant figure when doing calculations to
obtain an estimate. In most cases, the order of magnitude is good enough. The goal is just to get in the
ballpark figure, so keep the arithmetic as simple as possible.

» Ask yourself: Does this make any sense? Last, check to see whether your answer is reasonable. How does it
compare with the values of other quantities with the same dimensions that you already know or can look
up easily? If you get some wacky answer (for example, if you estimate the mass of the Atlantic Ocean to be
bigger than the mass of Earth, or some time span to be longer than the age of the universe), first check to
see whether your units are correct. Then, check for arithmetic errors. Then, rethink the logic you used to
arrive at your answer. If everything checks out, you may have just proved that some slick new idea is
actually bogus.

@ EXAMPLE 1.6

Mass of Earth’s Oceans
Estimate the total mass of the oceans on Earth.

Strategy

We know the density of water is about 103 kg/m3, so we start with the advice to “get masses from densities and
volumes.” Thus, we need to estimate the volume of the planet’s oceans. Using the advice to “get areas and
volumes from lengths,” we can estimate the volume of the oceans as surface area times average depth, or V=
AD. We know the diameter of Earth from Figure 1.4 and we know that most of Earth’s surface is covered in
water, so we can estimate the surface area of the oceans as being roughly equal to the surface area of the
planet. By following the advice to “get areas and volumes from lengths” again, we can approximate Earth as a
sphere and use the formula for the surface area of a sphere of diameter d—thatis, A = 7rd2, to estimate the



surface area of the oceans. Now we just need to estimate the average depth of the oceans. For this, we use the
advice: “If all else fails, bound it.” We happen to know the deepest points in the ocean are around 10 km and
that it is not uncommon for the ocean to be deeper than 1 km, so we take the average depth to be around

0.5
(10° x 10%)
fine.”

~3 x 10°m. Now we just need to put it all together, heeding the advice that “one ‘sig. fig." is

Solution
We estimate the surface area of Earth (and hence the surface area of Earth’s oceans) to be roughly
2
A=zrd® =7(10"m)" ~3 x 10"*m>.

Next, using our average depth estimate of D = 3 X 103 m, which was obtained by bounding, we estimate the
volume of Earth’s oceans to be

V=AD=( x 10m?*)(3 x 10°m)=9 x 10 m?>.
Last, we estimate the mass of the world’s oceans to be

M = pV = (10° kg/m>)(9 x 10""m?) =9 x 10%kg.
Thus, we estimate that the order of magnitude of the mass of the planet’s oceans is 1021 kg.
Significance
To verify our answer to the best of our ability, we first need to answer the question: Does this make any sense?
From Figure 1.4, we see the mass of Earth’s atmosphere is on the order of 10'° kg and the mass of Earth is on
the order of 1025 kg. It is reassuring that our estimate of 10%! kg for the mass of Earth’s oceans falls somewhere
between these two. So, yes, it does seem to make sense. It just so happens that we did a search on the Web for
“mass of oceans” and the top search results all said 1.4 X 102! kg, which is the same order of magnitude as

our estimate. Now, rather than having to trust blindly whoever first put that number up on a website (most of
the other sites probably just copied it from them, after all), we can have a little more confidence in it.

CHECK YOUR UNDERSTANDING 1.7

Figure 1.4 says the mass of the atmosphere is 101° kg. Assuming the density of the atmosphere is 1 kg/m?,
estimate the height of Earth’s atmosphere. Do you think your answer is an underestimate or an overestimate?
Explain why.

How many piano tuners are there in New York City? How many leaves are on that tree? If you are studying
photosynthesis or thinking of writing a smartphone app for piano tuners, then the answers to these questions
might be of great interest to you. Otherwise, you probably couldn’t care less what the answers are. However,
these are exactly the sorts of estimation problems that people in various tech industries have been asking
potential employees to evaluate their quantitative reasoning skills. If building physical intuition and evaluating
quantitative claims do not seem like sufficient reasons for you to practice estimation problems, how about the
fact that being good at them just might land you a high-paying job?

INTERACTIVE

For practice estimating relative lengths, areas, and volumes, check out this PhET (https:/openstax.org/l/
21lengthgame) simulation, titled “Estimation.”



https://openstax.org/l/21lengthgame
https://openstax.org/l/21lengthgame

1.6 Significant Figures

Learning Objectives
By the end of this section, you will be able to:
e Determine the correct number of significant figures for the result of a computation.
e Describe the relationship between the concepts of accuracy, precision, uncertainty, and discrepancy.
e Calculate the percent uncertainty of a measurement, given its value and its uncertainty.
e Determine the uncertainty of the result of a computation involving quantities with given uncertainties.

Figure 1.11 shows two instruments used to measure the mass of an object. The digital scale has mostly
replaced the double-pan balance in physics labs because it gives more accurate and precise measurements.
But what exactly do we mean by accurate and precise? Aren’t they the same thing? In this section we examine
in detail the process of making and reporting a measurement.

(b)

Figure 1.11 (a) A double-pan mechanical balance is used to compare different masses. Usually an object with unknown mass is placed in

one pan and objects of known mass are placed in the other pan. When the bar that connects the two pans is horizontal, then the masses in
both pans are equal. The “known masses” are typically metal cylinders of standard mass suchas 1 g, 10 g, and 100 g. (b) Many mechanical
balances, such as double-pan balances, have been replaced by digital scales, which can typically measure the mass of an object more
precisely. A mechanical balance may read only the mass of an object to the nearest tenth of a gram, but many digital scales can measure
the mass of an object up to the nearest thousandth of a gram. (credit a: modification of work by Serge Melki; credit b: modification of work
by Karel Jakubec)

Accuracy and Precision of a Measurement

Science is based on observation and experiment—that is, on measurements. Accuracy is how close a
measurement is to the accepted reference value for that measurement. For example, let’s say we want to
measure the length of standard printer paper. The packaging in which we purchased the paper states that it is
11.0in. long. We then measure the length of the paper three times and obtain the following measurements:
11.11in.,11.2 in., and 10.9 in. These measurements are quite accurate because they are very close to the
reference value of 11.0 in. In contrast, if we had obtained a measurement of 12 in., our measurement would
not be very accurate. Notice that the concept of accuracy requires that an accepted reference value be given.

The precision of measurements refers to how close the agreement is between repeated independent
measurements (which are repeated under the same conditions). Consider the example of the paper
measurements. The precision of the measurements refers to the spread of the measured values. One way to
analyze the precision of the measurements is to determine the range, or difference, between the lowest and the
highest measured values. In this case, the lowest value was 10.9 in. and the highest value was 11.2 in. Thus, the
measured values deviated from each other by, at most, 0.3 in. These measurements were relatively precise
because they did not vary too much in value. However, if the measured values had been 10.9 in., 11.1 in., and
11.9in., then the measurements would not be very precise because there would be significant variation from
one measurement to another. Notice that the concept of precision depends only on the actual measurements



acquired and does not depend on an accepted reference value.

The measurements in the paper example are both accurate and precise, but in some cases, measurements are
accurate but not precise, or they are precise but not accurate. Let’s consider an example of a GPS attempting to
locate the position of a restaurant in a city. Think of the restaurant location as existing at the center of a bull’s-
eye target and think of each GPS attempt to locate the restaurant as a black dot. In Figure 1.12(a), we see the
GPS measurements are spread out far apart from each other, but they are all relatively close to the actual
location of the restaurant at the center of the target. This indicates a low-precision, high-accuracy measuring
system. However, in Figure 1.12(b), the GPS measurements are concentrated quite closely to one another, but
they are far away from the target location. This indicates a high-precision, low-accuracy measuring system.

{a) High accuracy, low precision (b) Low accuracy, high precision
Figure 1.12 A GPS attempts to locate a restaurant at the center of the bull’s-eye. The black dots represent each attempt to pinpoint the
location of the restaurant. (a) The dots are spread out quite far apart from one another, indicating low precision, but they are each rather
close to the actual location of the restaurant, indicating high accuracy. (b) The dots are concentrated rather closely to one another,
indicating high precision, but they are rather far away from the actual location of the restaurant, indicating low accuracy. (credit a and credit

b: modification of works by "DarkEvil"/Wikimedia Commons)

Accuracy, Precision, Uncertainty, and Discrepancy

The precision of a measuring system is related to the uncertainty in the measurements whereas the accuracy
is related to the discrepancy from the accepted reference value. Uncertainty is a quantitative measure of how
much your measured values deviate from one another. There are many different methods of calculating
uncertainty, each of which is appropriate to different situations. Some examples include taking the range (that
is, the biggest less the smallest) or finding the standard deviation of the measurements. Discrepancy (or
“measurement error”) is the difference between the measured value and a given standard or expected value. If
the measurements are not very precise, then the uncertainty of the values is high. If the measurements are not
very accurate, then the discrepancy of the values is high.

Recall our example of measuring paper length; we obtained measurements of 11.1 in., 11.2 in., and 10.9 in.,
and the accepted value was 11.0 in. We might average the three measurements to say our best guess is 11.1 in.;
in this case, our discrepancy is 11.1 — 11.0 = 0.1 in., which provides a quantitative measure of accuracy. We
might calculate the uncertainty in our best guess by using half of the range of our measured values: 0.15 in.
Then we would say the length of the paperis 11.1 in. plus or minus 0.15 in. The uncertainty in a measurement,
A, is often denoted as 6A (read “delta A”), so the measurement result would be recorded as A + 6A. Returning to
our paper example, the measured length of the paper could be expressed as 11.1 + 0.15 in. Since the
discrepancy of 0.1 in. is less than the uncertainty of 0.15 in., we might say the measured value agrees with the
accepted reference value to within experimental uncertainty.

Some factors that contribute to uncertainty in a measurement include the following:

« Limitations of the measuring device

» The skill of the person taking the measurement

« Irregularities in the object being measured

« Any other factors that affect the outcome (highly dependent on the situation)



In our example, such factors contributing to the uncertainty could be the smallest division on the ruler is 1/16
in., the person using the ruler has bad eyesight, the ruler is worn down on one end, or one side of the paper is
slightly longer than the other. At any rate, the uncertainty in a measurement must be calculated to quantify its
precision. If a reference value is known, it makes sense to calculate the discrepancy as well to quantify its
accuracy.

Percent uncertainty
Another method of expressing uncertainty is as a percent of the measured value. If a measurement A is
expressed with uncertainty 64, the percent uncertainty is defined as

0A
Percent uncertainty = e X 100%.

@ EXAMPLE 1.7

Calculating Percent Uncertainty: A Bag of Apples
A grocery store sells 5-1b bags of apples. Let’s say we purchase four bags during the course of a month and
weigh the bags each time. We obtain the following measurements:

« Week 1 weight: 4.8 1b
» Week 2 weight: 5.3 1b
« Week 3 weight: 4.9 1b
» Week 4 weight: 5.4 1b

We then determine the average weight of the 5-1b bag of apples is 5.1 + 0.3 1b from using half of the range. What
is the percent uncertainty of the bag’s weight?
Strategy

First, observe that the average value of the bag’s weight, 4, is 5.1 Ib. The uncertainty in this value, A4, is 0.3 1b.
We can use the following equation to determine the percent uncertainty of the weight:

6A
Percent uncertainty = e X 100%. Ll

Solution
Substitute the values into the equation:

0.31b
5.11b

SA
Percent uncertainty = e X 100% = X 100% =5.9% ~ 6%.

Significance
We can conclude the average weight of a bag of apples from this store is 5.1 1b + 6%. Notice the percent

uncertainty is dimensionless because the units of weight in 64 = 0.2 Ib canceled those in A= 5.1 b when we
took the ratio.

CHECK YOUR UNDERSTANDING 1.8

A high school track coach has just purchased a new stopwatch. The stopwatch manual states the stopwatch has
an uncertainty of +0.05 s. Runners on the track coach’s team regularly clock 100-m sprints of 11.49 s to 15.01
s. At the school’s last track meet, the first-place sprinter came in at 12.04 s and the second-place sprinter came
in at 12.07 s. Will the coach’s new stopwatch be helpful in timing the sprint team? Why or why not?

Uncertainties in calculations
Uncertainty exists in anything calculated from measured quantities. For example, the area of a floor calculated
from measurements of its length and width has an uncertainty because the length and width have



uncertainties. How big is the uncertainty in something you calculate by multiplication or division? If the
measurements going into the calculation have small uncertainties (a few percent or less), then the method of
adding percents can be used for multiplication or division. This method states the percent uncertainty in a
quantity calculated by multiplication or division is the sum of the percent uncertainties in the items used to
make the calculation. For example, if a floor has a length of 4.00 m and a width of 3.00 m, with uncertainties of
2% and 1%, respectively, then the area of the floor is 12.0 m? and has an uncertainty of 3%. (Expressed as an
area, this is 0.36 m2[12.0 m? x 0.03], which we round to 0.4 m2 since the area of the floor is given to a tenth of
a square meter.)

Precision of Measuring Tools and Significant Figures

An important factor in the precision of measurements involves the precision of the measuring tool. In general,
a precise measuring tool is one that can measure values in very small increments. For example, a standard
ruler can measure length to the nearest millimeter whereas a caliper can measure length to the nearest 0.01
mm. The caliper is a more precise measuring tool because it can measure extremely small differences in
length. The more precise the measuring tool, the more precise the measurements.

When we express measured values, we can only list as many digits as we measured initially with our
measuring tool. For example, if we use a standard ruler to measure the length of a stick, we may measure it to
be 36.7 cm. We can’t express this value as 36.71 cm because our measuring tool is not precise enough to
measure a hundredth of a centimeter. It should be noted that the last digit in a measured value has been
estimated in some way by the person performing the measurement. For example, the person measuring the
length of a stick with a ruler notices the stick length seems to be somewhere in between 36.6 cm and 36.7 cm,
and he or she must estimate the value of the last digit. Using the method of significant figures, the rule is that
the last digit written down in a measurement is the first digit with some uncertainty. To determine the number
of significant digits in a value, start with the first measured value at the left and count the number of digits
through the last digit written on the right. For example, the measured value 36.7 cm has three digits, or three
significant figures. Significant figures indicate the precision of the measuring tool used to measure a value.

Zeros

Special consideration is given to zeros when counting significant figures. The zeros in 0.053 are not significant
because they are placeholders that locate the decimal point. There are two significant figures in 0.053. The
zeros in 10.053 are not placeholders; they are significant. This number has five significant figures. The zeros in
1300 may or may not be significant, depending on the style of writing numbers. They could mean the number
is known to the last digit or they could be placeholders. So 1300 could have two, three, or four significant
figures. To avoid this ambiguity, we should write 1300 in scientific notation as 1.3 x 103,1.30 x 103, or

1.300 x 103, depending on whether it has two, three, or four significant figures. Zeros are significant except
when they serve only as placeholders.

Significant figures in calculations

When combining measurements with different degrees of precision, the number of significant digits in the
final answer can be no greater than the number of significant digits in the least-precise measured value. There
are two different rules, one for multiplication and division and the other for addition and subtraction.

1. For multiplication and division, the result should have the same number of significant figures as the
quantity with the least number of significant figures entering into the calculation. For example, the area of
a circle can be calculated from its radius using A = rr2. Let’s see how many significant figures the area has
if the radius has only two—say, r= 1.2 m. Using a calculator with an eight-digit output, we would calculate
A=gar® = (3.1415927...) x (1.2m)* = 4.5238934 m?.

But because the radius has only two significant figures, it limits the calculated quantity to two significant
figures, or
A=45m?,

although mis good to at least eight digits.
2. For addition and subtraction, the answer can contain no more decimal places than the least-precise
measurement. Suppose we buy 7.56 kg of potatoes in a grocery store as measured with a scale with



precision 0.01 kg, then we drop off 6.052 kg of potatoes at your laboratory as measured by a scale with
precision 0.001 kg. Then, we go home and add 13.7 kg of potatoes as measured by a bathroom scale with
precision 0.1 kg. How many kilograms of potatoes do we now have and how many significant figures are
appropriate in the answer? The mass is found by simple addition and subtraction:

7.56 kg
—6.052 kg

+13.7kg

T5208ke — 10-2ke:

Next, we identify the least-precise measurement: 13.7 kg. This measurement is expressed to the 0.1
decimal place, so our final answer must also be expressed to the 0.1 decimal place. Thus, the answer is
rounded to the tenths place, giving us 15.2 kg.

Significant figures in this text

In this text, most numbers are assumed to have three significant figures. Furthermore, consistent numbers of
significant figures are used in all worked examples. An answer given to three digits is based on input good to at
least three digits, for example. If the input has fewer significant figures, the answer will also have fewer
significant figures. Care is also taken that the number of significant figures is reasonable for the situation
posed. In some topics, particularly in optics, more accurate numbers are needed and we use more than three
significant figures. Finally, if a number is exact, such as the two in the formula for the circumference of a circle,
C = 2mr, it does not affect the number of significant figures in a calculation. Likewise, conversion factors such
as 100 cm/1 m are considered exact and do not affect the number of significant figures in a calculation.

1.7 Solving Problems in Physics

Learning Objectives
By the end of this section, you will be able to:
o Describe the process for developing a problem-solving strategy.
e Explain how to find the numerical solution to a problem.
e Summarize the process for assessing the significance of the numerical solution to a problem.

Figure 1.13 Problem-solving skills are essential to your success in physics. (credit: “scui3asteveo”/Flickr)



Problem-solving skills are clearly essential to success in a quantitative course in physics. More important, the
ability to apply broad physical principles—usually represented by equations—to specific situations is a very
powerful form of knowledge. It is much more powerful than memorizing a list of facts. Analytical skills and
problem-solving abilities can be applied to new situations whereas a list of facts cannot be made long enough
to contain every possible circumstance. Such analytical skills are useful both for solving problems in this text
and for applying physics in everyday life.

As you are probably well aware, a certain amount of creativity and insight is required to solve problems. No
rigid procedure works every time. Creativity and insight grow with experience. With practice, the basics of
problem solving become almost automatic. One way to get practice is to work out the text’s examples for
yourself as you read. Another is to work as many end-of-section problems as possible, starting with the easiest
to build confidence and then progressing to the more difficult. After you become involved in physics, you will
see it all around you, and you can begin to apply it to situations you encounter outside the classroom, just as is
done in many of the applications in this text.

Although there is no simple step-by-step method that works for every problem, the following three-stage
process facilitates problem solving and makes it more meaningful. The three stages are strategy, solution, and
significance. This process is used in examples throughout the book. Here, we look at each stage of the process
in turn.

Strategy

Strategy is the beginning stage of solving a problem. The idea is to figure out exactly what the problem is and
then develop a strategy for solving it. Some general advice for this stage is as follows:

- Examine the situation to determine which physical principles are involved. It often helps to draw a simple
sketch at the outset. You often need to decide which direction is positive and note that on your sketch.
When you have identified the physical principles, it is much easier to find and apply the equations
representing those principles. Although finding the correct equation is essential, keep in mind that
equations represent physical principles, laws of nature, and relationships among physical quantities.
Without a conceptual understanding of a problem, a numerical solution is meaningless.

« Make a list of what is given or can be inferred from the problem as stated (identify the “knowns”). Many
problems are stated very succinctly and require some inspection to determine what is known. Drawing a
sketch can be very useful at this point as well. Formally identifying the knowns is of particular importance
in applying physics to real-world situations. For example, the word stopped means the velocity is zero at
that instant. Also, we can often take initial time and position as zero by the appropriate choice of
coordinate system.

- Identify exactly what needs to be determined in the problem (identify the unknowns). In complex
problems, especially, it is not always obvious what needs to be found or in what sequence. Making a list
can help identify the unknowns.

« Determine which physical principles can help you solve the problem. Since physical principles tend to be
expressed in the form of mathematical equations, a list of knowns and unknowns can help here. It is
easiest if you can find equations that contain only one unknown—that is, all the other variables are
known—so you can solve for the unknown easily. If the equation contains more than one unknown, then
additional equations are needed to solve the problem. In some problems, several unknowns must be
determined to get at the one needed most. In such problems it is especially important to keep physical
principles in mind to avoid going astray in a sea of equations. You may have to use two (or more) different
equations to get the final answer.

Solution

The solution stage is when you do the math. Substitute the knowns (along with their units) into the appropriate
equation and obtain numerical solutions complete with units. That is, do the algebra, calculus, geometry, or
arithmetic necessary to find the unknown from the knowns, being sure to carry the units through the
calculations. This step is clearly important because it produces the numerical answer, along with its units.
Notice, however, that this stage is only one-third of the overall problem-solving process.



Significance

After having done the math in the solution stage of problem solving, it is tempting to think you are done. But,
always remember that physics is not math. Rather, in doing physics, we use mathematics as a tool to help us
understand nature. So, after you obtain a numerical answer, you should always assess its significance:

Check your units. If the units of the answer are incorrect, then an error has been made and you should go
back over your previous steps to find it. One way to find the mistake is to check all the equations you
derived for dimensional consistency. However, be warned that correct units do not guarantee the
numerical part of the answer is also correct.

Check the answer to see whether it is reasonable. Does it make sense? This step is extremely important:
—the goal of physics is to describe nature accurately. To determine whether the answer is reasonable,
check both its magnitude and its sign, in addition to its units. The magnitude should be consistent with a
rough estimate of what it should be. It should also compare reasonably with magnitudes of other
quantities of the same type. The sign usually tells you about direction and should be consistent with your
prior expectations. Your judgment will improve as you solve more physics problems, and it will become
possible for you to make finer judgments regarding whether nature is described adequately by the answer
to a problem. This step brings the problem back to its conceptual meaning. If you can judge whether the
answer is reasonable, you have a deeper understanding of physics than just being able to solve a problem
mechanically.

Check to see whether the answer tells you something interesting. What does it mean? This is the flip side
of the question: Does it make sense? Ultimately, physics is about understanding nature, and we solve
physics problems to learn a little something about how nature operates. Therefore, assuming the answer
does make sense, you should always take a moment to see if it tells you something about the world that you
find interesting. Even if the answer to this particular problem is not very interesting to you, what about the
method you used to solve it? Could the method be adapted to answer a question that you do find
interesting? In many ways, it is in answering questions such as these that science progresses.



CHAPTER REVIEW
Key Terms

accuracy the degree towhich a measured value
agrees with an accepted reference value for that
measurement

base quantity physical quantity chosen by
convention and practical considerations such
that all other physical quantities can be
expressed as algebraic combinations of them

base unit standard for expressing the
measurement of a base quantity within a
particular system of units; defined by a particular
procedure used to measure the corresponding
base quantity

conversion factor a ratio that expresses how many
of one unit are equal to another unit

derived quantity physical quantity defined using
algebraic combinations of base quantities

derived units units that can be calculated using
algebraic combinations of the fundamental units

dimension expression of the dependence of a
physical quantity on the base quantities as a
product of powers of symbols representing the
base quantities; in general, the dimension of a
quantity has the form L2MPT¢19@°N¥ J¢ for some
powersa, b, c,d, e, f,and g.

dimensionally consistent equation in which every
term has the same dimensions and the
arguments of any mathematical functions
appearing in the equation are dimensionless

dimensionless quantity with a dimension of
LOMOTO19@ONOJ0 = 1; also called quantity of
dimension 1 or a pure number

discrepancy the difference between the measured
value and a given standard or expected value

English units system of measurement used in the
United States; includes units of measure such as
feet, gallons, and pounds

estimation using prior experience and sound
physical reasoning to arrive at a rough idea of a
guantity’s value; sometimes called an “order-of-
magnitude approximation,” a “guesstimate,” a
“back-of-the-envelope calculation”, or a “Fermi
calculation”

Key Equations

kilogram SI unit for mass, abbreviated kg

law description, using concise language or a
mathematical formula, of a generalized pattern in
nature supported by scientific evidence and
repeated experiments

meter SIunit for length, abbreviated m

method of adding percents the percent
uncertainty in a quantity calculated by
multiplication or division is the sum of the
percent uncertainties in the items used to make
the calculation.

metric system system in which values can be
calculated in factors of 10

model representation of something often too
difficult (or impossible) to display directly

order of magnitude the size of a quantity as it
relates to a power of 10

percent uncertainty the ratio of the uncertainty of
a measurement to the measured value, expressed
as a percentage

physical quantity characteristic or property of an
object that can be measured or calculated from
other measurements

physics science concerned with describing the
interactions of energy, matter, space, and time;
especially interested in what fundamental
mechanisms underlie every phenomenon

precision the degree to which repeated
measurements agree with each other

second the SI unit for time, abbreviated s

SIunits the international system of units that
scientists in most countries have agreed to use;
includes units such as meters, liters, and grams

significant figures used to express the precision of
a measuring tool used to measure a value

theory testable explanation for patterns in nature
supported by scientific evidence and verified
multiple times by various groups of researchers

uncertainty a quantitative measure of how much
measured values deviate from one another

units standards used for expressing and
comparing measurements

Percent uncertainty ~ Percent uncertainty = % X 100%



Summary

1.1 The Scope and Scale of Physics

Physics is about trying to find the simple laws
that describe all natural phenomena.

Physics operates on a vast range of scales of
length, mass, and time. Scientists use the
concept of the order of magnitude of a number
to track which phenomena occur on which
scales. They also use orders of magnitude to
compare the various scales.

Scientists attempt to describe the world by
formulating models, theories, and laws.

1.2 Units and Standards

Systems of units are built up from a small
number of base units, which are defined by
accurate and precise measurements of
conventionally chosen base quantities. Other
units are then derived as algebraic
combinations of the base units.

Two commonly used systems of units are
English units and ST units. All scientists and
most of the other people in the world use SI,
whereas nonscientists in the United States still
tend to use English units.

The SI base units of length, mass, and time are
the meter (m), kilogram (kg), and second (s),
respectively.

SI units are a metric system of units, meaning
values can be calculated by factors of 10. Metric
prefixes may be used with metric units to scale
the base units to sizes appropriate for almost
any application.

1.3 Unit Conversion

To convert a quantity from one unit to another,
multiply by conversions factors in such a way
that you cancel the units you want to get rid of

and introduce the units you want to end up with.

Be careful with areas and volumes. Units obey
the rules of algebra so, for example, if a unit is
squared we need two factors to cancel it.

1.4 Dimensional Analysis

The dimension of a physical quantity is just an
expression of the base quantities from which it
is derived.

All equations expressing physical laws or
principles must be dimensionally consistent.
This fact can be used as an aid in remembering
physical laws, as a way to check whether
claimed relationships between physical

quantities are possible, and even to derive new
physical laws.

1.5 Estimates and Fermi Calculations

An estimate is a rough educated guess at the
value of a physical quantity based on prior
experience and sound physical reasoning. Some
strategies that may help when making an
estimate are as follows:

o Get big lengths from smaller lengths.

o Get areas and volumes from lengths.

o Get masses from volumes and densities.
o Ifall else fails, bound it.

o One “sig. fig.” is fine.

o Ask yourself: Does this make any sense?

1.6 Significant Figures

Accuracy of a measured value refers to how
close a measurement is to an accepted
reference value. The discrepancy in a
measurement is the amount by which the
measurement result differs from this value.
Precision of measured values refers to how close
the agreement is between repeated
measurements. The uncertainty of a
measurement is a quantification of this.

The precision of a measuring tool is related to
the size of its measurement increments. The
smaller the measurement increment, the more
precise the tool.

Significant figures express the precision of a
measuring tool.

When multiplying or dividing measured values,
the final answer can contain only as many
significant figures as the value with the least
number of significant figures.

When adding or subtracting measured values,
the final answer cannot contain more decimal
places than the least-precise value.

1.7 Solving Problems in Physics

The three stages of the process for solving physics
problems used in this book are as follows:

Strategy: Determine which physical principles
are involved and develop a strategy for using
them to solve the problem.

Solution: Do the math necessary to obtain a
numerical solution complete with units.
Significance: Check the solution to make sure it
makes sense (correct units, reasonable
magnitude and sign) and assess its significance.




Conceptual Questions

1.1 The Scope and Scale of Physics

1.
2.

What is physics?

Some have described physics as a “search for
simplicity.” Explain why this might be an
appropriate description.

. If two different theories describe experimental

observations equally well, can one be said to be
more valid than the other (assuming both use
accepted rules of logic)?

What determines the validity of a theory?
Certain criteria must be satisfied if a
measurement or observation is to be believed.
Will the criteria necessarily be as strict for an
expected result as for an unexpected result?
Can the validity of a model be limited or must it

be universally valid? How does this compare with

the required validity of a theory or a law?

1.2 Units and Standards

. Identify some advantages of metric units.

What are the SI base units of length, mass, and
time?
What is the difference between a base unit and a

derived unit? (b) What is the difference between a

base quantity and a derived quantity? (c) What is
the difference between a base quantity and a
base unit?

Problems

1.1 The Scope and Scale of Physics

14.

15.

Find the order of magnitude of the following
physical quantities. (a) The mass of Earth’s
atmosphere: 5.1 X 1018kg; (b) The mass of the
Moon’s atmosphere: 25,000 kg; (c) The mass of
Earth’s hydrosphere: 1.4 X 102! kg; (d) The
mass of Earth: 5.97 X 1024kg; (e) The mass of
the Moon: 7.34 X 1022kg; (f) The Earth—-Moon
distance (semimajor axis): 3.84 X 108m; (®
The mean Earth-Sun distance: 1.5 x 10''m;
(h) The equatorial radius of Earth:

6.38 x 106m; (1) The mass of an electron:

9.11 x 10731 kg; (j) The mass of a proton:

1.67 x 10727 kg; (k) The mass of the Sun:

1.99 x 1030kg.

Use the orders of magnitude you found in the
previous problem to answer the following
questions to within an order of magnitude. (a)
How many electrons would it take to equal the

mass of a proton? (b) How many Earths would it

10.

For each of the following scenarios, refer to
Figure 1.4 and Table 1.2 to determine which
metric prefix on the meter is most appropriate
for each of the following scenarios. (a) You want
to tabulate the mean distance from the Sun for
each planet in the solar system. (b) You want to
compare the sizes of some common viruses to
design a mechanical filter capable of blocking
the pathogenic ones. (c) You want to list the
diameters of all the elements on the periodic
table. (d) You want to list the distances to all the
stars that have now received any radio
broadcasts sent from Earth 10 years ago.

1.6 Significant Figures

11.

(a) What is the relationship between the
precision and the uncertainty of a
measurement? (b) What is the relationship
between the accuracy and the discrepancy of a
measurement?

1.7 Solving Problems in Physics

12.

13.

What information do you need to choose which
equation or equations to use to solve a problem?
What should you do after obtaining a numerical
answer when solving a problem?

take to equal the mass of the Sun? (c) How many
Earth—-Moon distances would it take to cover the
distance from Earth to the Sun? (d) How many
Moon atmospheres would it take to equal the
mass of Earth’s atmosphere? () How many
moons would it take to equal the mass of Earth?
(f) How many protons would it take to equal the
mass of the Sun?

For the remaining questions, you need to use Figure
1.4 to obtain the necessary orders of magnitude of
lengths, masses, and times.

16.

17.

18.

19.

Roughly how many heartbeats are there in a
lifetime?

A generation is about one-third of a lifetime.
Approximately how many generations have
passed since the year 0?

Roughly how many times longer than the mean
life of an extremely unstable atomic nucleus is
the lifetime of a human?

Calculate the approximate number of atoms in a



20.

21.

22.

23.

bacterium. Assume the average mass of an
atom in the bacterium is 10 times the mass of a
proton.

(a) Calculate the number of cellsin a
hummingbird assuming the mass of an average
cell is 10 times the mass of a bacterium. (b)
Making the same assumption, how many cells
are there in a human?

Assuming one nerve impulse must end before
another can begin, what is the maximum firing
rate of a nerve in impulses per second?

About how many floating-point operations can a
supercomputer perform each year?

Roughly how many floating-point operations
can a supercomputer perform in a human
lifetime?

1.2 Units and Standards

24.

25.

26.

27.

28.

29.

The following times are given using metric
prefixes on the base SI unit of time: the second.
Rewrite them in scientific notation without the
prefix. For example, 47 Ts would be rewritten as
4.7 x 10135, (a) 980 Ps; (b) 980 fs; (¢) 17 ns; (d)
577 us.

The following times are given in seconds. Use
metric prefixes to rewrite them so the
numerical value is greater than one but less
than 1000. For example, 7.9 X 10~2s could be
written as either 7.9 cs or 79 ms. (a)

9.57 x 10°s; (b) 0.045 5; (c) 5.5 x 1077s; (d)
3.16 x 107s.

The following lengths are given using metric
prefixes on the base SI unit of length: the meter.
Rewrite them in scientific notation without the
prefix. For example, 4.2 Pm would be rewritten
as4.2 x 105m. (a) 89 Tm; (b) 89 pm; (c) 711
mm; (d) 0.45 yum.

The following lengths are given in meters. Use
metric prefixes to rewrite them so the
numerical value is bigger than one but less than
1000. For example, 7.9 X 10~2m could be
written either as 7.9 cm or 79 mm. (a)

7.59 x 107m; (b) 0.0074 m; (c) 8.8 x 10~ !m;
(d) 1.63 x 103m.

The following masses are written using metric
prefixes on the gram. Rewrite them in scientific
notation in terms of the SI base unit of mass: the
kilogram. For example, 40 Mg would be written
as4 X 104kg. (a) 23 mg; (b) 320 Tg; (c) 42 ng;
(d)7g; (e)9 Pg.

The following masses are given in kilograms.
Use metric prefixes on the gram to rewrite them

so the numerical value is bigger than one but
less than 1000. For example, 7 X 10_4kg could
be written as 70 cg or 700 mg. (a)

3.8 x 1079kg; (0) 2.3 x 10'7kg; (¢)

2.4 x 107 kg; (@) 8 x 10kg; (e)

42 x 10~3kg.

1.3 Unit Conversion

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

The volume of Earth is on the order of 1021 m3.
(a) What is this in cubic kilometers (km3)? (b)
What is it in cubic miles (mi®)? (c) What is it in
cubic centimeters (cm3)?

The speed limit on some interstate highways is
roughly 100 km/h. (a) What is this in meters per
second? (b) How many miles per hour is this?
A caris traveling at a speed of 33 m/s. (a) What
is its speed in kilometers per hour? (b) Is it
exceeding the 90 km/h speed limit?

In SI units, speeds are measured in meters per
second (m/s). But, depending on where you live,
you're probably more comfortable of thinking of
speeds in terms of either kilometers per hour
(km/h) or miles per hour (mi/h). In this
problem, you will see that 1 m/s is roughly 4
km/h or 2 mi/h, which is handy to use when
developing your physical intuition. More
precisely, show that (a) 1.0 m/s = 3.6 km/h and
(b) 1.0 m/s = 2.2 mi/h.

American football is played on a 100-yd-long
field, excluding the end zones. How long is the
field in meters? (Assume that 1 m = 3.281 ft.)
Soccer fields vary in size. A large soccer field is
115 m long and 85.0 m wide. What is its area in
square feet? (Assume that 1 m = 3.281 ft.)
What is the height in meters of a person who is
6 ft 1.0 in. tall?

Mount Everest, at 29,028 ft, is the tallest
mountain on Earth. What is its height in
kilometers? (Assume that 1 m = 3.281 ft.)

The speed of sound is measured to be 342 m/s
on a certain day. What is this measurement in
kilometers per hour?

Tectonic plates are large segments of Earth’s
crust that move slowly. Suppose one such plate
has an average speed of 4.0 cm/yr. (a) What
distance does it move in 1.0 s at this speed? (b)
What is its speed in kilometers per million
years?

The average distance between Earth and the
Sunis 1.5 x 1011 m. (a) Calculate the average
speed of Earth in its orbit (assumed to be
circular) in meters per second. (b) What is this




41.

42.

43.

44.

45.

46.

47.

48.

49.

speed in miles per hour?

The density of nuclear matter is about 1018 kg/
m?. Given that 1 mL is equal in volume to cm?,
what is the density of nuclear matter in
megagrams per microliter (that is, Mg/uL)?
The density of aluminum is 2.7 g/cm®. What is
the density in kilograms per cubic meter?

A commonly used unit of mass in the English
system is the pound-mass, abbreviated 1bm,
where 1 Ibm = 0.454 kg. What is the density of
water in pound-mass per cubic foot?

A furlong is 220 yd. A fortnight is 2 weeks.
Convert a speed of one furlong per fortnight to
millimeters per second.

It takes 27 radians (rad) to get around a circle,
which is the same as 360°. How many radians
arein 1°?

Light travels a distance of about 3 x 108m/s. A
light-minute is the distance light travels in 1
min. If the Sun is 1.5 x 10! m from Earth, how
far away is it in light-minutes?
Alight-nanosecond is the distance light travels
in 1 ns. Convert 1 ft to light-nanoseconds.

An electron has amass of 9.11 x 1073!kg. A
proton has a mass of 1.67 x 107>"kg. What is
the mass of a proton in electron-masses?

A fluid ounce is about 30 mL. What is the
volume of a 12 fl-oz can of soda pop in cubic
meters?

1.4 Dimensional Analysis

50.

51.

52.

53.

A student is trying to remember some formulas
from geometry. In what follows, assume A is
area, V is volume, and all other variables are
lengths. Determine which formulas are
dimensionally consistent. (a) V = ar? h; (b)

A =2zr? + 2zrh; (©) V = 0.5bh; (d) V = nd?;
@V = nd’/6.

Consider the physical quantities s, v, a, and t
with dimensions [s] = L, [v] = LT_l,

[a] = LT~2, and [7] = T. Determine whether
each of the following equations is dimensionally
consistent. (a) v = 2as; (b) s = vt? + 0.5at?;
(c)v = s/t;(d) a = vlt.

Consider the physical quantities m, s, v, a, and ¢
with dimensions [m] =M, [s] =L, [v] = LT}, [a] =
LT2 and[f]=T. Assuming each of the following
equations is dimensionally consistent, find the
dimension of the quantity on the left-hand side
of the equation: (a) F= ma; (b) K= 0.5mv%; (c) p
=mv; (d) W= mas; (e) L = mvr.

Suppose quantity s is a length and quantity 7 is a

54.

55.

time. Suppose the quantities v and a are defined
by v=ds/dtand a = dv/dt. (a) What is the
dimension of v? (b) What is the dimension of the
quantity a? What are the dimensions of (c)
/vdt, (6)] /adt, and (e) da/dt?

Suppose [V] =13, [p] = ML, and [t] = T. (a)
What is the dimension of [ pdV'? (b) What is

the dimension of dV/dt? (c) What is the
dimension of p(dV/dt)?
The arc length formula says the length s of arc

subtended by angle O in a circle of radius r is
given by the equation s = 0. What are the

dimensions of (a) s, (b) r, and (c) 8 ?

1.5 Estimates and Fermi Calculations

56.

57.

58.
59.

60.
61.

62.

63.

64.
65.

Assuming the human body is made primarily of
water, estimate the volume of a person.
Assuming the human body is primarily made of
water, estimate the number of molecules in it.
(Note that water has a molecular mass of 18 g/
mol and there are roughly 1024 atoms in a
mole.)

Estimate the mass of air in a classroom.
Estimate the number of molecules that make up
Earth, assuming an average molecular mass of
30 g/mol. (Note there are on the order of 1024
objects per mole.)

Estimate the surface area of a person.

Roughly how many solar systems would it take
to tile the disk of the Milky Way?

(a) Estimate the density of the Moon. (b)
Estimate the diameter of the Moon. (c) Given
that the Moon subtends at an angle of about half
a degree in the sky, estimate its distance from
Earth.

The average density of the Sun is on the order
10° kg/m?. (a) Estimate the diameter of the Sun.
(b) Given that the Sun subtends at an angle of
about half a degree in the sky, estimate its
distance from Earth.

Estimate the mass of a virus.

A floating-point operation is a single arithmetic
operation such as addition, subtraction,
multiplication, or division. (a) Estimate the
maximum number of floating-point operations
a human being could possibly perform in a
lifetime. (b) How long would it take a
supercomputer to perform that many floating-
point operations?



1.6 Significant Figures

66. Consider the equation 4000/400 = 10.0.
Assuming the number of significant figures in
the answer is correct, what can you say about
the number of significant figures in 4000 and
400?

67. Suppose your bathroom scale reads your mass
as 65 kg with a 3% uncertainty. What is the
uncertainty in your mass (in kilograms)?

68. A good-quality measuring tape can be off by
0.50 cm over a distance of 20 m. What is its
percent uncertainty?

69. Aninfant’s pulse rate is measured tobe 130 + 5
beats/min. What is the percent uncertainty in
this measurement?

70. (a) Suppose that a person has an average heart
rate of 72.0 beats/min. How many beats does he
or she have in 2.0 years? (b) In 2.00 years? (c) In
2.000 years?

71. A can contains 375 mL of soda. How much is left
after 308 mL is removed?

72. State how many significant figures are proper in
the results of the following calculations: (a)
(106.7) (98.2) / (46.210) (1.01) ; (b) (18.7)2; (c)
(1.60 x 10719)(3712)

73. (a) How many significant figures are in the
numbers 99 and 100.? (b) If the uncertainty in
each number is 1, what is the percent
uncertainty in each? (¢) Which is a more
meaningful way to express the accuracy of these
two numbers: significant figures or percent
uncertainties?

Additional Problems

80. Consider the equation y = mt +b, where the
dimension of yis length and the dimension of t
is time, and m and b are constants. What are the
dimensions and SI units of (a) m and (b) b?

81. Consider the equation
s = 50 4 vot + agt?12 + jor316 + Spt*/24 + 121120,
where sis alength and tis a time. What are the
dimensions and SI units of (a) sq, (b) vg, (¢) ag, (d)
Jo, (€) Sp, and (f) c?

82. (a) A car speedometer has a 5% uncertainty.
What is the range of possible speeds when it
reads 90 km/h? (b) Convert this range to miles
per hour. Note 1 km = 0.6214 mi.

74.

75.

76.

77.

78.

79.

83.

84.

(a) If your speedometer has an uncertainty of
2.0 km/h at a speed of 90 km/h, what is the
percent uncertainty? (b) If it has the same
percent uncertainty when it reads 60 km/h,
what is the range of speeds you could be going?
(a) A person’s blood pressure is measured to be
120 + 2 mm Hg. What is its percent
uncertainty? (b) Assuming the same percent
uncertainty, what is the uncertainty in a blood
pressure measurement of 80 mm Hg?

A person measures his or her heart rate by
counting the number of beats in 30 s. If 40 + 1
beats are counted in 30.0 + 0.5 s, what is the
heart rate and its uncertainty in beats per
minute?

What is the area of a circle 3.102 cm in
diameter?

Determine the number of significant figures in
the following measurements: (a) 0.0009, (b)
15,450.0, (c) 6x103, (d) 87.990, and (e) 30.42.
Perform the following calculations and express
your answer using the correct number of
significant digits. (a) A woman has two bags
weighing 13.5 1b and one bag with a weight of
10.2 1b. What is the total weight of the bags? (b)
The force Fon an object is equal to its mass m
multiplied by its acceleration a. If a wagon with
mass 55 kg accelerates at a rate of 0.0255 m/s?,
what is the force on the wagon? (The unit of
force is called the newton and it is expressed
with the symbol N.)

A marathon runner completes a 42.188-km
course in 2 h, 30 min, and 12 s. There is an
uncertainty of 25 m in the distance traveled and
an uncertainty of 1 s in the elapsed time. (a)
Calculate the percent uncertainty in the
distance. (b) Calculate the percent uncertainty
in the elapsed time. (c) What is the average
speed in meters per second? (d) What is the
uncertainty in the average speed?

The sides of a small rectangular box are
measured tobe 1.80 + 0.1 cm, 2.05 + 0.02 cm,
and 3.1 + 0.1 cm long. Calculate its volume and
uncertainty in cubic centimeters.




40

1 e Chapter Review

85. When nonmetric units were used in the United

Kingdom, a unit of mass called the pound-mass
(Ibm) was used, where 1 Ibm = 0.4539 kg. (a) If
there is an uncertainty of 0.0001 kg in the
pound-mass unit, what is its percent
uncertainty? (b) Based on that percent
uncertainty, what mass in pound-mass has an
uncertainty of 1 kg when converted to
kilograms?

Access for free at openstax.org.

86.

87.

The length and width of a rectangular room are
measured to be 3.955 + 0.005 m and 3.050 +
0.005 m. Calculate the area of the room and its
uncertainty in square meters.

A car engine moves a piston with a circular
cross-section of 7.500 + 0.002 cm in diameter a
distance of 3.250 + 0.001 cm to compress the
gas in the cylinder. (a) By what amount is the
gas decreased in volume in cubic centimeters?
(b) Find the uncertainty in this volume.



Challenge Problems
88. The first atomic bomb was detonated on July 16,

1945, at the Trinity test site about 200 mi south
of Los Alamos. In 1947, the U.S. government
declassified a film reel of the explosion. From
this film reel, British physicist G. I. Taylor was
able to determine the rate at which the radius of
the fireball from the blast grew. Using
dimensional analysis, he was then able to
deduce the amount of energy released in the
explosion, which was a closely guarded secret at
the time. Because of this, Taylor did not publish
his results until 1950. This problem challenges
you to recreate this famous calculation. (a)
Using keen physical insight developed from
years of experience, Taylor decided the radius r
of the fireball should depend only on time since
the explosion, t, the density of the air, p, and the
energy of the initial explosion, E. Thus, he made
the educated guess that r = kE? p?1¢ for some
dimensionless constant k and some unknown
exponents a, b, and c. Given that [E] = ML2T2,
determine the values of the exponents
necessary to make this equation dimensionally
consistent. (Hint: Notice the equation implies
that k = rE~9p~%+=¢ and that [k] = 1.) (b) By
analyzing data from high-energy conventional
explosives, Taylor found the formula he derived
seemed to be valid as long as the constant khad
the value 1.03. From the film reel, he was able to
determine many values of rand the
corresponding values of t. For example, he
found that after 25.0 ms, the fireball had a
radius of 130.0 m. Use these values, along with
an average air density of 1.25 kg/m?3, to
calculate the initial energy release of the Trinity
detonation in joules (J). (Hint: To get energy in
joules, you need to make sure all the numbers
you substitute in are expressed in terms of SI
base units.) (c) The energy released in large
explosions is often cited in units of “tons of
TNT” (abbreviated “t TNT”), where 1 t TNT is
about 4.2 GJ. Convert your answer to (b) into
kilotons of TNT (that is, kt TNT). Compare your
answer with the quick-and-dirty estimate of 10
kt TNT made by physicist Enrico Fermi shortly
after witnessing the explosion from what was
thought to be a safe distance. (Reportedly, Fermi
made his estimate by dropping some shredded
bits of paper right before the remnants of the
shock wave hit him and looked to see how far
they were carried by it.)

89.

The purpose of this problem is to show the
entire concept of dimensional consistency can
be summarized by the old saying “You can’t add
apples and oranges.” If you have studied power
series expansions in a calculus course, you
know the standard mathematical functions
such as trigonometric functions, logarithms,
and exponential functions can be expressed as
infinite sums of the form

(=]

Z anx" = ag + a;x + ayx® + azx> + -,

n=0

where the a, are dimensionless constants for all
n=0,1,2, - and xis the argument of the
function. (If you have not studied power series
in calculus yet, just trust us.) Use this fact to
explain why the requirement that all terms in
an equation have the same dimensions is
sufficient as a definition of dimensional
consistency. That is, it actually implies the
arguments of standard mathematical functions
must be dimensionless, so it is not really
necessary to make this latter condition a
separate requirement of the definition of
dimensional consistency as we have done in
this section.
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CHAPTER 2
Vectors

Figure 2.1 A signpost gives information about distances and directions to towns or to other locations relative to
the location of the signpost. Distance is a scalar quantity. Knowing the distance alone is not enough to get to the
town; we must also know the direction from the signpost to the town. The direction, together with the distance, is a
vector quantity commonly called the displacement vector. A signpost, therefore, gives information about
displacement vectors from the signpost to towns. (credit: modification of work by "studio tdes"/Flickr,
thedailyenglishshow.com)

Chapter Outline

2.1 Scalars and Vectors

2.2 Coordinate Systems and Components of a Vector

2.3 Algebra of Vectors

2.4 Products of Vectors

INTRODUCTION Vectors are essential to physics and engineering. Many fundamental physical quantities are
vectors, including displacement, velocity, force, and electric and magnetic vector fields. Scalar products of
vectors define other fundamental scalar physical quantities, such as energy. Vector products of vectors define
still other fundamental vector physical quantities, such as torque and angular momentum. In other words,
vectors are a component part of physics in much the same way as sentences are a component part of
literature.



In introductory physics, vectors are Euclidean quantities that have geometric representations as arrows in one
dimension (in a line), in two dimensions (in a plane), or in three dimensions (in space). They can be added,
subtracted, or multiplied. In this chapter, we explore elements of vector algebra for applications in mechanics
and in electricity and magnetism. Vector operations also have numerous generalizations in other branches of
physics.

2.1 Scalars and Vectors

Learning Objectives
By the end of this section, you will be able to:
e Describe the difference between vector and scalar quantities.
¢ |dentify the magnitude and direction of a vector.
e Explain the effect of multiplying a vector quantity by a scalar.
e Describe how one-dimensional vector quantities are added or subtracted.
e Explain the geometric construction for the addition or subtraction of vectors in a plane.
e Distinguish between a vector equation and a scalar equation.

Many familiar physical quantities can be specified completely by giving a single number and the appropriate
unit. For example, “a class period lasts 50 min” or “the gas tank in my car holds 65 L” or “the distance between
two posts is 100 m.” A physical quantity that can be specified completely in this manner is called a scalar
quantity. Scalar is a synonym of “number.” Time, mass, distance, length, volume, temperature, and energy are
examples of scalar quantities.

Scalar quantities that have the same physical units can be added or subtracted according to the usual rules of
algebra for numbers. For example, a class ending 10 min earlier than 50 min lasts 50 min — 10 min = 40 min.
Similarly, a 60-cal serving of corn followed by a 200-cal serving of donuts gives 60 cal + 200 cal = 260 cal of
energy. When we multiply a scalar quantity by a number, we obtain the same scalar quantity but with a larger
(or smaller) value. For example, if yesterday’s breakfast had 200 cal of energy and today’s breakfast has four
times as much energy as it had yesterday, then today’s breakfast has 4(200 cal) = 800 cal of energy. Two scalar
quantities can also be multiplied or divided by each other to form a derived scalar quantity. For example, if a
train covers a distance of 100 km in 1.0 h, its speed is 100.0 km/1.0 h = 27.8 m/s, where the speed is a derived
scalar quantity obtained by dividing distance by time.

Many physical quantities, however, cannot be described completely by just a single number of physical units.
For example, when the U.S. Coast Guard dispatches a ship or a helicopter for a rescue mission, the rescue team
must know not only the distance to the distress signal, but also the direction from which the signal is coming
so they can get to its origin as quickly as possible. Physical quantities specified completely by giving a number
of units (magnitude) and a direction are called vector quantities. Examples of vector quantities include
displacement, velocity, position, force, and torque. In the language of mathematics, physical vector quantities
are represented by mathematical objects called vectors (Figure 2.2). We can add or subtract two vectors, and
we can multiply a vector by a scalar or by another vector, but we cannot divide by a vector. The operation of
division by a vector is not defined.

From tail of a To head of a
VECIor ornigin vector D vector end
o -

L9 v )
Magnitude D

Figure 2.2 We draw a vector from the initial point or origin (called the “tail” of a vector) to the end or terminal point (called the “head” of a
vector), marked by an arrowhead. Magnitude is the length of a vector and is always a positive scalar quantity. (credit "photo": modification

of work by Cate Sevilla)



Let’s examine vector algebra using a graphical method to be aware of basic terms and to develop a qualitative
understanding. In practice, however, when it comes to solving physics problems, we use analytical methods,
which we’ll see in the next section. Analytical methods are more simple computationally and more accurate
than graphical methods. From now on, to distinguish between a vector and a scalar quantity, we adopt the
common convention that a letter in bold type with an arrow above it denotes a vector, and a letter without an
arrow denotes a scalar. For example, a distance of 2.0 km, which is a scalar quantity, is denoted by d = 2.0 km,

5
whereas a displacement of 2.0 km in some direction, which is a vector quantity, is denoted by d.

Suppose you tell a friend on a camping trip that you have discovered a terrific fishing hole 6 km from your tent.
It is unlikely your friend would be able to find the hole easily unless you also communicate the direction in
which it can be found with respect to your campsite. You may say, for example, “Walk about 6 km northeast
from my tent.” The key concept here is that you have to give not one but two pieces of information—namely, the
distance or magnitude (6 km) and the direction (northeast).

Displacement is a general term used to describe a change in position, such as during a trip from the tent to the
fishing hole. Displacement is an example of a vector quantity. If you walk from the tent (location A) to the hole
(location B), as shown in Figure 2.3, the vector ﬁ representing your displacement, is drawn as the arrow that
originates at point A and ends at point B. The arrowhead marks the end of the vector. The direction of the
displacement vector 13 is the direction of the arrow. The length of the arrow represents the magnitude D of
vector 13 Here, D = 6 km. Since the magnitude of a vector is its length, which is a positive number, the
magnitude is also indicated by placing the absolute value notation around the symbol that denotes the vector;
so, we can write equivalently that D = |ﬁ| To solve a vector problem graphically, we need to draw the vector D
to scale. For example, if we assume 1 unit of distance (1 km) is represented in the drawing by a line segment of
length u =2 cm, then the total displacement in this example is represented by a vector of length

d = 6u = 6(2cm) = 12 cm, as shown in Figure 2.4. Notice that here, to avoid confusion, we used D = 6 km to
denote the magnitude of the actual displacement and d = 12 cm to denote the length of its representation in
the drawing.

kA i

s
Figure 2.3 The displacement vector from point A (the initial position at the campsite) to point B (the final position at the fishing hole) is
indicated by an arrow with origin at point A and end at point B. The displacement is the same for any of the actual paths (dashed curves)

that may be taken between points Aand B.



Figure 2.4 A displacement ]3 of magnitude 6 km is drawn to scale as a vector of length 12 cm when the length of 2 cm represents 1 unit

of displacement (which in this case is 1 km).

Suppose your friend walks from the campsite at A to the fishing pond at B and then walks back: from the
fishing pond at B to the campsite at A. The magnitude of the displacement vector ﬁAB from A to Bis the same
as the magnitude of the displacement vector ]3 BA from Bto A (it equals 6 km in both cases), so we can write
D4p = Dpy. However, vector ﬁAB is not equal to vector ﬁBA because these two vectors have different
directions: ﬁAB # ﬁBA In Figure 2.3 vector ﬁBA would be represented by a vector with an origin at point B
and an end at pomt A, indicating vector D BA, points to the southwest, Whlch is exactly 180° opp051te to the

direction of vector D ARB- We say that vector D BA is antiparallel to vector D 4B and write D AB = D BA, Where
the minus sign indicates the antiparallel direction.

Two vectors that have identical directions are said to be parallel vectors—meaning, they are parallel to each
-> > > -
other. Two parallel vectors A and B are equal, denoted by A = B, if and only if they have equal magnitudes

-> -
|A| = |B| Two vectors with directions perpendicular to each other are said to be orthogonal vectors. These

relations between vectors are illustrated in Figure 2.5.

st . A
fa)Aisparallel o B e——p - —p

(b) Ais antiparalleito B g A @ 8 e

= ry A -A
(c) Als antiparallel 10 A s—— - ——
. . B
', - A B /
(d)Aisequal DB s — /ﬁ

{e) A is orthogonal to B Eh .L...

|

Figure 2.5 Various relations between two vectors 11 and ﬁ (a) K # fi because A # B. (b) K #* ]_?: because they are not parallel and
A # B.(c) K #* —X because they have different directions (even though )K| = ‘ - K| = A).(d) K = ﬁ because they are parallel and have

identical magnitudes A= B. (e) K #+ ]-3: because they have different directions (are not parallel); here, their directions differ by 90°

—meaning, they are orthogonal.

CHECK YOUR UNDERSTANDING 2.1

Two motorboats named Alice and Bob are moving on a lake. Given the information about their velocity vectors



in each of the following situations, indicate whether their velocity vectors are equal or otherwise. (a) Alice
moves north at 6 knots and Bob moves west at 6 knots. (b) Alice moves west at 6 knots and Bob moves west at 3
knots. (c) Alice moves northeast at 6 knots and Bob moves south at 3 knots. (d) Alice moves northeast at 6
knots and Bob moves southwest at 6 knots. (e) Alice moves northeast at 2 knots and Bob moves closer to the
shore northeast at 2 knots.

Algebra of Vectors in One Dimension

Vectors can be multiplied by scalars, added to other vectors, or subtracted from other vectors. We can illustrate
these vector concepts using an example of the fishing trip seen in Figure 2.6.

.

i

{a) (b) (c)
Figure 2.6 Displacement vectors for a fishing trip. (a) Stopping to rest at point C while walking from camp (point A) to the pond (point B).
(b) Going back for the dropped tackle box (point D). (c) Finishing up at the fishing pond.

Suppose your friend departs from point A (the campsite) and walks in the direction to point B (the fishing

pond), but, along the way, stops to rest at some point Clocated three-quarters of the distance between A and B,
-

beginning from point A (Figure 2.6(a)). What is his displacement vector D 4 when he reaches point C? We

know that if he walks all the way to B, his displacement vector relative to A is ]_5 4B, Which has magnitude

D4 p = 6 km and a direction of northeast. If he walks only a 0.75 fraction of the total distance, maintaining the
northeasterly direction, at point Che must be 0.75D 4 g = 4.5 km away from the campsite at A. So, his
displacement vector at the rest point C has magnitude D4¢c = 4.5 km = 0.75D 4 g and is parallel to the

displacement vector ]_5 4B- All of this can be stated succinctly in the form of the following vector equation:
> -
Dyc =0.75D4p.

In a vector equation, both sides of the equation are vectors. The previous equation is an example of a vector
-

multiplied by a positive scalar (number) & = 0.75. The result, D 4¢, of such a multiplication is a new vector
>

with a direction parallel to the direction of the original vector D 4 .

-> - -
In general, when a vector A is multiplied by a positive scalar «, the result is a new vector B that is parallel to A:
- -
B = aA. 21

The magnitude |I_§| of this new vector is obtained by multiplying the magnitude |1§‘ of the original vector, as

expressed by the scalar equation:
B = |a|A. 2.2

In a scalar equation, both sides of the equation are numbers. Equation 2.2 is a scalar equation because the



magnitudes of vectors are scalar quantities (and positive numbers). If the scalar « is negative in the vector
=
equation Equation 2.1, then the magnitude |B| of the new vector is still given by Equation 2.2, but the direction

-

of the new vector ﬁ is antiparallel to the direction of A. These principles are illustrated in Figure 2.7(a) by two
- ->

examples where the length of vector A is 1.5 units. When a = 2, the new vector ﬁ = 2A haslength

B = 2A = 3.0 units (twice as long as the original vector) and is parallel to the original vector. When @ = -2, the

new vector é = —2X has length C = | — 2| A = 3.0 units (twice as long as the original vector) and is
antiparallel to the original vector.

A B=2A C=-2A
[Ei:i.-———-h- - - — -
A=15 B=24=30 C=24=30
A L S
A=15 - = -

Ly 5 R=A+8
==
L ———— ] = | -
5 =20 R=A+B=35
A A 8
—_— - -
A=15 A
{c} - N OD=A—-B
B - e —
L B =32 D—A_B,—'l?

Figure 2.7 Algebra of vectors in one dimension. (a) Multiplication by a scalar. (b) Addition of two vectors (ﬁ is called the resultant of

N
vectors A and ﬁ). (c) Subtraction of two vectors (f) is the difference of vectors X and ﬁ).

Now suppose your fishing buddy departs from point A (the campsite), walking in the direction to point B (the
fishing hole), but he realizes he lost his tackle box when he stopped to rest at point C (located three-quarters of
the distance between A and B, beginning from point A). So, he turns back and retraces his steps in the
direction toward the campsite and finds the box lying on the path at some point D only 1.2 km away from point

C (see Figure 2.6(b)). What is his displacement vector ﬁ 4D When he finds the box at point D? What is his
displacement vector ]3 DB from point Dto the hole? We have already established that at rest point C his
displacement vector is D ac = 0. 75D ) 4B- Starting at point C, he walks southwest (toward the campsite), which
means his new displacement vector DCD from point Cto point Dis antiparallel to DAB Its magnitude ‘DCD| is

Dcp = 1.2km = 0.2D 4, so his second displacement vector is DCD = —O.ZDAB. His total displacement
- -
D 4 p relative to the campsite is the vector sum of the two displacement vectors: vector D 4¢ (from the
>
campsite to the rest point) and vector Do p (from the rest point to the point where he finds his box):

> > >
Dyp =Dyc +Dcep. 2.3

The vector sum of two (or more) vectors is called the resultant vector or, for short, the resultant. When the
-
vectors on the right-hand-side of Equation 2.3 are known, we can find the resultant D 4 p as follows:

Dup =Duc +Dcp =0.75D45 — 02D 45 = (0.75 - 0.2)D 5 = 0.55D 4 5. 2.4

>
When your friend ﬁnally reaches the pond at B, his displacement vector D 4 g from point A is the vector sum of
his dlsplacement Vector DAD from point A to point D and his displacement vector DDB from point Dto the

fishing hole: DAB = DAD + DDB (see Figure 2.6(c)). This means his displacement vector DDB is the
difference of two vectors:

- - - - -
Dpp =Dgp —Dsp =Dyp +(-Dyp). 2.5

Notice that a difference of two vectors is nothing more than a vector sum of two vectors because the second
> >
term in Equation 2.5 is vector —D 4 p (which is antiparallel to D 4 p). When we substitute Equation 2.4 into



Equation 2.5, we obtain the second displacement vector:
- > > g > > >
Dpg=Dsp —Dygp =Dap —0.55D 5 = (1.0-0.55)Dy 5 = 0.45D 4 5. 2.6

This result means your friend walked Dpg = 0.45D 4p = 0.45(6.0 km) = 2.7 km from the point where he
finds his tackle box to the fishing hole.

- =
When vectors A and B lie along a line (that is, in one dimension), such as in the camping example, their

- -> > > -> >
resultant R = A + B and their difference D = A — B both lie along the same direction. We can illustrate the
addition or subtraction of vectors by drawing the corresponding vectors to scale in one dimension, as shown in

Figure 2.7.

-> -

To illustrate the resultant when A and B are two parallel vectors, we draw them along one line by placing the
origin of one vector at the end of the other vector in head-to-tail fashion (see Figure 2.7(b)). The magnitude of
this resultant is the sum of their magnitudes: R = A + B. The direction of the resultant is parallel to both

- =
vectors. When vector A is antiparallel to vector B, we draw them along one line in either head-to-head fashion
(Figure 2.7(c)) or tail-to-tail fashion. The magnitude of the vector difference, then, is the absolute value

D = |A — B of the difference of their magnitudes. The direction of the difference vector 1_5 is parallel to the
direction of the longer vector.

In general, in one dimension—as well as in higher dimensions, such as in a plane or in space—we can add any
number of vectors and we can do so in any order because the addition of vectors is commutative,

- -
A+B=B+A, 2.7
and associative,
-> > > -> - >
A+B)+C=A+B+0O). 2.8
Moreover, multiplication by a scalar is distributive:
- - -
a1 A + A = (] + ap)A. 29

We used the distributive property in Equation 2.4 and Equation 2.6.

When adding many vectors in one dimension, it is convenient to use the concept of a unit vector. A unit vector,
which is denoted by a letter symbol with a hat, such as 1i, has a magnitude of one and does not have any
physical unit so that [i] = u = 1. The only role of a unit vector is to specify direction. For example, instead of
saying vector ﬁAB has a magnitude of 6.0 km and a direction of northeast, we can introduce a unit vector i
that points to the northeast and say succinctly that D 48 = (6.0 km)ii. Then the southwesterly direction is
simply given by the unit vector —i. In this way, the displacement of 6.0 km in the southwesterly direction is
expressed by the vector

Dp4 = (6.0 km)i.

@ EXAMPLE 2.1

A Ladybug Walker

Along measuring stick rests against a wall in a physics laboratory with its 200-cm end at the floor. A ladybug
lands on the 100-cm mark and crawls randomly along the stick. It first walks 15 cm toward the floor, then it
walks 56 cm toward the wall, then it walks 3 cm toward the floor again. Then, after a brief stop, it continues for
25 cm toward the floor and then, again, it crawls up 19 cm toward the wall before coming to a complete rest
(Figure 2.8). Find the vector of its total displacement and its final resting position on the stick.



Strategy

If we choose the direction along the stick toward the floor as the direction of unit vector i, then the direction
toward the floor is +1i and the direction toward the wall is —ti. The ladybug makes a total of five displacements:

D; = (15 cm)(+8),

D, = (56 cm)(—@),

D; = 3 cm)(+i),

D, = (25 cm)(+#), and
Ds = (19 cm)(—d).

>
The total displacement D is the resultant of all its displacement vectors.
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Figure 2.8 Five displacements of the ladybug. Note that in this schematic drawing, magnitudes of displacements are not drawn to scale.

(credit "ladybug": modification of work by “Persian Poet Gal”/Wikimedia Commons)

Solution
The resultant of all the displacement vectors is
]3 =ﬁl +]32 +]33 +]_54 +]35
= (15 cm)(4+1) + (56 cm)(—1) + (3 cm)(+1) + (25 cm)(+1) + (19 cm)(—1)
=(15-56+3+25-19)cmii
= —32 cmil.
In this calculation, we use the distributive law given by Equation 2.9. The result reads that the total
displacement vector points away from the 100-cm mark (initial landing site) toward the end of the meter stick

that touches the wall. The end that touches the wall is marked 0 cm, so the final position of the ladybug is at the
(100 — 32)cm = 68-cm mark.

CHECK YOUR UNDERSTANDING 2.2

A cave diver enters a long underwater tunnel. When her displacement with respect to the entry point is 20 m,
she accidentally drops her camera, but she doesn’t notice it missing until she is some 6 m farther into the
tunnel. She swims back 10 m but cannot find the camera, so she decides to end the dive. How far from the



entry point is she? Taking the positive direction out of the tunnel, what is her displacement vector relative to
the entry point?

Algebra of Vectors in Two Dimensions

When vectors lie in a plane—that is, when they are in two dimensions—they can be multiplied by scalars, added
to other vectors, or subtracted from other vectors in accordance with the general laws expressed by Equation
2.1, Equation 2.2, Equation 2.7, and Equation 2.8. However, the addition rule for two vectors in a plane
becomes more complicated than the rule for vector addition in one dimension. We have to use the laws of
geometry to construct resultant vectors, followed by trigonometry to find vector magnitudes and directions.
This geometric approach is commonly used in navigation (Figure 2.9). In this section, we need to have at hand
two rulers, a triangle, a protractor, a pencil, and an eraser for drawing vectors to scale by geometric
constructions.

Figure 2.9 In navigation, the laws of geometry are used to draw resultant displacements on nautical maps.

For a geometric construction of the sum of two vectors in a plane, we follow the parallelogram rule. Suppose

-> >
two vectors A and B are at the arbitrary positions shown in Figure 2.10. Translate either one of them in
parallel to the beginning of the other vector, so that after the translation, both vectors have their origins at the

same point. Now, at the end of vector K we draw a line parallel to vector ﬁ and at the end of vector ﬁ we draw a
line parallel to vector K (the dashed lines in Figure 2.10). In this way, we obtain a parallelogram. From the
origin of the two vectors we draw a diagonal that is the resultant ﬁ of the two vectors: ﬁ = K + ]-fi (Figure
2.10(a)). The other diagonal of this parallelogram is the vector difference of the two vectors 13 = K - ﬁ as
shown in Figure 2.10(b). Notice that the end of the difference vector is placed at the end of vector K

(@) (b)

Figure 2.10 The parallelogram rule for the addition of two vectors. Make the parallel translation of each vector to a point where their



origins (marked by the dot) coincide and construct a parallelogram with two sides on the vectors and the other two sides (indicated by
dashed lines) parallel to the vectors. (a) Draw the resultant vector l_i along the diagonal of the parallelogram from the common point to the
opposite corner. Length R of the resultant vector is not equal to the sum of the magnitudes of the two vectors. (b) Draw the difference
vector ﬁ = K - ﬁ along the diagonal connecting the ends of the vectors. Place the origin of vector 13 at the end of vector ]_?: and the end
(arrowhead) of vector ﬁ at the end of vector X Length D of the difference vector is not equal to the difference of magnitudes of the two

vectors.

It follows from the parallelogram rule that neither the magnitude of the resultant vector nor the magnitude of
the difference vector can be expressed as a simple sum or difference of magnitudes A and B, because the
length of a diagonal cannot be expressed as a simple sum of side lengths. When using a geometric construction

= -
to find magnitudes |R| and |D| we have to use trigonometry laws for triangles, which may lead to complicated

algebra. There are two ways to circumvent this algebraic complexity. One way is to use the method of
components, which we examine in the next section. The other way is to draw the vectors to scale, as is done in
navigation, and read approximate vector lengths and angles (directions) from the graphs. In this section we
examine the second approach.

If we need to add three or more vectors, we repeat the parallelogram rule for the pairs of vectors until we find
the resultant of all of the resultants. For three vectors, for example, we first find the resultant of vector 1 and
vector 2, and then we find the resultant of this resultant and vector 3. The order in which we select the pairs of
vectors does not matter because the operation of vector addition is commutative and associative (see Equation
2.7 and Equation 2.8). Before we state a general rule that follows from repetitive applications of the
parallelogram rule, let’s look at the following example.

Suppose you plan a vacation trip in Florida. Departing from Tallahassee, the state capital, you plan to visit your
uncle Joe in Jacksonville, see your cousin Vinny in Daytona Beach, stop for a little fun in Orlando, see a circus
performance in Tampa, and visit the University of Florida in Gainesville. Your route may be represented by five

displacement vectors K, ﬁ, (_5, f), and E, which are indicated by the red vectors in Figure 2.11. What is your
total displacement when you reach Gainesville? The total displacement is the vector sum of all five
displacement vectors, which may be found by using the parallelogram rule four times. Alternatively, recall that
the displacement vector has its beginning at the initial position (Tallahassee) and its end at the final position
(Gainesville), so the total displacement vector can be drawn directly as an arrow connecting Tallahassee with
Gainesville (see the green vector in Figure 2.11). When we use the parallelogram rule four times, the resultant

- - > - > - -
R we obtain is exactly this green vector connecting Tallahassee with Gainesville: R=A+ B+ C+ D+ E.



2.1 ¢ Scalars and Vectors
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Figure 2.11 When we use the parallelogram rule four times, we obtain the resultant vector ﬁ = X + ﬁ + (-E + ﬁ + ﬁ, which is the green

vector connecting Tallahassee with Gainesville.

Drawing the resultant vector of many vectors can be generalized by using the following tail-to-head geometric

construction. Suppose we want to draw the resultant vector R of four vectors K ﬁ é and D (Figure 2.12(a)).
We select any one of the vectors as the first vector and make a parallel translation of a second vector to a
position where the origin (“tail”) of the second vector coincides with the end (“head”) of the first vector. Then,
we select a third vector and make a parallel translation of the third vector to a position where the origin of the
third vector coincides with the end of the second vector. We repeat this procedure until all the vectors are in a
head-to-tail arrangement like the one shown in Figure 2.12. We draw the resultant vector ﬁ by connecting the
origin (“tail”) of the first vector with the end (“head”) of the last vector. The end of the resultant vector is at the
end of the last vector. Because the addition of vectors is associative and commutative, we obtain the same
resultant vector regardless of which vector we choose to be first, second, third, or fourth in this construction.

A

(a) e
Figure 2.12 Tail-to-head method for drawing the resultant vector R=A + B + é + D. (@) Four vectors of different magnitudes and
directions. (b) Vectors in (a) are translated to new positions where the origin (“tail”) of one vector is at the end (“head”) of another vector.

The resultant vector is drawn from the origin (“tail”) of the first vector to the end (“head”) of the last vector in this arrangement.



@ EXAMPLE 2.2

Geometric Construction of the Resultant

The three displacement vectors X, ﬁ, and 6 in Figure 2.13 are specified by their magnitudes A=10.0, B="7.0,
and C = 8.0, respectively, and by their respective direction angles with the horizontal direction @ = 35°,

p = —110° and y = 30°. The physical units of the magnitudes are centimeters. Choose a convenient scale and
use a ruler and a protractor to find the following vector sums: (a) ﬁ = K + ﬁ (b) ﬁ = K - ]_i, and (c)
S=K-3B+C

Figure 2.13 Vectors used in Example 2.2 and in the Check Your Understanding feature that follows.

Strategy

In geometric construction, to find a vector means to find its magnitude and its direction angle with the
horizontal direction. The strategy is to draw to scale the vectors that appear on the right-hand side of the
equation and construct the resultant vector. Then, use a ruler and a protractor to read the magnitude of the
resultant and the direction angle. For parts (a) and (b) we use the parallelogram rule. For (c) we use the tail-to-
head method.

Solution

For parts (a) and (b), we attach the origin of vector l_?: to the origin of vector K, as shown in Figure 2.14, and
construct a parallelogram. The shorter diagonal of this parallelogram is the sum K + ﬁ The longer of the
diagonals is the difference K — ﬁ We use a ruler to measure the lengths of the diagonals, and a protractor to
measure the angles with the horizontal. For the resultant ﬁ we obtain R=5.8 cm and g ~ 0°. For the
difference f), we obtain D=16.2 cm and fp = 49.3°, which are shown in Figure 2.14.

Figure 2.14 Using the parallelogram rule to solve (a) (finding the resultant, red) and (b) (finding the difference, blue).



For (c), we can start with vector —31_§ and draw the remaining vectors tail-to-head as shown in Figure 2.15. In
vector addition, the order in which we draw the vectors is unimportant, but drawing the vectors to scale is very
important. Next, we draw vector § from the origin of the first vector to the end of the last vector and place the
arrowhead at the end of § We use a ruler to measure the length of §, and find that its magnitude is

S=36.9 cm. We use a protractor and find that its direction angle is 8 g = 52.9°. This solution is shown in
Figure 2.15.

Figure 2.15 Using the tail-to-head method to solve (c) (finding vector § green).

) CHECK YOUR UNDERSTANDING 2.3

> > >
Using the three displacement vectors A, B, and F in Figure 2.13, choose a convenient scale, and use a ruler
> - -> > >
and a protractor to find vector G given by the vector equation G = A + 2B — F.

@ INTERACTIVE

Observe the addition of vectors in a plane by visiting this vector calculator (https:/openstax.org/l/
21compveccalc) and this Phet simulation (https://openstax.org/l/21phetvecaddsim) .

2.2 Coordinate Systems and Components of a Vector

Learning Objectives
By the end of this section, you will be able to:
e Describe vectors in two and three dimensions in terms of their components, using unit vectors along the
axes.
e Distinguish between the vector components of a vector and the scalar components of a vector.
e Explain how the magnitude of a vector is defined in terms of the components of a vector.
e |dentify the direction angle of a vector in a plane.
e Explain the connection between polar coordinates and Cartesian coordinates in a plane.

Vectors are usually described in terms of their components in a coordinate system. Even in everyday life we
naturally invoke the concept of orthogonal projections in a rectangular coordinate system. For example, if you
ask someone for directions to a particular location, you will more likely be told to go 40 km east and 30 km
north than 50 km in the direction 37° north of east.


https://openstax.org/l/21compveccalc
https://openstax.org/l/21compveccalc
https://openstax.org/l/21phetvecaddsim

In a rectangular (Cartesian) xy-coordinate system in a plane, a point in a plane is described by a pair of
>
coordinates (x, y). In a similar fashion, a vector A in a plane is described by a pair of its vector coordinates. The
-> ->
x-coordinate of vector A is called its x-component and the y-coordinate of vector A is called its y-component.

The vector x-component is a vector denoted by Ax. The vector y-component is a vector denoted by Ay. In the
Cartesian system, the x and y vector components of a vector are the orthogonal projections of this vector onto
the x- and y-axes, respectively. In this way, following the parallelogram rule for vector addition, each vector on
a Cartesian plane can be expressed as the vector sum of its vector components:

- -> >
A=A, +A,. 2.10
As illustrated in Figure 2.16, vector A is the dlagonal of the rectangle where the x-component Ax 1s the side

parallel to the x-axis and the y—component A is the side parallel to the y-axis. Vector component Ax is

orthogonal to vector component A y.
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Figure 2.16 Vector A in a plane in the Cartesian coordinate system is the vector sum of its vector x- and y-components. The x-vector

- - - -
component Ay is the orthogonal projection of vector A onto the x-axis. The y-vector component A, is the orthogonal projection of vector A

onto the y-axis. The numbers Ay and Ay that multiply the unit vectors are the scalar components of the vector.

It is customary to denote the positive direction on the x-axis by the unit vector i and the positive direction on
the y-axis by the unit vector j. Unit vectors of the axes, i and j, define two orthogonal directions in the plane.
As shown in Figure 2.16, the x- and y- components of a vector can now be written in terms of the unit vectors of

the axes:
Ay = A d
= Ayl
S 2.11
Ay =Ayj.

- -> ->
The vectors A, and Ay defined by Equation 2.11 are the vector components of vector A. The numbers A, and

N
Ay, that define the vector components in Equation 2.11 are the scalar components of vector A. Combining
Equation 2.10 with Equation 2.11, we obtain the component form of a vector:

A=Ad+4,]. 2.12

If we know the coordinates b(xp, yp) of the origin point of a vector (where b stands for “beginning”) and the
coordinates e(x., ye ) of the end point of a vector (where e stands for “end”), we can obtain the scalar
components of a vector simply by subtracting the origin point coordinates from the end point coordinates:



{Ax:xe—xlJ 513
Ay =Yye — yp. ;

@ EXAMPLE 2.3

Displacement of a Mouse Pointer

A mouse pointer on the display monitor of a computer at its initial position is at point (6.0 cm, 1.6 cm) with
respect to the lower left-side corner. If you move the pointer to an icon located at point (2.0 cm, 4.5 cm), what is
the displacement vector of the pointer?

Strategy

The origin of the xy-coordinate system is the lower left-side corner of the computer monitor. Therefore, the
unit vector 1 on the x-axis points horizontally to the right and the unit vector 3 on the y-axis points vertically
upward. The origin of the displacement vector is located at point b(6.0, 1.6) and the end of the displacement
vector is located at point e(2.0, 4.5). Substitute the coordinates of these points into Equation 2.13 to find the

-
scalar components Dy and D), of the displacement vector D. Finally, substitute the coordinates into Equation
2.12 to write the displacement vector in the vector component form.

Solution

We identify x; = 6.0, x, = 2.0, y, = 1.6, and y, = 4.5, where the physical unit is 1 cm. The scalar x- and
y-components of the displacement vector are

Dy =x,—xp =(20-6.0)cm = —-4.0cm,
Dy =ye—yp=(45-1.6)cm=+29cm.

The vector component form of the displacement vector is
D=D,i+D,j=(—4.0cm)i+@2.9cm)j = (—4.0i + 2.97)cm. 2.14

This solution is shown in Figure 2.17.
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Figure 2.17 The graph of the displacement vector. The vector points from the origin point at b to the end point at e.

Significance
Notice that the physical unit—here, 1 cm—can be placed either with each component immediately before the

unit vector or globally for both components, as in Equation 2.14. Often, the latter way is more convenient
because it is simpler.



The vector x-component ﬁx =-40i= 4.0(—’i\) of the displacement vector has the magnitude
-
Dy

= | — 4.0“?‘ = 4.0 because the magnitude of the unit vector is |f| = 1. Notice, too, that the direction of the
A -
x-component is —i, which is antiparallel to the direction of the +x-axis; hence, the x-component vector Dy
-
points to the left, as shown in Figure 2.17. The scalar x-component of vector D is D, = —4.0.
Similarly, the vector y-component Dy = +2.9] j of the displacement vector has magnitude |D | ‘2 9” J| 2.9
because the magnitude of the unit vector is |_] | = 1. The direction of the y-component is +J , which is parallel to

the direction of the +y-ajcls. Therefore, the y-component vector D&pomts up, as seen in Figure 2.17. The scalar
y-component of vector D is Dy, = +2.9. The displacement vector D is the resultant of its two vector
components.

The vector component form of the displacement vector Equation 2.14 tells us that the mouse pointer has been
moved on the monitor 4.0 cm to the left and 2.9 cm upward from its initial position.

CHECK YOUR UNDERSTANDING 2.4

A blue fly lands on a sheet of graph paper at a point located 10.0 cm to the right of its left edge and 8.0 cm
above its bottom edge and walks slowly to a point located 5.0 cm from the left edge and 5.0 cm from the bottom
edge. Choose the rectangular coordinate system with the origin at the lower left-side corner of the paper and
find the displacement vector of the fly. Illustrate your solution by graphing.

When we know the scalar components Ay and Ay, of a vector K we can find its magnitude A and its direction
angle 6 4. The direction angle—or direction, for short—is the angle the vector forms with the positive direction
on the x-axis. The angle 8 4 is measured in the counterclockwise direction from the +x-axis to the vector
(Figure 2.18). Because the lengths A, Ay, and A, form a right triangle, they are related by the Pythagorean

theorem:
A=A+ A & A=[A:+ A 2.15

This equation works even if the scalar components of a vector are negative. The direction angle 6 4 of a vector
is defined via the tangent function of angle 8 4 in the triangle shown in Figure 2.18:

Ay
tan 6 = A_ 2.16

X

A =Af

X L}

Figure 2.18 When the vector lies either in the first quadrant or in the fourth quadrant, where component Ay is positive (Figure 2.19), the



direction angle 8 4 in Equation 2.16) is identical to the angle 6.

When the vector lies either in the first quadrant or in the fourth quadrant, where component A, is positive
(Figure 2.19), the angle 6 in Equation 2.16 is identical to the direction angle 8 4. For vectors in the fourth
quadrant, angle 0 is negative, which means that for these vectors, direction angle 6 4 is measured clockwise
from the positive x-axis. Similarly, for vectors in the second quadrant, angle 6 is negative. When the vector lies
in either the second or third quadrant, where component Ay is negative, the direction angleis 84 = 6 + 180°
(Figure 2.19).

!

xt
!

A<0Y YA <0
Figure 2.19 Scalar components of a vector may be positive or negative. Vectors in the first quadrant (I) have both scalar components

positive and vectors in the third quadrant have both scalar components negative. For vectors in quadrants II and III, the direction angle of a
vectoris 4 = 6 + 180°.

@ EXAMPLE 2.4

Magnitude and Direction of the Displacement Vector

You move a mouse pointer on the display monitor from its initial position at point (6.0 cm, 1.6 cm) to an icon
located at point (2.0 cm, 4.5 cm). What are the magnitude and direction of the displacement vector of the
pointer?

Strategy

N
In Example 2.3, we found the displacement vector D of the mouse pointer (see Equation 2.14). We identify its
scalar components Dy = —4.0cm and D), = +2.9 cm and substitute into Equation 2.15 and Equation 2.16 to
find the magnitude D and direction @ p, respectively.

Solution

N
The magnitude of vector D is

D=/D}+ D} = \/(-4.0em)’ +29¢em)? = /(4.0 + (29 em = 49 em.

The direction angle is

D 2.
ang = 2 — +2.9cm

_—=—2 = _1—.2 = - .O.
Dy~ —40cm 0.725 = 6 =tan"" (-0.725) 359

N
Vector D lies in the second quadrant, so its direction angle is



Op = 6+ 180° = —35.9° + 180° = 144.1°.

CHECK YOUR UNDERSTANDING 2.5

If the displacement vector of a blue fly walking on a sheet of graph paper is 13 = (—S.OOf — 3.00_/]'\)Cm, find its
magnitude and direction.

In many applications, the magnitudes and directions of vector quantities are known and we need to find the
resultant of many vectors. For example, imagine 400 cars moving on the Golden Gate Bridge in San Francisco
in a strong wind. Each car gives the bridge a different push in various directions and we would like to know
how big the resultant push can possibly be. We have already gained some experience with the geometric
construction of vector sums, so we know the task of finding the resultant by drawing the vectors and
measuring their lengths and angles may become intractable pretty quickly, leading to huge errors. Worries like
this do not appear when we use analytical methods. The very first step in an analytical approach is to find
vector components when the direction and magnitude of a vector are known.

Let us return to the right triangle in Figure 2.18. The quotient of the adjacent side Ay to the hypotenuse A is
the cosine function of direction angle 84, Ax/A = cos 04, and the quotient of the opposite side A, to the
hypotenuse A is the sine function of 84, A,/A = sin 6 4. When magnitude A and direction 84 are known, we
can solve these relations for the scalar components:

{szAcost‘)A 517

Ay =Asinf,

When calculating vector components with Equation 2.17, care must be taken with the angle. The direction
angle 84 of a vector is the angle measured counterclockwise from the positive direction on the x-axis to the
vector. The clockwise measurement gives a negative angle.

@ EXAMPLE 2.5

Components of Displacement Vectors

A rescue party for a missing child follows a search dog named Trooper. Trooper wanders a lot and makes many
trial sniffs along many different paths. Trooper eventually finds the child and the story has a happy ending, but
his displacements on various legs seem to be truly convoluted. On one of the legs he walks 200.0 m southeast,
then he runs north some 300.0 m. On the third leg, he examines the scents carefully for 50.0 m in the direction
30° west of north. On the fourth leg, Trooper goes directly south for 80.0 m, picks up a fresh scent and turns
23° west of south for 150.0 m. Find the scalar components of Trooper’s displacement vectors and his
displacement vectors in vector component form for each leg.

Strategy

Let’s adopt a rectangular coordinate system with the positive x-axis in the direction of geographic east, with
the positive y-direction pointed to geographic north. Explicitly, the unit vector i of the x-axis points east and
the unit vector j of the y-axis points north. Trooper makes five legs, so there are five displacement vectors. We
start by identifying their magnitudes and direction angles, then we use Equation 2.17 to find the scalar
components of the displacements and Equation 2.12 for the displacement vectors.

Solution

On the first leg, the displacement magnitude is L} = 200.0 m and the direction is southeast. For direction
angle #; we can take either 45° measured clockwise from the east direction or 45° + 270° measured
counterclockwise from the east direction. With the first choice, #; = —45°. With the second choice,

01 = +315°. We can use either one of these two angles. The components are



Liy = Ljcosf; =(200.0m) cos 315° = 141.4 m,
Ly, = L sin0; = (200.0 m) sin 315° = —141.4 m.

The displacement vector of the first leg is
Ly =L i+ Li,J =414 - 141.45)m.

On the second leg of Trooper’s wanderings, the magnitude of the displacement is L, = 300.0 m and the
direction is north. The direction angle is 8, = +90°. We obtain the following results:

Ly, = Lpcosfy =(300.0m)cos90°=0.0,

Ly, Ly sin 8, = (300.0 m) sin 90° = 300.0 m,

Lo = Loi+Lyj=(3000m)j.

On the third leg, the displacement magnitude is L3 = 50.0 m and the direction is 30° west of north. The
direction angle measured counterclockwise from the eastern direction is 3 = 30° + 90° = 4+120°. This gives
the following answers:

L3, = Ljcosfz; =(50.0m)cos120° = —25.0 m,
L3, = Lj3sin63 =(50.0m)sin 120° = +43.3 m,
U5 = Lsi+Ls,) =(=2508+4337)m.
On the fourth leg of the excursion, the displacement magnitude is L4 = 80.0 m and the direction is south. The
direction angle can be taken as either 84 = —90° or 64 = +270°. We obtain
L4y = LgcosOy =(80.0m)cos(-90°) =0,
Ly, = Ly4sinfy =(80.0m)sin (=90°) = —80.0 m,
Ty = Liyd+ Lyyj =(=80.0m)j.
On the last leg, the magnitude is Ls = 150.0 m and the angle is 85 = —23° 4+ 270° = 4+247° (23° west of south),
which gives
Ls, = Lscosfs5 = (150.0m)cos247° = —58.6m,
Ls, Ls sin 05 = (150.0 m) sin 247° = —138.1 m,
Ls = Lsi+Ls,j=(-586i—138.17)m.

CHECK YOUR UNDERSTANDING 2.6

If Trooper runs 20 m west before taking a rest, what is his displacement vector?

Polar Coordinates

To describe locations of points or vectors in a plane, we need two orthogonal directions. In the Cartesian
coordinate system these directions are given by unit vectors fand j along the x-axis and the y-axis,
respectively. The Cartesian coordinate system is very convenient to use in describing displacements and
velocities of objects and the forces acting on them. However, it becomes cumbersome when we need to
describe the rotation of objects. When describing rotation, we usually work in the polar coordinate system.

In the polar coordinate system, the location of point Pin a plane is given by two polar coordinates (Figure
2.20). The first polar coordinate is the radial coordinate r, which is the distance of point P from the origin. The
second polar coordinate is an angle @ that the radial vector makes with some chosen direction, usually the
positive x-direction. In polar coordinates, angles are measured in radians, or rads. The radial vector is
attached at the origin and points away from the origin to point P. This radial direction is described by a unit
radial vector ¥. The second unit vector t is a vector orthogonal to the radial direction T. The positive +1
direction indicates how the angle ¢ changes in the counterclockwise direction. In this way, a point P that has



coordinates (x, y) in the rectangular system can be described equivalently in the polar coordinate system by
the two polar coordinates (r, ). Equation 2.17 is valid for any vector, so we can use it to express the x- and
y-coordinates of vector T. In this way, we obtain the connection between the polar coordinates and rectangular
coordinates of point P:

X =rcos
{ . . 2.18
y=rsing
¥y X =rcosg
y=rsing i T
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Figure 2.20 Using polar coordinates, the unit vector T defines the positive direction along the radius r (radial direction) and, orthogonal to

it, the unit vector 1 defines the positive direction of rotation by the angle ¢.

@ EXAMPLE 2.6

Polar Coordinates

A treasure hunter finds one silver coin at a location 20.0 m away from a dry well in the direction 20° north of
east and finds one gold coin at a location 10.0 m away from the well in the direction 20° north of west. What are
the polar and rectangular coordinates of these findings with respect to the well?

Strategy

The well marks the origin of the coordinate system and east is the +x-direction. We identify radial distances
from the locations to the origin, which are rg = 20.0 m (for the silver coin) and r = 10.0 m (for the gold coin).
To find the angular coordinates, we convert 20° to radians: 20° = #20/180 = 7/9. We use Equation 2.18 to find
the x- and y-coordinates of the coins.

Solution

The angular coordinate of the silver coin is ¢ g = /9, whereas the angular coordinate of the gold coin is

@G = © — 7/9 = 8x/9. Hence, the polar coordinates of the silver coin are (rg, ¢ 5) = (20.0 m, z/9) and those of
the gold coin are (rg, @) = (10.0 m, 87/9). We substitute these coordinates into Equation 2.18 to obtain
rectangular coordinates. For the gold coin, the coordinates are

{ xg =rg cos ¢g = (10.0m) cos 87/9 = —9.4 m

= (xg, =(—-9.4m,3.4m).
V6 = re sin g = (10.0 m) sin 87/9 = 3.4 m (xg.yG) = ( )

For the silver coin, the coordinates are

= = (20. =18.
Xs=rg c.os @s =(20.0m) ?os /9 =189m o (xs.ys)=(189m.68m)
ys =rssingg = (20.0m) sin 7/9 = 6.8 m




Vectors in Three Dimensions

To specify the location of a point in space, we need three coordinates (x, y, z), where coordinates x and y
specify locations in a plane, and coordinate z gives a vertical position above or below the plane. Three-
dimensional space has three orthogonal directions, so we need not two but three unit vectors to define a three-
dimensional coordinate system. In the Cartesian coordinate system, the first two unit vectors are the unit
vector of the x-axis i and the unit vector of the y-axis j The third unit vector K is the direction of the z-axis
(Figure 2.21). The order in which the axes are labeled, which is the order in which the three unit vectors
appear, is important because it defines the orientation of the coordinate system. The order x-y-z, which is
equivalent to the orderi - j - ﬁ, defines the standard right-handed coordinate system (positive orientation).

i

=1

Figure 2.21 Three unit vectors define a Cartesian system in three-dimensional space. The order in which these unit vectors appear

defines the orientation of the coordinate system. The order shown here defines the right-handed orientation.

- -> A~

In three-dimensional space, vector A has three vector components: the x-component A, = A1, which is the
- - A~ -

part of vector A along the x-axis; the y-component A, = Ay j, which is the part of A along the y-axis; and the

- ~
z-component A; = A;K, which is the part of the vector along the z-axis. A vector in three-dimensional space is
the vector sum of its three vector components (Figure 2.22):

A=Ad+4,]+A4Kk 2.19

If we know the coordinates of its origin b(xy, yp, zp) and of its end e(x,, ye, Z¢ ), its scalar components are
obtained by taking their differences: Ay and A, are given by Equation 2.13 and the z-component is given by

Az = z¢ — Zp. 2.20

Magnitude A is obtained by generalizing Equation 2.15 to three dimensions:

A= /A% + A3 + AZ 2.21

This expression for the vector magnitude comes from applying the Pythagorean theorem twice. As seen in
Figure 2.22, the diagonal in the xy-plane has length 4/ A% + A% and its square adds to the square A% to give

A?. Note that when the z-component is zero, the vector lies entirely in the xy-plane and its description is
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reduced to two dimensions.

Figure 2.22 A vector in three-dimensional space is the vector sum of its three vector components.

@ EXAMPLE 2.7

Takeoff of a Drone

During a takeoff of IAI Heron (Figure 2.23), its position with respect to a control tower is 100 m above the
ground, 300 m to the east, and 200 m to the north. One minute later, its position is 250 m above the ground,
1200 m to the east, and 2100 m to the north. What is the drone’s displacement vector with respect to the
control tower? What is the magnitude of its displacement vector?

o —

Figure 2.23 The drone IAI Heron in flight. (credit: SSgt Reynaldo Ramon, USAF)

Strategy

We take the origin of the Cartesian coordinate system as the control tower. The direction of the +x-axis is given
by unit vector ito the east, the direction of the +y-axis is given by unit Vectorj to the north, and the direction
of the +z-axis is given by unit vector ﬁ, which points up from the ground. The drone’s first position is the origin
(or, equivalently, the beginning) of the displacement vector and its second position is the end of the
displacement vector.

Solution

We identify b(300.0 m, 200.0 m, 100.0 m) and e(1200 m, 2100 m, 250 m), and use Equation 2.13 and Equation
2.20 to find the scalar components of the drone’s displacement vector:
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Dy = x¢ — xp = 1200.0 m — 300.0 m = 900.0 m,
Dy =y, — yp =2100.0m — 200.0 m = 1900.0 m,
D; =2z, — z; =250.0m — 100.0 m = 150.0 m.

We substitute these components into Equation 2.19 to find the displacement vector:
D=D,i+D,j+ D.K=900.0mi+1900.0mj + 150.0 mk = (0.90f + 1.90] + 0.15K) km.

We substitute into Equation 2.21 to find the magnitude of the displacement:

D=,/D}+D}+D?= \/(0.90 km)? + (1.90 km)? + (0.15 km)? = 2.11 km.

CHECK YOUR UNDERSTANDING 2.7

If the average velocity vector of the drone in the displacement in Example 2.7 is
i = (15.0i + 31.7j + 2.5k)m/s, what is the magnitude of the drone’s velocity vector?

2.3 Algebra of Vectors

Learning Objectives
By the end of this section, you will be able to:
e Apply analytical methods of vector algebra to find resultant vectors and to solve vector equations for
unknown vectors.
e Interpret physical situations in terms of vector expressions.

Vectors can be added together and multiplied by scalars. Vector addition is associative (Equation 2.8) and
commutative (Equation 2.7), and vector multiplication by a sum of scalars is distributive (Equation 2.9). Also,
scalar multiplication by a sum of vectors is distributive:

a(x + ﬁ) = a;& + aB. 2.22

-> A A A
In this equation, « is any number (a scalar). For example, a vector antiparallel to vector A = Axi + ij + Ak

can be expressed simply by multiplying K by the scalar a = —1:

—A=-Adi-4,j- 4.k 2.23

@ EXAMPLE 2.8

Direction of Motion

In a Cartesian coordinate system where i denotes geographic east, j\ denotes geographic north, and Kk denotes
altitude above sea level, a military convoy advances its position through unknown territory with velocity

V= (4.0f + 3.0:]'\ + 0.1/lE)km/h. If the convoy had to retreat, in what geographic direction would it be moving?

Solution

The velocity vector has the third component v, = (+O.1km/h)/lz, which says the convoy is climbing at a rate of
100 m/h through mountainous terrain. At the same time, its velocity is 4.0 km/h to the east and 3.0 km/h to the
north, so it moves on the ground in direction tan~ ! (3/4) ~ 37° north of east. If the convoy had to retreat, its
new velocity vector d would have to be antiparallel to V and be in the form d = —av, where a is a positive
number. Thus, the velocity of the retreat would be ti = a(—4.0'i\ — 3.0?]'\ — O.lﬁ)km/h. The negative sign of the
third component indicates the convoy would be descending. The direction angle of the retreat velocity is

tan~! (=3a/ — 4a) ~ 37° south of west. Therefore, the convoy would be moving on the ground in direction 37°



south of west while descending on its way back.

>

The generalization of the number zero to vector algebra is called the null vector, denoted by 0. All components
- S ~ ~

of the null vector are zero, 0 = 0i + 0j + Ok, so the null vector has no length and no direction.

Two vectors K and ﬁ are equal vectors if and only if their difference is the null vector:
0=A-B=(Ad+A4,]+A.K) —(Bi+B,j+B.K =4, —B)i+(A4, - B)j +(A; — Bk
This vector equation means we must have simultaneously Ay — By =0, A, — By, =0,and A; — B; = 0.

- - -> =
Hence, we can write A = B if and only if the corresponding components of vectors A and B are equal:

Ay = By

-> >

A=B & JA,=8B,. 2.24
AZ=BZ

Two vectors are equal when their corresponding scalar components are equal.

Resolving vectors into their scalar components (i.e., finding their scalar components) and expressing them
analytically in vector component form (given by Equation 2.19) allows us to use vector algebra to find sums or
differences of many vectors analytically (i.e., without using graphical methods). For example, to find the

resultant of two vectors K and ﬁ we simply add them component by component, as follows:
R=A+B=Ad+4,]+A4.K+Bi+B,j+B.K) = (A, + BOi+ (4, + B))] + (A; + Bk,

- A ~ A
In this way, using Equation 2.24, scalar components of the resultant vector R = Ryi+ R, j + R;k are the

- >
sums of corresponding scalar components of vectors A and B:

Ry = Ay + By,
R, = A, + By,
R.=A; + B..

Analytical methods can be used to find components of a resultant of many vectors. For example, if we are to

e S 3 2> - ~ ~ A~ =2
sum up N vectors Fi,F,,F3,...,Fx, where each vector is Fy = Fyi + Fy,j + FjK, the resultant vector Fg
is

k=1 k=1

(B (3o (3

Therefore, scalar components of the resultant vector are

( N
Frx = Z Fix = Fix + Fo) + ...+ Fny
k=1
N
3 FRy=ZFky=F1y+F2y+--'+FNy 2.25
k=1
N
FRr; = Zsz =F,+F,+..+Fn;.
L k=1

Having found the scalar components, we can write the resultant in vector component form:



if‘R = Fin+FRyj\+FRZ§.

Analytical methods for finding the resultant and, in general, for solving vector equations are very important in
physics because many physical quantities are vectors. For example, we use this method in kinematics to find
resultant displacement vectors and resultant velocity vectors, in mechanics to find resultant force vectors and
the resultants of many derived vector quantities, and in electricity and magnetism to find resultant electric or
magnetic vector fields.

@ EXAMPLE 2.9

Analytical Computation of a Resultant

> -5 >
Three displacement vectors A, B, and C in a plane (Figure 2.13) are specified by their magnitudes A=10.0, B=
7.0, and C = 8.0, respectively, and by their respective direction angles with the horizontal direction a = 35°,
p = —110° and y = 30°. The physical units of the magnitudes are centimeters. Resolve the vectors to their

- -> -2 > - - -2
scalar components and find the following vector sums: (@) R=A +B + C, (b)) D = A — B, and (c)
-
S=X-3B+C.
Strategy

First, we use Equation 2.17 to find the scalar components of each vector and then we express each vector in its
vector component form given by Equation 2.12. Then, we use analytical methods of vector algebra to find the
resultants.

Solution
We resolve the given vectors to their scalar components:
Ax = Acosa = (10.0cm) cos 35° = 8.19 cm
Ay = Asina = (10.0cm) sin 35° = 5.73 cm
By = Bcos f=(7.0cm)cos (—=110°) = =2.39cm
By = Bsin = (7.0 cm) sin (=110°) = —6.58 cm '
Cy =Ccosy=(8.0cm)cos30°=6.93cm
Cy =Csiny = (8.0cm) sin 30° = 4.00 cm
For (a) we may substitute directly into Equation 2.25 to find the scalar components of the resultant:

Ry =Ax+ By +C, =8.19cm—2.39cm + 6.93cm = 12.73 cm
Ry,=A,+B,+Cy,=573cm—6.58cm+4.00cm =3.15cm

Therefore, the resultant vector is R= Rei+ Ry:]'\ = (1271 + 3.1?]'\)cm.

For (b), we may want to write the vector difference as

-

2 3 4 2 4 2 2 a
D=A-B=(Axi+ Ayj)—(Bxi+ Byj) = (Ax — Bx)i+ (4, — By)j.
Then, the scalar components of the vector difference are

Dy = Ay — By =8.19cm — (—2.39cm) = 10.58 cm
Dy,=Ay,—B,=573cm—(-6.58cm) = 1231 cm

Hence, the difference vector is D= D.i+ Dy./]'\ = (10.61 + 12.3,/]'\)cm.
For (c), we can write vector § in the following explicit form:
S =A-3B+C=Ai+4,))-3Bi+B,))+(Ci+C7)
= (Ax —3Bx + Co)i+ (A, =3B, + C))j.



N
Then, the scalar components of S are

Sy = Ax —3Bx + Cx =8.19cm — 3(—=2.39cm) + 6.93 cm = 22.29 cm
Sy =A,-3B, +Cy =5.73cm - 3(-6.58 cm) + 4.00 cm = 29.47 cm '

The vector is S = Syi + Syj = (22.31 +29.5))cm.

Significance

Having found the vector components, we can illustrate the vectors by graphing or we can compute magnitudes
and direction angles, as shown in Figure 2.24. Results for the magnitudes in (b) and (c) can be compared with
results for the same problems obtained with the graphical method, shown in Figure 2.14 and Figure 2.15.
Notice that the analytical method produces exact results and its accuracy is not limited by the resolution of a
ruler or a protractor, as it was with the graphical method used in Example 2.2 for finding this same resultant.

Figure 2.24 Graphical illustration of the solutions obtained analytically in Example 2.9.

) CHECK YOUR UNDERSTANDING 2.8

Three displacement vectors K, ﬁ, and f‘ (Figure 2.13) are specified by their magnitudes A =10.00, B = 7.00,
and F=20.00, respectively, and by their respective direction angles with the horizontal direction a = 35°,

p = —110° and @ = 110°. The physical units of the magnitudes are centimeters. Use the analytical method to
find vector (_i -A + 2B - F. Verify that

G=28.15cm and that 5 = —68.65°.

@ EXAMPLE 2.10

The Tug-of-War Game

Four dogs named Astro, Balto, Clifford, and Dug play a tug-of-war game with a toy (Figure 2.25). Astro pulls on
the toy in direction @ = 55° south of east, Balto pulls in direction f = 60° east of north, and Clifford pulls in
direction y = 55° west of north. Astro pulls strongly with 160.0 units of force (N), which we abbreviate as A =
160.0 N. Balto pulls even stronger than Astro with a force of magnitude B = 200.0 N, and Clifford pulls with a
force of magnitude C=140.0 N. When Dug pulls on the toy in such a way that his force balances out the
resultant of the other three forces, the toy does not move in any direction. With how big a force and in what
direction must Dug pull on the toy for this to happen?




Clifford

Dug
Figure 2.25 Four dogs play a tug-of-war game with a toy.

Strategy
We assume that east is the direction of the positive x-axis and north is the direction of the positive y-axis. As in

Example 2.9, we have to resolve the three given forces— K (the pull from Astro), ﬁ (the pull from Balto), and E’:
(the pull from Clifford)—into their scalar components and then find the scalar components of the resultant

vector ﬁ = K + ﬁ + é When the pulling force ﬁ from Dug balances out this resultant, the sum off) and ﬁ
>
must give the null vector 1_5 + ﬁ = (. This means that 13 = —ﬁ, so the pull from Dug must be antiparallel to ﬁ

Solution
The direction angles are 84 = —a = —55°,0p = 90° — f = 30°,and ¢ = 90° + y = 145°, and substituting
them into Equation 2.17 gives the scalar components of the three given forces:
Ay = Acosf4 = (160.0N) cos (—55°) = +91.8 N
{ Ay = Asinf,4 = (160.0N) sin (=55°) = =131.1N
By = BcosOpg = (200.0N) cos 30° = +173.2N
{ By = Bsinfp = (200.0 N) sin 30° = +100.0 N
Cy = CcosfO¢c = (140.0N) cos 145° = —114.7N
{ Cy = Csinfc = (140.0N) sin 145° = +80.3 N

- - - -
Now we compute scalar components of the resultant vector R = A + B + C:

Ry = Ay + By + Cx = +91.8 N+ 1732 N - 114.7N = +150.3 N
Ry=A,+ By +Cy=—131.IN+100.0N + 803N = +49.2N

The antiparallel vector to the resultant ﬁ is
D=-R=-R/i-R,j=(-15031 - 49.2j)N.

The magnitude of Dug’s pulling force is

D= /D% + D% = \/(—150.3)2 +(=49.2)2 N = 158.1 N.

The direction of Dug’s pulling force is

6'_ an = tan = tan _1 .10'

Dug pulls in the direction 18.1° south of west because both components are negative, which means the pull




vector lies in the third quadrant (Figure 2.19).

CHECK YOUR UNDERSTANDING 2.9

Suppose that Balto in Example 2.10 leaves the game to attend to more important matters, but Astro, Clifford,
and Dug continue playing. Astro and Clifford's pull on the toy does not change, but Dug runs around and bites
on the toy in a different place. With how big a force and in what direction must Dug pull on the toy now to
balance out the combined pulls from Clifford and Astro? Illustrate this situation by drawing a vector diagram
indicating all forces involved.

@ EXAMPLE 2.11

Vector Algebra

Fmd the magmtude of the vector C that satisfies the equation 2A 6B + 3C ZJ ,where A = i—2kand
B=— J + k2.

Strategy

> > >

We first solve the given equation for the unknown vector C. Then we substitute A and B; group the terms along
each of the three directions i, j, and k; and identify the scalar components Cy, Cy, and C;. Finally, we
substitute into Equation 2.21 to find magnitude C.

Solution

- -> A~
—6B+3C = 2j

36 = 2}—2X+6ﬁ
C = 2j-2K+28
- 25- 2(§_2§)+2<_j+%>=%j—%i+%ﬁ—2j+ﬁ
- _23 e k
=3 (3 )J+(§+1)k
R

The components are Cy = —2/3, Cy, = —4/3, and C; = 7/3, and substituting into Equation 2.21 gives

C=,/C2+C}+C2 = \/(—2/3)2 +(=473)* +(113)* = 1/23/3.

@ EXAMPLE 2.12

Displacement of a Skier

Starting at a ski lodge, a cross-country skier goes 5.0 km north, then 3.0 km west, and finally 4.0 km southwest
before taking a rest. Find his total displacement vector relative to the lodge when he is at the rest point. How
far and in what direction must he ski from the rest point to return directly to the lodge?

Strategy

We assume a rectangular coordinate system with the origin at the ski lodge and with the unit vector i pointing
east and the unit vector :1\ pointing north. There are three displacements: ]3 1 ]_52, and ]33. We identify their
magnitudes as D; = 5.0 km, D, = 3.0 km, and D3 = 4.0 km. We identify their directions are the angles

0, =90° 6, = 180° and 03 = 180° + 45° = 225°. We resolve each displacement vector to its scalar
components and substitute the components into Equation 2.25 to obtain the scalar components of the



resultant displacement ﬁ from the lodge to the rest point. On the way back from the rest point to the lodge, the
> > -
displacement is B = —D. Finally, we find the magnitude and direction of B.

Solution
Scalar components of the displacement vectors are
Diy = Djcosf; =(5.0km)cos90° =0
{ Dy, = Dy sin0; = (5.0 km) sin 90° = 5.0 km
Dy, = Dy cos 8y = (3.0 km) cos 180° = —3.0 km
{ D,y = D; sin 0, = (3.0 km) sin 180° =0 '
D3, = D3 cos 03 = (4.0 km) cos 225° = —2.8 km
{ D3, = Dj3 sin 3 = (4.0 km) sin 225° = —2.8 km

Scalar components of the net displacement vector are

Dy = Dy + Dy + D3, =(0—3.0 —2.8)km = —5.8 km
Dy =Dy + Dy, + D3y = (5.0+0—2.8)km = +2.2km ’

Hence, the skier’s net displacement vector is D= D.i+ Dyj = (—5.8f + 2.23)km. On the way back to the
lodge, his displacement is B = —D = —(—5.81 + 2.2 )km = (5.81 — 2.2 )km. Its magnitude is

B=1/B} + B} = 1/(5.8)* + (-2.2)” km = 6.2 km and its direction angle is § = tan™!(~2.2/5.8) = —20.8°.

Therefore, to return to the lodge, he must go 6.2 km in a direction about 21° south of east.

Significance
Notice that no figure is needed to solve this problem by the analytical method. Figures are required when using

a graphical method; however, we can check if our solution makes sense by sketching it, which is a useful final
step in solving any vector problem.

@ EXAMPLE 2.13

Displacement of a Jogger

A jogger runs up a flight of 200 identical steps to the top of a hill and then runs along the top of the hill 50.0 m
before he stops at a drinking fountain (Figure 2.26). His displacement vector from point A at the bottom of the
steps to point B at the fountain is ﬁAB = (—90.0i + 30.03)m. What is the height and width of each step in the

flight? What is the actual distance the jogger covers? If he makes a loop and returns to point A, what is his net

displacement vector?
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Figure 2.26 A jogger runs up a flight of steps.

Strategy

- >
The displacement vector D 4 g is the vector sum of the jogger’s displacement vector D 47 along the stairs (from

-
point A at the bottom of the stairs to point T at the top of the stairs) and his displacement vector D7 g on the top
of the hill (from point A at the top of the stairs to the fountain at point 7). We must find the horizontal and the

vertical components of 13 AT - If each step has width wand height h, the horizontal component of ﬁ AT Must
have a length of 200w and the vertical component must have a length of 200h. The actual distance the jogger
covers is the sum of the distance he runs up the stairs and the distance of 50.0 m that he runs along the top of
the hill.

Solution

In the coordinate system indicated in Figure 2.26, the jogger’s displacement vector on the top of the hill is
-> A~

D7p = (—50.0 m)i. His net displacement vector is

ﬁAB = ﬁAT + ﬁTB-
Therefore, his displacement vector ﬁT p along the stairs is
Dur =Dup —Drp = (=90.01 +30.07)m — (=50.0 m)i = [(—90.0 + 50.0)i + 30.03)]m
= (=40.01 + 30.0j)m.
Its scalar components are D g7 = —40.0 mand D 41y, = 30.0 m. Therefore, we must have
200w = | — 40.0|m and 2004 = 30.0 m.

Hence, the step width is w=40.0 m/200 = 0.2 m = 20 cm, and the step height is h=30.0 m/200=0.15m =15
cm. The distance that the jogger covers along the stairs is

2 2
Dar = /DAy, + DYy, = \/ (=40.0)2 + (30.0)% m = 50.0 m.
Thus, the actual distance he runs is D47 + Drp = 50.0 m + 50.0 m = 100.0 m. When he makes a loop and
comes back from the fountain to his initial position at point A, the total distance he covers is twice this
distance, or 200.0 m. However, his net displacement vector is zero, because when his final position is the same

as his initial position, the scalar components of his net displacement vector are zero (Equation 2.13).

In many physical situations, we often need to know the direction of a vector. For example, we may want to know
the direction of a magnetic field vector at some point or the direction of motion of an object. We have already
said direction is given by a unit vector, which is a dimensionless entity—that is, it has no physical units
associated with it. When the vector in question lies along one of the axes in a Cartesian system of coordinates,
the answer is simple, because then its unit vector of direction is either parallel or antiparallel to the direction

Access for free at openstax.org.



- ~ ~ 2
of the unit vector of an axis. For example, the direction of vector d = —5 mi is unit vector d = —1. The general
—~ -
rule of finding the unit vector V of direction for any vector V is to divide it by its magnitude V-

—~

V = 2.26

~l<

We see from this expression that the unit vector of direction is indeed dimensionless because the numerator
and the denominator in Equation 2.26 have the same physical unit. In this way, Equation 2.26 allows us to
express the unit vector of direction in terms of unit vectors of the axes. The following example illustrates this
principle.

@ EXAMPLE 2.14

The Unit Vector of Direction

If the velocity vector of the military convoy in Example 2.8 sV = (4.000§ + 3.0003 + O.IOO/IE)km/h, what is the
unit vector of its direction of motion?

Strategy

The unit vector of the convoy’s direction of motion is the unit vector ¥ that is parallel to the velocity vector. The
unit vector is obtained by dividing a vector by its magnitude, in accordance with Equation 2.26.

Solution

The magnitude of the vector V is

v =1/} + 02 + 02 = V4.000> +3.000? + 0.100°km/h = 5.001km/h.

To obtain the unit vector ¥, divide V by its magnitude:

¥ _ (4.000i+3.0005+0.100K)km/h
v 5.001km/h
(4.000i+3.000 +0.100K)

5.001

_ 4000% , 3.000% , 0.100%
= 30011 T 50014 T 5001 K

(79.981 + 59.997 + 2.00k) x 1072.

¥y =

Significance

Note that when using the analytical method with a calculator, it is advisable to carry out your calculations to at
least three decimal places and then round off the final answer to the required number of significant figures,
which is the way we performed calculations in this example. If you round off your partial answer too early, you
risk your final answer having a huge numerical error, and it may be far off from the exact answer or from a
value measured in an experiment.

CHECK YOUR UNDERSTANDING 2.10

Verify that vector ¥V obtained in Example 2.14 is indeed a unit vector by computing its magnitude. If the convoy
in Example 2.8 was moving across a desert flatland—that is, if the third component of its velocity was
zero—what is the unit vector of its direction of motion? Which geographic direction does it represent?



2.4 Products of Vectors

Learning Objectives
By the end of this section, you will be able to:
e Explain the difference between the scalar product and the vector product of two vectors.
e Determine the scalar product of two vectors.
e Determine the vector product of two vectors.
e Describe how the products of vectors are used in physics.

A vector can be multiplied by another vector but may not be divided by another vector. There are two kinds of
products of vectors used broadly in physics and engineering. One kind of multiplication is a scalar
multiplication of two vectors. Taking a scalar product of two vectors results in a number (a scalar), as its name
indicates. Scalar products are used to define work and energy relations. For example, the work that a force (a
vector) performs on an object while causing its displacement (a vector) is defined as a scalar product of the
force vector with the displacement vector. A quite different kind of multiplication is a vector multiplication of
vectors. Taking a vector product of two vectors returns as a result a vector, as its name suggests. Vector
products are used to define other derived vector quantities. For example, in describing rotations, a vector
quantity called torqueis defined as a vector product of an applied force (a vector) and its distance from pivot to
force (a vector). It is important to distinguish between these two kinds of vector multiplications because the
scalar product is a scalar quantity and a vector product is a vector quantity.

The Scalar Product of Two Vectors (the Dot Product)

Scalar multiplication of two vectors yields a scalar product.

Scalar Product (Dot Product)
The scalar product K . ﬁ of two vectors K and B is a number defined by the equation
A-B=ABcos o, 2.27

where @ is the angle between the vectors (shown in Figure 2.27). The scalar product is also called the dot
product because of the dot notation that indicates it.

In the definition of the dot product, the direction of angle ¢ does not matter, and ¢ can be measured from
either of the two vectors to the other because cos ¢ = cos (—@) = cos (27 — @). The dot product is a negative
number when 90° < @ < 180° and is a positive number when 0° < @ < 90°. Moreover, the dot product of two
parallel vectors is K . ﬁ = ABcos 0° = AB, and the dot product of two antiparallel vectors is

A -B = ABcos 180° = —AB. The scalar product of two orthogonal vectors vanishes: K B = ABcos 90° = 0.
The scalar product of a vector with itself is the square of its magnitude:

2
A =A-A=AAcos0° = A2, 2.28




Bl

(a) (L) (c)
Figure 2.27 The scalar product of two vectors. (a) The angle between the two vectors. (b) The orthogonal projection A [ of vector X

2 =2 -
onto the direction of vector B. (c) The orthogonal projection B I of vector B onto the direction of vector A.

@ EXAMPLE 2.15

The Scalar Product
N
For the vectors shown in Figure 2.13, find the scalar product A - i':‘

Strategy

- >

From Figure 2.13, the magnitudes of vectors A and F are A =10.0 and F = 20.0. Angle 8, between them, is the
difference: @ = ¢ — a = 110° — 35° = 75°. Substituting these values into Equation 2.27 gives the scalar
product.

Solution

A straightforward calculation gives us

A -F = AF cos 6 = (10.0)(20.0) cos 75° = 51.76.

) CHECK YOUR UNDERSTANDING 2.11

> o > 2
For the vectors given in Figure 2.13, find the scalar products A - Band F - C.

In the Cartesian coordinate system, scalar products of the unit vector of an axis with other unit vectors of axes
always vanish because these unit vectors are orthogonal:

i3 =[if[j]cos90° = (1)) =0,
ik =|il[k| cos 90° = (1)(1)(0) = 0, 2.29

~

k- § =[k][j] cos 90° = (1)(1)(0) = 0.
In these equations, we use the fact that the magnitudes of all unit vectors are one: |i| = m = |ﬁ| = 1. For unit
vectors of the axes, Equation 2.28 gives the following identities:
ii=2=7.j=/ =k -k=K*=1. 2.30
The scalar product X . ﬁ can also be interpreted as either the product of B with the projection Aj of vector K

- >

onto the direction of vector B (Figure 2.27(b)) or the product of A with the projection By of vector B onto the
-

direction of vector A (Figure 2.27(c)):



> o
A-B = ABcosg
= B(A cos @) = BA;
= A(Bcos @) = AB.

For example, in the rectangular coordinate system in a plane, the scalar x-component of a vector is its dot
product with the unit vector i, and the scalar y-component of a vector is its dot product with the unit vector j:

K-i:|K||i|cos€A =Acosfy = Ay
X-j= |K||j|cos(90°—9A) = Asin, = A,

Scalar multiplication of vectors is commutative,

A-B=B-A, 2.31
and obeys the distributive law:
A-B+O)=K-B+X-C 2.32

We can use the commutative and distributive laws to derive various relations for vectors, such as expressing
the dot product of two vectors in terms of their scalar components.

CHECK YOUR UNDERSTANDING 2.12

- A ~ ~
Forvector A = Ayi+ Ay j + Ak in arectangular coordinate system, use Equation 2.29 through Equation
- A - A = A~
2.32toshowthatA-i=AyA-j=A,andA -k=A;.

When the vectors in Equation 2.27 are given in their vector component forms,
-> A ~ ~ -> ~ ~ -~
A=Axi+ Ayj+ A;kandB = Byi+ By j + Bk,

we can compute their scalar product as follows:

AB = (Ad+4,]+AK- Bdi+B,J+B.K
= ABAi-1+ABi-J+ABi -k
+AyB.j -1+ A,B,j-j+A,B.j -k
+A;B.k-1+A.Bk-§+A,B.k-k
Since scalar products of two different unit vectors of axes give zero, and scalar products of unit vectors with

themselves give one (see Equation 2.29 and Equation 2.30), there are only three nonzero terms in this
expression. Thus, the scalar product simplifies to

A-B=A.B,+A,B,+A.B.. )R

We can use Equation 2.33 for the scalar product in terms of scalar components of vectors to find the angle
between two vectors. When we divide Equation 2.27 by AB, we obtain the equation for cos @, into which we
substitute Equation 2.33:

> o
A‘B AxBx+AyBy+Asz
= = 2.34
COS @ AB AB 5

-> -
Angle @ between vectors A and B is obtained by taking the inverse cosine of the expression in Equation 2.34.



@ EXAMPLE 2.16

Angle between Two Forces

Three dogs are pulling on a stick in different directions, as shown in Figure 2.28. The first dog pulls with force
ﬁ‘l = (10. 01 20. 4J + 2. Ok)N the second dog pulls with force F2 = (-15. 01 6.2ﬁ)N, and the third dog pulls
with force F3 =(5. 0i + 12.5j J )N What is the angle between forces F1 and Fz’?

Figure 2.28 Three dogs are playing with a stick.

Strategy

The components of force vector ﬁ’l are Fi, = 10.0N, Fj, = =20.4 N, and Fy; = 2.0 N, whereas those of force
vector ﬁ‘z are Fp, = —15.0N, F;, =0.0N, and F,; = —6.2 N. Computing the scalar product of these vectors
and their magnitudes, and substituting into Equation 2.34 gives the angle of interest.

Solution

- -
The magnitudes of forces F; and F, are

F = \/FIZX + F2 + FL, = V100> +2047 +2.0° N= 228N

and

— 2 2 2 2 2N —
P = \/F2x + F3, + F2, = V150" + 62> N =162N.
Substituting the scalar components into Equation 2.33 yields the scalar product

Fi-Fy, =Fi P+ Fiyby+ Fi Py
= (10.0N)(—15.0N) + (=20.4 N)(0.0N) + (2.0N)(—=6.2N)

= -162.4N?.
Finally, substituting everything into Equation 2.34 gives the angle
F,-F 162.4N2
cosp=— -2 = —0.439 = ¢ = cos ' (=0.439) = 116.0°.

FiF,  (228N)(162N)

Significance

Notice that when vectors are given in terms of the unit vectors of axes, we can find the angle between them
without knowing the specifics about the geographic directions the unit vectors represent. Here, for example,
the +x-direction might be to the east and the +y-direction might be to the north. But, the angle between the
forces in the problem is the same if the +x-direction is to the west and the +y-direction is to the south.




) CHECK YOUR UNDERSTANDING 2.13

> >
Find the angle between forces | and F3 in Example 2.16.

@ EXAMPLE 2.17

The Work of a Force

When force i:’ pulls on an object and when it causes its displacement 13, we say the force performs work. The
> o
amount of work the force does is the scalar product F - D. If the stick in Example 2.16 moves momentarily and
- ~ ~
gets displaced by vector D = (—7.9j — 4.2k) cm, how much work is done by the third dog in Example 2.16?

Strategy
We compute the scalar product of displacement vector D with force vector F3 = (5. 0i +12.5] J )N which is the
pull from the third dog. Let’s use W3 to denote the work done by force F3 on displacement D

Solution

Calculating the work is a straightforward application of the dot product:

W3 =F3-D=F3 Dy + F3,D, + F3.D;
= (5.0N)(0.0cm) + (12.5N)(—=7.9 cm) + (0.0 N)(—4.2 cm)
=-98.7N-cm.
Significance

The SI unit of work is called the joule (J), where 1 J =1 N - m. The unit cm - N can be written as
1072m - N = 10727, so the answer can be expressed as W3 =—-0.9875] =~ —1.0J.

) CHECK YOUR UNDERSTANDING 2.14

How much work is done by the first dog and by the second dog in Example 2.16 on the displacement in
Example 2.17?

The Vector Product of Two Vectors (the Cross Product)

Vector multiplication of two vectors yields a vector product.

Vector Product (Cross Product)

> - - =
The vector product of two vectors A and B is denoted by A X B and is often referred to as a cross

> =
product. The vector product is a vector that has its direction perpendicular to both vectors A and B. In

-> - -> -
other words, vector A X B is perpendicular to the plane that contains vectors A and B, as shown in Figure
2.29. The magnitude of the vector product is defined as

IK X ]_§| = ABsin @, 2.35

> >
where angle @, between the two vectors, is measured from vector A (first vector in the product) to vector B
(second vector in the product), as indicated in Figure 2.29, and is between 0° and 180°.

According to Equation 2.35, the vector product vanishes for pairs of vectors that are either parallel (¢ = 0°) or
antiparallel (¢ = 180°) because sin 0° = sin 180° = 0.



C=BxXA

(a) (b)
Figure 2.29 The vector product of two vectors is drawn in three-dimensional space. (a) The vector product X X ]_?; is a vector
perpendicular to the plane that contains vectors K and I_i Small squares drawn in perspective mark right angles between X and é, and
between ]-3: and 6 so that if K and ﬁ lie on the floor, vector é points vertically upward to the ceiling. (b) The vector product ]_i X X isa

- -
vector antiparallel to vector A X B.

- =

On the line perpendicular to the plane that contains vectors A and B there are two alternative
directions—either up or down, as shown in Figure 2.29—and the direction of the vector product may be either
one of them. In the standard right-handed orientation, where the angle between vectors is measured

-> -

counterclockwise from the first vector, vector A X B points upward, as seen in Figure 2.29(a). If we reverse the
- - ->

order of multiplication, so that now B comes first in the product, then vector B X A must point downward, as

- > > ->
seen in Figure 2.29(b). This means that vectors A X B and B X A are antiparallel to each other and that
vector multiplication is not commutative but anticommutative. The anticommutative property means the
vector product reverses the sign when the order of multiplication is reversed:

-

Kxﬁ:—Bx 2.36

>

The corkscrew right-hand rule is a common mnemonic used to determine the direction of the vector product.
As shown in Figure 2.30, a corkscrew is placed in a direction perpendicular to the plane that contains vectors
K and ﬁ and its handle is turned in the direction from the first to the second vector in the product. The
direction of the cross product is given by the progression of the corkscrew.

AXB

BXA
(a) (b)

- >
Figure 2.30 The corkscrew right-hand rule can be used to determine the direction of the cross product A X B. Place a corkscrew in the

o

-> -
direction perpendicular to the plane that contains vectors A and B, and turn it in the direction from the first to the second vector in the



product. The direction of the cross product is given by the progression of the corkscrew. (a) Upward movement means the cross-product

vector points up. (b) Downward movement means the cross-product vector points downward.

@ EXAMPLE 2.18

The Torque of a Force

The mechanical advantage that a familiar tool called a wrench provides (Figure 2.31) depends on magnitude F
of the applied force, on its direction with respect to the wrench handle, and on how far from the nut this force

N
is applied. The distance R from the nut to the point where force vector F is attached is represented by the
radial vector R The physical vector quantity that makes the nut turn is called torque (denoted by %), and it is
the vector product of the distance between the pivot to force with the force: T = R X F

To loosen a rusty nut, a 20.00-N force is applied to the wrench handle at angle ¢ = 40° and at a distance of
0.25 m from the nut, as shown in Figure 2.31(a). Find the magnitude and direction of the torque applied to the
nut. What would the magnitude and direction of the torque be if the force were applied at angle ¢ = 45°, as
shown in Figure 2.31(b)? For what value of angle ¢ does the torque have the largest magnitude?

vi

nut

{a) ib)
Figure 2.31 A wrench provides grip and mechanical advantage in applying torque to turn a nut. (a) Turn counterclockwise to loosen the

nut. (b) Turn clockwise to tighten the nut.

Strategy

- =
We adopt the frame of reference shown in Figure 2.31, where vectors R and F lie in the xy-plane and the origin
>
is at the position of the nut. The radial direction along vector R (pointing away from the origin) is the reference
- > -
direction for measuring the angle ¢ because R is the first vector in the vector product T = R X F. Vector 7

> -
must lie along the z-axis because this is the axis that is perpendicular to the xy-plane, where both R and F lie.
To compute the magnitude z, we use Equation 2.35. To find the direction of T, we use the corkscrew right-hand
rule (Figure 2.30).

Solution

- =
For the situation in (a), the corkscrew rule gives the direction of R X F in the positive direction of the z-axis.
Physically, it means the torque vector T points out of the page, perpendicular to the wrench handle. We identify
F=20.00 N and R=0.25 m, and compute the magnitude using Equation 2.35:

= |ﬁ % ﬁ| = RFsin @ = (0.25 m)(20.00 N) sin 40° = 3.21 N - m.



- -
For the situation in (b), the corkscrew rule gives the direction of R X F in the negative direction of the z-axis.
Physically, it means the vector T points into the page, perpendicular to the wrench handle. The magnitude of
this torque is

T = ]I'i x ﬁ*‘ = RFsin ¢ = (0.25 m)(20.00 N) sin 45° = 3.53 N - m.

The torque has the largest value when sin ¢ = 1, which happens when ¢ = 90°. Physically, it means the
wrench is most effective—giving us the best mechanical advantage—when we apply the force perpendicular to
the wrench handle. For the situation in this example, this best-torque value is

Tpest = RF = (0.25m)(20.00N) = 5.00 N - m.

Significance

When solving mechanics problems, we often do not need to use the corkscrew rule at all, as we’ll see now in
the following equivalent solution. Notice that once we have identified that vector R X F lies along the z-axis,
we can write this vector in terms of the unit vector K of the z-axis:

> - ~
R X F = RF sin @k.

In this equation, the number that multiplies Kk is the scalar z-component of the vector ﬁ X ﬁ‘ In the
computation of this component, care must be taken that the angle ¢ is measured counterclockwise from ﬁ
(first vector) to if‘ (second vector). Following this principle for the angles, we obtain RF sin (+40°) = +3.2N-m
for the situation in (a), and we obtain RF sin (—45°) = —3.5 N - m for the situation in (b). In the latter case, the
angle is negative because the graph in Figure 2.31 indicates the angle is measured clockwise; but, the same
result is obtained when this angle is measured counterclockwise because +(360° — 45°) = +315° and

sin (+315°) = sin (—45°). In this way, we obtain the solution without reference to the corkscrew rule. For the
situation in (a), the solution is l_i X i:‘ =+4+32N- mﬁ; for the situation in (b), the solution is

R x F=-35N-mk.

CHECK YOUR UNDERSTANDING 2.15

-> - - -
For the vectors given in Figure 2.13, find the vector products A X Band C x F.

Similar to the dot product (Equation 2.32), the cross product has the following distributive property:
-> - > -> = -> -
AXB+C)=A xXxB+A xC. 2.37

The distributive property is applied frequently when vectors are expressed in their component forms, in terms
of unit vectors of Cartesian axes.

When we apply the definition of the cross product, Equation 2.35, to unit vectors i, :i\, and Kk that define the
positive x-, y-, and z-directions in space, we find that

ixi=jxj=kxk=o. 2.38
All other cross products of these three unit vectors must be vectors of unit magnitudes because 'i\, j, and k are
orthogonal. For example, for the pair fand _/]'\, the magnitude is |i X '/]\| =1ijsin90° = (1)(1)(1) = 1. The
direction of the vector product ix j must be orthogonal to the xy-plane, which means it must be along the
z-axis. The only unit vectors along the z-axis are —Kkor+k. By the corkscrew rule, the direction of vectori X ,/]\
must be parallel to the positive z-axis. Therefore, the result of the multiplication ix j is identical to +k. We
can repeat similar reasoning for the remaining pairs of unit vectors. The results of these multiplications are



ixj=+k
§x k=4, 2.39
kxi=+]j.

Notice that in Equation 2.39, the three unit vectors 1, fi\, and k appear in the cyc]ic order shown in a diagram in

1gure 2.32(a). The cychc order means that in the product formula, i follows k and comes before J, or k follows
J and comes before i, or J follows i and comes before K. The cross product of two different unit vectors is
always a third unit vector. When two unit vectors in the cross product appear in the cyclic order, the result of
such a multiplication is the remaining unit vector, as illustrated in Figure 2.32(b). When unit vectors in the
cross product appear in a different order, the result is a unit vector that is antiparallel to the remaining unit
vector (i.e., the result is with the minus sign, as shown by the examples in Figure 2.32(c) and Figure 2.32(d). In
practice, when the task is to find cross products of vectors that are given in vector component form, this rule
for the cross-multiplication of unit vectors is very useful.

k=jxi
(c) ()

Figure 2.32 (a) The diagram of the cyclic order of the unit vectors of the axes. (b) The only cross products where the unit vectors appear in

the cyclic order. These products have the positive sign. (c, d) Two examples of cross products where the unit vectors do not appear in the

cyclic order. These products have the negative sign.

- - - ~ ~ o~
Suppose we want to find the cross product A X B forvectors A = Axi+ A,j + A kand

- A ~ ~

B = Byi + By j + B;k. We can use the distributive property (Equation 2.37), the anticommutative property
(Equation 2.36), and the results in Equation 2.38 and Equation 2.39 for unit vectors to perform the following
algebra:




>l
X
=1
Il

(Axi+ A,j + A;K) x (Bi+ Byj + B.K)
= Ayi X (Byi+ Byj + B.k)+ A,j x (Byi+ Byj + B.K) + Ak x (B:i+ B,j + B:K)
=  AyBii X i+ ABi x J+A B x k
+AyB.j x 1+ A,B)j X j+A,B.j x k
+A: Bk x i+ A;B)k x j+A;Bk x k
= A¢By(0)+ Ay By(+K) + Ax Bz (—])
+A, By (=K) + A, B, (0) + Ay B;(+)
+A;B.(+]) + Az B,(—1) + A; B, (0).

When performing algebraic operations involving the cross product, be very careful about keeping the correct
order of multiplication because the cross product is anticommutative. The last two steps that we still have to do
to complete our task are, first, grouping the terms that contain a common unit vector and, second, factoring. In
this way we obtain the following very useful expression for the computation of the cross product:

C=A x B=(A,B, — A,B)i + (A; By — A B.)j + (A, B, — A, Bo)k. 2.40

In this expression, the scalar components of the cross-product vector are
Cx =A,B; - A;By,
Cy = A;Byx — A By, 2.41
C; =AxB, — Ay By.

When finding the cross product, in practice, we can use either Equation 2.35 or Equation 2.40, depending on

which one of them seems to be less complex computationally. They both lead to the same final result. One way
to make sure if the final result is correct is to use them both.

@ EXAMPLE 2.19

A Particle in a Magnetic Field

When moving in a magnetic field, some particles may experience a magnetic force. Without going into
details—a detailed study of magnetic phenomena comes in later chapters—let’s acknowledge that the magnetic

- -
field B is a vector, the magnetic force F is a vector, and the velocity U of the particle is a vector. The magnetic
force vector is proportional to the vector product of the velocity vector with the magnetic field vector, which we

= -

express as F = ¢ x B.In this equation, a constant ¢ takes care of the consistency in physical units, so we can
>

omit physical units on vectors @ and B. In this example, let’s assume the constant ¢ is positive.

A particle moving in space with velocity vector il = —5.01 — 2.0,/]'\ +3.5Kentersa region with a magnetic field
-
and experiences a magnetic force. Find the magnetic force F on this particle at the entry point to the region
- A A~ ~ - ~
where the magnetic field vector is (a) B = 7.2 — j — 2.4k and (b) B = 4.5k. In each case, find magnitude F of
> >
the magnetic force and angle 6 the force vector F makes with the given magnetic field vector B.
Strategy
>
First, we want to find the vector product d x B, because then we can determine the magnetic force using
- -
F = (i x B. Magnitude F can be found either by using components, F = A |FZ + Fy2 + F2, or by computing
-
the magnitude ‘ﬁ X B| directly using Equation 2.35. In the latter approach, we would have to find the angle

> =
between vectors U and B. When we have F, the general method for finding the direction angle @ involves the

e
computation of the scalar product F - B and substitution into Equation 2.34. To compute the vector product we
can either use Equation 2.40 or compute the product directly, whichever way is simpler.



Solution
The components of the velocity vector are uy = —5.0,u, = —2.0,and u; = 3.5.

(a) The components of the magnetic field vector are By = 7.2, B, = —1.0, and B; = —2.4. Substituting them
into Equation 2.41 gives the scalar components of vector ﬁ ={U X ﬁ:

Fy =8(uyB; —uz;By) = {[(-2.0)(-2.4) — (3.5)(-1.0)] = 8.3¢

Fy = {(uz By —ux B;) = {1(3.5)(7.2) = (=5.0)(—2.4)] = 13.2¢

F; = {(ux By —uyBy) = {[(-=5.0)(—=1.0) — (=2.0)(7.2)] = 19.4{

Thus, the magnetic force is F= 4 (8.3f + 13.2_/i\ + 19.4ﬁ) and its magnitude is

F=./F}+F}+F? = C\/(8.3)2 +(13.2)% + (19.4)> = 24.9¢.

To compute angle 6, we may need to find the magnitude of the magnetic field vector,

B=/B2+B}+ Bl = \/(7.2)2 + (1.0 + (=2.42 = 7.6,

> -
and the scalar product F - B:

F-B=F.B + F,B, + F. B, = (830)(7.2) + (13.20)(—1.0) + (19.40)(-2.4) = 0.

Now, substituting into Equation 2.34 gives angle 6:
R
F-B 0

FB ~ @aonae 07 0=

cosf =

Hence, the magnetic force vector is perpendicular to the magnetic field vector. (We could have saved some
time if we had computed the scalar product earlier.)

(b) Because vector ﬁ = 4.5k has only one component, we can perform the algebra quickly and find the vector
product directly:

F =¢i x B=¢(=5.00-2.0] +3.5K) x 4.5k
= {[(-5.0)4.5)i x K+ (=2.0)4.5)] x K+ (3.5)4.5)k x K]
= ([-22.5(=]) = 9.0(+1) + 0] = ¢(=9.01 + 22.5]).

The magnitude of the magnetic force is

F=[F2+F}+F2 = g\/ (=9.0)2 + (22.5)% + (0.0)> = 24.2¢.

Because the scalar product is

F-B=F.B, +F,B, + F. B, = (=9.00)(0) + (22.50)(0) + (0)(4.5) = 0,
the magnetic force vector i:* is perpendicular to the magnetic field vector ﬁ

Significance

Even without actually computing the scalar product, we can predict that the magnetic force vector must always
be perpendicular to the magnetic field vector because of the way this vector is constructed. Namely, the
magnetic force vector is the vector product ﬁ =i x ]_fi and, by the definition of the vector product (see Figure
2.29), vector i:’ must be perpendicular to both vectors t and ﬁ

CHECK YOUR UNDERSTANDING 2.16



- A oA - A oA -> - -> - -> >
Given two vectors A = —i+ jand B =3i — j,find (@) A X B, (b) 'A X B|, (c) the angle between A and B, and

(d) the angle between K X ﬁ and vector é =i+k

In conclusion to this section, we want to stress that “dot product” and “cross product” are entirely different
mathematical objects that have different meanings. The dot product is a scalar; the cross product is a vector.
Later chapters use the terms dot product and scalar product interchangeably. Similarly, the terms cross
product and vector product are used interchangeably.



CHAPTER REVIEW
Key Terms

anticommutative property change in the order of
operation introduces the minus sign

antiparallel vectors two vectors with directions
that differ by 180°

associative terms can be grouped in any fashion

commutative operations can be performed in any
order

component form of a vector a vector written as the
vector sum of its components in terms of unit
vectors

corkscrew right-hand rule a rule used to
determine the direction of the vector product

cross product the result of the vector
multiplication of vectors is a vector called a cross
product; also called a vector product

difference of two vectors vector sum of the first
vector with the vector antiparallel to the second

direction angle in a plane, an angle between the
positive direction of the x-axis and the vector,
measured counterclockwise from the axis to the
vector

displacement change in position

distributive multiplication can be distributed over
terms in summation

dot product the result of the scalar multiplication
of two vectors is a scalar called a dot product; also
called a scalar product

equal vectors two vectors are equal if and only if
all their corresponding components are equal;
alternately, two parallel vectors of equal
magnitudes

magnitude length of a vector

null vector a vector with all its components equal
to zero

orthogonal vectors two vectors with directions
that differ by exactly 90°, synonymous with
perpendicular vectors

parallel vectors two vectors with exactly the same
direction angles

parallelogram rule geometric construction of the
vector sum in a plane

polar coordinate system an orthogonal coordinate

Key Equations

Multiplication by a scalar (vector ]—§
equation)

system where location in a plane is given by polar
coordinates

polar coordinates a radial coordinate and an angle

radial coordinate distance to the origin in a polar
coordinate system

resultant vector vector sum of two (or more)
vectors

scalar anumber, synonymous with a scalar
guantity in physics

scalar component a number that multiplies a unit
vector in a vector component of a vector

scalar equation equation in which the left-hand
and right-hand sides are numbers

scalar product the result of the scalar
multiplication of two vectors is a scalar called a
scalar product; also called a dot product

scalar quantity quantity that can be specified
completely by a single number with an
appropriate physical unit

tail-to-head geometric construction geometric
construction for drawing the resultant vector of
many vectors

unit vector vector of a unit magnitude that
specifies direction; has no physical unit

unit vectors of the axes unit vectors that define
orthogonal directions in a plane or in space

vector mathematical object with magnitude and
direction

vector components orthogonal components of a
vector; a vector is the vector sum of its vector
components.

vector equation equation in which the left-hand
and right-hand sides are vectors

vector product the result of the vector
multiplication of vectors is a vector called a vector
product; also called a cross product

vector quantity physical quantity described by a
mathematical vector—that is, by specifying both
its magnitude and its direction; synonymous with
a vector in physics

vector sum resultant of the combination of two (or
more) vectors



Multiplication by a scalar (scalar
equation for magnitudes)

Resultant of two vectors
Commutative law
Associative law
Distributive law

The component form of a vector in
two dimensions

Scalar components of a vector in
two dimensions

Magnitude of a vector in a plane

The direction angle of a vector in a
plane

Scalar components of a vector in a
plane

Polar coordinates in a plane

The component form of a vector in
three dimensions

The scalar z-component of a
vector in three dimensions

Magnitude of a vector in three
dimensions

Distributive property

N
Antiparallel vector to A

Equal vectors

B=|a|A

> -
ap =Dyc +Dcp

(=)

> > -
+B=B+A

>l

-> - > - - >
A+B)+C=A+B+0)
- - -
a1 A+ apA = (a) + ap)A
- ~ ~
A=Axi+A)j
{Ax=xe_xb
Ay=ye_J’b
A=A} + A3
—tan—1 (A,
04 = tan <Ax>

Ax = Acos Oy
Ay = Asinfy

X =rcos¢@
y=rsing
- ~ ~ ~
A=Aci+Ayj+ Ak

A; =2, — 2
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( N
Fry = 2 Fix = Fix + Fox + ... + Fny
k=1
Components of the resultant of N i
s Fry=) Fiy=F,+Fy+..+F
vectors Ry kzl ky ly 2y Ny
N
Fre= ) Fiz=Fi;+Fp+..+Fy;
L k=1
General unit vector V= %

>4
=
I
N
w
(@]
g
N

Definition of the scalar product

Commutative property of the > >

property A-B=B A
scalar product
Distributive property of the scalar > o> 5> 5 o o
product A-B+C)=A-B+A-C
Scalar product in terms of scalar > o
components of vectors A B =AxBx+AyBy+ A; B;
Cosine of the angle between two B

cosp = 55

vectors B
Dot products of unit vectors i 3 = ./]\ k=k-i=0

Magnitude of the vector product
(definition)

Anticommutative property of the
vector product

Distributive property of the vector - > o > o

product
ixJj=+k
Cross products of unit vectors :]\ x k= +f,
Kxi=+4j

The cross product in terms of R R
scalar AXB=(AyB; — A;B))i+ (A;Bx — AxB;)j + (Ax By, — A, By)k
components of vectors

Summary

2.1 Scalars and Vectors or velocity. Vector quantities are represented by
mathematical objects called vectors.
« Geometrically, vectors are represented by

+ Avector quantity is any quantity that has
magnitude and direction, such as displacement

Access for free at openstax.org.




arrows, with the end marked by an arrowhead.
The length of the vector is its magnitude, which
is a positive scalar. On a plane, the direction of a
vector is given by the angle the vector makes
with a reference direction, often an angle with
the horizontal. The direction angle of a vector is
a scalar.

Two vectors are equal if and only if they have the
same magnitudes and directions. Parallel
vectors have the same direction angles but may
have different magnitudes. Antiparallel vectors
have direction angles that differ by 180°.
Orthogonal vectors have direction angles that
differ by 90°.

When a vector is multiplied by a scalar, the
result is another vector of a different length than
the length of the original vector. Multiplication
by a positive scalar does not change the original
direction; only the magnitude is affected.
Multiplication by a negative scalar reverses the
original direction. The resulting vector is
antiparallel to the original vector. Multiplication
by a scalar is distributive. Vectors can be divided
by nonzero scalars but cannot be divided by
vectors.

Two or more vectors can be added to form
another vector. The vector sum is called the
resultant vector. We can add vectors to vectors
or scalars to scalars, but we cannot add scalars
to vectors. Vector addition is commutative and
associative.

To construct a resultant vector of two vectors in
a plane geometrically, we use the parallelogram
rule. To construct a resultant vector of many
vectors in a plane geometrically, we use the tail-
to-head method.

2.2 Coordinate Systems and Components

of a Vector

Vectors are described in terms of their
components in a coordinate system. In two
dimensions (in a plane), vectors have two
components. In three dimensions (in space),
vectors have three components.

A vector component of a vector is its part in an
axis direction. The vector component is the
product of the unit vector of an axis with its
scalar component along this axis. A vector is the
resultant of its vector components.

Scalar components of a vector are differences of
coordinates, where coordinates of the origin are
subtracted from end point coordinates of a
vector. In a rectangular system, the magnitude

of a vector is the square root of the sum of the
squares of its components.

In a plane, the direction of a vector is given by
an angle the vector has with the positive x-axis.
This direction angle is measured
counterclockwise. The scalar x-component of a
vector can be expressed as the product of its
magnitude with the cosine of its direction angle,
and the scalar y-component can be expressed as
the product of its magnitude with the sine of its
direction angle.

In a plane, there are two equivalent coordinate
systems. The Cartesian coordinate system is
defined by unit vectors iand f]\ along the x-axis
and the y-axis, respectively. The polar
coordinate system is defined by the radial unit
vector ¥, which gives the direction from the
origin, and a unit vector t, which is
perpendicular (orthogonal) to the radial
direction.

2.3 Algebra of Vectors

Analytical methods of vector algebra allow us to
find resultants of sums or differences of vectors
without having to draw them. Analytical
methods of vector addition are exact, contrary
to graphical methods, which are approximate.
Analytical methods of vector algebra are used
routinely in mechanics, electricity, and
magnetism. They are important mathematical
tools of physics.

2.4 Products of Vectors

There are two kinds of multiplication for
vectors. One kind of multiplication is the scalar
product, also known as the dot product. The
other kind of multiplication is the vector
product, also known as the cross product. The
scalar product of vectors is a number (scalar).
The vector product of vectors is a vector.

Both kinds of multiplication have the
distributive property, but only the scalar
product has the commutative property. The
vector product has the anticommutative
property, which means that when we change the
order in which two vectors are multiplied, the
result acquires a minus sign.

The scalar product of two vectors is obtained by
multiplying their magnitudes with the cosine of
the angle between them. The scalar product of
orthogonal vectors vanishes; the scalar product
of antiparallel vectors is negative.

The vector product of two vectors is a vector




perpendicular to both of them. Its magnitude is
obtained by multiplying their magnitudes by the
sine of the angle between them. The direction of
the vector product can be determined by the
corkscrew right-hand rule. The vector product
of two either parallel or antiparallel vectors
vanishes. The magnitude of the vector product
is largest for orthogonal vectors.

Conceptual Questions

2.1 Scalars and Vectors

1.

10.

11.
12.

13.

A weather forecast states the temperature is
predicted to be —5 °C the following day. Is this
temperature a vector or a scalar quantity?
Explain.

. Which of the following is a vector: a person’s

height, the altitude on Mt. Everest, the velocity of
a fly, the age of Earth, the boiling point of water,
the cost of a book, Earth’s population, or the
acceleration of gravity?

. Give a specific example of a vector, stating its

magnitude, units, and direction.

. What do vectors and scalars have in common?

How do they differ?

Suppose you add two vectors K and ﬁ What
relative direction between them produces the
resultant with the greatest magnitude? What is
the maximum magnitude? What relative
direction between them produces the resultant
with the smallest magnitude? What is the
minimum magnitude?

Is it possible to add a scalar quantity to a vector
quantity?

. Is it possible for two vectors of different

magnitudes to add to zero? Is it possible for three
vectors of different magnitudes to add to zero?
Explain.
Does the odometer in an automobile indicate a
scalar or a vector quantity?
When a 10,000-m runner competing on a 400-m
track crosses the finish line, what is the runner’s
net displacement? Can this displacement be
zero? Explain.

A vector has zero magnitude. Is it necessary to

specify its direction? Explain.

Can a magnitude of a vector be negative?

Can the magnitude of a particle’s displacement

be greater that the distance traveled?

If two vectors are equal, what can you say about

14.

The scalar product of vectors is used to find
angles between vectors and in the definitions of
derived scalar physical quantities such as work
or energy.

The cross product of vectors is used in
definitions of derived vector physical quantities
such as torque or magnetic force, and in
describing rotations.

their components? What can you say about their
magnitudes? What can you say about their
directions?

If three vectors sum up to zero, what geometric
condition do they satisfy?

2.2 Coordinate Systems and Components

of a Vector

15.

16.

17.

18.

19.

20.

Give an example of a nonzero vector that has a
component of zero.

Explain why a vector cannot have a component
greater than its own magnitude.

If two vectors are equal, what can you say about
their components?

N

If vectors A and ﬁ are orthogonal, what is the
-

component of ﬁ along the direction of A? What

is the component of K along the direction of ]_3:?
If one of the two components of a vector is not
zero, can the magnitude of the other vector
component of this vector be zero?

If two vectors have the same magnitude, do
their components have to be the same?

2.4 Products of Vectors

21.

22.

23.

24.

What is wrong with the following expressions?
>
How can you correct them? (a) C = AB, (b)
> > - = =
C=AB,0)C=A x B,(d) C = AB, (¢)
- - >
C+2A=B,()C=A x B, (g
> - > - > > o> > o
A-B=A xXxB,(h)C=2A-B,({)C=A/B,
-
and (j) C = A/B.
If the cross product of two vectors vanishes,
what can you say about their directions?
If the dot product of two vectors vanishes, what
can you say about their directions?
What is the dot product of a vector with the
cross product that this vector has with another
vector?



Problems

2.1 Scalars and Vectors

25.

26.

27.

28.

A scuba diver makes a slow descent into the
depths of the ocean. His vertical position with
respect to a boat on the surface changes several
times. He makes the first stop 9.0 m from the
boat but has a problem with equalizing the
pressure, so he ascends 3.0 m and then
continues descending for another 12.0 m to the
second stop. From there, he ascends 4 m and
then descends for 18.0 m, ascends again for 7 m
and descends again for 24.0 m, where he makes
a stop, waiting for his buddy. Assuming the
positive direction up to the surface, express his
net vertical displacement vector in terms of the
unit vector. What is his distance to the boat?

In a tug-of-war game on one campus, 15
students pull on a rope at both ends in an effort
to displace the central knot to one side or the
other. Two students pull with force 196 N each
to the right, four students pull with force 98 N
each to the left, five students pull with force 62
N each to the left, three students pull with force
150 N each to the right, and one student pulls
with force 250 N to the left. Assuming the
positive direction to the right, express the net
pull on the knot in terms of the unit vector. How
big is the net pull on the knot? In what
direction?

Suppose you walk 18.0 m straight west and then
25.0 m straight north. How far are you from
your starting point and what is the compass
direction of a line connecting your starting
point to your final position? Use a graphical
method.

For the vectors given in the following figure, use a
graphical method to find the following resultants:

@A+B ®C+B D+F @A-B,@D-F,

®) & +2F, (2)C — 2D + 3F; and (h) A — 4D + 2F.

29.

30.

31.

32.

A delivery man starts at the post office, drives
40 km north, then 20 km west, then 60 km
northeast, and finally 50 km north to stop for
lunch. Use a graphical method to find his net
displacement vector.

An adventurous dog strays from home, runs
three blocks east, two blocks north, one block
east, one block north, and two blocks west.
Assuming that each block is about 100 m, how
far from home and in what direction is the dog?
Use a graphical method.

In an attempt to escape a desert island, a
castaway builds a raft and sets out to sea. The
wind shifts a great deal during the day and he is
blown along the following directions: 2.50 km
and 45.0° north of west, then 4.70 km and 60.0°
south of east, then 1.30 km and 25.0° south of
west, then 5.10 km straight east, then 1.70 km
and 5.00° east of north, then 7.20 km and 55.0°
south of west, and finally 2.80 km and 10.0°
north of east. Use a graphical method to find the
castaway'’s final position relative to the island.
A small plane flies 40.0 km in a direction 60°
north of east and then flies 30.0 km in a
direction 15° north of east. Use a graphical
method to find the total distance the plane
covers from the starting point and the direction




of the path to the final position. ¥

33. Atrapper walks a 5.0-km straight-line distance from [
his cabin to the lake, as shown in the following _[—T:
figure. Use a graphical method (the parallelogram
rule) to determine the trapper’s displacement
directly to the east and displacement directly to the
north that sum up to his resultant displacement
vector. If the trapper walked only in directions east
and north, zigzagging his way to the lake, how many

kilometers would he have to walk to get to the lake?
AL A
. 1

Pathz .7

38. Suppose you walk 18.0 m straight west and then

34. A surveyor measures the distance across a river 25.0 m straight north. How far are you from
that flows straight north by the following your starting point? What is your displacement
method. Starting directly across from a tree on vector? What is the direction of your
the opposite bank, the surveyor walks 100 m displacement? Assume the +x-axis is to the
along the river to establish a baseline. She then east.
sights across to the tree and reads that the angle 39. Youdrive 7.50 km in a straight line in a
from the baseline to the tree is 35°. How wide is direction 15° east of north. (a) Find the
the river? distances you would have to drive straight east

35. A pedestrian walks 6.0 km east and then 13.0 and then straight north to arrive at the same
km north. Use a graphical method to find the point. (b) Show that you still arrive at the same
pedestrian’s resultant displacement and point if the east and north legs are reversed in
geographic direction. order. Assume the +x-axis is to the east.

36. The magnitudes of two displacement vectors 40. Asledge is being pulled by two horses on a flat
are A=20m and B=6 m. What are the largest terrain. The net force on the sledge can be
and the smallest values of the magnitude of the expressed in the Cartesian coordinate system as
resultant ﬁ = K + ﬁ? vector i{‘ = (—2980.0'i\ + 8200.0j)N, where i and

j'\ denote directions to the east and north,

2.2 Coordinate Systems and Components respectively. Find the magnitude and direction

of a Vector of the pull.

41. Atrapper walks a 5.0-km straight-line distance from
her cabin to the lake, as shown in the following
figure. Determine the east and north components of
her displacement vector. How many more
kilometers would she have to walk if she walked
along the component displacements? What is her
displacement vector?

37. Assuming the +x-axis is horizontal and points to the
right, resolve the vectors given in the following
figure to their scalar components and express them
in vector component form.




42.

43.

44.

45.

46.

The polar coordinates of a point are 47/3 and
5.50 m. What are its Cartesian coordinates?
Two points in a plane have polar coordinates
P;(2.500 m, z/6) and P5(3.800 m, 27/3).
Determine their Cartesian coordinates and the
distance between them in the Cartesian
coordinate system. Round the distance to a
nearest centimeter.

A chameleon is resting quietly on a lanai screen,
waiting for an insect to come by. Assume the
origin of a Cartesian coordinate system at the
lower left-hand corner of the screen and the
horizontal direction to the right as the
+x-direction. If its coordinates are (2.000 m,
1.000 m), (a) how far is it from the corner of the
screen? (b) What is its location in polar
coordinates?

Two points in the Cartesian plane are A(2.00 m,
-4.00 m) and B(-3.00 m, 3.00 m). Find the
distance between them and their polar
coordinates.

A fly enters through an open window and zooms
around the room. In a Cartesian coordinate
system with three axes along three edges of the
room, the fly changes its position from point
b(4.0 m, 1.5 m, 2.5 m) to point (1.0 m, 4.5 m,
0.5 m). Find the scalar components of the fly’s
displacement vector and express its
displacement vector in vector component form.
What is its magnitude?

2.3 Algebra of Vectors

47.

48.

For vectors B=-i- 4} and A= -3i- 2./]°\,
calculate (a) K + I_i and its magnitude and
direction angle, and (b) K - ﬁ and its
magnitude and direction angle.

A particle undergoes three consecutive
displacements given by vectors

D, = (3.08 — 4.0 — 2.08)mm,
D, = (1.0 — 7.0j + 4.0k)mm, and

49.

50.

51.

52.

D3 = (=7.0f + 4.0j + 1.0K)mm. (a) Find the
resultant displacement vector of the particle. (b)
What is the magnitude of the resultant
displacement? (c) If all displacements were
along one line, how far would the particle
travel?

Given two displacement vectors

& = (3.00i = 4.00] + 4.00K)m and

B = (2.00f + 3.007 — 7.00K)m, find the
displacements and their magnitudes for (a)

> - > > -> >
C=A+Band(b)D =2A —B.

A small plane flies 40.0 km in a direction 60°
north of east and then flies 30.0 km in a
direction 15° north of east. Use the analytical
method to find the total distance the plane
covers from the starting point, and the
geographic direction of its displacement vector.
What is its displacement vector?

In an attempt to escape a desert island, a
castaway builds a raft and sets out to sea. The
wind shifts a great deal during the day, and she
is blown along the following straight lines: 2.50
km and 45.0° north of west, then 4.70 km and
60.0° south of east, then 1.30 km and 25.0°
south of west, then 5.10 km due east, then 1.70
km and 5.00° east of north, then 7.20 km and
55.0° south of west, and finally 2.80 km and
10.0° north of east. Use the analytical method to
find the resultant vector of all her displacement
vectors. What is its magnitude and direction?
Assuming the +x-axis is horizontal to the right for
the vectors given in the following figure, use the
analytical method to find the following resultants:

@A+B, ) C+B,©D+F @QA-B @©D-F,
®) A +2F, () C — 2D + 3F, and (h) A — 4D + 2F.




53.

54.

55.

56.

57.

Figure 2.33

Given the vectors in the preceding figure, find
vector ﬁ that solves equations (a) ]3 + ﬁ = i:’
and (b) E - Zﬁ + Sﬁ = 3ﬁ. Assume the +x-axis
is horizontal to the right.

A delivery man starts at the post office, drives
40 km north, then 20 km west, then 60 km
northeast, and finally 50 km north to stop for
lunch. Use the analytical method to determine
the following: (a) Find his net displacement
vector. (b) How far is the restaurant from the
post office? (c¢) If he returns directly from the
restaurant to the post office, what is his
displacement vector on the return trip? (d) What
is his compass heading on the return trip?
Assume the +x-axis is to the east.

An adventurous dog strays from home, runs
three blocks east, two blocks north, and one
block east, one block north, and two blocks
west. Assuming that each block is about a 100
yd, use the analytical method to find the dog’s
net displacement vector, its magnitude, and its
direction. Assume the +x-axis is to the east.
How would your answer be affected if each
block was about 100 m?

1t D = (6.00f — 8.00)m,

B = (=8.00f + 3.00§)m, and

A= (26.01 + 19.03)m, find the unknown
constants aand b such that aﬁ + bﬁ + 1_5; = 6
Given the displacement vector D= (Sf — 4j)m,
find the displacement vector ﬁ so that

60.

D+R=-4Dj.

. Find the unit vector of direction for the

following vector quantities: (a) Force
F = (3.01 = 2.0))N, (b) displacement
D = (=3.0f — 4.0)m, and (c) velocity
¥V = (=5.00i + 4.00))m/s.

. At one point in space, the direction of the

electric field vector is given in the Cartesian

system by the unit vector

E=1 /\/gi -2 /\/5:1\ If the magnitude of the
electric field vector is E = 400.0 V/m, what are

the scalar components Ey, Ey, and E; of the
electric field vector E at this point? What is the
direction angle 8 of the electric field vector at

this point?

A barge is pulled by the two tugboats shown in the
following figure. One tugboat pulls on the barge with
a force of magnitude 4000 units of force at 15° above
the line AB (see the figure and the other tugboat
pulls on the barge with a force of magnitude 5000
units of force at 12° below the line AB. Resolve the
pulling forces to their scalar components and find
the components of the resultant force pulling on the
barge. What is the magnitude of the resultant pull?
What is its direction relative to the line AB?



5000 units 4000 units

Barge

Figure 2.34

61. In the control tower at a regional airport, an air

traffic controller monitors two aircraft as their
positions change with respect to the control
tower. One plane is a cargo carrier Boeing 747
and the other plane is a Douglas DC-3. The
Boeing is at an altitude of 2500 m, climbing at
10° above the horizontal, and moving 30° north
of west. The DC-3 is at an altitude of 3000 m,
climbing at 5° above the horizontal, and
cruising directly west. (a) Find the position
vectors of the planes relative to the control
tower. (b) What is the distance between the
planes at the moment the air traffic controller
makes a note about their positions?

2.4 Products of Vectors

62. Assuming the +x-axis is horizontal to the right for
the vectors in the following figure, find the following

> o > o 5> >
scalar products: (a) A - C, (b)A - F,(c)D - C, (d)

63.

64.

65.

66.

67.

68.

- = - A D ~ 2 ~ ~ =2
A -F+20),1i-B,(f)j -B,(@@Bi—j) B,and
() B - B.

¥i

Assuming the +x-axis is horizontal to the right
for the vectors in the preceding figure, find (a)

> >

the component of vector A along vector C, (b)
- -

the component of vector C along vector A, (c)
~ -

the component of vector i along vector F, and

(d) the component of vector F along vector i
Find the angle between vectors for (a)

D = (=3.0i — 4.0])mand A = (=3.01 + 4.0))m
and (b) 13 = (2.0’i\ - 4.03 + i(\)m and

B = (=2.0f + 3.0] +2.00)m.

Find the angles that vector

]3 = (2.0i — 4.0?]'\ + ﬁ)m makes with the x-, y-,
and z- axes.

Show that the force vector

D= (2.0i — 4.03\ + ﬁ)N is orthogonal to the
force vector (_i = (3.0’i\ + 4.0]\ + I0.0i(\)N.
Assuming the +x-axis is horizontal to the right
for the vectors in the previous figure, find the

following vector products: (a) K X é (b)
AxFDxC@A x F+20),@1i x B,
®F x B, @3- x B,and() B x B.
Find the cross product K X E for (a)

A =2.0i-4.0] +Kand

C =3.0i + 4.0 + 10.0K, (b)

A =3.0{ + 4.0j + 10.0k and

C=20i-4.0] +Kk ©A = -3.0{ — 4.0j and
C = —3.0i +4.0j, and (d)
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C=-20i+3.07 +20kand A = —9.03.
For the vectors in the earlier figure, find (a)
A x F)-D, @A x F)- D x B),and (0)
A& -F)D x B).

Additional Problems

71.

72.

73.

74.

75.

76.

77.

You fly 32.0 km in a straight line in still air in the
direction 35.0° south of west. (a) Find the
distances you would have to fly due south and
then due west to arrive at the same point. (b)
Find the distances you would have to fly first in
a direction 45.0° south of west and then in a
direction 45.0° west of north. Note these are the
components of the displacement along a
different set of axes—namely, the one rotated by
45° with respect to the axes in (a).

Rectangular coordinates of a point are given by
(2, y) and its polar coordinates are given by

(r, #/6). Find yand r.

If the polar coordinates of a point are (7, ¢) and
its rectangular coordinates are (x, y), determine
the polar coordinates of the following points: (a)
(-x, ), (b) (-2x, -2y), and (c) (3x, -3y).

Vectors K and ﬁ have identical magnitudes of
5.0 units. Find the angle between them if
A+B=52].

Starting at the island of Moi in an unknown
archipelago, a fishing boat makes a round trip
with two stops at the islands of Noi and Poi. It
sails from Moi for 4.76 nautical miles (nmi) in a
direction 37° north of east to Noi. From Noi, it
sails 69° west of north to Poi. On its return leg
from Poi, it sails 28° east of south. What
distance does the boat sail between Noi and
Poi? What distance does it sail between Moi and
Poi? Express your answer both in nautical miles
and in kilometers. Note: 1 nmi = 1852 m.

An air traffic controller notices two signals from
two planes on the radar monitor. One plane is at
altitude 800 m and in a 19.2-km horizontal
distance to the tower in a direction 25° south of
west. The second plane is at altitude 1100 m
and its horizontal distance is 17.6 km and 20°
south of west. What is the distance between
these planes?

Show that when K + ]_i = é then
C? = A% + B2 +2ABcos @, where @ is the

- -
angle between vectors A and B.

70.

78.

79.

80.

81.

-> - - - - -

(@IfA X F =B x F, can we conclude A = B?
-> -

() IfA - i:’ = I_i . i’ can we conclude A = ﬁ? (c)

> >

If FA = ﬁF, can we conclude A = ﬁ? Why or

why not?

Four force vectors each have the same
magnitude £ What is the largest magnitude the
resultant force vector may have when these
forces are added? What is the smallest
magnitude of the resultant? Make a graph of
both situations.

A skater glides along a circular path of radius
5.00 m in clockwise direction. When he coasts
around one-half of the circle, starting from the
west point, find (a) the magnitude of his
displacement vector and (b) how far he actually
skated. (c) What is the magnitude of his
displacement vector when he skates all the way
around the circle and comes back to the west
point?

A stubborn dog is being walked on a leash by its
owner. At one point, the dog encounters an
interesting scent at some spot on the ground
and wants to explore it in detail, but the owner
gets impatient and pulls on the leash with force
F= (98.0i + 132.0,/]'\ + 32.0§)N along the leash.
(a) What is the magnitude of the pulling force?
(b) What angle does the leash make with the
vertical?

If the velocity vector of a polar bear is

i= (—18.0"1\ - 13.0?]'\)km/h, how fast and in what
geographic direction is it heading? Here, fand ./]\
are directions to geographic east and north,
respectively.
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82. Find the scalar components _?f three- 84. A force vector A has x- and y-components,
dimensional vectors G and H in the following respectively, of -8.80 units of force and 15.00
figure and write the vectors in vector units of force. The x- and y-components of force
component form in terms of the unit vectors of vector B are, respectively, 13.20 units of force
the axes.z and -6.60 units of force. Find the components

i

of force vector (_E that satisfies the vector
equation A-B + 36 =0.

85. Vectors K and ﬁ are two orthogonal vectors in
the xy-plane and they have identical
magnitudes. IfX =3.0i + 4.0:]'\, find ﬁ

86. For the three-dimensional vectors in the
following figure, find () G x H, (b) ’é x ﬁ|,

5 o
and (¢c) G- H.
)

83. Adiver explores a shallow reef off the coast of
Belize. She initially swims 90.0 m north, makes
a turn to the east and continues for 200.0 m,
then follows a big grouper for 80.0 m in the
direction 30° north of east. In the meantime, a
local current displaces her by 150.0 m south.
Assuming the current is no longer present, in
what direction and how far should she now
swim to come back to the point where she
started?

=1
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87. Show that (ﬁ X 6) . K is the volume of the
parallelepiped, with edges formed by the three
vectors in the following figure.

Challenge Problems

- ->
88. Vector B is 5.0 cm long and vector A is 4.0 cm
long. Find the angle between these two vectors

- - - -
when|A + B| = 3.0cmand|& - B| = 3.0cm.
89. What is the component of the force vector
- A ~ ~
G = (3.0 +4.0j + 10.0k)N along the force
e d A A~
vector H = (1.0i + 4.0j)N?
90. The following figure shows a triangle formed by
’
the three vectors K, ﬁ and é If vector é is
drawn between the midpoints of vectors K and

> >/ >
B, show that C = C/2.

Access for free at openstax.org.

. Distances between points in a plane do not change when a

coordinate system is rotated. In other words, the magnitude of a
vector is invariant under rotations of the coordinate system.
Suppose a coordinate system S is rotated about its origin by
angle @ to become a new coordinate system S’, as shown in the
following figure. A point in a plane has coordinates (x, y) in S and
coordinates (x' Y ) in$’.
(a) Show that, during the transformation of rotation, the
coordinates in S’ are expressed in terms of the coordinates in S
by the following relations:

{ x' =xcos@+ ysing

y =—xsing+ycosg

(b) Show that the distance of point Pto the origin is invariant
under rotations of the coordinate system. Here, you have to show

that
2 2
\/xz y2 \/x/ | yl .

(c) Show that the distance between points Pand Qis invariant
under rotations of the coordinate system. Here, you have to show
that

VGp =307+ — 0P = /(' p =¥ 0+ p 1 o).

5




CHAPTER 3

Motion Along a Straight Line

Figure 3.1 A JR Central LO series five-car maglev (magnetic levitation) train undergoing a test run on the
Yamanashi Test Track. The maglev train’s motion can be described using kinematics, the subject of this chapter.
(credit: modification of work by “Maryland GovPics”/Flickr)

Chapter Outline

3.1 Position, Displacement, and Average Velocity

3.2 Instantaneous Velocity and Speed

3.3 Average and Instantaneous Acceleration

3.4 Motion with Constant Acceleration

3.5 Free Fall

3.6 Finding Velocity and Displacement from Acceleration

INTRODUCTION Our universe is full of objects in motion. From the stars, planets, and galaxies; to the motion
of people and animals; down to the microscopic scale of atoms and molecules—everything in our universe is in
motion. We can describe motion using the two disciplines of kinematics and dynamics. We study dynamics,
which is concerned with the causes of motion, in Newton’s L.aws of Motion; but, there is much to be learned
about motion without referring to what causes it, and this is the study of kinematics. Kinematics involves
describing motion through properties such as position, time, velocity, and acceleration.

A full treatment of kinematics considers motion in two and three dimensions. For now, we discuss motion in
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one dimension, which provides us with the tools necessary to study multidimensional motion. A good example
of an object undergoing one-dimensional motion is the maglev (magnetic levitation) train depicted at the
beginning of this chapter. As it travels, say, from Tokyo to Kyoto, it is at different positions along the track at
various times in its journey, and therefore has displacements, or changes in position. It also has a variety of
velocities along its path and it undergoes accelerations (changes in velocity). With the skills learned in this
chapter we can calculate these quantities and average velocity. All these quantities can be described using
kinematics, without knowing the train’s mass or the forces involved.

3.1 Position, Displacement, and Average Velocity

Learning Objectives
By the end of this section, you will be able to:
e Define position, displacement, and distance traveled.
e Calculate the total displacement given the position as a function of time.
e Determine the total distance traveled.
e Calculate the average velocity given the displacement and elapsed time.

When you're in motion, the basic questions to ask are: Where are you? Where are you going? How fast are you
getting there? The answers to these questions require that you specify your position, your displacement, and
your average velocity—the terms we define in this section.

Position

To describe the motion of an object, you must first be able to describe its position (x): where it is at any
particular time. More precisely, we need to specify its position relative to a convenient frame of reference. A
frame of reference is an arbitrary set of axes from which the position and motion of an object are described.
Earth is often used as a frame of reference, and we often describe the position of an object as it relates to
stationary objects on Earth. For example, a rocket launch could be described in terms of the position of the
rocket with respect to Earth as a whole, whereas a cyclist’s position could be described in terms of where she is
in relation to the buildings she passes Figure 3.2. In other cases, we use reference frames that are not
stationary but are in motion relative to Earth. To describe the position of a person in an airplane, for example,
we use the airplane, not Earth, as the reference frame. To describe the position of an object undergoing one-
dimensional motion, we often use the variable x. Later in the chapter, during the discussion of free fall, we use
the variable y.

Figure 3.2 These cyclists in Vietnam can be described by their position relative to buildings or a canal. Their motion can be described by

their change in position, or displacement, in a frame of reference. (credit: modification of work by Suzan Black)

Displacement

If an object moves relative to a frame of reference—for example, if a professor moves to the right relative to a
whiteboard Figure 3.3—then the object’s position changes. This change in position is called displacement. The

Access for free at openstax.org.



word displacement implies that an object has moved, or has been displaced. Although position is the
numerical value of x along a straight line where an object might be located, displacement gives the change in
position along this line. Since displacement indicates direction, it is a vector and can be either positive or
negative, depending on the choice of positive direction. Also, an analysis of motion can have many
displacements embedded in it. If right is positive and an object moves 2 m to the right, then 4 m to the left, the
individual displacements are 2 m and —4 m, respectively.

¥

t{ \ & Y

Ax = x—xy3=+20m

=
| I -
Xq ¥ x
15m 35m

Figure 3.3 A professor paces left and right while lecturing. Her position relative to Earth is given by x. The +2.0-m displacement of the

professor relative to Earth is represented by an arrow pointing to the right.

Displacement
Displacement Ax is the change in position of an object:
Ax = xf — xq, 3.1

where Ax is displacement, x¢ is the final position, and x is the initial position.

We use the uppercase Greek letter delta (A) to mean “change in” whatever quantity follows it; thus, Ax means
change in position (final position less initial position). We always solve for displacement by subtracting initial
position xq from final position x¢. Note that the ST unit for displacement is the meter, but sometimes we use
kilometers or other units of length. Keep in mind that when units other than meters are used in a problem, you
may need to convert them to meters to complete the calculation (see Appendix B).

Objects in motion can also have a series of displacements. In the previous example of the pacing professor, the
individual displacements are 2 m and —4 m, giving a total displacement of -2 m. We define total displacement
AXTotal, @S the sum of the individual displacements, and express this mathematically with the equation

AXTotal = Z Ax;, 3.2

where Ax; are the individual displacements. In the earlier example,

Ax; =x; —x9=2-0=2m.



Similarly,
Axy=x3—x] =-2-(2)=—-4m.
Thus,
AxTotal = Axl + sz =2—-4=-2m

The total displacement is 2 — 4 = -2 m along the x-axis. It is also useful to calculate the magnitude of the
displacement, or its size. The magnitude of the displacement is always positive. This is the absolute value of
the displacement, because displacement is a vector and cannot have a negative value of magnitude. In our
example, the magnitude of the total displacement is 2 m, whereas the magnitudes of the individual
displacements are 2 m and 4 m.

The magnitude of the total displacement should not be confused with the distance traveled. Distance traveled
XTotal» 1S the total length of the path traveled between two positions. In the previous problem, the distance
traveled is the sum of the magnitudes of the individual displacements:

XTotal = |AXx1|+]|Ax2| =2 +4 =6m.
Average Velocity

To calculate the other physical quantities in kinematics we must introduce the time variable. The time variable
allows us not only to state where the object is (its position) during its motion, but also how fast it is moving.
How fast an object is moving is given by the rate at which the position changes with time.

For each position x;, we assign a particular time #;. If the details of the motion at each instant are not
important, the rate is usually expressed as the average velocity v. This vector quantity is simply the total
displacement between two points divided by the time taken to travel between them. The time taken to travel
between two points is called the elapsed time Ar.

Average Velocity

If x; and x, are the positions of an object at times 7| and #,, respectively, then

Displacement between two points 3.3
Elapsed time between two points

X27X1

=i~

Average velocity = v =

D= Ax _
V=% =

It is important to note that the average velocity is a vector and can be negative, depending on positions x; and
X).

@ EXAMPLE 3.1

Delivering Flyers

Jill sets out from her home to deliver flyers for her yard sale, traveling due east along her street lined with
houses. At 0.5 km and 9 minutes later she runs out of flyers and has to retrace her steps back to her house to
get more. This takes an additional 9 minutes. After picking up more flyers, she sets out again on the same path,
continuing where she left off, and ends up 1.0 km from her house. This third leg of her trip takes 15 minutes. At
this point she turns back toward her house, heading west. After 1.75 km and 25 minutes she stops to rest.

a. What is Jill's total displacement to the point where she stops to rest?
b. What is the magnitude of the final displacement?
c. What is the average velocity during her entire trip?



d. What is the total distance traveled?
e. Make a graph of position versus time.

A sketch of Jill's movements is shown in Figure 3.4.

Home

*' k 0.5 km

- i
| k 1.0 km
Y
1.75 km i

Figure 3.4 Timeline of Jill's movements.

Time

Strategy

The problem contains data on the various legs of Jill’s trip, so it would be useful to make a table of the physical
guantities. We are given position and time in the wording of the problem so we can calculate the displacements
and the elapsed time. We take east to be the positive direction. From this information we can find the total
displacement and average velocity. Jill's home is the starting point x(. The following table gives Jill’s time and
position in the first two columns, and the displacements are calculated in the third column.

Time t; (min)  Position x; (km)  Displacement Ax; (km)

th) =0 xg =0 Axg =0

t1=9 x; =05 Axy =x1 —x9 =0.5
t) =18 xp =0 Axy =x9 —x1 =-0.5
t3 =33 x3 =1.0 Axz =x3 —xp =1.0
ty =58 x4 = —0.75 Axq = x4 —x3 =-1.75

Solution

a. From the above table, the total displacement is
Y Ax; =05-0.5+1.0-1.75km = —0.75km.

b. The magnitude of the total displacement is |—0.75| km = 0.75 km.

Total displagement — D= —0.75 }(m — —0.013 km/min
Elapsed time 58 min

d. The total distance traveled (sum of magnitudes of individual displacements) is
XTotal = Z [Ax;|=054+05+1.0+ 1.75km = 3.75 km.
e. We can graph Jill's position versus time as a useful aid to see the motion; the graph is shown in Figure 3.5.

Average velocity =



Position vs. Time
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Figure 3.5 This graph depicts Jill's position versus time. The average velocity is the slope of a line connecting the initial and final
points.
Significance

Jill's total displacement is -0.75 km, which means at the end of her trip she ends up 0.75 km due west of her
home. The average velocity means if someone was to walk due west at 0.013 km/min starting at the same time
Jill left her home, they both would arrive at the final stopping point at the same time. Note that if Jill were to
end her trip at her house, her total displacement would be zero, as well as her average velocity. The total
distance traveled during the 58 minutes of elapsed time for her trip is 3.75 km.

) CHECK YOUR UNDERSTANDING 3.1

A cyclist rides 3 km west and then turns around and rides 2 km east. (a) What is his displacement? (b) What is
the distance traveled? (c) What is the magnitude of his displacement?

3 kM -

= 2 km

3.2 Instantaneous Velocity and Speed

Learning Objectives
By the end of this section, you will be able to:
e Explain the difference between average velocity and instantaneous velocity.
e Describe the difference between velocity and speed.
e Calculate the instantaneous velocity given the mathematical equation for the velocity.
e Calculate the speed given the instantaneous velocity.

We have now seen how to calculate the average velocity between two positions. However, since objects in the
real world move continuously through space and time, we would like to find the velocity of an object at any
single point. We can find the velocity of the object anywhere along its path by using some fundamental
principles of calculus. This section gives us better insight into the physics of motion and will be useful in later
chapters.



Instantaneous Velocity

The quantity that tells us how fast an object is moving anywhere along its path is the instantaneous velocity,
usually called simply velocity. It is the average velocity between two points on the path in the limit that the
time (and therefore the displacement) between the two points approaches zero. To illustrate this idea

mathematically, we need to express position x as a continuous function of t denoted by x(f). The expression for
x(tz)—x(tl )
-1
velocity at any position, we let f; = fand tp = ¢ + At. After inserting these expressions into the equation for
the average velocity and taking the limit as At — 0, we find the expression for the instantaneous velocity:

X+ A) —x(t)  dx(0)
o(t) = AI}TO At Codr

the average velocity between two points using this notation is v = . To find the instantaneous

Instantaneous Velocity

The instantaneous velocity of an object is the limit of the average velocity as the elapsed time approaches
zero, or the derivative of x with respect to t:

v(t) = %x(t). 3.4

Like average velocity, instantaneous velocity is a vector with dimension of length per time. The instantaneous
velocity at a specific time point 7( is the rate of change of the position function, which is the slope of the
position function x(¢) at #. Figure 3.6 shows how the average velocity v = % between two times approaches
the instantaneous velocity at #(. The instantaneous velocity is shown at time #, which happens to be at the
maximum of the position function. The slope of the position graph is zero at this point, and thus the
instantaneous velocity is zero. At other times, 71, 72, and so on, the instantaneous velocity is not zero because
the slope of the position graph would be positive or negative. If the position function had a minimum, the slope
of the position graph would also be zero, giving an instantaneous velocity of zero there as well. Thus, the zeros
of the velocity function give the minimum and maximum of the position function.

v(fy) = slope of tangent line

b
=
£
2
L
g
| T 1 .
y Ikl
Time (t)
Figure 3.6 Ina graph of position versus time, the instantaneous velocity is the slope of the tangent line at a given point. The average
velocities v = % = fi:i‘ between times At = tg — t1, At = t5 — tp,and At = t4 — t3 are shown. When Af — 0, the average velocity

approaches the instantaneous velocity at t = f.

@ EXAMPLE 3.2

Finding Velocity from a Position-Versus-Time Graph
Given the position-versus-time graph of Figure 3.7, find the velocity-versus-time graph.




Position vs, Time
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Figure 3.7 The object starts out in the positive direction, stops for a short time, and then reverses direction, heading back toward the
origin. Notice that the object comes to rest instantaneously, which would require an infinite force. Thus, the graph is an approximation of

motion in the real world. (The concept of force is discussed in Newton’s Laws of Motion.)

Strategy
The graph contains three straight lines during three time intervals. We find the velocity during each time
interval by taking the slope of the line using the grid.

Solution

Ax _ 05m-00m _
A = 055005 = 1-0m/s
Ax

. . = _ 05m-05m _
Time interval 0.5st0 1.0 s: v = 33 = S5 =55, = 0.0m/s

Time interval 0sto 0.5 s: v =

& _ 0.0m-05m — —05m/S

Time interval 1.0 t0 2.0 810 = 3 = 55—

The graph of these values of velocity versus time is shown in Figure 3.8.
Velogity vs. Time
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Figure 3.8 The velocity is positive for the first part of the trip, zero when the object is stopped, and negative when the object reverses

direction.

Significance

During the time interval between O s and 0.5 s, the object’s position is moving away from the origin and the
position-versus-time curve has a positive slope. At any point along the curve during this time interval, we can
find the instantaneous velocity by taking its slope, which is +1 m/s, as shown in Figure 3.8. In the subsequent
time interval, between 0.5 s and 1.0 s, the position doesn’t change and we see the slope is zero. From 1.0 s to
2.0 s, the object is moving back toward the origin and the slope is —0.5 m/s. The object has reversed direction



and has a negative velocity.

Speed

In everyday language, most people use the terms speed and velocity interchangeably. In physics, however, they
do not have the same meaning and are distinct concepts. One major difference is that speed has no direction;
that is, speed is a scalar.

We can calculate the average speed by finding the total distance traveled divided by the elapsed time:

A el — T Total distance
- = —
=P Elapsed time 35

Average speed is not necessarily the same as the magnitude of the average velocity, which is found by dividing
the magnitude of the total displacement by the elapsed time. For example, if a trip starts and ends at the same
location, the total displacement is zero, and therefore the average velocity is zero. The average speed, however,
is not zero, because the total distance traveled is greater than zero. If we take a road trip of 300 km and need to
be at our destination at a certain time, then we would be interested in our average speed.

However, we can calculate the instantaneous speed from the magnitude of the instantaneous velocity:

Instantaneous speed = |v(?)] . 3.6

If a particle is moving along the x-axis at +7.0 m/s and another particle is moving along the same axis at -7.0
m/s, they have different velocities, but both have the same speed of 7.0 m/s. Some typical speeds are shown in
the following table.

Speed m/s mi/h
Continental drift 10~7 2 x 1077
Brisk walk 1.7 3.9
Cyclist 4.4 10
Sprint runner 12.2 27
Rural speed limit 24.6 56
Official land speed record 341.1 763
Speed of sound at sea level 343 768
Space shuttle on reentry 7800 17,500
Escape velocity of Earth* 11,200 25,000
Orbital speed of Earth around the Sun | 29,783 66,623
Speed of light in a vacuum 299,792,458 | 670,616,629

Table 3.1 Speeds of Various Objects *Escape velocity is the velocity at which an object must be launched so
that it overcomes Earth’s gravity and is not pulled back toward Earth.



Calculating Instantaneous Velocity
When calculating instantaneous velocity, we need to specify the explicit form of the position function x(¢). If

each term in the x(¢) equation has the form of At" where A is a constant and # is an integer, this can be
differentiated using the power rule to be:

d(At")

Franie Ant"" 1, 3.7

Note that if there are additional terms added together, this power rule of differentiation can be done multiple
times and the solution is the sum of those terms. The following example illustrates the use of Equation 3.7.

@ EXAMPLE 3.3

Instantaneous Velocity Versus Average Velocity
The position of a particle is given by x(¢) = 3.0t + 0.57% m.

a. Using Equation 3.4 and Equation 3.7, find the instantaneous velocity at = 2.0 s.
b. Calculate the average velocity between 1.0 s and 3.0 s.

Strategy

Equation 3.4 gives the instantaneous velocity of the particle as the derivative of the position function. Looking
at the form of the position function given, we see that it is a polynomial in t. Therefore, we can use Equation
3.7, the power rule from calculus, to find the solution. We use Equation 3.6 to calculate the average velocity of
the particle.

Solution

a. vt =20 =30+ 1.52 ms.
Substituting t = 2.0 s into this equation gives v(2.0s) = [3.0 + 1.5(2.0)* ] m/s = 9.0 m/s.

b. To determine the average velocity of the particle between 1.0 s and 3.0 s, we calculate the values of x(1.0 s)
and x(3.0 s):

x(1.0s) = [(3.0)(1.0) + 0.5(1.0)’] m=3.5m
x(3.05) = [(3.0)3.0) + 0.53.0)’] m=225m.

Then the average velocity is
x(3.0s) —x(1.0s) 225-35m

_ = 9.5m/s.
13.0s) —1(1.0s) _ 30-10s S

V=

Significance

In the limit that the time interval used to calculate v goes to zero, the value obtained for v converges to the
value of v.

@ EXAMPLE 3.4

Instantaneous Velocity Versus Speed
Consider the motion of a particle in which the position is x(¢) = 3.0t — 37 m.

a. What is the instantaneous velocity at t=0.25 s, t=0.50 s, and t=1.0 s?
b. What is the speed of the particle at these times?

Strategy
The instantaneous velocity is the derivative of the position function and the speed is the magnitude of the



instantaneous velocity. We use Equation 3.4 and Equation 3.7 to solve for instantaneous velocity.

Solution
a. v() = % =3.0-6.0r m/s v(0.25s) = 1.50m/s, v(0.5s) =0m/s, v(1.0s) = -3.0m/s
b. Speed = |v(¢)| = 1.50 m/s, 0.0 m/s, and 3.0 m/s

Significance

The velocity of the particle gives us direction information, indicating the particle is moving to the left (west) or
right (east). The speed gives the magnitude of the velocity. By graphing the position, velocity, and speed as
functions of time, we can understand these concepts visually Figure 3.9. In (a), the graph shows the particle
moving in the positive direction until t = 0.5 s, when it reverses direction. The reversal of direction can also be
seen in (b) at 0.5 s where the velocity is zero and then turns negative. At 1.0 s it is back at the origin where it
started. The particle’s velocity at 1.0 s in (b) is negative, because it is traveling in the negative direction. But in
(c), however, its speed is positive and remains positive throughout the travel time. We can also interpret
velocity as the slope of the position-versus-time graph. The slope of x(f) is decreasing toward zero, becoming
zero at 0.5 s and increasingly negative thereafter. This analysis of comparing the graphs of position, velocity,
and speed helps catch errors in calculations. The graphs must be consistent with each other and help interpret
the calculations.
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Figure 3.9 (a) Position: x(t) versus time. (b) Velocity: v(f) versus time. The slope of the position graph is the velocity. A rough comparison
of the slopes of the tangent lines in (a) at 0.25 s, 0.5 s, and 1.0 s with the values for velocity at the corresponding times indicates they are

the same values. (c) Speed: |v(?)| versus time. Speed is always a positive number.

) CHECK YOUR UNDERSTANDING 3.2

The position of an object as a function of time is x(¢) = —312 m. (a) What is the velocity of the object as a
function of time? (b) Is the velocity ever positive? (c) What are the velocity and speed at t=1.0 s?

3.3 Average and Instantaneous Acceleration

Learning Objectives
By the end of this section, you will be able to:
e Calculate the average acceleration between two points in time.
e Calculate the instantaneous acceleration given the functional form of velocity.
e Explain the vector nature of instantaneous acceleration and velocity.
e Explain the difference between average acceleration and instantaneous acceleration.
e Find instantaneous acceleration at a specified time on a graph of velocity versus time.

The importance of understanding acceleration spans our day-to-day experience, as well as the vast reaches of
outer space and the tiny world of subatomic physics. In everyday conversation, to accelerate means to speed
up; applying the brake pedal causes a vehicle to slow down. We are familiar with the acceleration of our car, for
example. The greater the acceleration, the greater the change in velocity over a given time. Acceleration is



widely seen in experimental physics. In linear particle accelerator experiments, for example, subatomic
particles are accelerated to very high velocities in collision experiments, which tell us information about the
structure of the subatomic world as well as the origin of the universe. In space, cosmic rays are subatomic
particles that have been accelerated to very high energies in supernovas (exploding massive stars) and active
galactic nuclei. It is important to understand the processes that accelerate cosmic rays because these rays
contain highly penetrating radiation that can damage electronics flown on spacecraft, for example.

Average Acceleration

The formal definition of acceleration is consistent with these notions just described, but is more inclusive.

Average Acceleration

Average acceleration is the rate at which velocity changes:

Av  vr -1
a=—=—-" 3.8
At Ir — 1o
where a is average acceleration, vis velocity, and tis time. (The bar over the a means average
acceleration.)

Because acceleration is velocity in meters per second divided by time in seconds, the ST units for acceleration
are often abbreviated m/s?—that is, meters per second squared or meters per second per second. This literally
means by how many meters per second the velocity changes every second. Recall that velocity is a vector—it
has both magnitude and direction—which means that a change in velocity can be a change in magnitude (or
speed), but it can also be a change in direction. For example, if a runner traveling at 10 km/h due east slows to
a stop, reverses direction, and continues her run at 10 km/h due west, her velocity has changed as a result of
the change in direction, although the magnitude of the velocity is the same in both directions. Thus,
acceleration occurs when velocity changes in magnitude (an increase or decrease in speed) or in direction, or
both.

Acceleration as a Vector

Acceleration is a vector in the same direction as the change in velocity, Av. Since velocity is a vector, it can
change in magnitude or in direction, or both. Acceleration is, therefore, a change in speed or direction, or
both.

Keep in mind that although acceleration is in the direction of the change in velocity, it is not always in the
direction of motion. When an object slows down, its acceleration is opposite to the direction of its motion.
Although this is commonly referred to as deceleration Figure 3.10, we say the train is accelerating in a
direction opposite to its direction of motion.



3.3 ¢ Average and Instantaneous Acceleration

Figure 3.10 A subway train in Sao Paulo, Brazil, accelerates opposite to the motion as it comes into a station. It is accelerating in a

direction opposite to its direction of motion. (credit: modification of work by Yusuke Kawasaki)

The term deceleration can cause confusion in our analysis because it is not a vector and it does not point to a
specific direction with respect to a coordinate system, so we do not use it. Acceleration is a vector, so we must
choose the appropriate sign for it in our chosen coordinate system. In the case of the train in Figure 3.10,
acceleration is in the negative direction in the chosen coordinate system, so we say the train is undergoing
negative acceleration.

If an object in motion has a velocity in the positive direction with respect to a chosen origin and it acquires a
constant negative acceleration, the object eventually comes to a rest and reverses direction. If we wait long
enough, the object passes through the origin going in the opposite direction. This is illustrated in Figure 3.11.
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Figure 3.11 An object in motion with a velocity vector toward the east under negative acceleration comes to a rest and reverses direction.

It passes the origin going in the opposite direction after a long enough time.

@ EXAMPLE 3.5

Calculating Average Acceleration: A Racehorse Leaves the Gate

A racehorse coming out of the gate accelerates from rest to a velocity of 15.0 m/s due west in 1.80 s. What is its
average acceleration?

111



Figure 3.12 Racehorses accelerating out of the gate. (credit: modification of work by Jon Sullivan)

Strategy

First we draw a sketch and assign a coordinate system to the problem Figure 3.13. This is a simple problem,
but it always helps to visualize it. Notice that we assign east as positive and west as negative. Thus, in this case,
we have negative velocity.

- @ N (+y)
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Figure 3.13 Identify the coordinate system, the given information, and what you want to determine.

We can solve this problem by identifying Av and At from the given information, and then calculating the

. . . Ue—0,
average acceleration directly from the equation @ = % = ti—té) .

Solution

First, identify the knowns: vy = 0, vy = —15.0 m/s (the negative sign indicates direction toward the west), At =
1.80s.

Second, find the change in velocity. Since the horse is going from zero to —15.0 m/s, its change in velocity
equals its final velocity:

Av =vf — vy = vf = —15.0m/s.
Last, substitute the known values (Av and Ar) and solve for the unknown a:

__Av  —-150m/s _ 2

a= AT - 1808 - 8.33m/s”.
Significance
The negative sign for acceleration indicates that acceleration is toward the west. An acceleration of 8.33 m/s?
due west means the horse increases its velocity by 8.33 m/s due west each second; that is, 8.33 meters per
second per second, which we write as 8.33 m/s2. This is truly an average acceleration, because the ride is not
smooth. We see later that an acceleration of this magnitude would require the rider to hang on with a force
nearly equal to his weight.

() CHECK YOUR UNDERSTANDING 3.3

Protons in a linear accelerator are accelerated from rest t0 2.0 X 107 m/sin 1074 s. What is the average
acceleration of the protons?




Instantaneous Acceleration

Instantaneous acceleration a, or acceleration at a specific instant in time, is obtained using the same process
discussed for instantaneous velocity. That is, we calculate the average acceleration between two points in time
separated by Az and let At approach zero. The result is the derivative of the velocity function v(f), which is
instantaneous acceleration and is expressed mathematically as

at) = %U(t). 3.9

Thus, similar to velocity being the derivative of the position function, instantaneous acceleration is the
derivative of the velocity function. We can show this graphically in the same way as instantaneous velocity. In
Figure 3.14, instantaneous acceleration at time tg is the slope of the tangent line to the velocity-versus-time
graph at time fy. We see that average acceleration @ = % approaches instantaneous acceleration as At
approaches zero. Also in part (a) of the figure, we see that velocity has a maximum when its slope is zero. This
time corresponds to the zero of the acceleration function. In part (b), instantaneous acceleration at the
minimum velocity is shown, which is also zero, since the slope of the curve is zero there, too. Thus, for a given
velocity function, the zeros of the acceleration function give either the minimum or the maximum velocity.
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Figure 3.14 1In a graph of velocity versus time, instantaneous acceleration is the slope of the tangent line. (a) Shown is average

. vf—U; . .
acceleration @ = % = ti_t,’ between times At = tq — t, At =t5 —tp,and At = t4 — t3. When At — 0, the average acceleration
1

approaches instantaneous acceleration at time t. In view (a), instantaneous acceleration is shown for the point on the velocity curve at
maximum velocity. At this point, instantaneous acceleration is the slope of the tangent line, which is zero. At any other time, the slope of the

tangent line—and thus instantaneous acceleration—would not be zero. (b) Same as (a) but shown for instantaneous acceleration at
minimum velocity.

To illustrate this concept, let’s look at two examples. First, a simple example is shown using Figure 3.9(b), the
velocity-versus-time graph of Example 3.4, to find acceleration graphically. This graph is depicted in Figure
3.15(a), which is a straight line. The corresponding graph of acceleration versus time is found from the slope of
velocity and is shown in Figure 3.15(b). In this example, the velocity function is a straight line with a constant
slope, thus acceleration is a constant. In the next example, the velocity function has a more complicated

functional dependence on time.
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Figure 3.15 (a, b) The velocity-versus-time graph is linear and has a negative constant slope (a) that is equal to acceleration, shown in (b).

If we know the functional form of velocity, v(f), we can calculate instantaneous acceleration a(f) at any time
point in the motion using Equation 3.9.

@ EXAMPLE 3.6

Calculating Instantaneous Acceleration
A particle is in motion and is accelerating. The functional form of the velocity is v(t) = 20t — 512 m/s.

a. Find the functional form of the acceleration.

b. Find the instantaneous velocity at t=1, 2, 3, and 5 s.

c. Find the instantaneous accelerationatt=1,2,3,and 5s.

d. Interpret the results of (c) in terms of the directions of the acceleration and velocity vectors.
Strategy

We find the functional form of acceleration by taking the derivative of the velocity function. Then, we calculate
the values of instantaneous velocity and acceleration from the given functions for each. For part (d), we need to
compare the directions of velocity and acceleration at each time.

Solution

a. a(n) = 20 =20 - 10r /s
b. v(1s)=15m/s,v(2s) =20m/s,v(3s) = 15m/s, v(5s) = -25m/s

c. a(ls)=10m/s?,a2s) =0m/s?, a(3s) = —10m/s?, a(5s) = =30 m/s?

d. Att=1s,velocity v(1s) = 15 m/s is positive and acceleration is positive, so both velocity and acceleration

are in the same direction. The particle is moving faster.

At t=2 s, velocity has increased tov(2 s) = 20 m/s, where it is maximum, which corresponds to the time when
the acceleration is zero. We see that the maximum velocity occurs when the slope of the velocity function is
zero, which is just the zero of the acceleration function.

At t= 3 s, velocity is v(3 s) = 15 m/s and acceleration is negative. The particle has reduced its velocity and the
acceleration vector is negative. The particle is slowing down.

At t=5s, velocity is v(5 s) = —25 m/s and acceleration is increasingly negative. Between the times t =3 sand t
=5 s the particle has decreased its velocity to zero and then become negative, thus reversing its direction. The
particle is now speeding up again, but in the opposite direction.

We can see these results graphically in Figure 3.16.
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Figure 3.16 (a) Velocity versus time. Tangent lines are indicated at times 1, 2, and 3 s. The slopes of the tangent lines are the
accelerations. At t= 3 s, velocity is positive. At t = 5 s, velocity is negative, indicating the particle has reversed direction. (b) Acceleration
versus time. Comparing the values of accelerations given by the black dots with the corresponding slopes of the tangent lines (slopes of

lines through black dots) in (a), we see they are identical.

Significance

By doing both a numerical and graphical analysis of velocity and acceleration of the particle, we can learn
much about its motion. The numerical analysis complements the graphical analysis in giving a total view of
the motion. The zero of the acceleration function corresponds to the maximum of the velocity in this example.
Also in this example, when acceleration is positive and in the same direction as velocity, velocity increases. As
acceleration tends toward zero, eventually becoming negative, the velocity reaches a maximum, after which it
starts decreasing. If we wait long enough, velocity also becomes negative, indicating a reversal of direction. A
real-world example of this type of motion is a car with a velocity that is increasing to a maximum, after which it
starts slowing down, comes to a stop, then reverses direction.

) CHECK YOUR UNDERSTANDING 3.4

An airplane lands on a runway traveling east. Describe its acceleration.




Getting a Feel for Acceleration

You are probably used to experiencing acceleration when you step into an elevator, or step on the gas pedal in
your car. However, acceleration is happening to many other objects in our universe with which we don’t have
direct contact. Table 3.2 presents the acceleration of various objects. We can see the magnitudes of the
accelerations extend over many orders of magnitude.

Acceleration Value (m/s?)
High-speed train 0.25
Elevator 2
Cheetah 5
Object in a free fall without air resistance near the surface of Earth | 9.8
Space shuttle maximum during launch 29
Parachutist peak during normal opening of parachute 59
F16 aircraft pulling out of a dive 79
Explosive seat ejection from aircraft 147
Sprint missile 982
Fastest rocket sled peak acceleration 1540
Jumping flea 3200
Baseball struck by a bat 30,000
Closing jaws of a trap-jaw ant 1,000,000
Proton in the large Hadron collider 1.9 x 10°

Table 3.2 Typical Values of Acceleration (credit: Wikipedia: Orders of Magnitude (acceleration))

In this table, we see that typical accelerations vary widely with different objects and have nothing to do with
object size or how massive it is. Acceleration can also vary widely with time during the motion of an object. A
drag racer has a large acceleration just after its start, but then it tapers off as the vehicle reaches a constant
velocity. Its average acceleration can be quite different from its instantaneous acceleration at a particular time
during its motion. Figure 3.17 compares graphically average acceleration with instantaneous acceleration for
two very different motions.
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Figure 3.17 Graphs of instantaneous acceleration versus time for two different one-dimensional motions. (a) Acceleration varies only
slightly and is always in the same direction, since it is positive. The average over the interval is nearly the same as the acceleration at any
given time. (b) Acceleration varies greatly, perhaps representing a package on a post office conveyor belt that is accelerated forward and
backward as it bumps along. It is necessary to consider small time intervals (such as from 0-1.0 s) with constant or nearly constant

acceleration in such a situation.

INTERACTIVE

Learn about position, velocity, and acceleration graphs. Move the little man back and forth with a mouse and
plot his motion. Set the position, velocity, or acceleration and let the simulation move the man for you. Visit

this link (https://openstax.org/l/21movmansimul) to use the moving man simulation.

3.4 Motion with Constant Acceleration

Learning Objectives

By the end of this section, you will be able to:
e |dentify which equations of motion are to be used to solve for unknowns.
e Use appropriate equations of motion to solve a two-body pursuit problem.

You might guess that the greater the acceleration of, say, a car moving away from a stop sign, the greater the
car’s displacement in a given time. But, we have not developed a specific equation that relates acceleration and
displacement. In this section, we look at some convenient equations for kinematic relationships, starting from
the definitions of displacement, velocity, and acceleration. We first investigate a single object in motion, called
single-body motion. Then we investigate the motion of two objects, called two-body pursuit problems.

Notation

First, let us make some simplifications in notation. Taking the initial time to be zero, as if time is measured
with a stopwatch, is a great simplification. Since elapsed time is Af = t; — t, taking f; = 0 means thatAt = #¢,
the final time on the stopwatch. When initial time is taken to be zero, we use the subscript O to denote initial
values of position and velocity. That is, xq is the initial position and v is the initial velocity. We put no
subscripts on the final values. That is, t is the final time, x is the final position, and v is the final velocity. This
gives a simpler expression for elapsed time, At = ¢. It also simplifies the expression for x displacement, which
isnow Ax = x — xq. Also, it simplifies the expression for change in velocity, which is now Av = v — vg. To
summarize, using the simplified notation, with the initial time taken to be zero,


https://openstax.org/l/21movmansimul

At =t
Ax =x—Xxg

Av =v - vy,

where the subscript 0 denotes an initial value and the absence of a subscript denotes a final value in whatever
motion is under consideration.

We now make the important assumption that acceleration is constant. This assumption allows us to avoid
using calculus to find instantaneous acceleration. Since acceleration is constant, the average and
instantaneous accelerations are equal—that is,

a = a = constant.

Thus, we can use the symbol a for acceleration at all times. Assuming acceleration to be constant does not
seriously limit the situations we can study nor does it degrade the accuracy of our treatment. For one thing,
acceleration is constant in a great number of situations. Furthermore, in many other situations we can
describe motion accurately by assuming a constant acceleration equal to the average acceleration for that
motion. Lastly, for motion during which acceleration changes drastically, such as a car accelerating to top
speed and then braking to a stop, motion can be considered in separate parts, each of which has its own
constant acceleration.

Displacement and Position from Velocity

To get our first two equations, we start with the definition of average velocity:

_  Ax
V= —.
At
Substituting the simplified notation for Ax and At yields
_ X—Xg
v=—.
t
Solving for x gives us
X = Xxg + Ut, 3.10
where the average velocity is
- yp+tv
V= . 3.11
2

2] +v
2
initial and final velocities. Figure 3.18 illustrates this concept graphically. In part (a) of the figure, acceleration

is constant, with velocity increasing at a constant rate. The average velocity during the 1-h interval from 40

km/h to 80 km/h is 60 km/h:

The equation v = reflects the fact that when acceleration is constant, v is just the simple average of the

_ 40 km/h + 80 km/h
p= 0ty _ ha — 60 km/h.
2 2
In part (b), acceleration is not constant. During the 1-h interval, velocity is closer to 80 km/h than 40 km/h.

Thus, the average velocity is greater than in part (a).
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Figure 3.18 (a) Velocity-versus-time graph with constant acceleration showing the initial and final velocities v and v. The average
velocity is %(UO + v) = 60 km/h. (b) Velocity-versus-time graph with an acceleration that changes with time. The average velocity is not

given by %(U() + v), but is greater than 60 km/h.
Solving for Final Velocity from Acceleration and Time

We can derive another useful equation by manipulating the definition of acceleration:

_AU
NE

Substituting the simplified notation for Av and At gives us

a

U—11

= (constant a) .
Solving for vyields

U =10y +at (constanta). 3.12

@ EXAMPLE 3.7

Calculating Final Velocity

An airplane lands with an initial velocity of 70.0 m/s and then accelerates opposite to the motion at 1.50 m/s2
for 40.0 s. What is its final velocity?

Strategy
First, we identify the knowns: vy = 70 m/s, a = —1.50 m/s2, = 40s.

Second, we identify the unknown; in this case, it is final velocity vs.

Last, we determine which equation to use. To do this we figure out which kinematic equation gives the
unknown in terms of the knowns. We calculate the final velocity using Equation 3.12, v = vy + at.

Solution

Substitute the known values and solve:
v=uvy+at=70.0m/s + (—1.50 m/s2> (40.0 s) = 10.0 m/s.

Figure 3.19 is a sketch that shows the acceleration and velocity vectors.
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Figure 3.19 The airplane lands with an initial velocity of 70.0 m/s and slows to a final velocity of 10.0 m/s before heading for the terminal.

Note the acceleration is negative because its direction is opposite to its velocity, which is positive.

Significance

The final velocity is much less than the initial velocity, as desired when slowing down, but is still positive (see
figure). With jet engines, reverse thrust can be maintained long enough to stop the plane and start moving it
backward, which is indicated by a negative final velocity, but is not the case here.

In addition to being useful in problem solving, the equation v = v + at gives us insight into the relationships
among velocity, acceleration, and time. We can see, for example, that

- Final velocity depends on how large the acceleration is and how long it lasts

« If the acceleration is zero, then the final velocity equals the initial velocity (v = vp), as expected (in other
words, velocity is constant)

« If ais negative, then the final velocity is less than the initial velocity

All these observations fit our intuition. Note that it is always useful to examine basic equations in light of our
intuition and experience to check that they do indeed describe nature accurately.

Solving for Final Position with Constant Acceleration

We can combine the previous equations to find a third equation that allows us to calculate the final position of
an object experiencing constant acceleration. We start with

v =1y +at.

Adding v to each side of this equation and dividing by 2 gives

vg + v 1
5 =y + Eat.
Since U02+ . v for constant acceleration, we have
_ 1
V=19 + Eat

Now we substitute this expression for v into the equation for displacement, x = x( + vt, yielding

L)
x = xqg + vt + Eat (constant a) . 3.13

@ EXAMPLE 3.8

Calculating Displacement of an Accelerating Object
Dragsters can achieve an average acceleration of 26.0 m/s2. Suppose a dragster accelerates from rest at this
rate for 5.56 s Figure 3.20. How far does it travel in this time?



Figure 3.20 U.S. Army Top Fuel pilot Tony “The Sarge” Schumacher begins a race with a controlled burnout. (credit: Lt. Col. William
Thurmond. Photo Courtesy of U.S. Army.)

Strategy

First, let’s draw a sketch Figure 3.21. We are asked to find displacement, which is x if we take x to be zero.
(Think about x( as the starting line of a race. It can be anywhere, but we call it zero and measure all other
positions relative to it.) We can use the equation x = xq + vgt + %at2 when we identify vg, g, and t from the

statement of the problem.
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Figure 3.21 Sketch of an accelerating dragster.

Solution
First, we need to identify the knowns. Starting from rest means that vy = 0, ais given as 26.0 m/s? and tis
given as 5.56 s.

Second, we substitute the known values into the equation to solve for the unknown:
[
X = Xxqg + vpt + Eat .
Since the initial position and velocity are both zero, this equation simplifies to
[
X = —at".
2
Substituting the identified values of a and t gives

1
x = 5(26.0 m/s?)(5.56 5)% = 402 m.

Significance
If we convert 402 m to miles, we find that the distance covered is very close to one-quarter of a mile, the



standard distance for drag racing. So, our answer is reasonable. This is an impressive displacement to cover in
only 5.56 s, but top-notch dragsters can do a quarter mile in even less time than this. If the dragster were given
an initial velocity, this would add another term to the distance equation. If the same acceleration and time are
used in the equation, the distance covered would be much greater.

What else can we learn by examining the equation x = xqg + vgt + %at2 ? We can see the following
relationships:

« Displacement depends on the square of the elapsed time when acceleration is not zero. In Example 3.8,
the dragster covers only one-fourth of the total distance in the first half of the elapsed time.

« Ifacceleration is zero, then initial velocity equals average velocity (vy = v), and
X =Xxq9 + vpt + %at2 becomes x = xq + vyt.

Solving for Final Velocity from Distance and Acceleration

A fourth useful equation can be obtained from another algebraic manipulation of previous equations. If we
solve v = vq + at for t, we get
U—1

t= .
a

vo+v

Substituting this and v = 5

into x = x¢ + vt, we get

v = v% + 2a(x — xg) (constant a). 3.14

@ EXAMPLE 3.9

Calculating Final Velocity
Calculate the final velocity of the dragster in Example 3.8 without using information about time.

Strategy

The equation v?

= U(z) + 2a(x — xq) is ideally suited to this task because it relates velocities, acceleration, and
displacement, and no time information is required.

Solution

First, we identify the known values. We know that vy = O, since the dragster starts from rest. We also know that
X - Xo = 402 m (this was the answer in Example 3.8). The average acceleration was given by a = 26.0 m/s?.

2= v% + 2a(x — xq) and solve for v:

Second, we substitute the knowns into the equation v
v? =0+2(26.0m/s>) (402m).

Thus,

S
Il

2 2.09 x 10%* m2/s2

V2.09 x 10* m2/s2 = 145 m/s.

<
I

Significance

A velocity of 145 m/s is about 522 km/h, or about 324 mi/h, but even this breakneck speed is short of the
record for the quarter mile. Also, note that a square root has two values; we took the positive value to indicate a
velocity in the same direction as the acceleration.

2

An examination of the equation v* = U% + 2a(x — xq) can produce additional insights into the general



relationships among physical quantities:

« The final velocity depends on how large the acceleration is and the distance over which it acts.
« For a fixed acceleration, a car that is going twice as fast doesn’t simply stop in twice the distance. It takes
much farther to stop. (This is why we have reduced speed zones near schools.)

Putting Equations Together

In the following examples, we continue to explore one-dimensional motion, but in situations requiring slightly
more algebraic manipulation. The examples also give insight into problem-solving techniques. The note that
follows is provided for easy reference to the equations needed. Be aware that these equations are not
independent. In many situations we have two unknowns and need two equations from the set to solve for the
unknowns. We need as many equations as there are unknowns to solve a given situation.

Summary of Kinematic Equations (constant a)

X =xq + vt
- byt
U—T
v=uvy+at

[ )
x =X + vt + at

v? =U(2)+2a(x—x0)

Before we get into the examples, let’s look at some of the equations more closely to see the behavior of
acceleration at extreme values. Rearranging Equation 3.12, we have
U—11

a= .
t

From this we see that, for a finite time, if the difference between the initial and final velocities is small, the
acceleration is small, approaching zero in the limit that the initial and final velocities are equal. On the
contrary, in the limit # — O for a finite difference between the initial and final velocities, acceleration becomes
infinite.

Similarly, rearranging Equation 3.14, we can express acceleration in terms of velocities and displacement:

v? — U%
a=—.
2(x — xq)

Thus, for a finite difference between the initial and final velocities acceleration becomes infinite in the limit the
displacement approaches zero. Acceleration approaches zero in the limit the difference in initial and final
velocities approaches zero for a finite displacement.

@ EXAMPLE 3.10

How Far Does a Car Go?

On dry concrete, a car can accelerate opposite to the motion at a rate of 7.00 m/s?, whereas on wet concrete it
can accelerate opposite to the motion at only 5.00 m/s%. Find the distances necessary to stop a car moving at
30.0 m/s (about 110 km/h) on (a) dry concrete and (b) wet concrete. (c) Repeat both calculations and find the
displacement from the point where the driver sees a traffic light turn red, taking into account his reaction time
of 0.500 s to get his foot on the brake.




Strategy

First, we need to draw a sketch Figure 3.22. To determine which equations are best to use, we need to list all
the known values and identify exactly what we need to solve for.

Ax=7

}

vy = 30.0 mfs vi = 0mis

a4 = —7.00 m/s*

a,., = —5.00 m/s?

Figure 3.22 Sample sketch to visualize acceleration opposite to the motion and stopping distance of a car.

Solution

a.

First, we need to identify the knowns and what we want to solve for. We know that vy = 30.0 m/s, v=0, and
a=-7.00 m/s? (ais negative because it is in a direction opposite to velocity). We take xg to be zero. We are
looking for displacement Ax, or x — xg.
Second, we identify the equation that will help us solve the problem. The best equation to use is

v = v% + 2a(x — xq).
This equation is best because it includes only one unknown, x. We know the values of all the other
variables in this equation. (Other equations would allow us to solve for x, but they require us to know the
stopping time, t, which we do not know. We could use them, but it would entail additional calculations.)
Third, we rearrange the equation to solve for x:
v? — U%

xox= 2a

and substitute the known values:
02 — (30.0 m/s)?
x-0=———,
2(=7.00m/s?)

Thus,
x = 64.3 m on dry concrete.

This part can be solved in exactly the same manner as (a). The only difference is that the acceleration is

-5.00 m/s?. The result is
Xwet = 90.0 m on wet concrete.

When the driver reacts, the stopping distance is the same as it is in (a) and (b) for dry and wet concrete. So,
to answer this question, we need to calculate how far the car travels during the reaction time, and then add
that to the stopping time. It is reasonable to assume the velocity remains constant during the driver’s
reaction time.

To do this, we, again, identify the knowns and what we want to solve for. We know that v = 30.0 m/s,
treaction = 0.500 s, and a@peqction = 0. We take X(_reaction t0 b€ zero. We are looking for X eaction -

Second, as before, we identify the best equation to use. In this case, x = x¢ + vt works well because the
only unknown value is x, which is what we want to solve for.

Third, we substitute the knowns to solve the equation:
x =0+ (30.0m/s) (0.500 s) = 15.0 m.

This means the car travels 15.0 m while the driver reacts, making the total displacements in the two cases
of dry and wet concrete 15.0 m greater than if he reacted instantly.
Last, we then add the displacement during the reaction time to the displacement when braking (Figure



3.23),
Xbraking T Xreaction = Xtotal»

and find (a) to be 64.3 m + 15.0 m = 79.3 m when dry and (b) to be 90.0 m + 15.0 m = 105 m when wet.

643 m m
M w 890.0 m M

Reaction

0 15 50 100
Position x (m)
Figure 3.23 The distance necessary to stop a car varies greatly, depending on road conditions and driver reaction time. Shown here are
the braking distances for dry and wet pavement, as calculated in this example, for a car traveling initially at 30.0 m/s. Also shown are the

total distances traveled from the point when the driver first sees a light turn red, assuming a 0.500-s reaction time.

Significance

The displacements found in this example seem reasonable for stopping a fast-moving car. It should take longer
to stop a car on wet pavement than dry. It is interesting that reaction time adds significantly to the
displacements, but more important is the general approach to solving problems. We identify the knowns and
the quantities to be determined, then find an appropriate equation. If there is more than one unknown, we
need as many independent equations as there are unknowns to solve. There is often more than one way to
solve a problem. The various parts of this example can, in fact, be solved by other methods, but the solutions
presented here are the shortest.

@ EXAMPLE 3.11

Calculating Time

Suppose a car merges into freeway traffic on a 200-m-long ramp. If its initial velocity is 10.0 m/s and it
accelerates at 2.00 m/s2, how long does it take the car to travel the 200 m up the ramp? (Such information
might be useful to a traffic engineer.)

Strategy

First, we draw a sketch Figure 3.24. We are asked to solve for time t. As before, we identify the known
quantities to choose a convenient physical relationship (that is, an equation with one unknown, t.)

(=19

LS o {

o0 x=200m
vy = 10.0 mis v=

a = 2.00 m/s?
—u.-—-—u—-l*

Figure 3.24 Sketch of a car accelerating on a freeway ramp.



Solution

Again, we identify the knowns and what we want to solve for. We know that xg = 0,
vo = 10 m/s, a = 2.00 m/s2, and x = 200 m.

We need to solve for t. The equation x = xq¢ + vgt + %at2 works best because the only unknown in the

equation is the variable t, for which we need to solve. From this insight we see that when we input the knowns
into the equation, we end up with a quadratic equation.

We need to rearrange the equation to solve for t, then substituting the knowns into the equation:
1
200m = 0m + (10.0 m/s)r + —(2.00 m/s? ) 1.

We then simplify the equation. The units of meters cancel because they are in each term. We can get the units
of seconds to cancel by taking t = t s, where tis the magnitude of time and s is the unit. Doing so leaves

200 = 107 + £2.

We then use the quadratic formula to solve for t,

2 +10t=200=0

t= —b+V b2 —dac

2a ’

which yields two solutions: t=10.0 and t=-20.0. A negative value for time is unreasonable, since it would
mean the event happened 20 s before the motion began. We can discard that solution. Thus,

t=10.0s.
Significance
Whenever an equation contains an unknown squared, there are two solutions. In some problems both

solutions are meaningful; in others, only one solution is reasonable. The 10.0-s answer seems reasonable for a
typical freeway on-ramp.

CHECK YOUR UNDERSTANDING 3.5

A rocket accelerates at a rate of 20 m/s? during launch. How long does it take the rocket to reach a velocity of
400 m/s?

@ EXAMPLE 3.12

Acceleration of a Spaceship
A spaceship has left Earth’s orbit and is on its way to the Moon. It accelerates at 20 m/s? for 2 min and covers a

distance of 1000 km. What are the initial and final velocities of the spaceship?
Strategy

We are asked to find the initial and final velocities of the spaceship. Looking at the kinematic equations, we see
that one equation will not give the answer. We must use one kinematic equation to solve for one of the
velocities and substitute it into another kinematic equation to get the second velocity. Thus, we solve two of the
kinematic equations simultaneously.

Solution

First we solve for v using x = xg + vgt + %at2 :



1 2
x—x0=vot+§at

1
1.0 X 10° m = v((120.0's) + (200 m/s?)(120.0's)?

vy = 7133.3 m/s.

Then we substitute vy into v = vy + at to solve for the final velocity:
v=uvg+at="T71333m/s + (20.0 m/sz)(120.0 s) = 9533.3 m/s.

Significance

There are six variables in displacement, time, velocity, and acceleration that describe motion in one
dimension. The initial conditions of a given problem can be many combinations of these variables. Because of
this diversity, solutions may not be as easy as simple substitutions into one of the equations. This example
illustrates that solutions to kinematics may require solving two simultaneous kinematic equations.

With the basics of kinematics established, we can go on to many other interesting examples and applications.
In the process of developing kinematics, we have also glimpsed a general approach to problem solving that
produces both correct answers and insights into physical relationships. The next level of complexity in our
kinematics problems involves the motion of two interrelated bodies, called two-body pursuit problems.

Two-Body Pursuit Problems

Up until this point we have looked at examples of motion involving a single body. Even for the problem with
two cars and the stopping distances on wet and dry roads, we divided this problem into two separate problems
to find the answers. In a two-body pursuit problem, the motions of the objects are coupled—meaning, the
unknown we seek depends on the motion of both objects. To solve these problems we write the equations of
motion for each object and then solve them simultaneously to find the unknown. This is illustrated in Figure
3.25.

vy ¥ canstant vy = constant

: o~ o 3, s bo o
—_— —_—

Car 1 accelerales toward Car 2 At a later time Car 1 catches Car 2

Figure 3.25 A two-body pursuit scenario where car 2 has a constant velocity and car 1 is behind with a constant acceleration. Car 1

catches up with car 2 at a later time.

The time and distance required for car 1 to catch car 2 depends on the initial distance car 1 is from car 2 as
well as the velocities of both cars and the acceleration of car 1. The kinematic equations describing the motion
of both cars must be solved to find these unknowns.

Consider the following example.

@ EXAMPLE 3.13

Cheetah Catching a Gazelle

A cheetah waits in hiding behind a bush. The cheetah spots a gazelle running past at 10 m/s. At the instant the
gazelle passes the cheetah, the cheetah accelerates from rest at 4 m/s? to catch the gazelle. (a) How long does it
take the cheetah to catch the gazelle? (b) What is the displacement of the gazelle and cheetah?

Strategy

We use the set of equations for constant acceleration to solve this problem. Since there are two objects in
motion, we have separate equations of motion describing each animal. But what links the equations is a



common parameter that has the same value for each animal. If we look at the problem closely, it is clear the
common parameter to each animal is their position x at a later time t. Since they both start at xg = 0, their
displacements are the same at a later time t, when the cheetah catches up with the gazelle. If we pick the
equation of motion that solves for the displacement for each animal, we can then set the equations equal to
each other and solve for the unknown, which is time.

Solution

a. Equation for the gazelle: The gazelle has a constant velocity, which is its average velocity, since it is not
accelerating. Therefore, we use Equation 3.10 with xg = 0:
X =Xxg + 0t =1t.

Equation for the cheetah: The cheetah is accelerating from rest, so we use Equation 3.13 with xg = 0 and
vy =0:
1L, 1 5
X=X0+U0t+§at =5at .
Now we have an equation of motion for each animal with a common parameter, which can be eliminated to
find the solution. In this case, we solve for t:

S
X—Ut—z(lt
r=28,

a

The gazelle has a constant velocity of 10 m/s, which is its average velocity. The acceleration of the cheetah
is 4 m/s?. Evaluating t, the time for the cheetah to reach the gazelle, we have

2v  2(10 m/s)

l=—=——5—= 5s.
a 4m/s
b. To get the displacement, we use either the equation of motion for the cheetah or the gazelle, since they

should both give the same answer.
Displacement of the cheetah:

1 1
x = Eatz = E(4m/52)(5)2 =50m.

Displacement of the gazelle:
x =vt =10m/s(5) =50 m.

We see that both displacements are equal, as expected.
Significance
It is important to analyze the motion of each object and to use the appropriate kinematic equations to describe

the individual motion. It is also important to have a good visual perspective of the two-body pursuit problem to
see the common parameter that links the motion of both objects.

CHECK YOUR UNDERSTANDING 3.6

A bicycle has a constant velocity of 10 m/s. A person starts from rest and begins to run to catch up to the
bicycle in 30 s when the bicycle is at the same position as the person. What is the acceleration of the person?



3.5 Free Fall

Learning Objectives
By the end of this section, you will be able to:
e Use the kinematic equations with the variables y and g to analyze free-fall motion.
e Describe how the values of the position, velocity, and acceleration change during a free fall.
e Solve for the position, velocity, and acceleration as functions of time when an object is in a free fall.

An interesting application of Equation 3.4 through Equation 3.14 is called free fall, which describes the motion
of an object falling in a gravitational field, such as near the surface of Earth or other celestial objects of
planetary size. Let’s assume the body is falling in a straight line perpendicular to the surface, so its motion is
one-dimensional. For example, we can estimate the depth of a vertical mine shaft by dropping a rock into it
and listening for the rock to hit the bottom. But “falling,” in the context of free fall, does not necessarily imply
the body is moving from a greater height to a lesser height. If a ball is thrown upward, the equations of free fall
apply equally to its ascent as well as its descent.

Gravity

The most remarkable and unexpected fact about falling objects is that if air resistance and friction are
negligible, then in a given location all objects fall toward the center of Earth with the same constant
acceleration, independent of their mass. This experimentally determined fact is unexpected because we are so
accustomed to the effects of air resistance and friction that we expect light objects to fall slower than heavy
ones. Until Galileo Galilei (1564-1642) proved otherwise, people believed that a heavier object has a greater
acceleration in a free fall. We now know this is not the case. In the absence of air resistance, heavy objects
arrive at the ground at the same time as lighter objects when dropped from the same height Figure 3.26.

In air In a vacuum In & vacuum (the hard way)
Figure 3.26 A hammer and a feather fall with the same constant acceleration if air resistance is negligible. This is a general characteristic
of gravity not unique to Earth, as astronaut David R. Scott demonstrated in 1971 on the Moon, where the acceleration from gravity is only

1.67 m/s? and there is no atmosphere.

In the real world, air resistance can cause a lighter object to fall slower than a heavier object of the same size. A
tennis ball reaches the ground after a baseball dropped at the same time. (It might be difficult to observe the
difference if the height is not large.) Air resistance opposes the motion of an object through the air, and friction
between objects—such as between clothes and a laundry chute or between a stone and a pool into which it is
dropped—also opposes motion between them.

For the ideal situations of these first few chapters, an object falling without air resistance or friction is defined
to be in free fall. The force of gravity causes objects to fall toward the center of Earth. The acceleration of free-



falling objects is therefore called acceleration due to gravity. Acceleration due to gravity is constant, which
means we can apply the kinematic equations to any falling object where air resistance and friction are
negligible. This opens to us a broad class of interesting situations.

Acceleration due to gravity is so important that its magnitude is given its own symbol, g. It is constant at any
given location on Earth and has the average value

g=9.81m/s? (or32.2ft/s?).

Although gvaries from 9.78 m/s2 to 9.83 m/s?, depending on latitude, altitude, underlying geological
formations, and local topography, let’s use an average value of 9.8 m/s? rounded to two significant figures in
this text unless specified otherwise. Neglecting these effects on the value of gas a result of position on Earth’s
surface, as well as effects resulting from Earth’s rotation, we take the direction of acceleration due to gravity to
be downward (toward the center of Earth). In fact, its direction defines what we call vertical. Note that whether
acceleration a in the kinematic equations has the value +gor -g depends on how we define our coordinate
system. If we define the upward direction as positive, thena = —g = —9.8 m/s?, and if we define the downward
direction as positive, thena = g = 9.8 m/s2.

One-Dimensional Motion Involving Gravity

The best way to see the basic features of motion involving gravity is to start with the simplest situations and
then progress toward more complex ones. So, we start by considering straight up-and-down motion with no air
resistance or friction. These assumptions mean the velocity (if there is any) is vertical. If an object is dropped,
we know the initial velocity is zero when in free fall. When the object has left contact with whatever held or
threw it, the object is in free fall. When the object is thrown, it has the same initial speed in free fall as it did
before it was released. When the object comes in contact with the ground or any other object, it is no longer in
free fall and its acceleration of gis no longer valid. Under these circumstances, the motion is one-dimensional
and has constant acceleration of magnitude g. We represent vertical displacement with the symbol y.

Kinematic Equations for Objects in Free Fall

We assume here that acceleration equals —g (with the positive direction upward).

v= vyy—gt 3.15
[

Y=Yy +vot— Egt 3.16

v = v% —2g(y—y0) 3.17

@ PROBLEM-SOLVING STRATEGY

Free Fall

1. Decide on the sign of the acceleration of gravity. In Equation 3.15 through Equation 3.17, acceleration gis
negative, which says the positive direction is upward and the negative direction is downward. In some
problems, it may be useful to have acceleration g as positive, indicating the positive direction is downward.

2. Draw a sketch of the problem. This helps visualize the physics involved.

3. Record the knowns and unknowns from the problem description. This helps devise a strategy for selecting
the appropriate equations to solve the problem.

4. Decide which of Equation 3.15 through Equation 3.17 are to be used to solve for the unknowns.




@ EXAMPLE 3.14

Free Fall of a Ball

Figure 3.27 shows the positions of a ball, at 1-s intervals, with an initial velocity of 4.9 m/s downward, that is
thrown from the top of a 98-m-high building. (a) How much time elapses before the ball reaches the ground?
(b) What is the velocity when it arrives at the ground?

tis) x(m) v(mis)
0 0 -49
1 1 -9.8 -14.7

2 =294 -245

3 -hB8 -343

4 =880 -441

Figure 3.27 The positions and velocities at 1-s intervals of a ball thrown downward from a tall building at 4.9 m/s.

Strategy

Choose the origin at the top of the building with the positive direction upward and the negative direction
downward. To find the time when the position is -98 m, we use Equation 3.16, with

yo = 0,09 = —4.9 m/s, and g = 9.8 m/s2.

Solution

a. Substitute the given values into the equation:

Y=o+ vot — S gt
—98.0m =0 — (4.9 m/s)r — £(9.8 m/s?)r2.

This simplifies to
2 4+1-20=0.

This is a quadratic equation with roots t = —5.0 s and ¢ = 4.0 s. The positive root is the one we are
interested in, since time ¢ = 0 is the time when the ball is released at the top of the building. (The time
t = —5.0 s represents the fact that a ball thrown upward from the ground would have been in the air for 5.0
s when it passed by the top of the building moving downward at 4.9 m/s.)
b. Using Equation 3.15, we have
v=uvy—gt=-49m/s — (9.8 m/sz)(4.0 s) = —44.1 m/s.

Significance

For situations when two roots are obtained from a quadratic equation in the time variable, we must look at the
physical significance of both roots to determine which is correct. Since t = 0 corresponds to the time when the
ball was released, the negative root would correspond to a time before the ball was released, which is not
physically meaningful. When the ball hits the ground, its velocity is not immediately zero, but as soon as the
ball interacts with the ground, its acceleration is not g and it accelerates with a different value over a short time
to zero velocity. This problem shows how important it is to establish the correct coordinate system and to keep
the signs of gin the kinematic equations consistent.




@ EXAMPLE 3.15

Vertical Motion of a Baseball

A batter hits a baseball straight upward at home plate and the ball is caught 5.0 s after it is struck Figure 3.28.
(a) What is the initial velocity of the ball? (b) What is the maximum height the ball reaches? (c) How long does it
take to reach the maximum height? (d) What is the acceleration at the top of its path? (e) What is the velocity of
the ball when it is caught? Assume the ball is hit and caught at the same location.

=0 t=50%

Figure 3.28 A baseball hit straight up is caught by the catcher 5.0 s later.

Strategy

Choose a coordinate system with a positive y-axis that is straight up and with an origin that is at the spot where
the ball is hit and caught.

Solution

a. Equation 3.16 gives

L 5
J’=J’0+Uof—§gf

1
0=0+0p(5.05) = (9.8 m/s?) (5.05),

which gives vy = 24.5 m/s.

b. Atthe maximum height, v = 0. With vy = 24.5 m/s, Equation 3.17 gives

v? =0} - 28— )

0 = (24.5 m/s)> — 2(9.8 m/s?)(y — 0)

or
y = 30.6 m.

c. To find the time when v = 0, we use Equation 3.15:
v=1uv)—gt

0 =24.5m/s — (9.8 m/s)t.

This gives t = 2.5 s. Since the ball rises for 2.5 s, the time to fall is 2.5 s.

d. The acceleration is 9.8 m/s? everywhere, even when the velocity is zero at the top of the path. Although the
velocity is zero at the top, it is changing at the rate of 9.8 m/s? downward.

e. Thevelocity att = 5.0s can be determined with Equation 3.15:



<
|

=y — gt
24.5m/s — 9.8 m/s2(5.0's)
= -24.5m/s.

Significance

The ball returns with the speed it had when it left. This is a general property of free fall for any initial velocity.
We used a single equation to go from throw to catch, and did not have to break the motion into two segments,
upward and downward. We are used to thinking that the effect of gravity is to create free fall downward toward
Earth. It is important to understand, as illustrated in this example, that objects moving upward away from
Earth are also in a state of free fall.

) CHECK YOUR UNDERSTANDING 3.7

A chunk of ice breaks off a glacier and falls 30.0 m before it hits the water. Assuming it falls freely (there is no
air resistance), how long does it take to hit the water? Which quantity increases faster, the speed of the ice
chunk or its distance traveled?

@ EXAMPLE 3.16

Rocket Booster

A small rocket with a booster blasts off and heads straight upward. When at a height of 5.0 km and velocity of
200.0 m/s, it releases its booster. (a) What is the maximum height the booster attains? (b) What is the velocity
of the booster at a height of 6.0 km? Neglect air resistance.

Figure 3.29 A rocket releases its booster at a given height and velocity. How high and how fast does the booster go?



Strategy

We need to select the coordinate system for the acceleration of gravity, which we take as negative downward.
We are given the initial velocity of the booster and its height. We consider the point of release as the origin. We
know the velocity is zero at the maximum position within the acceleration interval; thus, the velocity of the
booster is zero at its maximum height, so we can use this information as well. From these observations, we use
Equation 3.17, which gives us the maximum height of the booster. We also use Equation 3.17 to give the
velocity at 6.0 km. The initial velocity of the booster is 200.0 m/s.

Solution

a. From Equation 3.17, v? = U% —2g(y — yp)- With v = 0 and yy = 0, we can solve for y:
U5 (2.0 x 102m/s)?
Y= 2 T T 2008mis?)

= 2040.8 m.

This solution gives the maximum height of the booster in our coordinate system, which has its origin at
the point of release, so the maximum height of the booster is roughly 7.0 km.
b. An altitude of 6.0 km corresponds toy = 1.0 X 103 m in the coordinate system we are using. The other
initial conditions areyy = 0, and vy = 200.0 m/s.
We have, from Equation 3.17,
v? = (200.0m/s)? —2(9.8 m/s*)(1.0 x 10° m) = v = +142.8 m/s.

Significance

We have both a positive and negative solution in (b). Since our coordinate system has the positive direction
upward, the +142.8 m/s corresponds to a positive upward velocity at 6000 m during the upward leg of the
trajectory of the booster. The value v=-142.8 m/s corresponds to the velocity at 6000 m on the downward leg.
This example is also important in that an object is given an initial velocity at the origin of our coordinate
system, but the origin is at an altitude above the surface of Earth, which must be taken into account when
forming the solution.

@ INTERACTIVE

Visit this site (https://openstax.org/l/21equatgraph) to learn about graphing polynomials. The shape of the
curve changes as the constants are adjusted. View the curves for the individual terms (for example, y = bx) to
see how they add to generate the polynomial curve.

3.6 Finding Velocity and Displacement from Acceleration

Learning Objectives

By the end of this section, you will be able to:
e Derive the kinematic equations for constant acceleration using integral calculus.
e Use the integral formulation of the kinematic equations in analyzing motion.
e Find the functional form of velocity versus time given the acceleration function.
e Find the functional form of position versus time given the velocity function.

This section assumes you have enough background in calculus to be familiar with integration. In
Instantaneous Velocity and Speed and Average and Instantaneous Acceleration we introduced the kinematic
functions of velocity and acceleration using the derivative. By taking the derivative of the position function we
found the velocity function, and likewise by taking the derivative of the velocity function we found the
acceleration function. Using integral calculus, we can work backward and calculate the velocity function from
the acceleration function, and the position function from the velocity function.

Kinematic Equations from Integral Calculus

Let’s begin with a particle with an acceleration a(t) which is a known function of time. Since the time derivative
of the velocity function is acceleration,


https://openstax.org/l/21equatgraph

o) = ato),

we can take the indefinite integral of both sides, finding

d
/ (s = / a(tydt + Cy,

d
where C; is a constant of integration. Since / Ev(t)dt = v(t), the velocity is given by

v(t) = /a(t)dt+ C. 3.18

Similarly, the time derivative of the position function is the velocity function,

%x(r) = v(1).

Thus, we can use the same mathematical manipulations we just used and find
x(t) = /v(t)dt + (C, 3.19

where C, is a second constant of integration.

We can derive the kinematic equations for a constant acceleration using these integrals. With a(f) = aa
constant, and doing the integration in Equation 3.18, we find

U(t)=/adt+C1 =at + Cj.

If the initial velocity is v(0) = vy, then

vg =0+Cy.
Then, C; = vgand

u(t) = vy + at,
which is Equation 3.12. Substituting this expression into Equation 3.19 gives

x(t) = /(UQ + at)dt + C,.
Doing the integration, we find
L)
x(t) = vot + Eat + .

If x(0) = xp, we have
x0=0+0+Cy;

so, Cy = Xg. Substituting back into the equation for x(f), we finally have
1
x(1) = xo + vot + Eatz,

which is Equation 3.13.



@ EXAMPLE 3.17

Motion of a Motorboat

A motorboat is traveling at a constant velocity of 5.0 m/s when it starts to accelerate opposite to the motion to
arrive at the dock. Its acceleration is a(t) = —%t m/s3. (a) What is the velocity function of the motorboat? (b) At
what time does the velocity reach zero? (c) What is the position function of the motorboat? (d) What is the

displacement of the motorboat from the time it begins to accelerate opposite to the motion to when the velocity
is zero? (e) Graph the velocity and position functions.

Strategy

(a) To get the velocity function we must integrate and use initial conditions to find the constant of integration.
(b) We set the velocity function equal to zero and solve for t. (c) Similarly, we must integrate to find the position
function and use initial conditions to find the constant of integration. (d) Since the initial position is taken to be
zero, we only have to evaluate the position function at the time when the velocity is zero.

Solution

We take t= 0 to be the time when the boat starts to accelerate opposite to the motion.

a. From the functional form of the acceleration we can solve Equation 3.18 to get v(f):
1 1

At t=0we have v(0) =5.0 m/s =0 + C, so C; =5.0 m/s or v(¢) = 5.0 m/s — %IZ.
b. v(t)=0=50m/s — +*m/s’ =1 =635s
Solve Equation 3.19:
1 1
x(1) = /U(t)dt +C = /(5.0 - §rz)dr +Cp =5.00 m/s —ﬂt3m/s3 +C,.

At t=0, we set x(0) = 0 = xp, since we are only interested in the displacement from when the boat starts to

accelerate opposite to the motion. We have
x(0)=0=0C,.

Therefore, the equation for the position is

1 3
1)=5.0t— —1¢.
x(@) 24

d. Since the initial position is taken to be zero, we only have to evaluate the position function at the time
when the velocity is zero. This occurs at t = 6.3 s. Therefore, the displacement is

1
x(6.3) =5.0(6.35) — ﬁ(6‘3 ) =21.1m.



Velocity of the

Motorboat vs. Time Position vs. Time
i i
10 25
9-1 -
87 20- .
74 - !
= B - 154 |
£ g :
: o 15 = i i
T a4 vil) = 5.0 — L % 10- :
34 |
| B = '
4 () = 5.05 — Hf"’:
G T T T T T T T | U T T T T I T T T F
01 2 3 4 5 6 7 B 9 10 0 12 3 4 5 6 7 B 9 10
Time (s) Time (s)
(a) (1)

Figure 3.30 (a) Velocity of the motorboat as a function of time. The motorboat decreases its velocity to zero in 6.3 s. At times greater than
this, velocity becomes negative—meaning, the boat is reversing direction. (b) Position of the motorboat as a function of time. At t= 6.3 s,
the velocity is zero and the boat has stopped. At times greater than this, the velocity becomes negative—meaning, if the boat continues to

move with the same acceleration, it reverses direction and heads back toward where it originated.

Significance

The acceleration function is linear in time so the integration involves simple polynomials. In Figure 3.30, we
see that if we extend the solution beyond the point when the velocity is zero, the velocity becomes negative and
the boat reverses direction. This tells us that solutions can give us information outside our immediate interest
and we should be careful when interpreting them.

) CHECK YOUR UNDERSTANDING 3.8

A particle starts from rest and has an acceleration function a(t) = (5— <10% )t) ﬂz (a) What is the velocity
S

function? (b) What is the position function? (c) When is the velocity zero?




CHAPTER REVIEW
Key Terms

acceleration due to gravity acceleration of an
object as a result of gravity

average acceleration the rate of change in
velocity; the change in velocity over time

average speed the total distance traveled divided
by elapsed time

average velocity the displacement divided by the
time over which displacement occurs under
constant acceleration

displacement the change in position of an object

distance traveled the total length of the path
traveled between two positions

elapsed time the difference between the ending
time and the beginning time

free fall the state of movement that results from
gravitational force only

instantaneous acceleration acceleration ata

Key Equations
Displacement

Total displacement

specific point in time

instantaneous speed the absolute value of the
instantaneous velocity

instantaneous velocity the velocity at a specific
instant or time point

kinematics the description of motion through
properties such as position, time, velocity, and
acceleration

position the location of an object at a particular
time

total displacement the sum of individual
displacements over a given time period

two-body pursuit problem a kinematics problem
in which the unknowns are calculated by solving
the kinematic equations simultaneously for two
moving objects

Average velocity (for constant acceleration) U = 31 =

Instantaneous velocity v(t) = =2

<+ — Jotal distance

Average speed Average speed = 3 Elapsed time

Instantaneous speed Instantaneous speed = |v(?)|

Average acceleration a= % = I:;%zvg
Instantaneous acceleration a(t) = %
Position from average velocity X =Xxq + Ut
Average velocity U= UOTJFU

Velocity from acceleration v = vy + at (constant a)

Position from velocity and acceleration x =xg + vt + %at2 (constant a)

Velocity from distance v? = U% + 2a(x — xg) (constant a)




Velocity of free fall

Height of free fall

Velocity of free fall from height v

Velocity from acceleration

Position from velocity

2

Summary

3.1 Position, Displacement, and Average

Velocity

Kinematics is the description of motion without

considering its causes. In this chapter, it is

limited to motion along a straight line, called

one-dimensional motion.

Displacement is the change in position of an

object. The SI unit for displacement is the meter.

Displacement has direction as well as

magnitude.

Distance traveled is the total length of the path

traveled between two positions.

Time is measured in terms of change. The time

between two position points x; and x; is

At = tp —t1.Elapsed time for an event is

At =ty — t, where f¢ is the final time and #( is

the initial time. The initial time is often taken to

be zero.

Average velocity v is defined as displacement

divided by elapsed time. If x1,7; and x;,#, are

two position time points, the average velocity

between these points is
- Ax  xp-x
UTA T th—t1

3.2 Instantaneous Velocity and Speed

Instantaneous velocity is a continuous function
of time and gives the velocity at any point in
time during a particle’s motion. We can
calculate the instantaneous velocity at a specific
time by taking the derivative of the position
function, which gives us the functional form of
instantaneous velocity V().

Instantaneous velocity is a vector and can be
negative.

Instantaneous speed is found by taking the
absolute value of instantaneous velocity, and it

v = vy — gt (positive upward)
Yy =yo +vot — 1gt?

= vf — 280y — yo)

mo:/ﬁmm+q

x@:/WW+Q

is always positive.

Average speed is total distance traveled divided
by elapsed time.

The slope of a position-versus-time graph at a
specific time gives instantaneous velocity at that
time.

3.3 Average and Instantaneous

Acceleration

Acceleration is the rate at which velocity
changes. Acceleration is a vector; it has both a
magnitude and direction. The SI unit for
acceleration is meters per second squared.
Acceleration can be caused by a change in the
magnitude or the direction of the velocity, or
both.

Instantaneous acceleration a(f) is a continuous
function of time and gives the acceleration at
any specific time during the motion. It is
calculated from the derivative of the velocity
function. Instantaneous acceleration is the slope
of the velocity-versus-time graph.

Negative acceleration (sometimes called
deceleration) is acceleration in the negative
direction in the chosen coordinate system.

3.4 Motion with Constant Acceleration

When analyzing one-dimensional motion with
constant acceleration, identify the known
quantities and choose the appropriate equations
to solve for the unknowns. Either one or two of
the kinematic equations are needed to solve for
the unknowns, depending on the known and
unknown quantities.

Two-body pursuit problems always require two
equations to be solved simultaneously for the
unknowns.




3.5 Free Fall

An object in free fall experiences constant
acceleration if air resistance is negligible.

On Earth, all free-falling objects have an
acceleration g due to gravity, which averages
g =9.81 m/s.

For objects in free fall, the upward direction is
normally taken as positive for displacement,
velocity, and acceleration.

Conceptual Questions

3.1 Position, Displacement, and Average

Velocity
1.

Give an example in which there are clear
distinctions among distance traveled,
displacement, and magnitude of displacement.
Identify each quantity in your example
specifically.

. Under what circumstances does distance

traveled equal magnitude of displacement? What
is the only case in which magnitude of
displacement and distance are exactly the same?

. Bacteria move back and forth using their flagella

(structures that look like little tails). Speeds of up
to 50 pm/s (50 x 107° m/s) have been observed.
The total distance traveled by a bacterium is
large for its size, whereas its displacement is
small. Why is this?

. Give an example of a device used to measure

time and identify what change in that device
indicates a change in time.

Does a car’s odometer measure distance traveled
or displacement?

During a given time interval the average velocity
of an object is zero. What can you conclude about
its displacement over the time interval?

3.2 Instantaneous Velocity and Speed

7.

There is a distinction between average speed and
the magnitude of average velocity. Give an
example that illustrates the difference between
these two quantities.

. Does the speedometer of a car measure speed or

velocity?

. If you divide the total distance traveled on a car

trip (as determined by the odometer) by the
elapsed time of the trip, are you calculating
average speed or magnitude of average velocity?
Under what circumstances are these two
quantities the same?

3.6 Finding Velocity and Displacement
from Acceleration

» Integral calculus gives us a more complete
formulation of kinematics.

« Ifacceleration a(f) is known, we can use integral
calculus to derive expressions for velocity ()
and position x(1).

» Ifacceleration is constant, the integral

equations reduce to Equation 3.12 and Equation
3.13 for motion with constant acceleration.

10. How are instantaneous velocity and
instantaneous speed related to one another?

How do they differ?

3.3 Average and Instantaneous
Acceleration

11. Isit possible for speed to be constant while
acceleration is not zero?

Is it possible for velocity to be constant while
acceleration is not zero? Explain.

Give an example in which velocity is zero yet
acceleration is not.

If a subway train is moving to the left (has a
negative velocity) and then comes to a stop,
what is the direction of its acceleration? Is the
acceleration positive or negative?

Plus and minus signs are used in one-
dimensional motion to indicate direction. What
is the sign of an acceleration that reduces the
magnitude of a negative velocity? Of a positive
velocity?

12.

13.

14.

15.

3.4 Motion with Constant Acceleration

16. When analyzing the motion of a single object,
what is the required number of known physical
variables that are needed to solve for the
unknown quantities using the kinematic
equations?

State two scenarios of the kinematics of single
object where three known quantities require
two kinematic equations to solve for the
unknowns.

17.

3.5 Free Fall

18. What is the acceleration of a rock thrown
straight upward on the way up? At the top of its
flight? On the way down? Assume there is no air
resistance.



19. An object that is thrown straight up falls back to
Earth. This is one-dimensional motion. (a)
When is its velocity zero? (b) Does its velocity
change direction? (c) Does the acceleration have
the same sign on the way up as on the way
down?

20. Suppose you throw a rock nearly straight up at a
coconut in a palm tree and the rock just misses
the coconut on the way up but hits the coconut
on the way down. Neglecting air resistance and
the slight horizontal variation in motion to
account for the hit and miss of the coconut, how
does the speed of the rock when it hits the
coconut on the way down compare with what it
would have been if it had hit the coconut on the
way up? Is it more likely to dislodge the coconut
on the way up or down? Explain.

21. The severity of a fall depends on your speed

Problems

3.1 Position, Displacement, and Average
Velocity

24. Consider a coordinate system in which the
positive x axis is directed upward vertically.
What are the positions of a particle (a) 5.0 m
directly above the origin and (b) 2.0 m below the
origin?

25. Acaris 2.0 km west of a traffic light at t=0 and
5.0 km east of the light at t = 6.0 min. Assume
the origin of the coordinate system is the light
and the positive x direction is eastward. (a)
What are the car’s position vectors at these two
times? (b) What is the car’s displacement
between O min and 6.0 min?

26. The Shanghai maglev train connects Longyang
Road to Pudong International Airport, a
distance of 30 km. The journey takes 8 minutes
on average. What is the maglev train’s average
velocity?

27. The position of a particle moving along the
x-axis is given by x(¢) = 4.0 — 2.0¢ m. (a) At
what time does the particle cross the origin? (b)
What is the displacement of the particle
betweent =3.0sandt = 6.0s?

28. A cyclist rides 8.0 km east for 20 minutes, then
he turns and heads west for 8 minutes and 3.2
km. Finally, he rides east for 16 km, which takes
40 minutes. (a) What is the final displacement of
the cyclist? (b) What is his average velocity?

29. On February 15, 2013, a superbolide meteor
(brighter than the Sun) entered Earth’s
atmosphere over Chelyabinsk, Russia, and

22.

when you strike the ground. All factors but the
acceleration from gravity being the same, how
many times higher could a safe fall occur on the
Moon than on Earth (gravitational acceleration
on the Moon is about one-sixth that of the
Earth)?

How many times higher could an astronaut
jump on the Moon than on Earth if her takeoff
speed is the same in both locations
(gravitational acceleration on the Moon is about
on-sixth of that on Earth)?

3.6 Finding Velocity and Displacement

from Acceleration

23.

When given the acceleration function, what
additional information is needed to find the
velocity function and position function?

exploded at an altitude of 23.5 km.
Eyewitnesses could feel the intense heat from
the fireball, and the blast wave from the
explosion blew out windows in buildings. The
blast wave took approximately 2 minutes 30
seconds to reach ground level. The blast wave
traveled at 10° above the horizon. (a) What was
the average velocity of the blast wave? b)
Compare this with the speed of sound, which is
343 m/s at sea level.

3.2 Instantaneous Velocity and Speed

30.

31.

A woodchuck runs 20 m to the right in 5 s, then
turns and runs 10 m to the left in 3 s. (a) What is
the average velocity of the woodchuck? (b) What
is its average speed?

Sketch the velocity-versus-time graph from the
following position-versus-time graph.




32.

33.

34.

35.

Position vs. Time

Pasitinn (m)
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Time: {5}
Sketch the velocity-versus-time graph from the
following position-versus-time graph.

i
Time (s)

Given the following velocity-versus-time graph,

sketch the position-versus-time graph.
L

x(f) (Position)
1

Time

An object has a position function x(f) = 5t m. (a)
What is the velocity as a function of time? (b)
Graph the position function and the velocity
function.

A particle moves along the x-axis according to
x(t) = 10t — 2> m. (a) What is the
instantaneous velocity at t=2 s and t= 3 s? (b)
What is the instantaneous speed at these times?

Velocity
1

36.

(c) What is the average velocity between t=2 s
and t=3s?

Unreasonable results. A particle moves along
the x-axis according to x(¢) = 37> 4+ 5¢ . At
what time is the velocity of the particle equal to
zero? Is this reasonable?

3.3 Average and Instantaneous

Acceleration

37.

38.

39.

40.

41.

A cheetah can accelerate from rest to a speed of
30.0 m/s in 7.00 s. What is its acceleration?

Dr. John Paul Stapp was a U.S. Air Force officer
who studied the effects of extreme acceleration
on the human body. On December 10, 1954,
Stapp rode a rocket sled, accelerating from rest
to a top speed of 282 m/s (1015 km/h) in 5.00 s
and was brought jarringly back to rest in only
1.40 s. Calculate his (a) acceleration in his
direction of motion and (b) acceleration
opposite to his direction of motion. Express
each in multiples of g (9.80 m/s2) by taking its
ratio to the acceleration of gravity.

Sketch the acceleration-versus-time graph from

the following velocity-versus-time graph.
Velocity vs. Time
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A commuter backs her car out of her garage
with an acceleration of 1.40 m/s?. (a) How long
does it take her to reach a speed of 2.00 m/s? (b)
If she then brakes to a stop in 0.800 s, what is
her acceleration?
Assume an intercontinental ballistic missile
goes from rest to a suborbital speed of 6.50 km/
s in 60.0 s (the actual speed and time are
classified). What is its average acceleration in
meters per second squared and in multiples of g
(9.80 m/s?)?



42.

An airplane, starting from rest, moves down the
runway at constant acceleration for 18 s and
then takes off at a speed of 60 m/s. What is the
average acceleration of the plane?

3.4 Motion with Constant Acceleration

43.

44.

45.

46.

47.

A particle moves in a straight line at a constant
velocity of 30 m/s. What is its displacement
betweent=0and t=5.0s?

A particle moves in a straight line with an initial
velocity of 0 m/s and a constant acceleration of
30m/s2 If x = O att = 0, what is the particle’s
position at t=5 s?

A particle moves in a straight line with an initial
velocity of 30 m/s and constant acceleration 30
m/s2. (a) What is its displacement at t = 5 s? (b)
What is its velocity at this same time?

(a) Sketch a graph of velocity versus time
corresponding to the graph of displacement
versus time given in the following figure. (b)
Identify the time or times (t,, t,, t., etc.) at which
the instantaneous velocity has the greatest
positive value. (c) At which times is it zero? (d) At

which times is it negative?
[

Position x

Time ¢

(a) Sketch a graph of acceleration versus time
corresponding to the graph of velocity versus
time given in the following figure. (b) Identify the
time or times (t,, t, t;, etc.) at which the
acceleration has the greatest positive value. (c)
At which times is it zero? (d) At which times is it
negative?

51.

52.

53.

Velocity v
w

Time t

. A particle has a constant acceleration of 6.0 m/

s2. (a) If its initial velocity is 2.0 m/s, at what
time is its displacement 5.0 m? (b) What is its
velocity at that time?

. Att=10 s, a particle is moving from left to right

with a speed of 5.0 m/s. At t= 20 s, the particle
is moving right to left with a speed of 8.0 m/s.
Assuming the particle’s acceleration is
constant, determine (a) its acceleration, (b) its
initial velocity, and (c) the instant when its
velocity is zero.

. A well-thrown ball is caught in a well-padded

mitt. If the acceleration of the ball

is2.10 x 10* m/s?, and 1.85 ms

(Ims = 1073 s) elapses from the time the ball
first touches the mitt until it stops, what is the
initial velocity of the ball?

Abullet in a gun is accelerated from the firing
chamber to the end of the barrel at an average
rate of 6.20 x 10° m/s? for 8.10 x 107 s.
What is its muzzle velocity (that is, its final
velocity)?

(a) A light-rail commuter train accelerates at a
rate of 1.35 m/s2. How long does it take to reach
its top speed of 80.0 km/h, starting from rest?
(b) The same train ordinarily accelerates
opposite to the motion at a rate of 1.65 m/s2.
How long does it take to come to a stop from its
top speed? (c) In emergencies, the train can
accelerate opposite to the motion more rapidly,
coming to rest from 80.0 km/h in 8.30 s. What is
its emergency acceleration in meters per
second squared?

While entering a freeway, a car accelerates from
rest at a rate of 2.40 m/s? for 12.0 s. (a) Draw a
sketch of the situation. (b) List the knowns in
this problem. (c) How far does the car travel in
those 12.0 s? To solve this part, first identify the
unknown, then indicate how you chose the
appropriate equation to solve for it. After
choosing the equation, show your steps in
solving for the unknown, check your units, and




54.

55.

56.

57.

58.

59.

60.

61.

discuss whether the answer is reasonable. (d)
What is the car’s final velocity? Solve for this
unknown in the same manner as in (c), showing
all steps explicitly.

Unreasonable results At the end of a race, a
runner accelerates opposite to the motion from
a velocity of 9.00 m/s at a rate of 2.00 m/s2. ()
How far does she travel in the next 5.00 s? (b)
What is her final velocity? (c) Evaluate the
result. Does it make sense?

Blood is accelerated from rest to 30.0 cm/s in a
distance of 1.80 cm by the left ventricle of the
heart. (a) Make a sketch of the situation. (b) List
the knowns in this problem. (c) How long does
the acceleration take? To solve this part, first
identify the unknown, then discuss how you
chose the appropriate equation to solve for it.
After choosing the equation, show your steps in
solving for the unknown, checking your units.
(d) Is the answer reasonable when compared
with the time for a heartbeat?

During a slap shot, a hockey player accelerates
the puck from a velocity of 8.00 m/s to 40.0 m/s
in the same direction. If this shot takes

3.33 x 1072 s, what is the distance over which
the puck accelerates?

A powerful motorcycle can accelerate from rest
t0 26.8 m/s (100 km/h) in only 3.90 s. (a) What is
its average acceleration? (b) Assuming constant
acceleration, how far does it travel in that time?
Freight trains can produce only relatively small
accelerations. (a) What is the final velocity of a
freight train that accelerates at a rate of

0.0500 m/s2 for 8.00 min, starting with an initial
velocity of 4.00 m/s? (b) If the train can slow
down at a rate of 0.550 m/sz, how long will it
take to come to a stop from this velocity? (c)
How far will it travel in each case?

A fireworks shell is accelerated from rest to a
velocity of 65.0 m/s over a distance of 0.250 m.
(a) Calculate the acceleration. (b) How long did
the acceleration last?

A swan on a lake gets airborne by flapping its
wings and running on top of the water. (a) If the
swan must reach a velocity of 6.00 m/s to take
off and it accelerates from rest at an average
rate of 0.35 m/s2, how far will it travel before
becoming airborne? (b) How long does this
take?

A woodpecker’s brain is specially protected
from large accelerations by tendon-like
attachments inside the skull. While pecking on
a tree, the woodpecker’s head comes to a stop

62.

63.

64.

65.

from an initial velocity of 0.600 m/s in a
distance of only 2.00 mm. (a) Find the
acceleration in meters per second squared and
in multiples of g, where g=9.80 m/s?. (b)
Calculate the stopping time. (c) The tendons
cradling the brain stretch, making its stopping
distance 4.50 mm (greater than the head and,
hence, less acceleration of the brain). What is
the brain’s acceleration, expressed in multiples
of g?

An unwary football player collides with a
padded goalpost while running at a velocity of
7.50 m/s and comes to a full stop after
compressing the padding and his body 0.350 m.
(a) What is his acceleration? (b) How long does
the collision last?

A care package is dropped out of a cargo plane
and lands in the forest. If we assume the care
package speed on impact is 54 m/s (123 mph),
then what is its acceleration? Assume the trees
and snow stops it over a distance of 3.0 m.

An express train passes through a station. It
enters with an initial velocity of 22.0 m/s and
accelerates opposite to the motion at a rate of
0.150 m/s? as it goes through. The station is
210.0 m long. (a) How fast is it going when the
nose leaves the station? (b) How long is the nose
of the train in the station? (c) If the train is 130
m long, what is the velocity of the end of the
train as it leaves? (d) When does the end of the
train leave the station?

Unreasonable results Dragsters can actually
reach a top speed of 145.0 m/s in only 4.45 s. (a)
Calculate the average acceleration for such a
dragster. (b) Find the final velocity of this
dragster starting from rest and accelerating at
the rate found in (a) for 402.0 m (a quarter mile)
without using any information on time. (c) Why
is the final velocity greater than that used to find
the average acceleration? (Hint: Consider
whether the assumption of constant
acceleration is valid for a dragster. If not,
discuss whether the acceleration would be
greater at the beginning or end of the run and
what effect that would have on the final
velocity.)

3.5 Free Fall

66.

Calculate the displacement and velocity at times
of (a) 0.500s, (b) 1.00 s, (c) 1.50 s, and (d) 2.00 s
for a ball thrown straight up with an initial
velocity of 15.0 m/s. Take the point of release to
be Yo = 0.



67.

68.

69.

70.

71.

72.

73.

Calculate the displacement and velocity at times
of (a) 0.500s, (b) 1.00 s, (c) 1.50 s, (d) 2.00 s, and
(e) 2.50 s for a rock thrown straight down with
an initial velocity of 14.0 m/s from the
Verrazano Narrows Bridge in New York City. The
roadway of this bridge is 70.0 m above the
water.

A basketball referee tosses the ball straight up
for the starting tip-off. At what velocity must a
basketball player leave the ground to rise 1.25
m above the floor in an attempt to get the ball?
A rescue helicopter is hovering over a person
whose boat has sunk. One of the rescuers
throws a life preserver straight down to the
victim with an initial velocity of 1.40 m/s and
observes that it takes 1.8 s to reach the water. (a)
List the knowns in this problem. (b) How high
above the water was the preserver released?
Note that the downdraft of the helicopter
reduces the effects of air resistance on the
falling life preserver, so that an acceleration
equal to that of gravity is reasonable.
Unreasonable results A dolphin in an aquatic
show jumps straight up out of the water at a
velocity of 15.0 m/s. (a) List the knowns in this
problem. (b) How high does his body rise above
the water? To solve this part, first note that the
final velocity is now a known, and identify its
value. Then, identify the unknown and discuss
how you chose the appropriate equation to solve
for it. After choosing the equation, show your
steps in solving for the unknown, checking
units, and discuss whether the answer is
reasonable. (¢c) How long a time is the dolphin in
the air? Neglect any effects resulting from his
size or orientation.

A diver bounces straight up from a diving
board, avoiding the diving board on the way
down, and falls feet first into a pool. She starts
with a velocity of 4.00 m/s and her takeoff point
is 1.80 m above the pool. (a) What is her highest
point above the board? (b) How long a time are
her feet in the air? (c) What is her velocity when
her feet hit the water?

(a) Calculate the height of a cliff if it takes 2.35 s
for a rock to hit the ground when it is thrown
straight up from the cliff with an initial velocity
of 8.00 m/s. (b) How long a time would it take to
reach the ground if it is thrown straight down
with the same speed?

A very strong, but inept, shot putter puts the
shot straight up vertically with an initial velocity
of 11.0 m/s. How long a time does he have to get

74.

75.

76.

77.

out of the way if the shot was released at a
height of 2.20 m and he is 1.80 m tall?

You throw a ball straight up with an initial
velocity of 15.0 m/s. It passes a tree branch on
the way up at a height of 7.0 m. How much
additional time elapses before the ball passes
the tree branch on the way back down?

A kangaroo can jump over an object 2.50 m
high. (a) Considering just its vertical motion,
calculate its vertical speed when it leaves the
ground. (b) How long a time is it in the air?
Standing at the base of one of the cliffs of Mt.
Arapiles in Victoria, Australia, a hiker hears a
rock break loose from a height of 105.0 m. He
can’t see the rock right away, but then does, 1.50
s later. (a) How far above the hiker is the rock
when he can hear it? (b) How much time does
he have to move before the rock hits his head?
There is a 250-m-high cliff at Half Dome in
Yosemite National Park in California. Suppose a
boulder breaks loose from the top of this cliff.
(a) How fast will it be going when it strikes the
ground? (b) Assuming a reaction time of 0.300
s, how long a time will a tourist at the bottom
have to get out of the way after hearing the
sound of the rock breaking loose (neglecting the
height of the tourist, which would become
negligible anyway if hit)? The speed of sound is
335.0 m/s on this day.

3.6 Finding Velocity and Displacement

from Acceleration

78.

79.

80.

The acceleration of a particle varies with time
according to the equation a(t) = pz‘2 - qt3.
Initially, the velocity and position are zero. (a)
What is the velocity as a function of time? (b)
What is the position as a function of time?
Between t=0 and ¢ = t, a rocket moves straight
upward with an acceleration given by
a(t)=A— Bt' 2 where A and B are constants.
(a) If xis in meters and tis in seconds, what are
the units of A and B? (b) If the rocket starts from
rest, how does the velocity vary between t= 0
and t = ty? (c) If its initial position is zero, what is
the rocket’s position as a function of time
during this same time interval?

The velocity of a particle moving along the
x-axis varies with time according to

v(t)=A+ B! ,where A=2m/s, B=0.25m,
and 1.0s <t < 8.0 s. Determine the
acceleration and position of the particle at t=
2.0sand t=5.0s. Assume that x(t = 1s) = 0.




81.

A particle at rest leaves the origin with its
velocity increasing with time according to w(f) =
3.2tm/s. At 5.0 s, the particle’s velocity starts
decreasing according to [16.0 — 1.5(t — 5.0)] m/s.
This decrease continues until t=11.0 s, after

Additional Problems

82.

83.

84.

85.

86.

87.

88.

Professional baseball player Nolan Ryan could
pitch a baseball at approximately 160.0 km/h.
At that average velocity, how long did it take a
ball thrown by Ryan to reach home plate, which
is 18.4 m from the pitcher’s mound? Compare
this with the average reaction time of a human
to a visual stimulus, which is 0.25 s.

An airplane leaves Chicago and makes the
3000-km trip to Los Angeles in 5.0 h. A second
plane leaves Chicago one-half hour later and
arrives in Los Angeles at the same time.
Compare the average velocities of the two
planes. Ignore the curvature of Earth and the
difference in altitude between the two cities.
Unreasonable Results A cyclist rides 16.0 km
east, then 8.0 km west, then 8.0 km east, then
32.0 km west, and finally 11.2 km east. If his
average velocity is 24 km/h, how long did it take
him to complete the trip? Is this a reasonable
time?

An object has an acceleration of +1.2 cm/sZ. At
t = 4.0s, its velocity is —3.4 cm/s. Determine
the object’s velocities at = 1.0sand t = 6.0 s.
A particle moves along the x-axis according to
the equation x(z) = 2.0 — 4.0/2 m. What are the
velocity and accelerationat? =2.0sandt = 5.0
s?

A particle moving at constant acceleration has
velocities of 2.0 m/s att = 2.0 s and —7.6 m/s at
t = 5.2's. What is the acceleration of the
particle?

A train is moving up a steep grade at constant
velocity (see following figure) when its caboose

breaks loose and starts rolling freely along the track.

After 5.0 s, the caboose is 30 m behind the train.
What is the acceleration of the caboose?

89.

90.

91.

92.

93.

which the particle’s velocity remains constant at
7.0 m/s. (a) What is the acceleration of the
particle as a function of time? (b) What is the
position of the particleat t=2.0s,t=7.0s,and t
=12.0s?

An electron is moving in a straight line with a
velocity of 4.0 X 109 m/s. It enters a region 5.0
cm long where it undergoes an acceleration of
6.0 x 10'2 m/s? along the same straight line.
(a) What is the electron’s velocity when it
emerges from this region? b) How long does the
electron take to cross the region?

An ambulance driver is rushing a patient to the
hospital. While traveling at 72 km/h, she notices
the traffic light at the upcoming intersections
has turned amber. To reach the intersection
before the light turns red, she must travel 50 m
in 2.0 s. () What minimum acceleration must
the ambulance have to reach the intersection
before the light turns red? (b) What is the speed
of the ambulance when it reaches the
intersection?

A motorcycle that is slowing down uniformly
covers 2.0 successive km in 80 s and 120 s,
respectively. Calculate (a) the acceleration of the
motorcycle and (b) its velocity at the beginning
and end of the 2-km trip.

A cyclist travels from point A to point Bin 10
min. During the first 2.0 min of her trip, she
maintains a uniform acceleration of 0.090 m/s2.
She then travels at constant velocity for the next
5.0 min. Next, she accelerates opposite to the
motion at a constant rate so that she comes to a
rest at point B 3.0 min later. (a) Sketch the
velocity-versus-time graph for the trip. (b) What
is the acceleration during the last 3 min? (c)
How far does the cyclist travel?

Two trains are moving at 30 m/s in opposite
directions on the same track. The engineers see
simultaneously that they are on a collision
course and apply the brakes when they are 1000
m apart. Assuming both trains have the same
acceleration, what must this acceleration be if
the trains are to stop just short of colliding?



An airplane accelerates at 5.0 m/s2 for 30.0 s.
During this time, it covers a distance of 10.0 km.
What are the initial and final velocities of the
airplane?

Compare the distance traveled of an object that

94. A 10.0-m-long truck moving with a constant velocity 98.
of 97.0 km/h passes a 3.0-m-long car moving with a
constant velocity of 80.0 km/h. How much time
elapses between the moment the front of the truck is
even with the back of the car and the moment the 99.
back of the truck is even with the front of the car?

a7 kmi'h
—_—T

80 km/h

-

80 kmi/h

100.

101.

102.

103.

undergoes a change in velocity that is twice its
initial velocity with an object that changes its
velocity by four times its initial velocity over the
same time period. The accelerations of both
objects are constant.
An object is moving east with a constant
velocity and is at position x( at time 7y = 0. (a)
With what acceleration must the object have
for its total displacement to be zero at a later
time t? (b) What is the physical interpretation
of the solution in the case for t — c?

A ball is thrown straight up. It passes a
2.00-m-high window 7.50 m off the ground on
its path up and takes 1.30 s to go past the
window. What was the ball’s initial velocity?

A coin is dropped from a hot-air balloon that is
300 m above the ground and rising at 10.0 m/s
upward. For the coin, find (a) the maximum
height reached, (b) its position and velocity
4.00 s after being released, and (c) the time
before it hits the ground.

A soft tennis ball is dropped onto a hard floor
from a height of 1.50 m and rebounds to a
height of 1.10 m. (a) Calculate its velocity just

After before it strikes the floor. (b) Calculate its
95. A police car waits in hiding slightly off the velocity just after it leaves the floor on its way
highway. A speeding car is spotted by the police back up. (c) Calculate its acceleration during
car doing 40 m/s. At the instant the speeding contact with the floor if that contact lasts 3.50
. s :
car passes the police car, the police car ms (3.50 X IQ .S) (d) HQW chh did the ball
accelerates from rest at 4 m/s? to catch the compress during its collision with the floor,
speeding car. How long does it take the police assuming the floor is absolutely rigid?
car to catch the speeding car? 104. Unreasonable results. A raindrop falls from a
96. Pablo is running in a half marathon at a velocity 0101.1d 100 m abov.e the ground. Neglec.t air
of 3 m/s. Another runner, Jacob, is 50 meters resistance. What is the speed of the raindrop
behind Pablo with the same velocity. Jacob when it hits the ground? Is this a reasonable
begins to accelerate at 0.05 m/s2. (a) How long number? o .
does it take Jacob to catch Pablo? (b) What is the 105. Compare the time in the air of a basketball
distance covered by Jacob? (c) What is the final player who jumps 1.0 m vertically off the floor
velocity of Jacob? with that of a player who jumps 0.3 m
97. Unreasonable results A runner approaches the vertically.
finish line and is 75 m away; her speed at this 106. Suppose that a person takes 0.5 s to react and

position is 8 m/s. She accelerates opposite to
the motion at this point at 0.5 m/s2. How long
does it take her to cross the finish line from 75
m away? Is this reasonable?

move his hand to catch an object he has
dropped. (a) How far does the object fall on
Earth, where g = 9.8 m/s2? (b) How far does
the object fall on the Moon, where the
acceleration due to gravity is 1/6 of that on
Earth?




107.

108.

A hot-air balloon rises from ground level at a
constant velocity of 3.0 m/s. One minute after
liftoff, a sandbag is dropped accidentally from
the balloon. Calculate (a) the time it takes for
the sandbag to reach the ground and (b) the
velocity of the sandbag when it hits the
ground.

(a) A world record was set for the men’s 100-m
dash in the 2008 Olympic Games in Beijing by
Usain Bolt of Jamaica. Bolt “coasted” across
the finish line with a time of 9.69 s. If we
assume that Bolt accelerated for 3.00 s to
reach his maximum speed, and maintained
that speed for the rest of the race, calculate his
maximum speed and his acceleration. (b)
During the same Olympics, Bolt also set the
world record in the 200-m dash with a time of
19.30 s. Using the same assumptions as for the
100-m dash, what was his maximum speed for
this race?

Challenge Problems

112.

113.

In a 100-m race, the winner is timed at 11.2 s.
The second-place finisher’s time is 11.6 s. How
far is the second-place finisher behind the
winner when she crosses the finish line?
Assume the velocity of each runner is constant
throughout the race.

The position of a particle moving along the
x-axis varies with time according to

x(1) = 5.0t2 — 4.03 m. Find (a) the velocity
and acceleration of the particle as functions of
time, (b) the velocity and acceleration at t = 2.0
s, (c) the time at which the position is a
maximum, (d) the time at which the velocity is
zero, and (e) the maximum position.

109.

110.

111.

114.

115.

An object is dropped from a height of 75.0 m
above ground level. (a) Determine the distance
traveled during the first second. (b) Determine
the final velocity at which the object hits the
ground. (c) Determine the distance traveled
during the last second of motion before hitting
the ground.

A steel ball is dropped onto a hard floor from a
height of 1.50 m and rebounds to a height of
1.45 m. (a) Calculate its velocity just before it
strikes the floor. (b) Calculate its velocity just
after it leaves the floor on its way back up. (c)
Calculate its acceleration during contact with
the floor if that contact lasts 0.0800 ms

(8.00 x 107> s) (d) How much did the ball
compress during its collision with the floor,
assuming the floor is absolutely rigid?

An object is dropped from a roof of a building
of height h. During the last second of its
descent, it drops a distance h/3. Calculate the
height of the building.

A cyclist sprints at the end of a race to clinch a
victory. She has an initial velocity of 11.5 m/s
and accelerates at a rate of 0.500 m/s? for 7.00
s. (a) What is her final velocity? (b) The cyclist
continues at this velocity to the finish line. If
she is 300 m from the finish line when she
starts to accelerate, how much time did she
save? (c) The second-place winner was 5.00 m
ahead when the winner started to accelerate,
but he was unable to accelerate, and traveled
at 11.8 m/s until the finish line. What was the
difference in finish time in seconds between
the winner and runner-up? How far back was
the runner-up when the winner crossed the
finish line?

In 1967, New Zealander Burt Munro set the
world record for an Indian motorcycle, on the
Bonneville Salt Flats in Utah, of 295.38 km/h.
The one-way course was 8.00 km long.
Acceleration rates are often described by the
time it takes to reach 96.0 km/h from rest. If
this time was 4.00 s and Burt accelerated at
this rate until he reached his maximum speed,
how long did it take Burt to complete the
course?



CHAPTER 4
Motion in Two and Three

Dimensions

Figure 4.1 The Red Arrows is the aerobatics display team of Britain’s Royal Air Force. Based in Lincolnshire,
England, they perform precision flying shows at high speeds, which requires accurate measurement of position,
velocity, and acceleration in three dimensions. (credit: modification of work by Phil Long)

Chapter Outline

4.1 Displacement and Velocity Vectors

4.2 Acceleration Vector

4.3 Projectile Motion

4.4 Uniform Circular Motion

4.5 Relative Motion in One and Two Dimensions

INTRODUCTION To give a complete description of kinematics, we must explore motion in two and three
dimensions. After all, most objects in our universe do not move in straight lines; rather, they follow curved
paths. From kicked footballs to the flight paths of birds to the orbital motions of celestial bodies and down to
the flow of blood plasma in your veins, most motion follows curved trajectories.

Fortunately, the treatment of motion in one dimension in the previous chapter has given us a foundation on
which to build, as the concepts of position, displacement, velocity, and acceleration defined in one dimension
can be expanded to two and three dimensions. Consider the Red Arrows, also known as the Royal Air Force



Aerobatic team of the United Kingdom. Each jet follows a unique curved trajectory in three-dimensional
airspace, as well as has a unique velocity and acceleration. Thus, to describe the motion of any of the jets
accurately, we must assign to each jet a unique position vector in three dimensions as well as a unique velocity
and acceleration vector. We can apply the same basic equations for displacement, velocity, and acceleration we
derived in Motion Along a Straight Line to describe the motion of the jets in two and three dimensions, but with
some modifications—in particular, the inclusion of vectors.

In this chapter we also explore two special types of motion in two dimensions: projectile motion and circular
motion. Last, we conclude with a discussion of relative motion. In the chapter-opening picture, each jet has a
relative motion with respect to any other jet in the group or to the people observing the air show on the ground.

4.1 Displacement and Velocity Vectors

Learning Objectives
By the end of this section, you will be able to:
e Calculate position vectors in a multidimensional displacement problem.
e Solve for the displacement in two or three dimensions.
e Calculate the velocity vector given the position vector as a function of time.
e Calculate the average velocity in multiple dimensions.

Displacement and velocity in two or three dimensions are straightforward extensions of the one-dimensional
definitions. However, now they are vector quantities, so calculations with them have to follow the rules of
vector algebra, not scalar algebra.

Displacement Vector

To describe motion in two and three dimensions, we must first establish a coordinate system and a convention
for the axes. We generally use the coordinates x, y, and z to locate a particle at point P(x, y, 2) in three
dimensions. If the particle is moving, the variables x, y, and z are functions of time (%):

x=x(@) y=y@® z=2z(@). 4.1

The position vector from the origin of the coordinate system to point Pis T(?). In unit vector notation,
introduced in Coordinate Systems and Components of a Vector, F(¢) is

R(@) = x(O1 + y()] + z(Ok. 4.2

Figure 4.2 shows the coordinate system and the vector to point P, where a particle could be located at a
particular time t. Note the orientation of the x, y, and z axes. This orientation is called a right-handed
coordinate system (Coordinate Systems and Components of a Vector) and it is used throughout the chapter.
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Figure 4.2 A three-dimensional coordinate system with a particle at position P(x(?), y(B), z(1)).

With our definition of the position of a particle in three-dimensional space, we can formulate the three-
dimensional displacement. Figure 4.3 shows a particle at time 7 located at P; with position vector i"(tl ). Ata



later time #;, the particle is located at P, with position vector ?(tz). The displacement vector AT is found by
. - -
subtracting (¢ ) from r(z,)

AT = T(ty) — F(t)). 4.3

Vector addition is discussed in Vectors. Note that this is the same operation we did in one dimension, but now
the vectors are in three-dimensional space.

£y

Figure 4.3 The displacement AT = ?(tg) — i"(tl) is the vector from P; to P;.

The following examples illustrate the concept of displacement in multiple dimensions.

@ EXAMPLE 4.1

Polar Orbiting Satellite

A satellite is in a circular polar orbit around Earth at an altitude of 400 km—meaning, it passes directly
overhead at the North and South Poles. What is the magnitude and direction of the displacement vector from
when it is directly over the North Pole to when it is at —45° latitude?

Strategy

We make a picture of the problem to visualize the solution graphically. This will aid in our understanding of the
displacement. We then use unit vectors to solve for the displacement.

Solution

Figure 4.4 shows the surface of Earth and a circle that represents the orbit of the satellite. Although satellites
are moving in three-dimensional space, they follow trajectories of ellipses, which can be graphed in two
dimensions. The position vectors are drawn from the center of Earth, which we take to be the origin of the
coordinate system, with the y-axis as north and the x-axis as east. The vector between them is the
displacement of the satellite. We take the radius of Earth as 6370 km, so the length of each position vector is
6770 km.



—45°
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Figure 4.4 Two position vectors are drawn from the center of Earth, which is the origin of the coordinate system, with the y-axis as north

and the x-axis as east. The vector between them is the displacement of the satellite.

In unit vector notation, the position vectors are

F(1)) = 6770. km]j
(1) = 6770. km (cos (—45°))i + 6770. km (sin(—45°))] .

Evaluating the sine and cosine, we have

6770.j
47871 — 4787].

X(t;)
RGY)
Now we can find AT, the displacement of the satellite:

AT = (1) — B(t;) = 47871 — 11,557].

The magnitude of the displacement is |A?| = \/(4787)2 + (-1 1,557)2 = 12,509 km. The angle the

displacement makes with the x-axis is § = tan™! ( _411%575 ! ) = —67.5°.

Significance

Plotting the displacement gives information and meaning to the unit vector solution to the problem. When
plotting the displacement, we need to include its components as well as its magnitude and the angle it makes
with a chosen axis—in this case, the x-axis (Figure 4.5).
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Figure 4.5 Displacement vector with components, angle, and magnitude.

Note that the satellite took a curved path along its circular orbit to get from its initial position to its final
position in this example. It also could have traveled 4787 km east, then 11,557 km south to arrive at the same
location. Both of these paths are longer than the length of the displacement vector. In fact, the displacement
vector gives the shortest path between two points in one, two, or three dimensions.

Many applications in physics can have a series of displacements, as discussed in the previous chapter. The
total displacement is the sum of the individual displacements, only this time, we need to be careful, because
we are adding vectors. We illustrate this concept with an example of Brownian motion.

@ EXAMPLE 4.2

Brownian Motion

Brownian motion is a chaotic random motion of particles suspended in a fluid, resulting from collisions with
the molecules of the fluid. This motion is three-dimensional. The displacements in numerical order of a
particle undergoing Brownian motion could look like the following, in micrometers (Figure 4.6):

AF; = 2.0i+] +3.0k

A%, = —i+3.0k
ATy = 4.0i-20j +k
A%, = -3.0i+] +2.0k.

What is the total displacement of the particle from the origin?
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Figure 4.6 Trajectory of a particle undergoing random displacements of Brownian motion. The total displacement is shown in red.

Solution

We form the sum of the displacements and add them as vectors:
APt = 2 AF; = AF| + AY) + AF; + AT,
=20-10+40-3.00i+(1.0+0-2.0+ 1.0),/]'\ +B0+3.0+1.0+20)k
=2.0i + 0] +9.0kum.

To complete the solution, we express the displacement as a magnitude and direction,
9
|APTo| = V2.0 + 0% +9.0* =92 ym, 6 = tan! <5> =77°,

with respect to the x-axis in the xz-plane.

Significance
From the figure we can see the magnitude of the total displacement is less than the sum of the magnitudes of
the individual displacements.

Velocity Vector

In the previous chapter we found the instantaneous velocity by calculating the derivative of the position
function with respect to time. We can do the same operation in two and three dimensions, but we use vectors.
The instantaneous velocity vector is now

-> -
. T+ ADN-F@r) dP
V() = lim M+ AD 1@ _ — 4.4
At—0 At dt
Let’s look at the relative orientation of the position vector and velocity vector graphically. In Figure 4.7 we show
the vectors F(7) and ¥(f + At), which give the position of a particle moving along a path represented by the gray
line. As At goes to zero, the velocity vector, given by Equation 4.4, becomes tangent to the path of the particle at
time .
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Figure 4.7 A particle moves along a path given by the gray line. In the limit as Af approaches zero, the velocity vector becomes tangent to

the path of the particle.
Equation 4.4 can also be written in terms of the components of V(). Since
£(1) = x(0i + y()] + 20k,

we can write

V(1) = ox(OF + 0y (1)) + v (DK 45
where
_dx(1) _dy(n _dz(n)
vx (1) = 7 vy(t) = TR v(t) = R 4.6

If only the average velocity is of concern, we have the vector equivalent of the one-dimensional average
velocity for two and three dimensions:

> >
2 r(ty) — r(f1)
avg = —— -

4.7
I =11

@ EXAMPLE 4.3

Calculating the Velocity Vector

The position function of a particle is F(r) = 2.01%1 + 2.0+ 3.0t):]'\ + 5.0tkm. (a) What is the instantaneous
velocity and speed at t= 2.0 s? (b) What is the average velocity between 1.0 s and 3.0 s?

Solution

Using Equation 4.5 and Equation 4.6, and taking the derivative of the position function with respect to time, we
find

@ o) = & = 4,07 + 3.0 + 5.0km/s

¥(2.0s) = 8.01 + 3.0j + 5.0km/s
Speed [V(2.05)| = V8% + 3% + 52 = 9.9 mys.

(b) From Equation 4.7,
3 _ F(tp)-F(t)) _ B.0s)-F(1.0s) _ (18i+11j+15k) m—(2i+5]+5k) m
avg = T ih—f;  ~ " 30s-10s 205
(161+6j+10k) m

=55 = 8.0i+3.0j + 5.0km/s.




Significance
We see the average velocity is the same as the instantaneous velocity at £ = 2.0 s, as a result of the velocity

function being linear. This need not be the case in general. In fact, most of the time, instantaneous and average
velocities are not the same.

) CHECK YOUR UNDERSTANDING 4.1

The position function of a particle is ¥(r) = 3.08%1 + 4.0:i\. (a) What is the instantaneous velocity at t = 3 s? (b) Is
the average velocity between 2 s and 4 s equal to the instantaneous velocity at t= 3 s?

The Independence of Perpendicular Motions

When we look at the three-dimensional equations for position and velocity written in unit vector notation,
Equation 4.2 and Equation 4.5, we see the components of these equations are separate and unique functions of
time that do not depend on one another. Motion along the x direction has no part of its motion along the yand z
directions, and similarly for the other two coordinate axes. Thus, the motion of an object in two or three
dimensions can be divided into separate, independent motions along the perpendicular axes of the coordinate
system in which the motion takes place.

To illustrate this concept with respect to displacement, consider a woman walking from point A to point Bin a
city with square blocks. The woman taking the path from A to B may walk east for so many blocks and then
north (two perpendicular directions) for another set of blocks to arrive at B. How far she walks east is affected
only by her motion eastward. Similarly, how far she walks north is affected only by her motion northward.

Independence of Motion

In the kinematic description of motion, we are able to treat the horizontal and vertical components of
motion separately. In many cases, motion in the horizontal direction does not affect motion in the vertical
direction, and vice versa.

An example illustrating the independence of vertical and horizontal motions is given by two baseballs. One
baseball is dropped from rest. At the same instant, another is thrown horizontally from the same height and it
follows a curved path. A stroboscope captures the positions of the balls at fixed time intervals as they fall

(Figure 4.8).
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Figure 4.8 A diagram of the motions of two identical balls: one falls from rest and the other has an initial horizontal velocity. Each
subsequent position is an equal time interval. Arrows represent the horizontal and vertical velocities at each position. The ball on the right
has an initial horizontal velocity whereas the ball on the left has no horizontal velocity. Despite the difference in horizontal velocities, the

vertical velocities and positions are identical for both balls, which shows the vertical and horizontal motions are independent.

It is remarkable that for each flash of the strobe, the vertical positions of the two balls are the same. This
similarity implies vertical motion is independent of whether the ball is moving horizontally. (Assuming no air
resistance, the vertical motion of a falling object is influenced by gravity only, not by any horizontal forces.)
Careful examination of the ball thrown horizontally shows it travels the same horizontal distance between
flashes. This is because there are no additional forces on the ball in the horizontal direction after it is thrown.
This result means horizontal velocity is constant and is affected neither by vertical motion nor by gravity
(which is vertical). Note this case is true for ideal conditions only. In the real world, air resistance affects the
speed of the balls in both directions.

The two-dimensional curved path of the horizontally thrown ball is composed of two independent one-
dimensional motions (horizontal and vertical). The key to analyzing such motion, called projectile motion, is to
resolve it into motions along perpendicular directions. Resolving two-dimensional motion into perpendicular
components is possible because the components are independent.

4.2 Acceleration Vector

Learning Objectives
By the end of this section, you will be able to:
e Calculate the acceleration vector given the velocity function in unit vector notation.
e Describe the motion of a particle with a constant acceleration in three dimensions.
e Use the one-dimensional motion equations along perpendicular axes to solve a problem in two or three
dimensions with a constant acceleration.
e Express the acceleration in unit vector notation.

Instantaneous Acceleration

In addition to obtaining the displacement and velocity vectors of an object in motion, we often want to know its
acceleration vector at any point in time along its trajectory. This acceleration vector is the instantaneous



acceleration and it can be obtained from the derivative with respect to time of the velocity function, as we have
seen in a previous chapter. The only difference in two or three dimensions is that these are now vector
quantities. Taking the derivative with respect to time v(z), we find

V(I + AN = V(@) dV()

> .
a(t) = lim 4.8
@ t—0 At dt
The acceleration in terms of components is
dox(t)s  dvy(t) ~  dvg(t) ~
ar) = (s y()j+ 0 4.9

dt dt dt

Also, since the velocity is the derivative of the position function, we can write the acceleration in terms of the
second derivative of the position function:

4.10

_Ex0s Py P

a( i
® dr? dr? ! dr?

@ EXAMPLE 4.4

Finding an Acceleration Vector

A particle has a velocity of V(t) =5.00+ tzjj\ —2.083km/s. (a) What is the acceleration function? (b) What is the
acceleration vector at t = 2.0 s? Find its magnitude and direction.

Solution

(a) We take the first derivative with respect to time of the velocity function to find the acceleration. The
derivative is taken component by component:

A1) = 5.01 + 2.0 — 6.0~ kmy/s?.

(b) Evaluating a(2.0 s) = 5.01 + 4.03 — 24.0km/s? gives us the direction in unit vector notation. The magnitude
of the acceleration is [3(2.0 )| = V/5.0% +4.0% + (=24.0)> = 24.8 m/s”.

Significance
In this example we find that acceleration has a time dependence and is changing throughout the motion. Let’s
consider a different velocity function for the particle.

@ EXAMPLE 4.5

Finding a Particle Acceleration
A particle has a position function ¥(¢) = (10¢ — 12 )i + 5tj +5t km. (a) What is the velocity? (b) What is the

acceleration? (c) Describe the motion from t=0s.

Strategy

We can gain some insight into the problem by looking at the position function. It is linear in y and z, so we
know the acceleration in these directions is zero when we take the second derivative. Also, note that the
position in the x direction is zero for t=0sand t=10s.

Solution
(a) Taking the derivative with respect to time of the position function, we find

V(@) = (10 — 201 + 5] + 5k m/s.



The velocity function is linear in time in the x direction and is constant in the y and z directions.
(b) Taking the derivative of the velocity function, we find

a(n) = 21 m/s2.
The acceleration vector is a constant in the negative x-direction.

(c) The trajectory of the particle can be seen in Figure 4.9. Let’s look in the yand z directions first. The
particle’s position increases steadily as a function of time with a constant velocity in these directions. In the x
direction, however, the particle follows a path in positive x until t= 5 s, when it reverses direction. We know
this from looking at the velocity function, which becomes zero at this time and negative thereafter. We also
know this because the acceleration is negative and constant—meaning, the particle is accelerating in the
opposite direction. The particle’s position reaches 25 m, where it then reverses direction and begins to
accelerate in the negative x direction. The position reaches zero at t=10s.
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Figure 4.9 The particle starts at point (x, y, 2) = (0, 0, 0) with position vector T = 0 as shown with blue dots. The projection of the
trajectory onto the xy-plane is shown with red stars. The values of y and zincrease linearly as a function of time, whereas x has a turning
point at t =5 s and 25 m, when it reverses direction. At this point, the x component of the velocity becomes negative. At t =10 s, the

particle is back to 0 m in the x direction.
Significance

By graphing the trajectory of the particle, we can better understand its motion, given by the numerical results
of the kinematic equations.

() CHECK YOUR UNDERSTANDING 4.2

Suppose the acceleration function has the form a(r) = ai + b./i\ + cﬁm/s2, where a, b, and c are constants. What
can be said about the functional form of the velocity function?




Constant Acceleration

Multidimensional motion with constant acceleration can be treated the same way as shown in the previous
chapter for one-dimensional motion. Earlier we showed that three-dimensional motion is equivalent to three
one-dimensional motions, each along an axis perpendicular to the others. To develop the relevant equations in
each direction, let’s consider the two-dimensional problem of a particle moving in the xy plane with constant
acceleration, ignoring the z-component for the moment. The acceleration vector is

a= apyl + a()yj.

Each component of the motion has a separate set of equations similar to Equation 3.10-Equation 3.14 of the
previous chapter on one-dimensional motion. We show only the equations for position and velocity in the x-
and y-directions. A similar set of kinematic equations could be written for motion in the z-direction:

x(t) = xo + (Ux)avgt 4.11

Ux(1) = vox + axt 4.12
L,

x(t) = xg + vox ! + Eaxt 4.13

v3(1) = v, +2ax(x — xg) 4.14

YO = yo + (Vy)yet 4.15

vy(?) = vgy + ayt 4.16
L,

y(®) = yo + voyt + ant 4.17

vy (1) = v, +2ay(y = yo)- 4.18

Here the subscript O denotes the initial position or velocity. Equation 4.11 to Equation 4.18 can be substituted
into Equation 4.2 and Equation 4.5 without the z-component to obtain the position vector and velocity vector
as a function of time in two dimensions:

() = x(O1 + y(] and ¥(1) = vx (D1 + 0, (1)].

The following example illustrates a practical use of the kinematic equations in two dimensions.

@ EXAMPLE 4.6

A Skier

Figure 4.10 shows a skier moving with an acceleration of 2.1 m/s2 down a slope of 15° at t = 0. With the origin
of the coordinate system at the front of the lodge, her initial position and velocity are

£(0) = (75.01 — 50.0j) m

and
V) = (4.11 - 1.15) mis.

(a) What are the x- and y-components of the skier’s position and velocity as functions of time? (b) What are her
position and velocity at t=10.0 s?
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Figure 4.10 A skier has an acceleration of 2.1 m/s? down a slope of 15°. The origin of the coordinate system is at the ski lodge.

Strategy

Since we are evaluating the components of the motion equations in the x and y directions, we need to find the
components of the acceleration and put them into the kinematic equations. The components of the
acceleration are found by referring to the coordinate system in Figure 4.10. Then, by inserting the components
of the initial position and velocity into the motion equations, we can solve for her position and velocity at a
later time t.

Solution

(a) The origin of the coordinate system is at the top of the hill with y-axis vertically upward and the x-axis
horizontal. By looking at the trajectory of the skier, the x-component of the acceleration is positive and the
y-component is negative. Since the angle is 15° down the slope, we find

ay = (2.1 m/s?) cos(15°) = 2.0 m/s?
ay = (2.1 m/s?) sin 15° = —0.54 m/s°.

Inserting the initial position and velocity into Equation 4.12 and Equation 4.13 for x, we have

x(7) = 75.0m + (4.1 m/s)t + %(2.0 m/s?)?
vx(f) = 4.1 m/s + (2.0 m/s)z.
For y, we have
y(t) = =50.0m + (1.1 m/s)z + %(—0.54 m/s? )1
vy(t) = 1.1 m/s + (=0.54 m/s?)r.

(b) Now that we have the equations of motion for x and y as functions of time, we can evaluate them at t=10.0
S:

1
x(10.08) = 75.0m + (4.1 m/s2)(10.0s) + 5(2.0 m/s2)(10.05)? = 216.0m

0x(10.05) = 4.1 m/s + (2.0 m/s?)(10.0's) = 24.1m/s



1
»(10.05) = =500m + (=11 m/s)(10.05) + —(~0.54 m/s?)(10.0s)%> = —88.0m

0y(10.0s) = =1.1 m/s + (=0.54 m/s>)(10.0s) = —6.5 m/s.
The position and velocity at t=10.0 s are, finally,
£(10.0s) = (216.0i — 88.0j) m
¥(10.0s) = (24.1i — 6.53)n1/s.
The magnitude of the velocity of the skier at 10.0 s is 25 m/s, which is 60 mi/h.

Significance
It is useful to know that, given the initial conditions of position, velocity, and acceleration of an object, we can
find the position, velocity, and acceleration at any later time.

With Equation 4.8 through Equation 4.10 we have completed the set of expressions for the position, velocity,
and acceleration of an object moving in two or three dimensions. If the trajectories of the objects look
something like the “Red Arrows” in the opening picture for the chapter, then the expressions for the position,
velocity, and acceleration can be quite complicated. In the sections to follow we examine two special cases of
motion in two and three dimensions by looking at projectile motion and circular motion.

@ INTERACTIVE

At this University of Colorado Boulder website (https://openstax.org/l/21phetmotladyb) , you can explore the
position velocity and acceleration of a ladybug with an interactive simulation that allows you to change these
parameters.

4.3 Projectile Motion

Learning Objectives
By the end of this section, you will be able to:
e Use one-dimensional motion in perpendicular directions to analyze projectile motion.
e Calculate the range, time of flight, and maximum height of a projectile that is launched and impacts a flat,
horizontal surface.
e Find the time of flight and impact velocity of a projectile that lands at a different height from that of launch.
e Calculate the trajectory of a projectile.

Projectile motion is the motion of an object thrown or projected into the air, subject only to acceleration as a
result of gravity. The applications of projectile motion in physics and engineering are numerous. Some
examples include meteors as they enter Earth’s atmosphere, fireworks, and the motion of any ball in sports.
Such objects are called projectiles and their path is called a trajectory. The motion of falling objects as
discussed in Motion Along a Straight Line is a simple one-dimensional type of projectile motion in which there
is no horizontal movement. In this section, we consider two-dimensional projectile motion, and our treatment
neglects the effects of air resistance.

The most important fact to remember here is that motions along perpendicular axes are independent and thus
can be analyzed separately. We discussed this fact in Displacement and Velocity Vectors, where we saw that
vertical and horizontal motions are independent. The key to analyzing two-dimensional projectile motion is to
break it into two motions: one along the horizontal axis and the other along the vertical. (This choice of axes is
the most sensible because acceleration resulting from gravity is vertical; thus, there is no acceleration along
the horizontal axis when air resistance is negligible.) As is customary, we call the horizontal axis the x-axis and
the vertical axis the y-axis. It is not required that we use this choice of axes; it is simply convenient in the case
of gravitational acceleration. In other cases we may choose a different set of axes. Figure 4.11 illustrates the
notation for displacement, where we define § to be the total displacement, and X and ? are its component
vectors along the horizontal and vertical axes, respectively. The magnitudes of these vectors are s, x, and y.
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¥ x
Figure 4.11 The total displacement s of a soccer ball at a point along its path. The vector § has components X and ?along the horizontal

and vertical axes. Its magnitude is s and it makes an angle @ with the horizontal.

To describe projectile motion completely, we must include velocity and acceleration, as well as displacement.
We must find their components along the x- and y-axes. Let’s assume all forces except gravity (such as air
resistance and friction, for example) are negligible. Defining the positive direction to be upward, the
components of acceleration are then very simple:

ay = —g=-9.8m/s> (=32 ft/s?).

Because gravity is vertical, ay = 0. If a, = 0, this means the initial velocity in the x direction is equal to the
final velocity in the x direction, or v, = vg, . With these conditions on acceleration and velocity, we can write
the kinematic Equation 4.11 through Equation 4.18 for motion in a uniform gravitational field, including the
rest of the kinematic equations for a constant acceleration from Motion with Constant Acceleration. The
kinematic equations for motion in a uniform gravitational field become kinematic equations with

ay =—g, ax=0:

Horizontal Motion

Uox = Ux, X = X( + Uyt 4.19
Vertical Motion
1
y=Yyo+ E(on + vyt 4.20
Uy = Ugy — &t 4.21
vt — g 4.22
= vyt — — .

Y=o+ oyt = 58

vy = U5, = 28y = %) 4.23

Using this set of equations, we can analyze projectile motion, keeping in mind some important points.

@ PROBLEM-SOLVING STRATEGY

Projectile Motion

1. Resolve the motion into horizontal and vertical components along the x- and y-axes. The magnitudes of
the components of displacement S along these axes are x and y. The magnitudes of the components of
velocity V are vy = vcosf and vy = vsinf, where vis the magnitude of the velocity and 8 1is its direction



relative to the horizontal, as shown in Figure 4.12.

2. Treat the motion as two independent one-dimensional motions: one horizontal and the other vertical. Use
the kinematic equations for horizontal and vertical motion presented earlier.

3. Solve for the unknowns in the two separate motions: one horizontal and one vertical. Note that the only
common variable between the motions is time t. The problem-solving procedures here are the same as
those for one-dimensional kinematics and are illustrated in the following solved examples.

4. Recombine quantities in the horizontal and vertical directions to find the total displacement S and velocity
V. Solve for the magnitude and direction of the displacement and velocity using

s = \/x2+y2, d5=tan_1(y/x), v= ‘/U%+U%,

where @ is the direction of the displacement S.

(a) Projectile motion (b) Horizontal component: constant velocity
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Figure 4.12 (a) We analyze two-dimensional projectile motion by breaking it into two independent one-dimensional motions along the
vertical and horizontal axes. (b) The horizontal motion is simple, because ay = 0 and vy is a constant. (c) The velocity in the vertical
direction begins to decrease as the object rises. At its highest point, the vertical velocity is zero. As the object falls toward Earth again, the
vertical velocity increases again in magnitude but points in the opposite direction to the initial vertical velocity. (d) The xand y motions are

recombined to give the total velocity at any given point on the trajectory.

@ EXAMPLE 4.7

A Fireworks Projectile Explodes High and Away
During a fireworks display, a shell is shot into the air with an initial speed of 70.0 m/s at an angle of 75.0° above
the horizontal, as illustrated in Figure 4.13. The fuse is timed to ignite the shell just as it reaches its highest




point above the ground. (a) Calculate the height at which the shell explodes. (b) How much time passes
between the launch of the shell and the explosion? (c) What is the horizontal displacement of the shell when it
explodes? (d) What is the total displacement from the point of launch to the highest point?

Yi

h=233m|

Wy =75°

x=125m X

Figure 4.13 The trajectory of a fireworks shell. The fuse is set to explode the shell at the highest point in its trajectory, which is found to

be at a height of 233 m and 125 m away horizontally.

Strategy
The motion can be broken into horizontal and vertical motions in which ay = 0 and ay, = —g. We can then
define x and yg to be zero and solve for the desired quantities.

Solution

(a) By “height” we mean the altitude or vertical position y above the starting point. The highest point in any
trajectory, called the apex, is reached when v, = 0. Since we know the initial and final velocities, as well as the
initial position, we use the following equation to find y:

vy = 0§, —28(y = ¥0)-

Because y( and vy, are both zero, the equation simplifies to
0= U%y —2gy.

Solving for y gives

2
_ Yoy
y 2g'

Now we must find vy, the component of the initial velocity in the y direction. It is given by vy, = vgsinf,
where vy is the initial velocity of 70.0 m/s and 6y = 75° is the initial angle. Thus,

voy = vpsin® = (70.0 m/s)sin 75° = 67.6 m/s
and yis
_ (67.6m/s)?
T 2080mis?)
Thus, we have
y=233m.

Note that because up is positive, the initial vertical velocity is positive, as is the maximum height, but the
acceleration resulting from gravity is negative. Note also that the maximum height depends only on the
vertical component of the initial velocity, so that any projectile with a 67.6-m/s initial vertical component of



velocity reaches a maximum height of 233 m (neglecting air resistance). The numbers in this example are
reasonable for large fireworks displays, the shells of which do reach such heights before exploding. In practice,
air resistance is not completely negligible, so the initial velocity would have to be somewhat larger than that
given to reach the same height.

(b) As in many physics problems, there is more than one way to solve for the time the projectile reaches its
highest point. In this case, the easiest method is to use vy = vy, — gf. Because v, = 0 at the apex, this
equation reduces to simply

0= Uoy — 81
or
1
_ Ly _ 676mis o0
g 9.80m/s2

This time is also reasonable for large fireworks. If you are able to see the launch of fireworks, notice that
several seconds pass before the shell explodes. Another way of finding the time is by
usingy =yg + %(voy + vy)t. This is left for you as an exercise to complete.

(c) Because air resistance is negligible, ay = 0 and the horizontal velocity is constant, as discussed earlier. The
horizontal displacement is the horizontal velocity multiplied by time as given by x = xq + vx?, where xg is
equal to zero. Thus,

X = Uxt,
where vy is the x-component of the velocity, which is given by
Uy = vpcosf = (70.0 m/s)cos75° = 18.1 m/s.
Time t for both motions is the same, so xis

x=(18.1m/s)6.90s = 125 m.

Horizontal motion is a constant velocity in the absence of air resistance. The horizontal displacement found
here could be useful in keeping the fireworks fragments from falling on spectators. When the shell explodes,
air resistance has a major effect, and many fragments land directly below.

(d) The horizontal and vertical components of the displacement were just calculated, so all that is needed here
is to find the magnitude and direction of the displacement at the highest point:

3 =1251+233]
8| = V1257 +233% =264 m

® = tan~ ! (%) =61.8°.

Note that the angle for the displacement vector is less than the initial angle of launch. To see why this is, review
Figure 4.11, which shows the curvature of the trajectory toward the ground level.

When solving Example 4.7(a), the expression we found for y is valid for any projectile motion when air
resistance is negligible. Call the maximum height y = h. Then,

2
Uy
h=—.
2g
This equation defines the maximum height of a projectile above its launch position and it depends only on the
vertical component of the initial velocity.

CHECK YOUR UNDERSTANDING 4.3



A rock is thrown horizontally off a cliff 100.0 m high with a velocity of 15.0 m/s. (a) Define the origin of the
coordinate system. (b) Which equation describes the horizontal motion? (c) Which equations describe the
vertical motion? (d) What is the rock’s velocity at the point of impact?

@ EXAMPLE 4.8

Calculating Projectile Motion: Tennis Player

A tennis player wins a match at Arthur Ashe stadium and hits a ball into the stands at 30 m/s and at an angle
45° above the horizontal (Figure 4.14). On its way down, the ball is caught by a spectator 10 m above the point
where the ball was hit. (a) Calculate the time it takes the tennis ball to reach the spectator. (b) What are the
magnitude and direction of the ball’s velocity at impact?

Uy = 30 mis | _IJ ﬁﬁ 3
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Figure 4.14 The trajectory of a tennis ball hit into the stands.

Strategy

Again, resolving this two-dimensional motion into two independent one-dimensional motions allows us to
solve for the desired quantities. The time a projectile is in the air is governed by its vertical motion alone. Thus,
we solve for ¢ first. While the ball is rising and falling vertically, the horizontal motion continues at a constant
velocity. This example asks for the final velocity. Thus, we recombine the vertical and horizontal results to
obtain 7 at final time t, determined in the first part of the example.

Solution

(a) While the ball is in the air, it rises and then falls to a final position 10.0 m higher than its starting altitude.
We can find the time for this by using Equation 4.22:

[
—of?,
2g

If we take the initial position y( to be zero, then the final position is y = 10 m. The initial vertical velocity is the
vertical component of the initial velocity:

voy = vpsindy = (30.0 m/s)sin 45° = 21.2 m/s.

y=yo +voyt —

Substituting into Equation 4.22 for y gives us
10.0m = (21.2 m/s)r — (4.90 m/s?)r%.
Rearranging terms gives a quadratic equation in t:

(4.90 m/s?)t? — (212 m/s)t + 10.0m = 0.



Use of the quadratic formula yields t = 3.79 s and t = 0.54 s. Since the ball is at a height of 10 m at two times
during its trajectory—once on the way up and once on the way down—we take the longer solution for the time it
takes the ball to reach the spectator:

t=23.79s.

The time for projectile motion is determined completely by the vertical motion. Thus, any projectile that has
an initial vertical velocity of 21.2 m/s and lands 10.0 m below its starting altitude spends 3.79 s in the air.

(b) We can find the final horizontal and vertical velocities vy and v, with the use of the result from (a). Then,
we can combine them to find the magnitude of the total velocity vector v and the angle 6 it makes with the
horizontal. Since vy is constant, we can solve for it at any horizontal location. We choose the starting point
because we know both the initial velocity and the initial angle. Therefore,

Ux = vgcosty = (30 m/s)cos 45° = 21.2 m/s.
The final vertical velocity is given by Equation 4.21:
Uy = Loy — &t
Since Voy was found in part (a) to be 21.2 m/s, we have

vy =21.2m/s — 9.8 m/sz(3.79 s) = —15.9m/s.

The magnitude of the final velocity V is

= f0} +03 = \/(21.2 m/s)? + (= 15.9 m/s)? = 26.5 ms.

The direction 6, is found using the inverse tangent:

-15.9
0, = tan™! et =tan~! [ —=Z ) =36.9° below the horizon.
Uy 21.2

Significance

(a) As mentioned earlier, the time for projectile motion is determined completely by the vertical motion. Thus,
any projectile that has an initial vertical velocity of 21.2 m/s and lands 10.0 m above its starting altitude
spends 3.79 s in the air. (b) The negative angle means the velocity is 36.9° below the horizontal at the point of
impact. This result is consistent with the fact that the ball is impacting at a point on the other side of the apex
of the trajectory and therefore has a negative y component of the velocity. The magnitude of the velocity is less
than the magnitude of the initial velocity we expect since it is impacting 10.0 m above the launch elevation.

Time of Flight, Trajectory, and Range

Of interest are the time of flight, trajectory, and range for a projectile launched on a flat horizontal surface and
impacting on the same surface. In this case, kinematic equations give useful expressions for these quantities,
which are derived in the following sections.

Time of flight

We can solve for the time of flight of a projectile that is both launched and impacts on a flat horizontal surface
by performing some manipulations of the kinematic equations. We note the position and displacement in y
must be zero at launch and at impact on an even surface. Thus, we set the displacement in y equal to zero and
find

1 1
Y= Yo = Uoyt — Egt2 = (vgsinfy)t — Egﬂ =0.

Factoring, we have
. t
t(vosmeo — g?) =0.

Solving for t gives us



_ 2(vpsinb))

Tior = 4.24
g

This is the time of flight for a projectile both launched and impacting on a flat horizontal surface. Equation
4.24 does not apply when the projectile lands at a different elevation than it was launched, as we saw in
Example 4.8 of the tennis player hitting the ball into the stands. The other solution, t = 0, corresponds to the
time at launch. The time of flight is linearly proportional to the initial velocity in the y direction and inversely
proportional to g. Thus, on the Moon, where gravity is one-sixth that of Earth, a projectile launched with the
same velocity as on Earth would be airborne six times as long.

Trajectory

The trajectory of a projectile can be found by eliminating the time variable ¢ from the kinematic equations for
arbitrary tand solving for y(x). We take xg = yg = 0 so the projectile is launched from the origin. The
kinematic equation for x gives

X

X
X=vgt>t= =—\
Vox vpcosdy

Substituting the expression for ¢t into the equation for the position y = (vgsinfy)t — % gt gives

2
b 1 b
= ingp) [ ———— )| — =g ——— ) .
y = (vgsinby) (Uocosﬂo ) 2g< vocos by >

Rearranging terms, we have

g 2
y = (tanfy)x — [—] x“. 4.25
0 2(U0(:0590)2

This trajectory equation is of the form y = ax + bx?, which is an equation of a parabola with coefficients

4

a=tanfy, b=——."——.
2(1)000300)2

Range
From the trajectory equation we can also find the range, or the horizontal distance traveled by the projectile.
Factoring Equation 4.25, we have

g

y=x |tanfy) - ———— x| .
2(1)0c0500)2

The position yis zero for both the launch point and the impact point, since we are again considering only a flat
horizontal surface. Setting y = 0 in this equation gives solutions x = 0, corresponding to the launch point, and

21% sinfcos Oy
X=——
g

corresponding to the impact point. Using the trigonometric identity 2sinfcos # = sin20 and setting x = R for
range, we find

2 .

UAsin20

R= 070
g

4.26

Note particularly that Equation 4.26 is valid only for launch and impact on a horizontal surface. We see the
range is directly proportional to the square of the initial speed vy and sin26, and it is inversely proportional to
the acceleration of gravity. Thus, on the Moon, the range would be six times greater than on Earth for the same
initial velocity. Furthermore, we see from the factor sin26 that the range is maximum at 45°. These results are
shown in Figure 4.15. In (a) we see that the greater the initial velocity, the greater the range. In (b), we see that



the range is maximum at 45°. This is true only for conditions neglecting air resistance. If air resistance is
considered, the maximum angle is somewhat smaller. It is interesting that the same range is found for two
initial launch angles that sum to 90°. The projectile launched with the smaller angle has a lower apex than the
higher angle, but they both have the same range.
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Figure 4.15 Trajectories of projectiles on level ground. (a) The greater the initial speed vg, the greater the range for a given initial angle.

(b) The effect of initial angle 6 on the range of a projectile with a given initial speed. Note that the range is the same for initial angles of 15°

and 75°, although the maximum heights of those paths are different.

@ EXAMPLE 4.9

Comparing Golf Shots

A golfer finds himself in two different situations on different holes. On the second hole he is 120 m from the
green and wants to hit the ball 90 m and let it run onto the green. He angles the shot low to the ground at 30° to
the horizontal to let the ball roll after impact. On the fourth hole he is 90 m from the green and wants to let the
ball drop with a minimum amount of rolling after impact. Here, he angles the shot at 70° to the horizontal to
minimize rolling after impact. Both shots are hit and impacted on a level surface.

(a) What is the initial speed of the ball at the second hole?
(b) What is the initial speed of the ball at the fourth hole?
(c) Write the trajectory equation for both cases.

(d) Graph the trajectories.

Strategy

We see that the range equation has the initial speed and angle, so we can solve for the initial speed for both (a)
and (b). When we have the initial speed, we can use this value to write the trajectory equation.



Solution

v2sin26, 2
_ -0 0 _ Rg _  /90.0m(9.8 m/s=) _
@R=—"—F—=>uv = \/ sin20p ~ Sneey) = o9 m/s

vZsin 26 2
_ -0 0 _ Rg _  [90.0m(9.8 m/s?) _
) R= 000 o g = [ Re = [RORORD) _ 370 i

(©
y=x [tan@o - mx]
Second hole: y = x [tan 30° - 2[(31.99;:/ S](/csjsgomz x] = 0.58x — 0.0064x>
Fourth hole: y = x [tan 70° - 2[(37.0133&5; 2 x] = 2.75x — 0.0306x>
(d) Using a graphing utility, we can compare the two trajectories, which are shown in Figure 4.16.
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Figure 4.16 Two trajectories of a golf ball with a range of 90 m. The impact points of both are at the same level as the launch point.

Significance

The initial speed for the shot at 70° is greater than the initial speed of the shot at 30°. Note from Figure 4.16
that two projectiles launched at the same speed but at different angles have the same range if the launch
angles add to 90°. The launch angles in this example add to give a number greater than 90°. Thus, the shot at
70° has to have a greater launch speed to reach 90 m, otherwise it would land at a shorter distance.

) CHECK YOUR UNDERSTANDING 4.4

If the two golf shots in Example 4.9 were launched at the same speed, which shot would have the greatest
range?




When we speak of the range of a projectile on level ground, we assume R is very small compared with the
circumference of Earth. If, however, the range is large, Earth curves away below the projectile and the
acceleration resulting from gravity changes direction along the path. The range is larger than predicted by the
range equation given earlier because the projectile has farther to fall than it would on level ground, as shown
in Figure 4.17, which is based on a drawing in Newton’s Principia. If the initial speed is great enough, the
projectile goes into orbit. Earth’s surface drops 5 m every 8000 m. In 1 s an object falls 5 m without air
resistance. Thus, if an object is given a horizontal velocity of 8000 m/s (or 18,000 mi/hr) near Earth’s surface, it
will go into orbit around the planet because the surface continuously falls away from the object. This is roughly
the speed of the Space Shuttle in a low Earth orbit when it was operational, or any satellite in a low Earth orbit.
These and other aspects of orbital motion, such as Earth’s rotation, are covered in greater depth in Gravitation.
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Figure 4.17 Projectile to satellite. In each case shown here, a projectile is launched from a very high tower to avoid air resistance. With
increasing initial speed, the range increases and becomes longer than it would be on level ground because Earth curves away beneath its
path. With a speed of 8000 m/s, orbit is achieved.

@ INTERACTIVE

At PhET Explorations: Projectile Motion (https://openstax.org/l/21phetpromot) , learn about projectile motion
in terms of the launch angle and initial velocity.

4.4 Uniform Circular Motion

Learning Objectives
By the end of this section, you will be able to:
e Solve for the centripetal acceleration of an object moving on a circular path.
e Use the equations of circular motion to find the position, velocity, and acceleration of a particle executing
circular motion.
e Explain the differences between centripetal acceleration and tangential acceleration resulting from
nonuniform circular motion.
e Evaluate centripetal and tangential acceleration in nonuniform circular motion, and find the total
acceleration vector.

Uniform circular motion is a specific type of motion in which an object travels in a circle with a constant speed.
For example, any point on a propeller spinning at a constant rate is executing uniform circular motion. Other
examples are the second, minute, and hour hands of a watch. It is remarkable that points on these rotating
objects are actually accelerating, although the rotation rate is a constant. To see this, we must analyze the


https://openstax.org/l/21phetpromot

motion in terms of vectors.

Centripetal Acceleration

In one-dimensional kinematics, objects with a constant speed have zero acceleration. However, in two- and
three-dimensional kinematics, even if the speed is a constant, a particle can have acceleration if it moves along
a curved trajectory such as a circle. In this case the velocity vector is changing, or dv/dt # 0. This is shown in
Figure 4.18. As the particle moves counterclockwise in time Af on the circular path, its position vector moves
from T(f) to ¥(¢ + At). The velocity vector has constant magnitude and is tangent to the path as it changes from
V(¢) to V(¢ + Af), changing its direction only. Since the velocity vector V(#) is perpendicular to the position
vector ?(t), the triangles formed by the position vectors and AF, and the velocity vectors and AV are similar.
Furthermore, since |i"(t)| = |i"(t + At)| and |7(t)| = |V(t + At)| , the two triangles are isosceles. From these facts
we can make the assertion

Av _ Ar - v
o= or Av = rAr.

Av
--‘—l—-

N/
Vit + A\ Ad / Vi)
Vv

(@) (b)
Figure 4.18 (a) A particle is moving in a circle at a constant speed, with position and velocity vectors at times f and t + At. (b) Velocity
vectors forming a triangle. The two triangles in the figure are similar. The vector AV points toward the center of the circle in the limit
At — 0.

We can find the magnitude of the acceleration from

. Av v . Ar v?
a=lm {—)=—( lIim — | = —.
At—0 \ At r \ Ar—0 At r

The direction of the acceleration can also be found by noting that as Az and therefore Af approach zero, the
vector AV approaches a direction perpendicular to V. In the limit At — 0,AV is perpendicular to V. Since V is
tangent to the circle, the acceleration dv/dt points toward the center of the circle. Summarizing, a particle
moving in a circle at a constant speed has an acceleration with magnitude
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ac = —. 4.27
r

The direction of the acceleration vector is toward the center of the circle (Figure 4.19). This is a radial
acceleration and is called the centripetal acceleration, which is why we give it the subscript c. The word
centripetal comes from the Latin words centrum (meaning “center”) and petere (meaning “to seek”), and thus
takes the meaning “center seeking.”

L

N

Bl

Figure 4.19 The centripetal acceleration vector points toward the center of the circular path of motion and is an acceleration in the radial

direction. The velocity vector is also shown and is tangent to the circle.

Let’s investigate some examples that illustrate the relative magnitudes of the velocity, radius, and centripetal
acceleration.

@ EXAMPLE 4.10

Creating an Accelerationof 1 g

Ajetis flying at 134.1 m/s along a straight line and makes a turn along a circular path level with the ground.
What does the radius of the circle have to be to produce a centripetal acceleration of 1 g on the pilot and jet
toward the center of the circular trajectory?

Strategy

Given the speed of the jet, we can solve for the radius of the circle in the expression for the centripetal
acceleration.

Solution

Set the centripetal acceleration equal to the acceleration of gravity: 9.8 m/s? = v?/r.
Solving for the radius, we find

L (134.1 m/s)?

08 m/s2 = 1835 m = 1.835 km.
. s

Significance
To create a greater acceleration than g on the pilot, the jet would either have to decrease the radius of its
circular trajectory or increase its speed on its existing trajectory or both.

CHECK YOUR UNDERSTANDING 4.5

A flywheel has a radius of 20.0 cm. What is the speed of a point on the edge of the flywheel if it experiences a
centripetal acceleration of 900.0 cm/s2?



Centripetal acceleration can have a wide range of values, depending on the speed and radius of curvature of
the circular path. Typical centripetal accelerations are given in the following table.

Centripetal Acceleration (m/s? or factors of

Object 9)
Earth around the Sun 593 x 1073
Moon around the Earth 273 x 1073
Satellite in geosynchronous orbit 0.233
Outer edge of a CD when playing 5.78
Jet in a barrel roll 2-39
Roller coaster 5G9
Etlectron orbiting a proton in a simple Bohr model of the 9.0 x 1022
atom

Table 4.1 Typical Centripetal Accelerations

Equations of Motion for Uniform Circular Motion

A particle executing circular motion can be described by its position vector i"(t). Figure 4.20 shows a particle
executing circular motion in a counterclockwise direction. As the particle moves on the circle, its position
vector sweeps out the angle 8 with the x-axis. Vector F(f) making an angle 6 with the x-axis is shown with its
components along the x- and y-axes. The magnitude of the position vectoris A = |i"(t)| and is also the radius of

the circle, so that in terms of its components,
T(f) = Acos ofl + Asin a)tj. 4.28

Here, w is a constant called the angular frequency of the particle. The angular frequency has units of radians
(rad) per second and is simply the number of radians of angular measure through which the particle passes
per second. The angle 0 that the position vector has at any particular time is wt.

If T'is the period of motion, or the time to complete one revolution (2 rad), then
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Figure 4.20 The position vector for a particle in circular motion with its components along the x- and y-axes. The particle moves

counterclockwise. Angle 8 is the angular frequency w in radians per second multiplied by t.

Velocity and acceleration can be obtained from the position function by differentiation:

dv(t . ~
V() = d(t ) = —Awsin wti + Awcos wtj. 4.29

It can be shown from Figure 4.20 that the velocity vector is tangential to the circle at the location of the
particle, with magnitude Aw. Similarly, the acceleration vector is found by differentiating the velocity:

5 av(r) 5 . s oA
a@) = T —Aw” cos wti — Aw” sin wtj. 4.30

From this equation we see that the acceleration vector has magnitude Aw? and is directed opposite the
. . 2 2
position vector, toward the origin, because a(t) = —@w“F(¢).

@ EXAMPLE 4.11

Circular Motion of a Proton

A proton has speed 5 X 10° m/s and is moving in a circle in the xy plane of radius r=0.175 m. What is its
position in the xy plane at time f = 2.0 x 1077 s = 200 ns? At t = 0, the position of the proton is 0.175 mi and it
circles counterclockwise. Sketch the trajectory.

Solution
From the given data, the proton has period and angular frequency:
T = @ _ 27(0.175 m)
v 5.0 x 10°m/s
w=2E 2T 5856 x 107 radss.
T 220x 10775

The position of the particle at = 2.0 x 10~/ swith A=0.175 m is

=220 x 107" s

P(2.0 x 1077s) = Acos (2.0 X 1077 $)i + Asinw(2.0 x 1077 $)j m
= 0.175¢c0s[(2.856 x 107 rad/s)(2.0 x 1077 s)]i
+0.175sin[(2.856 x 107 rad/s)(2.0 x 1077 s)]j m
= 0.175c0s(5.712 rad)i + 0.175sin(5.712 rad)j = 0.1471 — 0.095 m.

From this result we see that the proton is located slightly below the x-axis. This is shown in Figure 4.21.
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Figure 4.21 Position vector of the protonatf = 2.0 X 10~7s = 200 ns. The trajectory of the proton is shown. The angle through which

the proton travels along the circle is 5.712 rad, which a little less than one complete revolution.
Significance

We picked the initial position of the particle to be on the x-axis. This was completely arbitrary. If a different
starting position were given, we would have a different final position at t= 200 ns.

Nonuniform Circular Motion

Circular motion does not have to be at a constant speed. A particle can travel in a circle and speed up or slow
down, showing an acceleration in the direction of the motion.

In uniform circular motion, the particle executing circular motion has a constant speed and the circle is at a
fixed radius. If the speed of the particle is changing as well, then we introduce an additional acceleration in the
direction tangential to the circle. Such accelerations occur at a point on a top that is changing its spin rate, or
any accelerating rotor. In Displacement and Velocity Vectors we showed that centripetal acceleration is the
time rate of change of the direction of the velocity vector. If the speed of the particle is changing, then it has a
tangential acceleration that is the time rate of change of the magnitude of the velocity:

_d¥

ar 431

The direction of tangential acceleration is tangent to the circle whereas the direction of centripetal
acceleration is radially inward toward the center of the circle. Thus, a particle in circular motion with a
tangential acceleration has a total acceleration that is the vector sum of the centripetal and tangential
accelerations:

a=ac+ar. 4.32
The acceleration vectors are shown in Figure 4.22. Note that the two acceleration vectors a. and ay are

perpendicular to each other, with @ in the radial direction and at in the tangential direction. The total
acceleration a points at an angle between a. and EiT.



Figure 4.22 The centripetal acceleration points toward the center of the circle. The tangential acceleration is tangential to the circle at the

particle’s position. The total acceleration is the vector sum of the tangential and centripetal accelerations, which are perpendicular.

@ EXAMPLE 4.12

Total Acceleration during Circular Motion

A particle moves in a circle of radius r= 2.0 m. During the time interval from t=1.5 s to t = 4.0 s its speed
varies with time according to

C—z, c1 =4.0m/s, ¢cp =6.0m-s.

u(t)=c| —
2

What is the total acceleration of the particle at t=2.0 s?

Strategy

We are given the speed of the particle and the radius of the circle, so we can calculate centripetal acceleration
easily. The direction of the centripetal acceleration is toward the center of the circle. We find the magnitude of
the tangential acceleration by taking the derivative with respect to time of |v(¢)| using Equation 4.31 and
evaluating it at t = 2.0 s. We use this and the magnitude of the centripetal acceleration to find the total
acceleration.

Solution
Centripetal acceleration is

v(2.0s) = < 3 > m/s = 2.5m/s
(2 0)
2 2
_ (25mls) 2
= =—=3.1m/
=TT  2om >
directed toward the center of the circle. Tangential acceleration is
av 2 12.0
ap = | &Y= 22 _ m/s2 = 1.5 m/s2.
dr|” B (200

Total acceleration is
] = V3.17 + 1.5 m/s* = 3.44 m/s>

and § = tan~! % = 64° from the tangent to the circle. See Figure 4.23.
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Figure 4.23 The tangential and centripetal acceleration vectors. The net acceleration a is the vector sum of the two accelerations.

Significance

The directions of centripetal and tangential accelerations can be described more conveniently in terms of a
polar coordinate system, with unit vectors in the radial and tangential directions. This coordinate system,
which is used for motion along curved paths, is discussed in detail later in the book.

4.5 Relative Motion in One and Two Dimensions

Learning Objectives
By the end of this section, you will be able to:
e Explain the concept of reference frames.
e Write the position and velocity vector equations for relative motion.
e Draw the position and velocity vectors for relative motion.
e Analyze one-dimensional and two-dimensional relative motion problems using the position and velocity
vector equations.

Motion does not happen in isolation. If you're riding in a train moving at 10 m/s east, this velocity is measured
relative to the ground on which you’re traveling. However, if another train passes you at 15 m/s east, your
velocity relative to this other train is different from your velocity relative to the ground. Your velocity relative to
the other train is 5 m/s west. To explore this idea further, we first need to establish some terminology.

Reference Frames

To discuss relative motion in one or more dimensions, we first introduce the concept of reference frames.
When we say an object has a certain velocity, we must state it has a velocity with respect to a given reference
frame. In most examples we have examined so far, this reference frame has been Earth. If you say a person is
sitting in a train moving at 10 m/s east, then you imply the person on the train is moving relative to the surface
of Earth at this velocity, and Earth is the reference frame. We can expand our view of the motion of the person
on the train and say Earth is spinning in its orbit around the Sun, in which case the motion becomes more
complicated. In this case, the solar system is the reference frame. In summary, all discussion of relative motion
must define the reference frames involved. We now develop a method to refer to reference frames in relative
motion.

Relative Motion in One Dimension

We introduce relative motion in one dimension first, because the velocity vectors simplify to having only two
possible directions. Take the example of the person sitting in a train moving east. If we choose east as the
positive direction and Earth as the reference frame, then we can write the velocity of the train with respect to
the Earth as Vrg = 10 m/s i east, where the subscripts TE refer to train and Earth. Let’s now say the person
gets up out of her seat and walks toward the back of the train at 2 m/s. This tells us she has a velocity relative to
the reference frame of the train. Since the person is walking west, in the negative direction, we write her
velocity with respect to the train as Vpy = —2 m/s 1. We can add the two velocity vectors to find the velocity of



the person with respect to Earth. This relative velocity is written as
;"PE = ;’)PT + VTE- 4.33

Note the ordering of the subscripts for the various reference frames in Equation 4.33. The subscripts for the
coupling reference frame, which is the train, appear consecutively in the right-hand side of the equation.
Figure 4.24 shows the correct order of subscripts when forming the vector equation.

¥pe = Vor TV
p—"
Figure 4.24 When constructing the vector equation, the subscripts for the coupling reference frame appear consecutively on the inside.

The subscripts on the left-hand side of the equation are the same as the two outside subscripts on the right-hand side of the equation.

Adding the vectors, we find Vpg = 8 m/s 1, so the person is moving 8 m/s east with respect to Earth.
Graphically, this is shown in Figure 4.25.

10 mis # Vo Velocity of train with respect to Earth
-2 mis -— Vo, Velocity of person with respect to train
8mis & V. \Velocity of person with respect 1o Earth

Figure 4.25 Velocity vectors of the train with respect to Earth, person with respect to the train, and person with respect to Earth.

Relative Velocity in Two Dimensions

We can now apply these concepts to describing motion in two dimensions. Consider a particle P and reference
frames Sand .S, as shown in Figure 4.26. The position of the origin of S’ as measured in Sis ?S’S’ the
position of Pas measured in S is ?PS’ , and the position of Pas measured in Sis T pg.

¥i

=

Figure 4.26 The positions of particle Prelative to frames Sand .S’ are ?ps and ?PS” respectively.

From Figure 4.26 we see that

Fpg =Tpg +Tgg. 4.34
The relative velocities are the time derivatives of the position vectors. Therefore,

Vps =Vpgr +Vgr g 4.35

The velocity of a particle relative to S is equal to its velocity relative to S’ plus the velocity of S’ relative to S.

We can extend Equation 4.35 to any number of reference frames. For particle Pwith velocities



Vpa,Vpp,and Vpc in frames A, B, and C,
;’)pc =VPA +VAB +VBC- 4.36

We can also see how the accelerations are related as observed in two reference frames by differentiating
Equation 4.35:

dps =8py +ag . 4.37
We see that if the velocity of S’ relative to Sis a constant, then a s =0and

dps =dpgr. 4.38

This says the acceleration of a particle is the same as measured by two observers moving at a constant velocity
relative to each other.

@ EXAMPLE 4.13

Motion of a Car Relative to a Truck

A truck is traveling south at a speed of 70 km/h toward an intersection. A car is traveling east toward the
intersection at a speed of 80 km/h (Figure 4.27). What is the velocity of the car relative to the truck?

70 km/h

<|

TE

B0 kmi/h

Figure 4.27 A car travels east toward an intersection while a truck travels south toward the same intersection.

Strategy

First, we must establish the reference frame common to both vehicles, which is Earth. Then, we write the
velocities of each with respect to the reference frame of Earth, which enables us to form a vector equation that
links the car, the truck, and Earth to solve for the velocity of the car with respect to the truck.

Solution

The velocity of the car with respect to Earth is VCE = 80 km/h i. The velocity of the truck with respect to Earth
is Vrg = —70 km/h ./]\ Using the velocity addition rule, the relative motion equation we are seeking is

- _2 -
VCT = VCE + VET-



Here, Ve is the velocity of the car with respect to the truck, and Earth is the connecting reference frame. Since
we have the velocity of the truck with respect to Earth, the negative of this vector is the velocity of Earth with

- - . . . . . .
respect to the truck: vgT = —v1g. The vector diagram of this equation is shown in Figure 4.28.

Figure 4.28 Vector diagram of the vector equation VCT = VCE + VET-

We can now solve for the velocity of the car with respect to the truck:

Ver| = \/ (80.0 km/h)%+(70.0 km/h)?> = 106. km/h

and

70.0
6 = tan™! <m> = 41.2° north of east.

Significance
Drawing a vector diagram showing the velocity vectors can help in understanding the relative velocity of the
two objects.

CHECK YOUR UNDERSTANDING 4.6

A boat heads north in still water at 4.5 m/s directly across a river that is running east at 3.0 m/s. What is the
velocity of the boat with respect to Earth?

@ EXAMPLE 4.14

Flying a Plane in a Wind

A pilot must fly his plane due north to reach his destination. The plane can fly at 300 km/h in still air. A wind is
blowing out of the northeast at 90 km/h. (a) What is the speed of the plane relative to the ground? (b) In what
direction must the pilot head her plane to fly due north?

Strategy

The pilot must point her plane somewhat east of north to compensate for the wind velocity. We need to
construct a vector equation that contains the velocity of the plane with respect to the ground, the velocity of the
plane with respect to the air, and the velocity of the air with respect to the ground. Since these last two
quantities are known, we can solve for the velocity of the plane with respect to the ground. We can graph the
vectors and use this diagram to evaluate the magnitude of the plane’s velocity with respect to the ground. The
diagram will also tell us the angle the plane’s velocity makes with north with respect to the air, which is the
direction the pilot must head her plane.



Solution

The vector equation is Vpg = Vpa + VaG, where P = plane, A = air, and G = ground. From the geometry in
Figure 4.29, we can solve easily for the magnitude of the velocity of the plane with respect to the ground and
the angle of the plane’s heading, 6.

Figure 4.29 Vector diagram for Equation 4.34 showing the vectors VPA, Vag, and Vpg.

(a) Known quantities:
[Vpa| = 300 km/h

[Vag| = 90 km/h
Substituting into the equation of motion, we obtain |VpG| = 230 km/h.

(b) The angle 6 = tan~1 % = 12° east of north.




CHAPTER REVIEW
Key Terms

acceleration vector instantaneous acceleration
found by taking the derivative of the velocity
function with respect to time in unit vector
notation

angular frequency w, rate of change of an angle
with which an object that is moving on a circular
path

centripetal acceleration component of
acceleration of an object moving in a circle that is
directed radially inward toward the center of the
circle

displacement vector vector from the initial
position to a final position on a trajectory of a
particle

position vector vector from the origin of a chosen
coordinate system to the position of a particle in
two- or three-dimensional space

projectile motion motion of an object subject only
to the acceleration of gravity

Key Equations

range maximum horizontal distance a projectile
travels

reference frame coordinate system in which the
position, velocity, and acceleration of an object at
rest or moving is measured

relative velocity velocity of an object as observed
from a particular reference frame, or the velocity
of one reference frame with respect to another
reference frame

tangential acceleration magnitude of which is the
time rate of change of speed. Its direction is
tangent to the circle.

time of flight elapsed time a projectile is in the air

total acceleration vector sum of centripetal and
tangential accelerations

trajectory path of a projectile through the air

velocity vector vector that gives the instantaneous
speed and direction of a particle; tangent to the
trajectory

Position vector () = x(t)i + y(t),/]'\ + z(t)ﬁ
Displacement vector AT = T(ty) — ¥(t;)
) > . T(+AD-FO) _ gt
v(t) = lim ————= = £
Velocity vector O} Alm ; di

Velocity in terms of components V(1) = vy (t)i + Uy(t)./]'\ + v, (t)ﬁ

dx(t)

d
Ux (t) = dt Z(t)

DO (1) = L

vy(t) = T

Velocity components

2 F(tp)—F(t])

Average velocity Vavg = o=

ﬁ(t) — lil‘% v(t+Ar)—v(1) — dv(t)
—

Instantaneous acceleration

At dt
. 2 doy(®)» ~
Instantaneous acceleration, component form  a(t) = dU(’I‘I(I) 1+ U;t( ) Jj+ dvjt(t)k
Instantaneous acceleration as second 2x(t) 2 2 y(6) & 220
: . -€ g(t)zdx(t)l+dy(t)J+dz(t)k
derivatives of position dr? dr? dr?
. . 2 ind,
Time of flight Tiof = 2(vgsinfp)

8
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. g 2
Trajector = (tanfp)x — | ——=—| x
J y y ( 0) [2(1}0005490)2 ]
2
Range R = M
g
. . 2
Centripetal acceleration ac = 1’7
Position vector, uniform circular motion T(f) = Acos wt i+ Asin a)tf]'\
Velocity vector, uniform circular motion V() = % = —Aw sin oti + Aw cos cotff
Acceleration vector, uniform circular motion  a(¢) = dz(t’) = —Aw? cos wti — Aw? sin a)tj]'\
. . dfy|
Tangential acceleration ar = -~
Total acceleration a=3ac+ar

Position vector in frame

S'is the position

vector in frame .S’ plus the vector from the
origin of S to the origin of .S’

> > >

Relative velocity equation connecting two Voo =7 +3
= ’ '

reference frames PS = Yps S'S

Relative velocity equation connecting more

VpCc =Vps+Vap+V
than two reference frames pC PA AB BC

Relative acceleration equation a PS = a ps! + a s's
Summary
4.1 Displacement and Velocity Vectors the particle.

. Displacement F(7) can be written as a vector
sum of the one-dimensional displacements
X(1), ¥(t), Z(¢) along the x, y, and z directions.

- Velocity V(¢) can be written as a vector sum of
the one-dimensional velocities v (?), vy (), vz (f)
along the x, y, and z directions.

+ Motion in any given direction is independent of
motion in a perpendicular direction.

« The position function F(¢) gives the position as a
function of time of a particle moving in two or
three dimensions. Graphically, it is a vector
from the origin of a chosen coordinate system to
the point where the particle is located at a
specific time.

. The displacement vector AF gives the shortest
distance between any two points on the
trajectory of a particle in two or three 4.2 Acceleration Vector
dimensions.

- Instantaneous velocity gives the speed and
direction of a particle at a specific time on its
trajectory in two or three dimensions, and is a
vector in two and three dimensions.

« The velocity vector is tangent to the trajectory of

- Intwo and three dimensions, the acceleration
vector can have an arbitrary direction and does
not necessarily point along a given component
of the velocity.

+ The instantaneous acceleration is produced by a




change in velocity taken over a very short
(infinitesimal) time period. Instantaneous
acceleration is a vector in two or three
dimensions. It is found by taking the derivative
of the velocity function with respect to time.

. In three dimensions, acceleration a(#) can be
written as a vector sum of the one-dimensional
accelerations ay (), ay (1), and a; (¢) along the x-,
y-, and z-axes.

« The kinematic equations for constant
acceleration can be written as the vector sum of
the constant acceleration equations in the x, y,
and z directions.

4.3 Projectile Motion

« Projectile motion is the motion of an object
subject only to the acceleration of gravity, where
the acceleration is constant, as near the surface
of Earth.

« To solve projectile motion problems, we analyze
the motion of the projectile in the horizontal and
vertical directions using the one-dimensional
kinematic equations for xand y.

« The time of flight of a projectile launched with
initial vertical velocity v, on an even surface is
given by

2(vpsin )

e .

This equation is valid only when the projectile
lands at the same elevation from which it was
launched.

+ The maximum horizontal distance traveled by a
projectile is called the range. Again, the
equation for range is valid only when the
projectile lands at the same elevation from
which it was launched.

Ttof =

4.4 Uniform Circular Motion

» Uniform circular motion is motion in a circle at
constant speed.
« Centripetal acceleration ﬁc is the acceleration a
Conceptual Questions

4.1 Displacement and Velocity Vectors

1. What form does the trajectory of a particle have if
the distance from any point A to point Bis equal
to the magnitude of the displacement from A to
B?

2. Give an example of a trajectory in two or three
dimensions caused by independent
perpendicular motions.

particle must have to follow a circular path.
Centripetal acceleration always points toward
the center of rotation and has magnitude

ac = v2r.

Nonuniform circular motion occurs when there
is tangential acceleration of an object executing
circular motion such that the speed of the object
is changing. This acceleration is called
tangential acceleration ay. The magnitude of
tangential acceleration is the time rate of
change of the magnitude of the velocity. The
tangential acceleration vector is tangential to
the circle, whereas the centripetal acceleration
vector points radially inward toward the center
of the circle. The total acceleration is the vector
sum of tangential and centripetal accelerations.
An object executing uniform circular motion
can be described with equations of motion. The
position vector of the object is

T(t) = A cos wfl + Asin a)t:]'\, where Ais the
magnitude |?(t) , which is also the radius of the
circle, and w is the angular frequency.

4.5 Relative Motion in One and Two

Dimensions

When analyzing motion of an object, the
reference frame in terms of position, velocity,
and acceleration needs to be specified.

Relative velocity is the velocity of an object as
observed from a particular reference frame, and
it varies with the choice of reference frame.

If Sand S’ are two reference frames moving
relative to each other at a constant velocity, then
the velocity of an object relative to Sis equal to
its velocity relative to S’ plus the velocity of .S’
relative to S.

If two reference frames are moving relative to
each other at a constant velocity, then the
accelerations of an object as observed in both
reference frames are equal.

3. If the instantaneous velocity is zero, what can be

said about the slope of the position function?

4.2 Acceleration Vector

4.

If the position function of a particle is a linear
function of time, what can be said about its
acceleration?

If an object has a constant x-component of the



velocity and suddenly experiences an
acceleration in the y direction, does the
x-component of its velocity change?

If an object has a constant x-component of
velocity and suddenly experiences an
acceleration at an angle of 70° in the x direction,
does the x-component of velocity change?

4.3 Projectile Motion

7.

Answer the following questions for projectile
motion on level ground assuming negligible air
resistance, with the initial angle being neither 0°
nor 90° : (a) Is the velocity ever zero? (b) When is
the velocity a minimum? A maximum? (c) Can
the velocity ever be the same as the initial
velocity at a time other than at t= 0? (d) Can the
speed ever be the same as the initial speed at a
time other than at t=0?

. Answer the following questions for projectile

motion on level ground assuming negligible air
resistance, with the initial angle being neither 0°
nor 90° : (a) Is the acceleration ever zero? (b) Is
the vector V ever parallel or antiparallel to the
vector a? (c) Is the vector v ever perpendicular to
the vector a? If so, where is this located?

A dime is placed at the edge of a table so it hangs
over slightly. A quarter is slid horizontally on the
table surface perpendicular to the edge and hits
the dime head on. Which coin hits the ground
first?

4.4 Uniform Circular Motion

10.

Can centripetal acceleration change the speed

Problems

4.1 Displacement and Velocity Vectors

17.

18.

19.

The coordinates of a particle in a rectangular
coordinate system are (1.0, —4.0, 6.0). What is
the position vector of the particle?

The position of a particle changes from

P =00 i+ 3.0:]'\)cm to

Py = (—4.01 + 3.0?]'\) cm. What is the particle’s
displacement?

The 18th hole at Pebble Beach Golf Course is a
dogleg to the left of length 496.0 m. The fairway
off the tee is taken to be the x direction. A golfer
hits his tee shot a distance of 300.0 m,
corresponding to a displacement

A?l = 300.0 mi, and hits his second shot 189.0
m with a displacement

11.

of a particle undergoing circular motion?
Can tangential acceleration change the speed of
a particle undergoing circular motion?

4.5 Relative Motion in One and Two

Dimensions

12.

13.

14.

15.

16.

20.

21.

22.

What frame or frames of reference do you use
instinctively when driving a car? When flying in
a commercial jet?

A basketball player dribbling down the court
usually keeps his eyes fixed on the players
around him. He is moving fast. Why doesn’t he
need to keep his eyes on the ball?

If someone is riding in the back of a pickup
truck and throws a softball straight backward, is
it possible for the ball to fall straight down as
viewed by a person standing at the side of the
road? Under what condition would this occur?
How would the motion of the ball appear to the
person who threw it?

The hat of a jogger running at constant velocity
falls off the back of his head. Draw a sketch
showing the path of the hat in the jogger’s frame
of reference. Draw its path as viewed by a
stationary observer. Neglect air resistance.

A clod of dirt falls from the bed of a moving
truck. It strikes the ground directly below the
end of the truck. (a) What is the direction of its
velocity relative to the truck just before it hits?
(b) Is this the same as the direction of its
velocity relative to ground just before it hits?
Explain your answers.

AY, =172.0 mi + 80.3 m:]'\. What is the final
displacement of the golf ball from where it
started?

A bird flies straight northeast a distance of 95.0
km for 3.0 h. With the x-axis due east and the
y-axis due north, what is the displacement in
unit vector notation for the bird? What is the
average velocity for the trip?

A cyclist rides 5.0 km due east, then 10.0 km
20° west of north. From this point she rides 8.0
km due west. What is the final displacement
from where the cyclist started?

New York Rangers defenseman Daniel Girardi
stands at the goal and passes a hockey puck 20
m and 45° from straight down the ice to left
wing Chris Kreider waiting at the blue line.




23.

24.

25.

Kreider waits for Girardi to reach the blue line
and passes the puck directly across the ice to
him 10 m away. What is the final displacement

of the puck? See the following figure.
Kreider

Yi
10m

—

Blue line

20m

I

<

=T

I Goal
Girardi

The position of a particle is

F(1) = 4.0°1 = 3.0 + 2.0/°km. (a) What is the
velocity of the particle at 0 s and at 1.0 s? (b)
What is the average velocity between 0 s and 1.0
s?

Clay Matthews, a linebacker for the Green Bay
Packers, can reach a speed of 10.0 m/s. At the
start of a play, Matthews runs downfield at 45°
with respect to the 50-yard line and covers 8.0
min 1 s. He then runs straight down the field at
90° with respect to the 50-yard line for 12 m,
with an elapsed time of 1.2 s. (a) What is
Matthews’ final displacement from the start of
the play? (b) What is his average velocity?

The F-35B Lighting II is a short-takeoff and
vertical landing fighter jet. If it does a vertical
takeoff to 20.00-m height above the ground and
then follows a flight path angled at 30° with
respect to the ground for 20.00 km, what is the
final displacement?

4.2 Acceleration Vector

26.

27.

28.

The position of a particle is

T(r) = (3.0t2§ + 5.0f]'\ - 6.0tﬁ) m. (a) Determine
its velocity and acceleration as functions of
time. (b) What are its velocity and acceleration
at time t=0?

A particle’s acceleration is (4.0f + 3.0j\)m/sz. At
t =0, its position and velocity are zero. (a) What
are the particle’s position and velocity as
functions of time? (b) Find the equation of the
path of the particle. Draw the x- and y-axes and
sketch the trajectory of the particle.

A boat leaves the dock at t= 0 and heads out
into a lake with an acceleration of 2.0 m/s21. A

29.

30.

31.

32.

strong wind is pushing the boat, giving it an
additional velocity of 2.0 m/si + 1.0 m/s,/]'\. €)]
What is the velocity of the boat at t =10 s? (b)
What is the position of the boat at t = 10s? Draw
a sketch of the boat’s trajectory and position at t
=10 s, showing the x- and y-axes.

The position of a particle for t > 0 is given by
P(1) = (3.0121 — 7.0P — 5.0r2k) m. (a) What is
the velocity as a function of time? (b) What is
the acceleration as a function of time? (c) What
is the particle’s velocity at t= 2.0 s? (d) What is
its speed at t=1.0 s and t= 3.0 s? () What is the
average velocity between t=1.0sand t= 2.0 s?
The acceleration of a particle is a constant. At t
= 0 the velocity of the particle is (101 + 20?]'\)m/s.
At t =4 s the velocity is 10./]'\n1/s. (a) What is the
particle’s acceleration? (b) How do the position
and velocity vary with time? Assume the
particle is initially at the origin.

A particle has a position function

T = cos(l.Ot)’i\ + sin(l.Ot)f]'\ + 1k, where the
arguments of the cosine and sine functions are
in radians. (a) What is the velocity vector? (b)
What is the acceleration vector?

A Lockheed Martin F-35 II Lighting jet takes off
from an aircraft carrier with a runway length of
90 m and a takeoff speed 70 m/s at the end of
the runway. Jets are catapulted into airspace
from the deck of an aircraft carrier with two
sources of propulsion: the jet propulsion and
the catapult. At the point of leaving the deck of
the aircraft carrier, the F-35’s acceleration
decreases to a constant acceleration of 5.0 m/s2
at 30° with respect to the horizontal. (a) What is
the initial acceleration of the F-35 on the deck of
the aircraft carrier to make it airborne? (b)
Write the position and velocity of the F-35 in
unit vector notation from the point it leaves the
deck of the aircraft carrier. (c) At what altitude is
the fighter 5.0 s after it leaves the deck of the
aircraft carrier? (d) What is its velocity and
speed at this time? (e) How far has it traveled
horizontally?

4.3 Projectile Motion

33.

34.

A bullet is shot horizontally from shoulder
height (1.5 m) with an initial speed 200 m/s. (a)
How much time elapses before the bullet hits
the ground? (b) How far does the bullet travel
horizontally?

A marble rolls off a tabletop 1.0 m high and hits
the floor at a point 3.0 m away from the table’s



35.

36.

37.

edge in the horizontal direction. (a) How long is 38.
the marble in the air? (b) What is the speed of
the marble when it leaves the table’s edge? (c)
What is its speed when it hits the floor?
A dart is thrown horizontally at a speed of 10 m/s at
the bull’s-eye of a dartboard 2.4 m away, as in the
following figure. (a) How far below the intended
target does the dart hit? (b) What does your answer  39.
tell you about how proficient dart players throw
their darts?
@ |
10mis_~ |
Al r"'f
£
41.
24am
42.
An airplane flying horizontally with a speed of 500
km/h at a height of 800 m drops a crate of supplies
(see the following figure). If the parachute fails to 43.
open, how far in front of the release point does the
crate hit the ground?
500 km/h
44.
45.

\

Suppose the airplane in the preceding problem
fires a projectile horizontally in its direction of
motion at a speed of 300 m/s relative to the
plane. (a) How far in front of the release point
does the projectile hit the ground? (b) What is
its speed when it hits the ground?

A fastball pitcher can throw a baseball at a
speed of 40 m/s (90 mi/h). (a) Assuming the
pitcher can release the ball 16.7 m from home
plate so the ball is moving horizontally, how
long does it take the ball to reach home plate?
(b) How far does the ball drop between the
pitcher’s hand and home plate?

A projectile is launched at an angle of 30° and
lands 20 s later at the same height as it was
launched. (a) What is the initial speed of the
projectile? (b) What is the maximum altitude?
(c) What is the range? (d) Calculate the
displacement from the point of launch to the
position on its trajectory at 15 s.

A basketball player shoots toward a basket 6.1
m away and 3.0 m above the floor. If the ball is
released 1.8 m above the floor at an angle of 60°
above the horizontal, what must the initial
speed be if it were to go through the basket?

At a particular instant, a hot air balloon is 100
m in the air and descending at a constant speed
of 2.0 m/s. At this exact instant, a girl throws a
ball horizontally, relative to herself, with an
initial speed of 20 m/s. When she lands, where
will she find the ball? Ignore air resistance.

A man on a motorcycle traveling at a uniform
speed of 10 m/s throws an empty can straight
upward relative to himself with an initial speed
of 3.0 m/s. Find the equation of the trajectory as
seen by a police officer on the side of the road.
Assume the initial position of the can is the
point where it is thrown. Ignore air resistance.
An athlete can jump a distance of 8.0 m in the
broad jump. What is the maximum distance the
athlete can jump on the Moon, where the
gravitational acceleration is one-sixth that of
Earth?

The maximum horizontal distance a boy can
throw a ball is 50 m. Assume he can throw with
the same initial speed at all angles. How high
does he throw the ball when he throws it
straight upward?

A rock is thrown off a cliff at an angle of 53° with
respect to the horizontal. The cliff is 100 m
high. The initial speed of the rock is 30 m/s. (a)
How high above the edge of the cliff does the
rock rise? (b) How far has it moved horizontally
when it is at maximum altitude? (c) How long
after the release does it hit the ground? (d) What
is the range of the rock? (e) What are the
horizontal and vertical positions of the rock
relative to the edge of the cliffat t=2.0s, t=4.0
s,and t=6.0s?




46. Trying to escape his pursuers, a secret agent skis off

a slope inclined at 30° below the horizontal at 60

km/h. To survive and land on the snow 100 m below, 51.

he must clear a gorge 60 m wide. Does he make it?
Ignore air resistance.

ground at an angle of 15°, what was his initial
speed?

MIT’s robot cheetah can jump over obstacles 46
cm high and has speed of 12.0 km/h. (a) If the
robot launches itself at an angle of 60° at this
speed, what is its maximum height? (b) What

E?;* (not 1o scale) would the launch angle have to be to reach a
\ \_ height of 46 cm?
b ?T_ f_"':_ Vo 52. Mt. Asama, Japan, is an active volcano. In 2009,
T an eruption threw solid volcanic rocks that
landed 1 km horizontally from the crater. If the
volcanic rocks were launched at an angle of 40°
with respect to the horizontal and landed 900 m
100m below the crater, (a) what would be their initial
velocity and (b) what is their time of flight?
53. Drew Brees of the New Orleans Saints can throw
a football 23.0 m/s (50 mph). If he angles the
¥ throw at 10° from the horizontal, what distance
does it go if it is to be caught at the same
elevation as it was thrown?
f—60m—= 54. The Lunar Roving Vehicle used in NASA’s late
Apollo missions reached an unofficial lunar
47. A golfer on a fairway is 70 m away from the land speed of 5.0 m/s by astronaut Eugene
green, which sits below the level of the fairway Cernan. If the rover was moving at this speed on
by 20 m. If the golfer hits the ball at an angle of a flat lunar surface and hit a small bump that
40° with an initial speed of 20 m/s, how close to projected it off the surface at an angle of 20°,
the green does she come? how long would it be “airborne” on the Moon?
48. A projectile is shot at a hill, the base of which is 300 55. A soccer goal is 2.44 m high. A player kicks the
m away. The projectile is shot at 60° above the ball at a distance 10 m from the goal at an angle
horizontal with an initial speed of 75 m/s. The hill of 25°. The ball hits the crossbar at the top of the
can be approximated by a plane sloped at 20° to the goal. What is the initial speed of the soccer ball?
horizontal. Relative to the coordinate system shown 56. Olympus Mons on Mars is the largest volcano in
in the following figure, the equation of this straight the solar system, at a height of 25 km and with a
line is y = (tan20°)x — 109. Where on the hill does radius of 312 km. If you are standing on the
the projectile land? summit, with what initial velocity would you
¥ have to fire a projectile from a cannon
horizontally to clear the volcano and land on the
surface of Mars? Note that Mars has an
y = (tan 20" — 109 acceleration of gravity of 3.7 m/sZ.
57. In 1999, Robbie Knievel was the first to jump
the Grand Canyon on a motorcycle. At a narrow
Lt part of the canyon (69.0 m wide) and traveling
4 i 35.8 m/s off the takeoff ramp, he reached the
*‘73{7’“ m 4"{ other side. What was his launch angle?
49. An astronaut on Mars kicks a soccer ball at an 58. You throw a baseball at an initial speed of 15.0
angle of 45° with an initial velocity of 15 m/s. If m/s at an angle of 30° with respect to the
the acceleration of gravity on Mars is 3.7m/s2, horizontal. What would the ball’s initial speed
(a) what is the range of the soccer kick on a flat have to be at 30° on a planet that has twice the
surface? (b) What would be the range of the acceleration of gravity as Earth to achieve the
same kick on the Moon, where gravity is one- same range? Consider launch and impact on a
sixth that of Earth? horizontal surface.
50. Mike Powell holds the record for the long jump 59. Aaron Rodgers throws a football at 20.0 m/s to

of 8.95 m, established in 1991. If he left the

his wide receiver, who is running straight down



the field at 9.4 m/s. If Aaron throws the football
when the wide receiver is 10.0 m in front of
him, (a) at what angle does Aaron have to launch
the ball so the ball will be at the same height as
the receiver when the receiver makes it to 20.0
m in front of Aaron? (b) Will the receiver be able
to catch the ball?

4.4 Uniform Circular Motion

60.

61.

62.

63.

64.

65.

66.

67.

68.

A flywheel is rotating at 30 rev/s. What is the
total angle, in radians, through which a point on
the flywheel rotates in 40 s?

A particle travels in a circle of radius 10 m at a
constant speed of 20 m/s. What is the
magnitude of the acceleration?

Cam Newton of the Carolina Panthers throws a
perfect football spiral at 8.0 rev/s. The radius of
a pro football is 8.5 cm at the middle of the short
side. What is the centripetal acceleration of the
laces on the football?

A fairground ride spins its occupants inside a
flying saucer-shaped container. If the horizontal
circular path the riders follow has an 8.00-m
radius, at how many revolutions per minute are
the riders subjected to a centripetal
acceleration equal to that of gravity?

A runner taking part in the 200-m dash must
run around the end of a track that has a circular
arc with a radius of curvature of 30.0 m. The
runner starts the race at a constant speed. If she
completes the 200-m dash in 23.2 s and runs at
constant speed throughout the race, what is her
centripetal acceleration as she runs the curved
portion of the track?

What is the acceleration of Venus toward the
Sun, assuming a circular orbit?

An experimental jet rocket travels around Earth
along its equator just above its surface. At what
speed must the jet travel if the magnitude of its
acceleration is g?

A fan is rotating at a constant 360.0 rev/min.
What is the magnitude of the acceleration of a
point on one of its blades 10.0 cm from the axis
of rotation?

A point located on the second hand of a large
clock has a radial acceleration of 0.1cm/s2. How
far is the point from the axis of rotation of the
second hand?

4.5 Relative Motion in One and Two

Dimensions

69.

The coordinate axes of the reference frame .S’

70.

71.

72.

73.

75.

remain parallel to those of S, as S’ moves away
from S at a constant velocity

Vor = (4.08 +3.0j + 5.0K) my/s. (a) If at time =
0 the origins coincide, what is the position of the
origin O’ in the S frame as a function of time?
(b) How is particle position for ¥(f) and ¥ (1), as
measured in Sand S/, respectively, related? (c)
What is the relationship between particle
velocities V(¢) and v (1)? (d) How are
accelerations a(t) and 3 (t) related?

The coordinate axes of the reference frame .S’
remain parallel to those of S, as S’ moves away
from S at a constant velocity

Vors = (1.01 +2.05 + 3.0k)r m/s. (a) If at time ¢
= 0 the origins coincide, what is the position of
origin O’ in the S frame as a function of time?
(b) How is particle position for ¥(¢) and i (1), as
measured in Sand S’ respectively, related? (c)
What is the relationship between particle
velocities V(¢) and v (1)? (d) How are
accelerations a(t) and a (t) related?

The velocity of a particle in reference frame A is
(2.03 + 3.0,/]'\) m/s. The velocity of reference
frame A with respect to reference frame B is
4.0§m/s, and the velocity of reference frame B
with respect to Cis 2.0,/]'\mls. What is the velocity
of the particle in reference frame C?

Raindrops fall vertically at 4.5 m/s relative to
the earth. What does an observer in a car
moving at 22.0 m/s in a straight line measure as
the velocity of the raindrops?

A seagull can fly at a velocity of 9.00 m/s in still
air. (a) If it takes the bird 20.0 min to travel 6.00
km straight into an oncoming wind, what is the
velocity of the wind? (b) If the bird turns around
and flies with the wind, how long will it take the
bird to return 6.00 km?

. A ship sets sail from Rotterdam, heading due

north at 7.00 m/s relative to the water. The local
ocean current is 1.50 m/s in a direction 40. 0°
north of east. What is the velocity of the ship
relative to Earth?

A boat can be rowed at 8.0 km/h in still water.
(a) How much time is required to row 1.5 km
downstream in a river moving 3.0 km/h relative
to the shore? (b) How much time is required for
the return trip? (c) In what direction must the
boat be aimed to row straight across the river?
(d) Suppose the river is 0.8 km wide. What is the
velocity of the boat with respect to Earth and
how much time is required to get to the
opposite shore? (e) Suppose, instead, the boat is




76.

aimed straight across the river. How much time
is required to get across and how far
downstream is the boat when it reaches the
opposite shore?

A small plane flies at 200 km/h in still air. If the
wind blows directly out of the west at 50 km/h,
(a) in what direction must the pilot head her
plane to move directly north across land and (b)
how long does it take her to reach a point 300
km directly north of her starting point?

Additional Problems

79.

80.

81.

82.

A Formula One race car is traveling at 89.0 m/s
along a straight track enters a turn on the race
track with radius of curvature of 200.0 m. What
centripetal acceleration must the car have to
stay on the track?

A particle travels in a circular orbit of radius 10
m. Its speed is changing at a rate of 15.0 m/s? at
an instant when its speed is 40.0 m/s. What is
the magnitude of the acceleration of the
particle?

The driver of a car moving at 90.0 km/h presses
down on the brake as the car enters a circular
curve of radius 150.0 m. If the speed of the car
is decreasing at a rate of 9.0 km/h each second,
what is the magnitude of the acceleration of the
car at the instant its speed is 60.0 km/h?

A race car entering the curved part of the track
at the Daytona 500 drops its speed from 85.0 m/
s to 80.0 m/s in 2.0 s. If the radius of the curved
part of the track is 316.0 m, calculate the total
acceleration of the race car at the beginning and
ending of reduction of speed.

77. A cyclist traveling southeast along a road at 15
km/h feels a wind blowing from the southwest
at 25 km/h. To a stationary observer, what are
the speed and direction of the wind?

78. Ariver is moving east at 4 m/s. A boat starts
from the dock heading 30° north of west at 7 m/
s. If the river is 1800 m wide, (a) what is the
velocity of the boat with respect to Earth and (b)
how long does it take the boat to cross the river?

83. An elephant is located on Earth’s surface at a

latitude A. Calculate the centripetal acceleration of

the elephant resulting from the rotation of Earth
around its polar axis. Express your answer in
terms of A, the radius Rg of Earth, and time T for

one rotation of Earth. Compare your answer with g

for A = 40°.

Equatar

84. A proton in a synchrotron is moving in a circle
of radius 1 km and increasing its speed by
v(t) =cy + cztz, where ¢y = 2.0 X 105 m/s,
¢y = 105m/s3. (a) What is the proton’s total
acceleration at t= 5.0 s? (b) At what time does
the expression for the velocity become
unphysical?



85.

86.

87.

88.

89.

90.

91.

A propeller blade at rest starts to rotate from =
0 sto t=5.0 s with a tangential acceleration of
the tip of the blade at 3.00 m/s2. The tip of the
blade is 1.5 m from the axis of rotation. At t =
5.0 s, what is the total acceleration of the tip of
the blade?

A particle is executing circular motion with a
constant angular frequency of @ = 4.00 rad/s. If
time t = 0 corresponds to the position of the
particle being located at y=0m and x =5 m, (a)
what is the position of the particle at t=10 s? (b)
What is its velocity at this time? (c) What is its
acceleration?

A particle’s centripetal acceleration is

ac = 4.0 m/s? at t= 0 s where it is on the x-axis
and moving counterclockwise in the xy plane. It
is executing uniform circular motion about an
axis at a distance of 5.0 m. What is its velocity at
t=10s?

Arod 3.0 m in length is rotating at 2.0 rev/s
about an axis at one end. Compare the
centripetal accelerations at radii of (a) 1.0 m, (b)
2.0m, and (c) 3.0 m.

A particle located initially at (1 .Sj + 4.0ﬁ)m
undergoes a displacement of

(2.51 + 3.2j — 1.2K) m. What is the final
position of the particle?

The position of a particle is given by

B(1) = (50 m/s)ri — (4.9 m/s2)12]. (a) What are
the particle’s velocity and acceleration as
functions of time? (b) What are the initial
conditions to produce the motion?

A spaceship is traveling at a constant velocity of
V() = 250.0im/s when its rockets fire, giving it
an acceleration of a(f) = (3.0i + 4.0§)m/s2.
What is its velocity 5 s after the rockets fire?

Challenge Problems

99.

World’s Longest Par 3. The tee of the world’s
longest par 3 sits atop South Africa’s Hanglip
Mountain at 400.0 m above the green and can
only be reached by helicopter. The horizontal
distance to the green is 359.0 m. Neglect air
resistance and answer the following questions.
(a) If a golfer launches a shot that is 40° with
respect to the horizontal, what initial velocity
must she give the ball? (b) What is the time to
reach the green?

92.

93.

924,

95.

96.

97.

98.

A crossbow is aimed horizontally at a target 40
m away. The arrow hits 30 cm below the spot at
which it was aimed. What is the initial velocity
of the arrow?

Along jumper can jump a distance of 8.0 m
when he takes off at an angle of 45° with respect
to the horizontal. Assuming he can jump with
the same initial speed at all angles, how much
distance does he lose by taking off at 30°?

On planet Arcon, the maximum horizontal
range of a projectile launched at 10 m/s is 20 m.
What is the acceleration of gravity on this
planet?

A mountain biker encounters a jump on a race
course that sends him into the air at 60° to the
horizontal. If he lands at a horizontal distance of
45.0 m and 20 m below his launch point, what is
his initial speed?

Which has the greater centripetal acceleration,
a car with a speed of 15.0 m/s along a circular
track of radius 100.0 m or a car with a speed of
12.0 m/s along a circular track of radius 75.0
m?

A geosynchronous satellite orbits Earth at a
distance of 42,250.0 km and has a period of 1
day. What is the centripetal acceleration of the
satellite?

Two speedboats are traveling at the same speed
relative to the water in opposite directions in a
moving river. An observer on the riverbank sees
the boats moving at 4.0 m/s and 5.0 m/s. (a)
What is the speed of the boats relative to the
river? (b) How fast is the river moving relative to
the shore?
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100. When a field goal kicker kicks a football as hard as 101. A truck is traveling east at 80 km/h. At an

he can at 45° to the horizontal, the ball just clears intersection 32 km ahead, a car is traveling
the 3-m-high crossbar of the goalposts 45.7 m away. north at 50 km/h. (a) How long after this

(a) What is the maximum speed the kicker can moment will the vehicles be closest to each
impart to the football? (b) In addition to clearing the other? (b) How far apart will they be at that
crossbar, the football must be high enough in the air point?

early during its flight to clear the reach of the
onrushing defensive lineman. If the lineman is 4.6
m away and has a vertical reach of 2.5 m, can he
block the 45.7-m field goal attempt? (c) What if the
lineman is 1.0 m away?

Access for free at openstax.org.




CHAPTER 5I .
Newton's Laws of Motion
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Figure 5.1 The Golden Gate Bridge, one of the greatest works of modern engineering, was the longest suspension
bridge in the world in the year it opened, 1937. It is still among the 10 longest suspension bridges as of this writing.
In designing and building a bridge, what physics must we consider? What forces act on the bridge? What forces keep
the bridge from falling? How do the towers, cables, and ground interact to maintain stability?

Chapter Outline

5.1 Forces

5.2 Newton's First Law

5.3 Newton's Second Law

5.4 Mass and Weight

5.5 Newton’s Third Law

5.6 Common Forces

5.7 Drawing Free-Body Diagrams

INTRODUCTION When you drive across a bridge, you expect it to remain stable. You also expect to speed up
or slow your car in response to traffic changes. In both cases, you deal with forces. The forces on the bridge are
in equilibrium, so it stays in place. In contrast, the force produced by your car engine causes a change in
motion. Isaac Newton discovered the laws of motion that describe these situations.

Forces affect every moment of your life. Your body is held to Earth by force and held together by the forces of



charged particles. When you open a door, walk down a street, lift your fork, or touch a baby’s face, you are
applying forces. Zooming in deeper, your body’s atoms are held together by electrical forces, and the core of
the atom, called the nucleus, is held together by the strongest force we know—strong nuclear force.

5.1 Forces

Learning Objectives
By the end of this section, you will be able to:
e Distinguish between kinematics and dynamics
e Understand the definition of force
e |dentify simple free-body diagrams
e Define the Sl unit of force, the newton
e Describe force as a vector

The study of motion is called kinematics, but kinematics only describes the way objects move—their velocity
and their acceleration. Dynamics is the study of how forces affect the motion of objects and systems. It
considers the causes of motion of objects and systems of interest, where a system is anything being analyzed.
The foundation of dynamics are the laws of motion stated by Isaac Newton (1642-1727). These laws provide an
example of the breadth and simplicity of principles under which nature functions. They are also universal laws
in that they apply to situations on Earth and in space.

Newton’s laws of motion were just one part of the monumental work that has made him legendary (Figure 5.2).
The development of Newton’s laws marks the transition from the Renaissance to the modern era. Not until the
advent of modern physics was it discovered that Newton’s laws produce a good description of motion only
when the objects are moving at speeds much less than the speed of light and when those objects are larger
than the size of most molecules (about 10~ min diameter). These constraints define the realm of Newtonian
mechanics. At the beginning of the twentieth century, Albert Einstein (1879-1955) developed the theory of
relativity and, along with many other scientists, quantum mechanics. Quantum mechanics does not have the
constraints present in Newtonian physics. All of the situations we consider in this chapter, and all those
preceding the introduction of relativity in Relativity, are in the realm of Newtonian physics.

Figure 5.2 Isaac Newton (1642-1727) published his amazing work, Philosophiae Naturalis Principia Mathematica, in 1687. It proposed
scientific laws that still apply today to describe the motion of objects (the laws of motion). Newton also discovered the law of gravity,

invented calculus, and made great contributions to the theories of light and color.
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Working Definition of Force

Dynamics is the study of the forces that cause objects and systems to move. To understand this, we need a
working definition of force. An intuitive definition of force—that is, a push or a pull—is a good place to start. We
know that a push or a pull has both magnitude and direction (therefore, it is a vector quantity), so we can
define force as the push or pull on an object with a specific magnitude and direction. Force can be represented
by vectors or expressed as a multiple of a standard force.

The push or pull on an object can vary considerably in either magnitude or direction. For example, a cannon
exerts a strong force on a cannonball that is launched into the air. In contrast, Earth exerts only a tiny
downward pull on a flea. Our everyday experiences also give us a good idea of how multiple forces add. If two
people push in different directions on a third person, as illustrated in Figure 5.3, we might expect the total
force to be in the direction shown. Since force is a vector, it adds just like other vectors. Forces, like other
vectors, are represented by arrows and can be added using the familiar head-to-tail method or trigonometric
methods. These ideas were developed in Vectors.
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Figure 5.3 (a) An overhead view of two ice skaters pushing on a third skater. Forces are vectors and add like other vectors, so the total

force on the third skater is in the direction shown. (b) A free-body diagram representing the forces acting on the third skater.

Figure 5.3(b) is our first example of a free-body diagram, which is a sketch showing all external forces acting
on an object or system. The object or system is represented by a single isolated point (or free body), and only
those forces acting on it that originate outside of the object or system—that is, external forces—are shown.
(These forces are the only ones shown because only external forces acting on the free body affect its motion.

We can ignore any internal forces within the body.) The forces are represented by vectors extending outward
from the free body.

Free-body diagrams are useful in analyzing forces acting on an object or system, and are employed extensively
in the study and application of Newton’s laws of motion. You will see them throughout this text and in all your
studies of physics. The following steps briefly explain how a free-body diagram is created; we examine this
strategy in more detail in Drawing Free-Body Diagrams.

@ PROBLEM-SOLVING STRATEGY

Drawing Free-Body Diagrams

1. Draw the object under consideration. If you are treating the object as a particle, represent the object as a
point. Place this point at the origin of an xy-coordinate system.

2. Include all forces that act on the object, representing these forces as vectors. However, do not include the
net force on the object or the forces that the object exerts on its environment.

3. Resolve all force vectors into x- and y-components.

4. Draw a separate free-body diagram for each object in the problem.




We illustrate this strategy with two examples of free-body diagrams (Figure 5.4). The terms used in this figure
are explained in more detail later in the chapter.

Y @

(@) Box at rest on a horizontal surface (b} Box on an inclined plane
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Figure 5.4 In these free-body diagrams, ﬁ is the normal force, W is the weight of the object, and Fis the friction.

The steps given here are sufficient to guide you in this important problem-solving strategy. The final section of
this chapter explains in more detail how to draw free-body diagrams when working with the ideas presented in
this chapter.

Development of the Force Concept

A quantitative definition of force can be based on some standard force, just as distance is measured in units
relative to a standard length. One possibility is to stretch a spring a certain fixed distance (Figure 5.5) and use
the force it exerts to pull itself back to its relaxed shape—called a restoring force—as a standard. The
magnitude of all other forces can be considered as multiples of this standard unit of force. Many other
possibilities exist for standard forces. Some alternative definitions of force will be given later in this chapter.
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Figure 5.5 The force exerted by a stretched spring can be used as a standard unit of force. (a) This spring has a length x when undistorted.
-
(b) When stretched a distance Ax, the spring exerts a restoring force Fregiore , Which is reproducible. (c) A spring scale is one device that
=2
uses a spring to measure force. The force Fregiore is exerted on whatever is attached to the hook. Here, this force has a magnitude of six

units of the force standard being employed.

Let’s analyze force more deeply. Suppose a physics student sits at a table, working diligently on his homework
(Figure 5.6). What external forces act on him? Can we determine the origin of these forces?
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(a) (b
Figure 5.6 (a) The forces acting on the student are due to the chair, the table, the floor, and Earth’s gravitational attraction. (b) In solving a
problem involving the student, we may want to consider only the forces acting along the line running through his torso. A free-body diagram

for this situation is shown.

In most situations, forces are grouped into two categories: contact forces and field forces. As you might guess,
contact forces are due to direct physical contact between objects. For example, the student in Figure 5.6
experiences the contact forces 6, i:“, and 'f, which are exerted by the chair on his posterior, the floor on his feet,
and the table on his forearms, respectively. Field forces, however, act without the necessity of physical contact
between objects. They depend on the presence of a “field” in the region of space surrounding the body under
consideration. Since the student is in Earth’s gravitational field, he feels a gravitational force \7{'; in other words,
he has weight.

You can think of a field as a property of space that is detectable by the forces it exerts. Scientists think there are
only four fundamental force fields in nature. These are the gravitational, electromagnetic, strong nuclear, and
weak fields (we consider these four forces in nature later in this text). As noted for W in Figure 5.6, the
gravitational field is responsible for the weight of a body. The forces of the electromagnetic field include those
of static electricity and magnetism; they are also responsible for the attraction among atoms in bulk matter.
Both the strong nuclear and the weak force fields are effective only over distances roughly equal to a length of
scale no larger than an atomic nucleus (10_15 m). Their range is so small that neither field has influence in the
macroscopic world of Newtonian mechanics.

Contact forces are fundamentally electromagnetic. While the elbow of the student in Figure 5.6 is in contact
with the tabletop, the atomic charges in his skin interact electromagnetically with the charges in the surface of
the table. The net (total) result is the force 'f' Similarly, when adhesive tape sticks to a piece of paper, the atoms
of the tape are intermingled with those of the paper to cause a net electromagnetic force between the two
objects. However, in the context of Newtonian mechanics, the electromagnetic origin of contact forces is not an
important concern.

Vector Notation for Force

As previously discussed, force is a vector; it has both magnitude and direction. The SI unit of force is called the
newton (abbreviated N), and 1 N is the force needed to accelerate an object with a mass of 1 kg at a rate of
Im/s?: 1IN =1 kg - m/s2. An easy way to remember the size of a newton is to imagine holding a small apple; it
has a weight of about 1 N.

=2 ~ ~ a~ ~
We can thus describe a two-dimensional force in the form F = ai + bj (the unit vectors i and j indicate the



direction of these forces along the x-axis and the y-axis, respectively) and a three-dimensional force in the
d ~ A~ ~
form F = ai + bj + ck. In Figure 5.3, let’s suppose that ice skater 1, on the left side of the figure, pushes
- N
horizontally with a force of 30.0 N to the right; we represent this as F; = 30.0i N. Similarly, if ice skater 2

o d ~
pushes with a force of 40.0 N in the positive vertical direction shown, we would write Fy = 40.0j N. The
resultant of the two forces causes a mass to accelerate—in this case, the third ice skater. This resultant is called

>

the net external force F,¢; and is found by taking the vector sum of all external forces acting on an object or
-

system (thus, we can also represent net external force as Z F):

ﬁnet=2ﬁ=ﬁ1+§2+--- 5.1

This equation can be extended to any number of forces.

In this example, we have ﬂ‘net = Z ﬂ‘ = ﬁ'l + ﬁ‘z =30.0f + 40.0./i\ N. The hypotenuse of the triangle shown in
Figure 5.3 is the resultant force, or net force. It is a vector. To find its magnitude (the size of the vector, without
regard to direction), we use the rule given in Vectors, taking the square root of the sum of the squares of the
components:

Foer = 1/(30.0N)2 + (40.0N)? = 50.0N.

F, 40.0
= _1 —2 = _1 —_— = °
0 = tan <F1> tan <30.0> 53.1°,

measured from the positive x-axis, as shown in the free-body diagram in Figure 5.3(b).

The direction is given by

> A A~ - A ~
Let’s suppose the ice skaters now push the third ice skater with F; = 3.0i + 8.0j Nand F, = 5.0i + 4.0j N.
What is the resultant of these two forces? We must recognize that force is a vector; therefore, we must add
using the rules for vector addition:

Fro = F +F; = (3.0 +8.0) + (5.0 +4.07) =8.0i + 12j N
CHECK YOUR UNDERSTANDING 5.1

Find the magnitude and direction of the net force in the ice skater example just given.

INTERACTIVE

View this interactive simulation (https://openstax.org/l/21addvectors) to learn how to add vectors. Drag vectors
onto a graph, change their length and angle, and sum them together. The magnitude, angle, and components of
each vector can be displayed in several formats.

5.2 Newton's First Law

Learning Objectives
By the end of this section, you will be able to:
o Describe Newton's first law of motion
e Recognize friction as an external force
e Define inertia
e |dentify inertial reference frames
e Calculate equilibrium for a system

Experience suggests that an object at rest remains at rest if left alone and that an object in motion tends to slow
down and stop unless some effort is made to keep it moving. However, Newton’s first law gives a deeper
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explanation of this observation.

Newton’s First Law of Motion

A body at rest remains at rest or, if in motion, remains in motion at constant velocity unless acted on by a
net external force.

Note the repeated use of the verb “remains.” We can think of this law as preserving the status quo of motion.
Also note the expression “constant velocity;” this means that the object maintains a path along a straight line,
since neither the magnitude nor the direction of the velocity vector changes. We can use Figure 5.7 to consider
the two parts of Newton’s first law.

(a) (b)
Figure 5.7 (a) A hockey puck is shown at rest; it remains at rest until an outside force such as a hockey stick changes its state of rest; (b) a
hockey puck is shown in motion; it continues in motion in a straight line until an outside force causes it to change its state of motion.

Although it is slick, an ice surface provides some friction that slows the puck.

Rather than contradicting our experience, Newton’s first law says that there must be a cause for any change in
velocity (a change in either magnitude or direction) to occur. This cause is a net external force, which we
defined earlier in the chapter. An object sliding across a table or floor slows down due to the net force of
friction acting on the object. If friction disappears, will the object still slow down?

The idea of cause and effect is crucial in accurately describing what happens in various situations. For
example, consider what happens to an object sliding along a rough horizontal surface. The object quickly
grinds to a halt. If we spray the surface with talcum powder to make the surface smoother, the object slides
farther. If we make the surface even smoother by rubbing lubricating oil on it, the object slides farther yet.
Extrapolating to a frictionless surface and ignoring air resistance, we can imagine the object sliding in a
straight line indefinitely. Friction is thus the cause of slowing (consistent with Newton’s first law). The object
would not slow down if friction were eliminated.

Consider an air hockey table (Figure 5.8). When the air is turned off, the puck slides only a short distance
before friction slows it to a stop. However, when the air is turned on, it creates a nearly frictionless surface, and
the puck glides long distances without slowing down. Additionally, if we know enough about the friction, we
can accurately predict how quickly the object slows down.
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Figure 5.8 An air hockey table is useful in illustrating Newton’s laws. When the air is off, friction quickly slows the puck; but when the air

is on, it minimizes contact between the puck and the hockey table, and the puck glides far down the table.

Newton’s first law is general and can be applied to anything from an object sliding on a table to a satellite in
orbit to blood pumped from the heart. Experiments have verified that any change in velocity (speed or
direction) must be caused by an external force. The idea of generally applicable or universal laws is
important—it is a basic feature of all laws of physics. Identifying these laws is like recognizing patterns in
nature from which further patterns can be discovered. The genius of Galileo, who first developed the idea for
the first law of motion, and Newton, who clarified it, was to ask the fundamental question: “What is the cause?”
Thinking in terms of cause and effect is fundamentally different from the typical ancient Greek approach,
when questions such as “Why does a tiger have stripes?” would have been answered in Aristotelian fashion,
such as “That is the nature of the beast.” The ability to think in terms of cause and effect is the ability to make a
connection between an observed behavior and the surrounding world.

Gravitation and Inertia

Regardless of the scale of an object, whether a molecule or a subatomic particle, two properties remain valid
and thus of interest to physics: gravitation and inertia. Both are connected to mass. Roughly speaking, mass is
a measure of the amount of matter in something. Gravitation is the attraction of one mass to another, such as
the attraction between yourself and Earth that holds your feet to the floor. The magnitude of this attraction is
your weight, and it is a force.

Mass is also related to inertia, the ability of an object to resist changes in its motion—in other words, to resist
acceleration. Newton’s first law is often called the law of inertia. As we know from experience, some objects
have more inertia than others. It is more difficult to change the motion of a large boulder than that of a
basketball, for example, because the boulder has more mass than the basketball. In other words, the inertia of
an object is measured by its mass. The relationship between mass and weight is explored later in this chapter.

Inertial Reference Frames

Earlier, we stated Newton’s first law as “A body at rest remains at rest or, if in motion, remains in motion at
constant velocity unless acted on by a net external force.” It can also be stated as “Every body remains in its
state of uniform motion in a straight line unless it is compelled to change that state by forces acting on it.” To
Newton, “uniform motion in a straight line” meant constant velocity, which includes the case of zero velocity,
or rest. Therefore, the first law says that the velocity of an object remains constant if the net force on it is zero.

Newton’s first law is usually considered to be a statement about reference frames. It provides a method for
identifying a special type of reference frame: the inertial reference frame. In principle, we can make the net
force on a body zero. If its velocity relative to a given frame is constant, then that frame is said to be inertial. So
by definition, an inertial reference frame is a reference frame in which Newton’s first law is valid. Newton’s
first law applies to objects with constant velocity. From this fact, we can infer the following statement.

Inertial Reference Frame

A reference frame moving at constant velocity relative to an inertial frame is also inertial. A reference
frame accelerating relative to an inertial frame is not inertial.




Are inertial frames common in nature? It turns out that well within experimental error, a reference frame at
rest relative to the most distant, or “fixed,” stars is inertial. All frames moving uniformly with respect to this
fixed-star frame are also inertial. For example, a nonrotating reference frame attached to the Sun is, for all
practical purposes, inertial, because its velocity relative to the fixed stars does not vary by more than one part
in 1019 Earth accelerates relative to the fixed stars because it rotates on its axis and revolves around the Sun;
hence, a reference frame attached to its surface is not inertial. For most problems, however, such a frame
serves as a sufficiently accurate approximation to an inertial frame, because the acceleration of a point on
Earth’s surface relative to the fixed stars is rather small (< 3.4 X 1072 m/s2). Thus, unless indicated
otherwise, we consider reference frames fixed on Earth to be inertial.

Finally, no particular inertial frame is more special than any other. As far as the laws of nature are concerned,
all inertial frames are equivalent. In analyzing a problem, we choose one inertial frame over another simply on
the basis of convenience.

Newton’s First Law and Equilibrium

Newton’s first law tells us about the equilibrium of a system, which is the state in which the forces on the
= =
system are balanced. Returning to Forces and the ice skaters in Figure 5.3, we know that the forces F; and F,

- - - -
combine to form a resultant force, or the net external force: Fr = Fpet = F| + F,. To create equilibrium, we
require a balancing force that will produce a net force of zero. This force must be equal in magnitude but

opposite in direction to l_%R, which means the vector must be —ﬁ‘ R - Referring to the ice skaters, for which we
- S ~
found Fr to be 30.0i + 40.0j N, we can determine the balancing force by simply finding
- 2 ~
—Fr = —30.01 — 40.0j N. See the free-body diagram in Figure 5.3(b).

We can give Newton’s first law in vector form:

- -
V = constant when Fpeq = ON. 5.2

This equation says that a net force of zero implies that the velocity V of the object is constant. (The word
“constant” can indicate zero velocity.)

Newton’s first law is deceptively simple. If a car is at rest, the only forces acting on the car are weight and the
contact force of the pavement pushing up on the car (Figure 5.9). It is easy to understand that a nonzero net
force is required to change the state of motion of the car. As a car moves with constant velocity, the friction
force propels the car forward and opposes the drag force against it.

v=0 v = 50 km/fhr
—_—
F.=0 Foe =7
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Figure 5.9 A car is shown (a) parked and (b) moving at constant velocity. How do Newton’s laws apply to the parked car? What does the

knowledge that the car is moving at constant velocity tell us about the net horizontal force on the car?

@ EXAMPLE 5.1

When Does Newton’s First Law Apply to Your Car?

Newton’s laws can be applied to all physical processes involving force and motion, including something as
mundane as driving a car.

(a) Your car is parked outside your house. Does Newton’s first law apply in this situation? Why or why not?



(b) Your car moves at constant velocity down the street. Does Newton’s first law apply in this situation? Why or
why not?

Strategy

In (a), we are considering the first part of Newton’s first law, dealing with a body at rest; in (b), we look at the
second part of Newton’s first law for a body in motion.

Solution

a. When your car is parked, all forces on the car must be balanced; the vector sum is O N. Thus, the net force
is zero, and Newton’s first law applies. The acceleration of the car is zero, and in this case, the velocity is
also zero.

b. When your car is moving at constant velocity down the street, the net force must also be zero according to
Newton’s first law. The car’s frictional force between the road and tires opposes the drag force on the car
with the same magnitude, producing a net force of zero. The body continues in its state of constant velocity
until the net force becomes nonzero. Realize that a net force of zero means that an object is either at rest or
moving with constant velocity, that is, it is not accelerating. What do you suppose happens when the car
accelerates? We explore this idea in the next section.

Significance

As this example shows, there are two kinds of equilibrium. In (a), the car is at rest; we say it is in static
equilibrium. In (b), the forces on the car are balanced, but the car is moving; we say that it is in dynamic
equilibrium. (We examine this idea in more detail in Static Equilibrium and Elasticity.) Again, it is possible for
two (or more) forces to act on an object yet for the object to move. In addition, a net force of zero cannot
produce acceleration.

) CHECK YOUR UNDERSTANDING 5.2

A skydiver opens his parachute, and shortly thereafter, he is moving at constant velocity. (a) What forces are
acting on him? (b) Which force is bigger?

@ INTERACTIVE

Engage this simulation (https://openstax.org/l/21forcemotion) to predict, qualitatively, how an external force
will affect the speed and direction of an object’s motion. Explain the effects with the help of a free-body
diagram. Use free-body diagrams to draw position, velocity, acceleration, and force graphs, and vice versa.
Explain how the graphs relate to one another. Given a scenario or a graph, sketch all four graphs.

5.3 Newton's Second Law

Learning Objectives
By the end of this section, you will be able to:
e Distinguish between external and internal forces
e Describe Newton's second law of motion
e Explain the dependence of acceleration on net force and mass

Newton’s second law is closely related to his first law. It mathematically gives the cause-and-effect relationship
between force and changes in motion. Newton’s second law is quantitative and is used extensively to calculate
what happens in situations involving a force. Before we can write down Newton’s second law as a simple
equation that gives the exact relationship of force, mass, and acceleration, we need to sharpen some ideas we
mentioned earlier.

Force and Acceleration

First, what do we mean by a change in motion? The answer is that a change in motion is equivalent to a change
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in velocity. A change in velocity means, by definition, that there is acceleration. Newton’s first law says that a
net external force causes a change in motion; thus, we see that a net external force causes nonzero
acceleration.

We defined external force in Forces as force acting on an object or system that originates outside of the object
or system. Let’s consider this concept further. An intuitive notion of external is correct—it is outside the system
of interest. For example, in Figure 5.10(a), the system of interest is the car plus the person within it. The two
forces exerted by the two students are external forces. In contrast, an internal force acts between elements of
the system. Thus, the force the person in the car exerts to hang on to the steering wheel is an internal force
between elements of the system of interest. Only external forces affect the motion of a system, according to
Newton’s first law. (The internal forces cancel each other out, as explained in the next section.) Therefore, we
must define the boundaries of the system before we can determine which forces are external. Sometimes, the
system is obvious, whereas at other times, identifying the boundaries of a system is more subtle. The concept
of a system is fundamental to many areas of physics, as is the correct application of Newton’s laws. This
concept is revisited many times in the study of physics.

Free-body diagram
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Figure 5.10 Different forces exerted on the same mass produce different accelerations. (a) Two students push a stalled car. All external
forces acting on the car are shown. (b) The forces acting on the car are transferred to a coordinate plane (free-body diagram) for simpler

analysis. (c) The tow truck can produce greater external force on the same mass, and thus greater acceleration.

From this example, you can see that different forces exerted on the same mass produce different accelerations.



In Figure 5.10(a), the two students push a car with a driver in it. Arrows representing all external forces are
shown. The system of interest is the car and its driver. The weight W of the system and the support of the

N
ground N are also shown for completeness and are assumed to cancel (because there was no vertical motion

5
and no imbalance of forces in the vertical direction to create a change in motion). The vector f represents the
friction acting on the car, and it acts to the left, opposing the motion of the car. (We discuss friction in more
detail in the next chapter.) In Figure 5.10(b), all external forces acting on the system add together to produce

>
the net force Fpe;. The free-body diagram shows all of the forces acting on the system of interest. The dot
represents the center of mass of the system. Each force vector extends from this dot. Because there are two
forces acting to the right, the vectors are shown collinearly. Finally, in Figure 5.10(c), a larger net external force

—
produces a larger acceleration (a’ > a) when the tow truck pulls the car.

It seems reasonable that acceleration would be directly proportional to and in the same direction as the net
external force acting on a system. This assumption has been verified experimentally and is illustrated in
Figure 5.10. To obtain an equation for Newton’s second law, we first write the relationship of acceleration a and

>
net external force Fyet as the proportionality
>
5 X Fnet

where the symbol « means “proportional to.” (Recall from Forces that the net external force is the vector sum

>
of all external forces and is sometimes indicated as Z F.) This proportionality shows what we have said in

words—acceleration is directly proportional to net external force. Once the system of interest is chosen,
identify the external forces and ignore the internal ones. It is a tremendous simplification to disregard the
numerous internal forces acting between objects within the system, such as muscular forces within the
students’ bodies, let alone the myriad forces between the atoms in the objects. Still, this simplification helps us
solve some complex problems.

It also seems reasonable that acceleration should be inversely proportional to the mass of the system. In other
words, the larger the mass (the inertia), the smaller the acceleration produced by a given force. As illustrated in
Figure 5.11, the same net external force applied to a basketball produces a much smaller acceleration when it
is applied to an SUV. The proportionality is written as

1
ax —,
m
where mis the mass of the system and a is the magnitude of the acceleration. Experiments have shown that

acceleration is exactly inversely proportional to mass, just as it is directly proportional to net external force.

s
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(a) (k)
The free-body diagrams for both objects are the same.
F F
(c)

Figure 5.11 The same force exerted on systems of different masses produces different accelerations. (a) A basketball player pushes on a

basketball to make a pass. (Ignore the effect of gravity on the ball.) (b) The same player exerts an identical force on a stalled SUV and



produces far less acceleration. (c) The free-body diagrams are identical, permitting direct comparison of the two situations. A series of

patterns for free-body diagrams will emerge as you do more problems and learn how to draw them in Drawing Free-Body Diagrams.

It has been found that the acceleration of an object depends only on the net external force and the mass of the
object. Combining the two proportionalities just given yields Newton’s second law.

Newton’s Second Law of Motion

The acceleration of a system is directly proportional to and in the same direction as the net external force
acting on the system and is inversely proportion to its mass. In equation form, Newton’s second law is

S
Fet

>
a= .

m

-
where a is the acceleration, Fpe is the net force, and m is the mass. This is often written in the more
familiar form

Foo = > F=ma, 5.3

but the first equation gives more insight into what Newton’s second law means. When only the magnitude
of force and acceleration are considered, this equation can be written in the simpler scalar form:

Fnet = ma. 5_4

The law is a cause-and-effect relationship among three quantities that is not simply based on their definitions.
The validity of the second law is based on experimental verification. The free-body diagram, which you will
learn to draw in Drawing Free-Body Diagrams, is the basis for writing Newton’s second law.

@ EXAMPLE 5.2

What Acceleration Can a Person Produce When Pushing a Lawn Mower?

Suppose that the net external force (push minus friction) exerted on a lawn mower is 51 N (about 11 1b.)
parallel to the ground (Figure 5.12). The mass of the mower is 24 kg. What is its acceleration?

%

: gy Nt net
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i

(&) (b)
Figure 5.12 (a) The net force on a lawn mower is 51 N to the right. At what rate does the lawn mower accelerate to the right? (b) The free-

body diagram for this problem is shown.

Strategy

This problem involves only motion in the horizontal direction; we are also given the net force, indicated by the
single vector, but we can suppress the vector nature and concentrate on applying Newton’s second law. Since
Frer and m are given, the acceleration can be calculated directly from Newton’s second law as Fye; = ma.



Solution
The magnitude of the acceleration a is a = Fye¢/m. Entering known values gives

_5IN
T kg

Substituting the unit of kilograms times meters per square second for newtons yields

_ 5lkg-m/s?

=2.1m/s>.
24 ke ®

Significance

The direction of the acceleration is the same direction as that of the net force, which is parallel to the ground.
This is a result of the vector relationship expressed in Newton’s second law, that is, the vector representing net
force is the scalar multiple of the acceleration vector. There is no information given in this example about the
individual external forces acting on the system, but we can say something about their relative magnitudes. For
example, the force exerted by the person pushing the mower must be greater than the friction opposing the
motion (since we know the mower moved forward), and the vertical forces must cancel because no
acceleration occurs in the vertical direction (the mower is moving only horizontally). The acceleration found is
small enough to be reasonable for a person pushing a mower. Such an effort would not last too long, because
the person’s top speed would soon be reached.

CHECK YOUR UNDERSTANDING 5.3

At the time of its launch, the HMS Titanic was the most massive mobile object ever built, with a mass of
6.0 x 107 kg. If a force of 6 MN (6 X 10° N) was applied to the ship, what acceleration would it experience?

In the preceding example, we dealt with net force only for simplicity. However, several forces act on the lawn
mower. The weight w (discussed in detail in Mass and Weight) pulls down on the mower, toward the center of
Earth; this produces a contact force on the ground. The ground must exert an upward force on the lawn mower,

>
known as the normal force N, which we define in Common Forces. These forces are balanced and therefore do
not produce vertical acceleration. In the next example, we show both of these forces. As you continue to solve
problems using Newton’s second law, be sure to show multiple forces.

@ EXAMPLE 5.3

Which Force Is Bigger?
= =
() The car shown in Figure 5.13 is moving at a constant speed. Which force is bigger, Friction 0F Farag?

Explain.

= =
(b) The same car is now accelerating to the right. Which force is bigger, Fgsiction 0T Fyrag ? Explain.
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(b)

Figure 5.13 A caris shown (a) moving at constant speed and (b) accelerating. How do the forces acting on the car compare in each case?

=

(@) What does the knowledge that the car is moving at constant velocity tell us about the net horizontal force on the car compared to the
friction force? (b) What does the knowledge that the car is accelerating tell us about the horizontal force on the car compared to the friction

force?

Strategy

We must consider Newton’s first and second laws to analyze the situation. We need to decide which law
applies; this, in turn, will tell us about the relationship between the forces.

Solution

a. The forces are equal. According to Newton’s first law, if the net force is zero, the velocity is constant.
> >
b. In this case, Ficion must be larger than Fg,s . According to Newton’s second law, a net force is required to
cause acceleration.

Significance

These questions may seem trivial, but they are commonly answered incorrectly. For a car or any other object to
move, it must be accelerated from rest to the desired speed; this requires that the friction force be greater than
the drag force. Once the car is moving at constant velocity, the net force must be zero; otherwise, the car will
accelerate (gain speed). To solve problems involving Newton’s laws, we must understand whether to apply

- > -
Newton’s first law (where Z F = 0) or Newton’s second law (where Z F is not zero). This will be apparent as
you see more examples and attempt to solve problems on your own.

@ EXAMPLE 5.4

What Rocket Thrust Accelerates This Sled?

Before space flights carrying astronauts, rocket sleds were used to test aircraft, missile equipment, and
physiological effects on human subjects at high speeds. They consisted of a platform that was mounted on one
or two rails and propelled by several rockets.

Calculate the magnitude of force exerted by each rocket, called its thrust T, for the four-rocket propulsion
system shown in Figure 5.14. The sled’s initial acceleration is 49 m/s2, the mass of the system is 2100 kg, and
the force of friction opposing the motion is 650 N.



Free-body diagram

-
=i
-
-

Figure 5.14 A sled experiences a rocket thrust that accelerates it to the right. Each rocket creates an identical thrust T. The system here is
-
the sled, its rockets, and its rider, so none of the forces between these objects are considered. The arrow representing friction (f) is drawn

larger than scale.

Strategy

Although forces are acting both vertically and horizontally, we assume the vertical forces cancel because there
is no vertical acceleration. This leaves us with only horizontal forces and a simpler one-dimensional problem.
Directions are indicated with plus or minus signs, with right taken as the positive direction. See the free-body

diagram in Figure 5.14.

Solution
Since acceleration, mass, and the force of friction are given, we start with Newton’s second law and look for
ways to find the thrust of the engines. We have defined the direction of the force and acceleration as acting “to
the right,” so we need to consider only the magnitudes of these quantities in the calculations. Hence we begin
with

Fnet = ma

where Fye is the net force along the horizontal direction. We can see from the figure that the engine thrusts
add, whereas friction opposes the thrust. In equation form, the net external force is

Fpet =4T - f.

Substituting this into Newton’s second law gives us
Fhet =ma =4T — f.

Using a little algebra, we solve for the total thrust 4 T:

4T = ma + f.
Substituting known values yields

AT = ma + f = (2100 kg) (49 m/s*) + 650 N.

Therefore, the total thrust is

4T =1.0 x 10° N,



and the individual thrusts are

1.0 x 10°N
T="—="""

=25 x 10*N.
4

Significance

The numbers are quite large, so the result might surprise you. Experiments such as this were performed in the
early 1960s to test the limits of human endurance, and the setup was designed to protect human subjects in jet
fighter emergency ejections. Speeds of 1000 km/h were obtained, with accelerations of 45 g's. (Recall that g,
acceleration due to gravity, is 9.80 m/s%. When we say that acceleration is 45 g’s, itis 45 X 9.8 m/sZ, which is
approximately 440 m/s2.) Although living subjects are not used anymore, land speeds of 10,000 km/h have
been obtained with a rocket sled.

In this example, as in the preceding one, the system of interest is obvious. We see in later examples that
choosing the system of interest is crucial—and the choice is not always obvious.

Newton’s second law is more than a definition; it is a relationship among acceleration, force, and mass. It can
help us make predictions. Each of those physical quantities can be defined independently, so the second law
tells us something basic and universal about nature.

CHECK YOUR UNDERSTANDING 5.4

A 550-kg sports car collides with a 2200-kg truck, and during the collision, the net force on each vehicle is the
force exerted by the other. If the magnitude of the truck’s acceleration is 10 m/s2, what is the magnitude of the
sports car’s acceleration?

Component Form of Newton’s Second Law

We have developed Newton’s second law and presented it as a vector equation in Equation 5.3. This vector
equation can be written as three component equations:

Zf‘x = ma,, Zf‘y = mﬁy, and Zf‘z = ma,. 5.5

The second law is a description of how a body responds mechanically to its environment. The influence of the
environment is the net force i{‘net, the body’s response is the acceleration a, and the strength of the response is
inversely proportional to the mass m. The larger the mass of an object, the smaller its response (its
acceleration) to the influence of the environment (a given net force). Therefore, a body’s mass is a measure of
its inertia, as we explained in Newton’s First Law.

@ EXAMPLE 5.5

Force on a Soccer Ball
A 0.400-kg soccer ball is kicked across the field by a player; it undergoes acceleration given by

3 =3.00i + 7.00]\ m/s?. Find (a) the resultant force acting on the ball and (b) the magnitude and direction of
the resultant force.

Strategy

The vectors in i and j format, which indicate force direction along the x-axis and the y-axis, respectively, are
involved, so we apply Newton’s second law in vector form.

Solution

a. We apply Newton’s second law:
Foer = md = (0.400 kg) (3.001 + 7.00 m/s? ) = 1.20i + 2.80] N.



-
b. Magnitude and direction are found using the components of Fpe:

2.80
Foet = \/(1.20 N)2 + (2.80N)? = 3.05N and 6 = tan™! <—> = 66.8°.

1.20

Significance

We must remember that Newton’s second law is a vector equation. In (a), we are multiplying a vector by a
scalar to determine the net force in vector form. While the vector form gives a compact representation of the
force vector, it does not tell us how “big” it is, or where it goes, in intuitive terms. In (b), we are determining the
actual size (magnitude) of this force and the direction in which it travels.

@ EXAMPLE 5.6

Mass of a Car

Find the mass of a car if a net force of —600.0:1'\ N produces an acceleration of —0.2:]'\ m/s%.

Strategy

. . =, - .
Vector division is not defined, so m = Fpet/a cannot be performed. However, mass m is a scalar, so we can use
the scalar form of Newton’s second law, m = Fjet/a.

Solution

We use m = Fpei/a and substitute the magnitudes of the two vectors: Fpet = 600.0 Nand a = 0.2 m/sZ.
Therefore,
Fhet 600.0 N
m=

Significance
. . . 2 ~ . .
Force and acceleration were given in the i and j format, but the answer, mass m, is a scalar and thus is not
~ ey
given iniand j form.

@ EXAMPLE 5.7

Several Forces on a Particle

A particle of mass m = 4.0 kg is acted upon by four forces of magnitudes.
F; =100N, F, =40.0N, F3 =5.0N, and F4; = 2.0 N, with the directions as shown in the free-body
diagram in Figure 5.15. What is the acceleration of the particle?



X

Figure 5.15 Four forces in the xy-plane are applied to a 4.0-kg particle.

Strategy

N
Because this is a two-dimensional problem, we must use a free-body diagram. First, F | must be resolved into
x- and y-components. We can then apply the second law in each direction.

Solution
We draw a free-body diagram as shown in Figure 5.15. Now we apply Newton’s second law. We consider all
vectors resolved into x- and y-components:

ZFx=max ZFy=may

F1x — F3, = may Fyy + Fyy — F>), = may

Fy cos 30° — F3,, = may Fysin30° + Fyy, — F>y, = may,

(10.0N) (cos 30°) — 5.0N = (4.0kg) ax (10.0N) (sin30°) + 2.0N —40.0N = (4.0kg) a),
ax = 0.92 m/s?. ay = —8.3m/s?.

Thus, the net acceleration is
a=(0.92i - 8.37) m/s?,
which is a vector of magnitude 8.4 m/s? directed at 276° to the positive x-axis.
Significance
Numerous examples in everyday life can be found that involve three or more forces acting on a single object,

such as cables running from the Golden Gate Bridge or a football player being tackled by three defenders. We
can see that the solution of this example is just an extension of what we have already done.

CHECK YOUR UNDERSTANDING 5.5

A car has forces acting on it, as shown below. The mass of the car is 1000.0 kg. The road is slick, so friction can
be ignored. (a) What is the net force on the car? (b) What is the acceleration of the car?



380.0N

Newton’s Second Law and Momentum

Newton actually stated his second law in terms of momentum: “The instantaneous rate at which a body’s
momentum changes is equal to the net force acting on the body.” (“Instantaneous rate” implies that the
derivative is involved.) This can be given by the vector equation

> dﬁ
net = — - 5.6
dt
This means that Newton’s second law addresses the central question of motion: What causes a change in
motion of an object? Momentum was described by Newton as “quantity of motion,” a way of combining both
the velocity of an object and its mass. We devote Linear Momentum and Collisions to the study of momentum.

For now, it is sufficient to define momentum ﬁ as the product of the mass of the object m and its velocity V:
p = mv. 5.7
Since velocity is a vector, so is momentum.

It is easy to visualize momentum. A train moving at 10 m/s has more momentum than one that moves at 2 m/s.
In everyday life, we speak of one sports team as “having momentum” when they score points against the
opposing team.

If we substitute Equation 5.7 into Equation 5.6, we obtain

F —- =
net T dt
When m is constant, we have
" iF)
=m = ma.
net dt

Thus, we see that the momentum form of Newton’s second law reduces to the form given earlier in this section.
@ INTERACTIVE

Explore the forces at work (https://openstax.org/l/21forcesatwork) when pulling a cart (https://openstax.org/l/
21pullacart) or pushing a refrigerator, crate, or person. Create an applied force (https:/openstax.org/l/
21forcemotion) and see how it makes objects move. Put an object on a ramp (https:/openstax.org/l/21ramp)
and see how it affects its motion.



https://openstax.org/l/21forcesatwork
https://openstax.org/l/21pullacart
https://openstax.org/l/21pullacart
https://openstax.org/l/21forcemotion
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5.4 Mass and Weight

Learning Objectives

By the end of this section, you will be able to:
e Explain the difference between mass and weight
e Explain why falling objects on Earth are never truly in free fall
e Describe the concept of weightlessness

Mass and weight are often used interchangeably in everyday conversation. For example, our medical records
often show our weight in kilograms but never in the correct units of newtons. In physics, however, there is an
important distinction. Weight is the pull of Earth on an object. It depends on the distance from the center of
Earth. Unlike weight, mass does not vary with location. The mass of an object is the same on Earth, in orbit, or
on the surface of the Moon.

Units of Force

The equation Fyet = ma is used to define net force in terms of mass, length, and time. As explained earlier, the
SI unit of force is the newton. Since Fpet = ma,

IN = 1kg- m/s%.

Although almost the entire world uses the newton for the unit of force, in the United States, the most familiar
unit of force is the pound (Ib), where 1 N = 0.225 1b. Thus, a 225-1b person weighs 1000 N.

Weight and Gravitational Force

When an object is dropped, it accelerates toward the center of Earth. Newton’s second law says that a net force
on an object is responsible for its acceleration. If air resistance is negligible, the net force on a falling object is
the gravitational force, commonly called its weight W, or its force due to gravity acting on an object of mass m.
Weight can be denoted as a vector because it has a direction; down is, by definition, the direction of gravity,
and hence, weight is a downward force. The magnitude of weight is denoted as w. Galileo was instrumental in
showing that, in the absence of air resistance, all objects fall with the same acceleration g. Using Galileo’s result
and Newton’s second law, we can derive an equation for weight.

Consider an object with mass m falling toward Earth. It experiences only the downward force of gravity, which
is the weight W. Newton’s second law says that the magnitude of the net external force on an object is

F‘net = ma. We know that the acceleration of an object due to gravity is ﬁ ora= § Substituting these into
Newton’s second law gives us the following equations.

Weight

The gravitational force on a mass is its weight. We can write this in vector form, where W is weight and m is
mass, as

W= mg 5.8
In scalar form, we can write
w=mg. 5.9

Since g = 9.80 m/s? on Earth, the weight of a 1.00-kg object on Earth is 9.80 N:
w = mg = (1.00 kg)(9.80 m/sz) =9.80N.

When the net external force on an object is its weight, we say that it is in free fall, that is, the only force acting
on the object is gravity. However, when objects on Earth fall downward, they are never truly in free fall because
there is always some upward resistance force from the air acting on the object.

Acceleration due to gravity g varies slightly over the surface of Earth, so the weight of an object depends on its



location and is not an intrinsic property of the object. Weight varies dramatically if we leave Earth’s surface. On
the Moon, for example, acceleration due to gravity is only 1.67 m/s2. A 1.0-kg mass thus has a weight of 9.8 N
on Earth and only about 1.7 N on the Moon.

The broadest definition of weight in this sense is that the weight of an object is the gravitational force on it
from the nearest large body, such as Earth, the Moon, or the Sun. This is the most common and useful
definition of weight in physics. It differs dramatically, however, from the definition of weight used by NASA and
the popular media in relation to space travel and exploration. When they speak of “weightlessness” and
“microgravity,” they are referring to the phenomenon we call “free fall” in physics. We use the preceding
definition of weight, force W due to gravity acting on an object of mass m, and we make careful distinctions
between free fall and actual weightlessness.

Be aware that weight and mass are different physical quantities, although they are closely related. Mass is an
intrinsic property of an object: It is a quantity of matter. The quantity or amount of matter of an object is
determined by the numbers of atoms and molecules of various types it contains. Because these numbers do
not vary, in Newtonian physics, mass does not vary; therefore, its response to an applied force does not vary. In
contrast, weight is the gravitational force acting on an object, so it does vary depending on gravity. For
example, a person closer to the center of Earth, at a low elevation such as New Orleans, weighs slightly more
than a person who is located in the higher elevation of Denver, even though they may have the same mass.

It is tempting to equate mass to weight, because most of our examples take place on Earth, where the weight of
an object varies only a little with the location of the object. In addition, it is difficult to count and identify all of
the atoms and molecules in an object, so mass is rarely determined in this manner. If we consider situations in
which § is a constant on Earth, we see that weight w is directly proportional to mass m, since W = mﬁ, that is,
the more massive an object is, the more it weighs. Operationally, the masses of objects are determined by
comparison with the standard kilogram, as we discussed in Units and Measurement. But by comparing an
object on Earth with one on the Moon, we can easily see a variation in weight but not in mass. For instance, on
Earth, a 5.0-kg object weighs 49 N; on the Moon, where gis 1.67 m/s2, the object weighs 8.4 N. However, the
mass of the object is still 5.0 kg on the Moon.

@ EXAMPLE 5.8

Clearing a Field
A farmer is lifting some moderately heavy rocks from a field to plant crops. He lifts a stone that weighs 40.0 1b.
(about 180 N). What force does he apply if the stone accelerates at a rate of 1.5 m/s2?

Strategy

We were given the weight of the stone, which we use in finding the net force on the stone. However, we also
need to know its mass to apply Newton’s second law, so we must apply the equation for weight, w = mg, to
determine the mass.

Solution

No forces act in the horizontal direction, so we can concentrate on vertical forces, as shown in the following
free-body diagram. We label the acceleration to the side; technically, it is not part of the free-body diagram, but
it helps to remind us that the object accelerates upward (so the net force is upward).

T a = 1.5 mis?



180 N
= === =18k
" 9.8 m/s2 &
ZF = ma
F—w = ma

F—180N = (18kg)(1.5m/s?)
F—-180N = 27N
F = 207N = 210N to two significant figures

Significance

To apply Newton’s second law as the primary equation in solving a problem, we sometimes have to rely on
other equations, such as the one for weight or one of the kinematic equations, to complete the solution.

) CHECK YOUR UNDERSTANDING 5.6

For Example 5.8, find the acceleration when the farmer’s applied force is 230.0 N.

@ INTERACTIVE

Can you avoid the boulder field and land safely just before your fuel runs out, as Neil Armstrong did in 1969?
This version of the classic video game (https://openstax.org/l/21lunarlander) accurately simulates the real
motion of the lunar lander, with the correct mass, thrust, fuel consumption rate, and lunar gravity. The real
lunar lander is hard to control.

5.5 Newton’s Third Law

Learning Objectives
By the end of this section, you will be able to:
e State Newton'’s third law of motion
¢ |dentify the action and reaction forces in different situations
e Apply Newton’s third law to define systems and solve problems of motion

We have thus far considered force as a push or a pull; however, if you think about it, you realize that no push or
pull ever occurs by itself. When you push on a wall, the wall pushes back on you. This brings us to Newton’s
third law.

Newton’s Third Law of Motion

Whenever one body exerts a force on a second body, the first body experiences a force that is equal in
-
magnitude and opposite in direction to the force that it exerts. Mathematically, if a body A exerts a force F
-
on body B, then B simultaneously exerts a force —F on A, or in vector equation form,

Fap = —Fpa. 5.10

Newton’s third law represents a certain symmetry in nature: Forces always occur in pairs, and one body
cannot exert a force on another without experiencing a force itself. We sometimes refer to this law loosely as
“action-reaction,” where the force exerted is the action and the force experienced as a consequence is the
reaction. Newton’s third law has practical uses in analyzing the origin of forces and understanding which
forces are external to a system.

We can readily see Newton’s third law at work by taking a look at how people move about. Consider a swimmer
pushing off the side of a pool (Figure 5.16). She pushes against the wall of the pool with her feet and accelerates


https://openstax.org/l/21lunarlander

in the direction opposite that of her push. The wall has exerted an equal and opposite force on the swimmer.
You might think that two equal and opposite forces would cancel, but they do not because they act on different
systems. In this case, there are two systems that we could investigate: the swimmer and the wall. If we select
the swimmer to be the system of interest, as in the figure, then Fy,411 on feet 1S an external force on this system
and affects its motion. The swimmer moves in the direction of this force. In contrast, the force Ffeet on wall 2Cts
on the wall, not on our system of interest. Thus, Ffeet on wall does not directly affect the motion of the system
and does not cancel Fy,l on feet- The swimmer pushes in the direction opposite that in which she wishes to
move. The reaction to her push is thus in the desired direction. In a free-body diagram, such as the one shown
in Figure 5.16, we never include both forces of an action-reaction pair; in this case, we only use Fyali on feet

not F feet on wall -

System of interest
Free-body diagram

. B
F

wall on Tes)

T

_ Direction of F
acceleration

wall an lTest F!’Eﬂ on wal

Figure 5.16 When the swimmer exerts a force on the wall, she accelerates in the opposite direction; in other words, the net external force
on her is in the direction opposite of Ffeet on wall- This opposition occurs because, in accordance with Newton’s third law, the wall exerts a
force Fyall on feet ON the swimmer that is equal in magnitude but in the direction opposite to the one she exerts on it. The line around the
swimmer indicates the system of interest. Thus, the free-body diagram shows only Fy,a)1 on feet, W (the gravitational force), and BF, which is
the buoyant force of the water supporting the swimmer’s weight. The vertical forces wand BF cancel because there is no vertical

acceleration.

Other examples of Newton’s third law are easy to find:

« Asaprofessor paces in front of a whiteboard, he exerts a force backward on the floor. The floor exerts a
reaction force forward on the professor that causes him to accelerate forward.

« A car accelerates forward because the ground pushes forward on the drive wheels, in reaction to the drive
wheels pushing backward on the ground. You can see evidence of the wheels pushing backward when tires
spin on a gravel road and throw the rocks backward.

» Rockets move forward by expelling gas backward at high velocity. This means the rocket exerts a large
backward force on the gas in the rocket combustion chamber; therefore, the gas exerts a large reaction
force forward on the rocket. This reaction force, which pushes a body forward in response to a backward
force, is called thrust. It is a common misconception that rockets propel themselves by pushing on the
ground or on the air behind them. They actually work better in a vacuum, where they can more readily
expel the exhaust gases.

» Helicopters create lift by pushing air down, thereby experiencing an upward reaction force.

- Birds and airplanes also fly by exerting force on the air in a direction opposite that of whatever force they
need. For example, the wings of a bird force air downward and backward to get lift and move forward.

« An octopus propels itself in the water by ejecting water through a funnel from its body, similar to a jet ski.

+ When a person pulls down on a vertical rope, the rope pulls up on the person (Figure 5.17).
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Figure 5.17 When the mountain climber pulls down on the rope, the rope pulls up on the mountain climber. (credit left: modification of

work by Cristian Bortes)

There are two important features of Newton’s third law. First, the forces exerted (the action and reaction) are
always equal in magnitude but opposite in direction. Second, these forces are acting on different bodies or
systems: A’s force acts on B and B’s force acts on A. In other words, the two forces are distinct forces that do not
act on the same body. Thus, they do not cancel each other.

For the situation shown in Figure 5.6, the third law indicates that because the chair is pushing upward on the
boy with force 6, he is pushing downward on the chair with force —é. Similarly, he is pushing downward with
forces —ﬁ‘ and —T on the floor and table, respectively. Finally, since Earth pulls downward on the boy with
force W, he pulls upward on Earth with force —Ww. If that student were to angrily pound the table in frustration,
he would quickly learn the painful lesson (avoidable by studying Newton’s laws) that the table hits back just as
hard.

A person who is walking or running applies Newton’s third law instinctively. For example, the runner in Figure
5.18 pushes backward on the ground so that it pushes him forward.

F / Runner pushes back =F / Ground pushes forward
and down on ground and up on runner
(a) (b)

Figure 5.18 The runner experiences Newton’s third law. (a) A force is exerted by the runner on the ground. (b) The reaction force of the

ground on the runner pushes him forward. (credit "runner": modification of work by "Greenwich Photography"/Flickr)
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@ EXAMPLE 5.9

Forces on a Stationary Object

N
The package in Figure 5.19 is sitting on a scale. The forces on the package are S, which is due to the scale, and

-
—W, which is due to Earth’s gravitational field. The reaction forces that the package exerts are —S on the scale
and w on Earth. Because the package is not accelerating, application of the second law yields

- -
S-Ww=md=0,
0]

2 -
S=w.

Thus, the scale reading gives the magnitude of the package’s weight. However, the scale does not measure the

- -
weight of the package; it measures the force —S on its surface. If the system is accelerating, S and —w would
not be equal, as explained in Applications of Newton’s Laws.

MNewton's
first-law

par
Mewlon's Mewton's
third-iaw third-Taw
paur
_- = Newion's
T first-law
alr o
& g )
W
2 w
Earth '_ = -—-:——.: Earth

(a) (B)
Figure 5.19 (a) The forces on a package sitting on a scale, along with their reaction forces. The force W is the weight of the package (the
force due to Earth’s gravity) and § is the force of the scale on the package. (b) Isolation of the package-scale system and the package-Earth

system makes the action and reaction pairs clear.

@ EXAMPLE 5.10

Getting Up to Speed: Choosing the Correct System

A physics professor pushes a cart of demonstration equipment to a lecture hall (Figure 5.20). Her mass is 65.0
kg, the cart’s mass is 12.0 kg, and the equipment’s mass is 7.0 kg. Calculate the acceleration produced when
the professor exerts a backward force of 150 N on the floor. All forces opposing the motion, such as friction on




the cart’s wheels and air resistance, total 24.0 N.

System 1 Free-body diagrams

W N

it i — System 1
I:|5r|:|1
! N i’
. 1
I f Fprur
II e
F:l = | ; Eﬂ 7 -
—2 A 2\ O lﬁ,
M -
System 2

Figure 5.20 A professor pushes the cart with her demonstration equipment. The lengths of the arrows are proportional to the magnitudes
of the forces (except for F because it is too small to drawn to scale). System 1 is appropriate for this example, because it asks for the
acceleration of the entire group of objects. Only ﬁ'ﬂoor and Fare external forces acting on System 1 along the line of motion. All other forces
either cancel or act on the outside world. System 2 is chosen for the next example so that f‘pmf is an external force and enters into

Newton’s second law. The free-body diagrams, which serve as the basis for Newton’s second law, vary with the system chosen.

Strategy

Since they accelerate as a unit, we define the system to be the professor, cart, and equipment. This is System 1
in Figure 5.20. The professor pushes backward with a force Ff,o 0f 150 N. According to Newton’s third law, the
floor exerts a forward reaction force Fjjoor 0f 150 N on System 1. Because all motion is horizontal, we can
assume there is no net force in the vertical direction. Therefore, the problem is one-dimensional along the
horizontal direction. As noted, friction fopposes the motion and is thus in the opposite direction of Ffjor. We
do not include the forces Fpof Or Feart because these are internal forces, and we do not include Fyoor because it
acts on the floor, not on the system. There are no other significant forces acting on System 1. If the net external
force can be found from all this information, we can use Newton'’s second law to find the acceleration as
requested. See the free-body diagram in the figure.

Solution
Newton’s second law is given by

Fret

m
The net external force on System 1 is deduced from Figure 5.20 and the preceding discussion to be
Fret = Fripor — f = 150N -24.0N = 126 N.

The mass of System 1 is
m = (65.0+12.0 + 7.0) kg = 84 kg.

These values of Fyet and m produce an acceleration of

Fae 126N )
m  84kg °

a



Significance

None of the forces between components of System 1, such as between the professor’s hands and the cart,
contribute to the net external force because they are internal to System 1. Another way to look at this is that
forces between components of a system cancel because they are equal in magnitude and opposite in direction.
For example, the force exerted by the professor on the cart results in an equal and opposite force back on the
professor. In this case, both forces act on the same system and therefore cancel. Thus, internal forces (between
components of a system) cancel. Choosing System 1 was crucial to solving this problem.

@ EXAMPLE 5.11

Force on the Cart: Choosing a New System

Calculate the force the professor exerts on the cart in Figure 5.20, using data from the previous example if
needed.

Strategy

If we define the system of interest as the cart plus the equipment (System 2 in Figure 5.20), then the net
external force on System 2 is the force the professor exerts on the cart minus friction. The force she exerts on
the cart, Fprof, is an external force acting on System 2. Fy,of was internal to System 1, but it is external to

System 2 and thus enters Newton’s second law for this system.

Solution
Newton’s second law can be used to find Fyof. We start with

Fret
a= )
m

The magnitude of the net external force on System 2 is

Fret = Fprof - f
We solve for Fpof, the desired quantity:

Fprof = Fret + f.

The value of fis given, so we must calculate net Fper. That can be done because both the acceleration and the
mass of System 2 are known. Using Newton’s second law, we see that

Fret = ma,

where the mass of System 2 is 19.0 kg (m = 12.0 kg + 7.0 kg) and its acceleration was found tobe a = 1.5 m/s?

in the previous example. Thus,
Foet = ma = (19.0kg) (1.5m/s*) =29 N.

Now we can find the desired force:

F

prof = Fhret + f=29N+240N =53N.

Significance

This force is significantly less than the 150-N force the professor exerted backward on the floor. Not all of that
150-N force is transmitted to the cart; some of it accelerates the professor. The choice of a system is an
important analytical step both in solving problems and in thoroughly understanding the physics of the
situation (which are not necessarily the same things).

CHECK YOUR UNDERSTANDING 5.7

Two blocks are at rest and in contact on a frictionless surface as shown below, with m; = 2.0 kg, my = 6.0 kg,



and applied force 24 N. (a) Find the acceleration of the system of blocks. (b) Suppose that the blocks are later
separated. What force will give the second block, with the mass of 6.0 kg, the same acceleration as the system
of blocks?
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@ INTERACTIVE

View this video (https://openstax.org/l/21actionreact) to watch examples of action and reaction.

@ INTERACTIVE

View this video (https://openstax.org/1/21 NewtonsLaws) to watch examples of Newton’s laws and internal and
external forces.

5.6 Common Forces

Learning Objectives
By the end of this section, you will be able to:
e Define normal and tension forces
e Distinguish between real and fictitious forces
e Apply Newton’s laws of motion to solve problems involving a variety of forces

Forces are given many names, such as push, pull, thrust, and weight. Traditionally, forces have been grouped
into several categories and given names relating to their source, how they are transmitted, or their effects.
Several of these categories are discussed in this section, together with some interesting applications. Further
examples of forces are discussed later in this text.

A Catalog of Forces: Normal, Tension, and Other Examples of Forces

A catalog of forces will be useful for reference as we solve various problems involving force and motion. These
forces include normal force, tension, friction, and spring force.

Normal force

Weight (also called the force of gravity) is a pervasive force that acts at all times and must be counteracted to
keep an object from falling. You must support the weight of a heavy object by pushing up on it when you hold it
stationary, as illustrated in Figure 5.21(a). But how do inanimate objects like a table support the weight of a
mass placed on them, such as shown in Figure 5.21(b)? When the bag of dog food is placed on the table, the
table sags slightly under the load. This would be noticeable if the load were placed on a card table, but even a
sturdy oak table deforms when a force is applied to it. Unless an object is deformed beyond its limit, it will
exert a restoring force much like a deformed spring (or a trampoline or diving board). The greater the
deformation, the greater the restoring force. Thus, when the load is placed on the table, the table sags until the
restoring force becomes as large as the weight of the load. At this point, the net external force on the load is
zero. That is the situation when the load is stationary on the table. The table sags quickly and the sag is slight,
so we do not notice it. But it is similar to the sagging of a trampoline when you climb onto it.


https://openstax.org/l/21actionreact
https://openstax.org/l/21NewtonsLaws
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Figure 5.21 (a) The person holding the bag of dog food must supply an upward force i:‘hand equal in magnitude and opposite in direction
to the weight of the food W so that it doesn’t drop to the ground. (b) The card table sags when the dog food is placed on it, much like a stiff

N
trampoline. Elastic restoring forces in the table grow as it sags until they supply a force N equal in magnitude and opposite in direction to
the weight of the load.

We must conclude that whatever supports a load, be it animate or not, must supply an upward force equal to
the weight of the load, as we assumed in a few of the previous examples. If the force supporting the weight of
an object, or a load, is perpendicular to the surface of contact between the load and its support, this force is

=

defined as a normal force and here is given by the symbol N. (This is not the newton unit for force, or N.) The
word normal means perpendicular to a surface. This means that the normal force experienced by an object
resting on a horizontal surface can be expressed in vector form as follows:

N = —mg. 5.11
In scalar form, this becomes
N = mg. 5.12

The normal force can be less than the object’s weight if the object is on an incline.

@ EXAMPLE 5.12

Weight on an Incline

Consider the skier on the slope in Figure 5.22. Her mass including equipment is 60.0 kg. (a) What is her
acceleration if friction is negligible? (b) What is her acceleration if friction is 45.0 N?



Free-body diagram

N

N

- f-.-'
P 325-'

Figure 5.22 Since the acceleration is parallel to the slope and acting down the slope, it is most convenient to project all forces onto a
coordinate system where one axis is parallel to the slope and the other is perpendicular to it (axes shown to the left of the skier). 1_\3 is
perpendicular to the slope and fis parallel to the slope, but W has components along both axes, namely, wy, and wy. Here, W has a
squiggly line to show that it has been replaced by these components. The force l_\3 is equal in magnitude to wy, so there is no acceleration

perpendicular to the slope, but fis less than wy, so there is a downslope acceleration (along the axis parallel to the slope).

Strategy

This is a two-dimensional problem, since not all forces on the skier (the system of interest) are parallel. The
approach we have used in two-dimensional kinematics also works well here. Choose a convenient coordinate
system and project the vectors onto its axes, creating two one-dimensional problems to solve. The most
convenient coordinate system for motion on an incline is one that has one coordinate parallel to the slope and
one perpendicular to the slope. (Motions along mutually perpendicular axes are independent.) We use xand y
for the parallel and perpendicular directions, respectively. This choice of axes simplifies this type of problem,
because there is no motion perpendicular to the slope and the acceleration is downslope. Regarding the forces,
friction is drawn in opposition to motion (friction always opposes forward motion) and is always parallel to the
slope, wy is drawn parallel to the slope and downslope (it causes the motion of the skier down the slope), and
wy is drawn as the component of weight perpendicular to the slope. Then, we can consider the separate
problems of forces parallel to the slope and forces perpendicular to the slope.

Solution
The magnitude of the component of weight parallel to the slope is
Wy = w sin 25° = mg sin 25°,
and the magnitude of the component of the weight perpendicular to the slope is
wy = w cos 25° = mg cos 25°.
a. Neglect friction. Since the acceleration is parallel to the slope, we need only consider forces parallel to the
slope. (Forces perpendicular to the slope add to zero, since there is no acceleration in that direction.) The

forces parallel to the slope are the component of the skier’s weight parallel to slope wy and friction f. Using
Newton’s second law, with subscripts to denote quantities parallel to the slope,

_ Fhet x
X =
m

where Fpet x = Wy — mg sin 25°, assuming no friction for this part. Therefore,



F in 25° .
ay = —Mebx = DEERD = gsin25°

(9.80 m/s?) (0.4226) = 4.14 m/s?

is the acceleration.

b. Include friction. We have a given value for friction, and we know its direction is parallel to the slope and it
opposes motion between surfaces in contact. So the net external force is

Fretx = wx — f.
Substituting this into Newton’s second law, ay = Fpet x/m, gives

_ Fretx  wx—f  mgsin25°—f
T m T om m '

We substitute known values to obtain

(60.0kg) (9.80 m/s?) (0.4226) — 45.0N
B 60.0 kg ‘

ax

This gives us
ay =339 m/s?,
which is the acceleration parallel to the incline when there is 45.0 N of opposing friction.

Significance

Since friction always opposes motion between surfaces, the acceleration is smaller when there is friction than
when there is none. It is a general result that if friction on an incline is negligible, then the acceleration down
the incline is a = g sin 0, regardless of mass. As discussed previously, all objects fall with the same acceleration
in the absence of air resistance. Similarly, all objects, regardless of mass, slide down a frictionless incline with
the same acceleration (if the angle is the same).

When an object rests on an incline that makes an angle 6 with the horizontal, the force of gravity acting on the
object is divided into two components: a force acting perpendicular to the plane, wy, and a force acting parallel
-
to the plane, wy (Figure 5.23). The normal force N is typically equal in magnitude and opposite in direction to
the perpendicular component of the weight wy,. The force acting parallel to the plane, wy, causes the object to
accelerate down the incline.
y \
\ %

w, = wsin(lf) = mg sin{t!)
w, = w cos{ll) = mg cos{f)

2

A
-0\

Figure 5.23 An object rests on an incline that makes an angle € with the horizontal.

Be careful when resolving the weight of the object into components. If the incline is at an angle 6 to the
horizontal, then the magnitudes of the weight components are

wx = wsin @ = mgsin 6



and

wy = wcos § = mgcos 0.

We use the second equation to write the normal force experienced by an object resting on an inclined plane:

N = mgcos 6. 5.13

Instead of memorizing these equations, it is helpful to be able to determine them from reason. To do this, we
draw the right angle formed by the three weight vectors. The angle 8 of the incline is the same as the angle
formed between wand w,. Knowing this property, we can use trigonometry to determine the magnitude of the
weight components:

w
cos O = - Wy =wcosf =mgcos
. w . .
sinf = Tx Wy = w sin @ = mg sin 6.

CHECK YOUR UNDERSTANDING 5.8

A force of 1150 N acts parallel to a ramp to push a 250-kg gun safe into a moving van. The ramp is frictionless
and inclined at 17°. (a) What is the acceleration of the safe up the ramp? (b) If we consider friction in this
problem, with a friction force of 120 N, what is the acceleration of the safe?

Tension

A tension is a force along the length of a medium; in particular, it is a pulling force that acts along a stretched
flexible connector, such as a rope or cable. The word “tension” comes from a Latin word meaning “to stretch.”
Not coincidentally, the flexible cords that carry muscle forces to other parts of the body are called tendons.

Any flexible connector, such as a string, rope, chain, wire, or cable, can only exert a pull parallel to its length;
thus, a force carried by a flexible connector is a tension with a direction parallel to the connector. Tension is a
pull in a connector. Consider the phrase: “You can’t push a rope.” Instead, tension force pulls outward along the
two ends of a rope.

Consider a person holding a mass on a rope, as shown in Figure 5.24. If the 5.00-kg mass in the figure is
stationary, then its acceleration is zero and the net force is zero. The only external forces acting on the mass
are its weight and the tension supplied by the rope. Thus,

Fne[ZT—LU=0,

where Tand w are the magnitudes of the tension and weight, respectively, and their signs indicate direction,
with up being positive. As we proved using Newton’s second law, the tension equals the weight of the
supported mass:

T=w=mg. 5.14
Thus, for a 5.00-kg mass (neglecting the mass of the rope), we see that
T =mg = (5.00kg) (9.80m/s*) = 49.0N.

If we cut the rope and insert a spring, the spring would extend a length corresponding to a force of 49.0 N,
providing a direct observation and measure of the tension force in the rope.
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Figure 5.24 When a perfectly flexible connector (one requiring no force to bend it) such as this rope transmits a force "1)' that force must
be parallel to the length of the rope, as shown. By Newton’s third law, the rope pulls with equal force but in opposite directions on the hand
and the supported mass (neglecting the weight of the rope). The rope is the medium that carries the equal and opposite forces between the
two objects. The tension anywhere in the rope between the hand and the mass is equal. Once you have determined the tension in one

location, you have determined the tension at all locations along the rope.

Flexible connectors are often used to transmit forces around corners, such as in a hospital traction system, a
tendon, or a bicycle brake cable. If there is no friction, the tension transmission is undiminished; only its
direction changes, and it is always parallel to the flexible connector, as shown in Figure 5.25.

Exlensor muscles Extensor tendans

Flexor tendons

(@ (b)
Figure 5.25 (a) Tendons in the finger carry force Tfrom the muscles to other parts of the finger, usually changing the force’s direction but
not its magnitude (the tendons are relatively friction free). (b) The brake cable on a bicycle carries the tension Tfrom the brake lever on the

handlebars to the brake mechanism. Again, the direction but not the magnitude of Tis changed.

@ EXAMPLE 5.13

What Is the Tension in a Tightrope?
Calculate the tension in the wire supporting the 70.0-kg tightrope walker shown in Figure 5.26.




|
L

Figure 5.26 The weight of a tightrope walker causes a wire to sag by 5.0°. The system of interest is the point in the wire at which the

tightrope walker is standing.

Strategy

As you can see in Figure 5.26, the wire is bent under the person’s weight. Thus, the tension on either side of the
person has an upward component that can support his weight. As usual, forces are vectors represented
pictorially by arrows that have the same direction as the forces and lengths proportional to their magnitudes.
The system is the tightrope walker, and the only external forces acting on him are his weight w and the two
tensions 'fL (left tension) and T‘R (right tension). It is reasonable to neglect the weight of the wire. The net
external force is zero, because the system is static. We can use trigonometry to find the tensions. One
conclusion is possible at the outset—we can see from Figure 5.26(b) that the magnitudes of the tensions 71, and
Tr must be equal. We know this because there is no horizontal acceleration in the rope and the only forces
acting to the left and right are 71, and TR . Thus, the magnitude of those horizontal components of the forces
must be equal so that they cancel each other out.

Whenever we have two-dimensional vector problems in which no two vectors are parallel, the easiest method
of solution is to pick a convenient coordinate system and project the vectors onto its axes. In this case, the best
coordinate system has one horizontal axis (x) and one vertical axis (y).

Solution

First, we need to resolve the tension vectors into their horizontal and vertical components. It helps to look at a
new free-body diagram showing all horizontal and vertical components of each force acting on the system

(Figure 5.27).

T 5.0° :
;I:U, = W Free-body diagram
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Figure 5.27 When the vectors are projected onto vertical and horizontal axes, their components along these axes must add to zero, since

the tightrope walker is stationary. The small angle results in Tbeing much greater than w.

Consider the horizontal components of the forces (denoted with a subscript x):

Fhetx = TRx - TLx'



The net external horizontal force Fner x = 0, since the person is stationary. Thus,

Fretx = 0=TRx_TLx
Tix = Tgx.

Now observe Figure 5.27. You can use trigonometry to determine the magnitude of 71, and TR :

T

cos5.0° = TLLX Tix = Ty, cos 5.0°
T

cos5.0° = 7{:‘, Tryx = Trcos 5.0°.

Equating Tiyand Try:
T1,c0s 5.0° = Trcos 5.0°.
Thus,
Iy =1Tr =T,

as predicted. Now, considering the vertical components (denoted by a subscript y), we can solve for T. Again,
since the person is stationary, Newton’s second law implies that Fye; , = 0. Thus, as illustrated in the free-body
diagram,

Fnety:TLy+TRy_w:0.

We can use trigonometry to determine the relationships among 71y, Try, and T. As we determined from the
analysis in the horizontal direction, Ty, = Tr =T

T,

sin5.0° = T—Ly Ti,y = Ty sin5.0° = T'sin 5.0°
Ty
sin5.0° = TiRy Tk, = Trsin 5.0° = T sin 5.0°.

Now we can substitute the vales for Ty y and TRy, into the net force equation in the vertical direction:

Fnety = TLy+TRy—LU=0
Fhety = Tsin5.0°+Tsin5.0°—w =0
2T sin5.0°—-w = 0
2Tsin5.0° = w
and
T = . w = -mg bl
2sin 5.0° 2sin 5.0°
SO
(70.0kg) (9.80 m/s?)
- 2(0.0872) ’
and the tension is
T =3930 N.

Significance

The vertical tension in the wire acts as a force that supports the weight of the tightrope walker. The tension is
almost six times the 686-N weight of the tightrope walker. Since the wire is nearly horizontal, the vertical
component of its tension is only a fraction of the tension in the wire. The large horizontal components are in
opposite directions and cancel, so most of the tension in the wire is not used to support the weight of the



tightrope walker.

If we wish to create a large tension, all we have to do is exert a force perpendicular to a taut flexible connector,
as illustrated in Figure 5.26. As we saw in Example 5.13, the weight of the tightrope walker acts as a force
perpendicular to the rope. We saw that the tension in the rope is related to the weight of the tightrope walker in
the following way:
w
T=——.
2 sin 0

We can extend this expression to describe the tension T created when a perpendicular force (F| ) is exerted at
the middle of a flexible connector:

F|
T = .
2sin @

The angle between the horizontal and the bent connector is represented by 6. In this case, Tbecomes large as 6
approaches zero. Even the relatively small weight of any flexible connector will cause it to sag, since an infinite
tension would result if it were horizontal (i.e., # = 0 and sin § = 0). For example, Figure 5.28 shows a situation
where we wish to pull a car out of the mud when no tow truck is available. Each time the car moves forward,

and

the chain is tightened to keep it as straight as possible. The tension in the chain is given by T = 5 S$ 5>
since 0 is small, Tis large. This situation is analogous to the tightrope walker, except that the tensions shown
here are those transmitted to the car and the tree rather than those acting at the point where F| is applied.

Figure 5.28 We can create a large tension in the chain—and potentially a big mess—by pushing on it perpendicular to its length, as shown.

) CHECK YOUR UNDERSTANDING 5.9

One end of a 3.0-m rope is tied to a tree; the other end is tied to a car stuck in the mud. The motorist pulls
sideways on the midpoint of the rope, displacing it a distance of 0.25 m. If he exerts a force of 200.0 N under
these conditions, determine the force exerted on the car.

In Applications of Newton’s Laws, we extend the discussion on tension in a cable to include cases in which the
angles shown are not equal.

Friction

Friction is a resistive force opposing motion or its tendency. Imagine an object at rest on a horizontal surface.
The net force acting on the object must be zero, leading to equality of the weight and the normal force, which
act in opposite directions. If the surface is tilted, the normal force balances the component of the weight
perpendicular to the surface. If the object does not slide downward, the component of the weight parallel to the
inclined plane is balanced by friction. Friction is discussed in greater detail in the next chapter.

Spring force

A spring is a special medium with a specific atomic structure that has the ability to restore its shape, if
deformed. To restore its shape, a spring exerts a restoring force that is proportional to and in the opposite
direction in which it is stretched or compressed. This is the statement of a law known as Hooke’s law, which
has the mathematical form

F =i

The constant of proportionality k is a measure of the spring’s stiffness. The line of action of this force is parallel



to the spring axis, and the sense of the force is in the opposite direction of the displacement vector (Figure
5.29). The displacement must be measured from the relaxed position; x = 0 when the spring is relaxed.
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Figure 5.29 A spring exerts its force proportional to a displacement, whether it is compressed or stretched. (a) The spring is in a relaxed
position and exerts no force on the block. (b) The spring is compressed by displacement Ai'l of the object and exerts restoring force

—kAX . (c) The spring is stretched by displacement AX, of the object and exerts restoring force —kAX,.

Real Forces and Inertial Frames

There is another distinction among forces: Some forces are real, whereas others are not. Real forces have some
physical origin, such as a gravitational pull. In contrast, fictitious forces arise simply because an observer is in
an accelerating or noninertial frame of reference, such as one that rotates (like a merry-go-round) or
undergoes linear acceleration (like a car slowing down). For example, if a satellite is heading due north above
Earth’s Northern Hemisphere, then to an observer on Earth, it will appear to experience a force to the west that
has no physical origin. Instead, Earth is rotating toward the east and moves east under the satellite. In Earth’s
frame, this looks like a westward force on the satellite, or it can be interpreted as a violation of Newton’s first
law (the law of inertia). We can identify a fictitious force by asking the question, “What is the reaction force?” If
we cannot name the reaction force, then the force we are considering is fictitious. In the example of the
satellite, the reaction force would have to be an eastward force on Earth. Recall that an inertial frame of
reference is one in which all forces are real and, equivalently, one in which Newton’s laws have the simple
forms given in this chapter.

Earth’s rotation is slow enough that Earth is nearly an inertial frame. You ordinarily must perform precise
experiments to observe fictitious forces and the slight departures from Newton’s laws, such as the effect just
described. On a large scale, such as for the rotation of weather systems and ocean currents, the effects can be

easily observed (Figure 5.30).



Figure 5.30 Hurricane Fran is shown heading toward the southeastern coast of the United States in September 1996. Notice the
characteristic “eye” shape of the hurricane. This is a result of the Coriolis effect, which is the deflection of objects (in this case, air) when
considered in a rotating frame of reference, like the spin of Earth. This hurricane shows a counter-clockwise rotation because it is a low

pressure storm. (credit "runner": modification of work by "Greenwich Photography"/Flickr)

The crucial factor in determining whether a frame of reference is inertial is whether it accelerates or rotates
relative to a known inertial frame. Unless stated otherwise, all phenomena discussed in this text are in inertial
frames.

The forces discussed in this section are real forces, but they are not the only real forces. Lift and thrust, for
example, are more specialized real forces. In the long list of forces, are some more basic than others? Are some
different manifestations of the same underlying force? The answer to both questions is yes, as you will see in
the treatment of modern physics later in the text.

@ INTERACTIVE

Explore forces and motion in this interactive simulation (https://openstax.org/l/21ramp) as you push
household objects up and down a ramp. Lower and raise the ramp to see how the angle of inclination affects
the parallel forces. Graphs show forces, energy, and work.

@ INTERACTIVE

Stretch and compress springs in this activity (https://openstax.org/l/21hookeslaw) to explore the relationships
among force, spring constant, and displacement. Investigate what happens when two springs are connected in
series and in parallel.

5.7 Drawing Free-Body Diagrams

Learning Objectives
By the end of this section, you will be able to:
e Explain the rules for drawing a free-body diagram
e Construct free-body diagrams for different situations

The first step in describing and analyzing most phenomena in physics involves the careful drawing of a free-
body diagram. Free-body diagrams have been used in examples throughout this chapter. Remember that a
free-body diagram must only include the external forces acting on the body of interest. Once we have drawn an
accurate free-body diagram, we can apply Newton’s first law if the body is in equilibrium (balanced forces; that
is, Fhet = 0) or Newton’s second law if the body is accelerating (unbalanced force; that is, Fpet # 0).

In Forces, we gave a brief problem-solving strategy to help you understand free-body diagrams. Here, we add


https://openstax.org/l/21ramp
https://openstax.org/l/21hookeslaw

some details to the strategy that will help you in constructing these diagrams.

@ PROBLEM-SOLVING STRATEGY

Constructing Free-Body Diagrams
Observe the following rules when constructing a free-body diagram:

1. Draw the object under consideration; it does not have to be artistic. At first, you may want to draw a circle
around the object of interest to be sure you focus on labeling the forces acting on the object. If you are
treating the object as a particle (no size or shape and no rotation), represent the object as a point. We often
place this point at the origin of an xy-coordinate system.

2. Include all forces that act on the object, representing these forces as vectors. Consider the types of forces
described in Common Forces—normal force, friction, tension, and spring force—as well as weight and
applied force. Do not include the net force on the object. With the exception of gravity, all of the forces we
have discussed require direct contact with the object. However, forces that the object exerts on its
environment must not be included. We never include both forces of an action-reaction pair.

3. Convert the free-body diagram into a more detailed diagram showing the x- and y-components of a given
force (this is often helpful when solving a problem using Newton’s first or second law). In this case, place a
squiggly line through the original vector to show that it is no longer in play—it has been replaced by its x-
and y-components.

4. Ifthere are two or more objects, or bodies, in the problem, draw a separate free-body diagram for each
object.

Note: If there is acceleration, we do not directly include it in the free-body diagram; however, it may help to
indicate acceleration outside the free-body diagram. You can label it in a different color to indicate that it is
separate from the free-body diagram.

Let’s apply the problem-solving strategy in drawing a free-body diagram for a sled. In Figure 5.31(a), a sled is
pulled by force P at an angle of 30°. In part (b), we show a free-body diagram for this situation, as described by
steps 1 and 2 of the problem-solving strategy. In part (c), we show all forces in terms of their x- and
y-components, in keeping with step 3.

2 —-—

(@) (b) (c)

Figure 5.31 (a) A moving sled is shown as (b) a free-body diagram and (c) a free-body diagram with force components.

@ EXAMPLE 5.14

Two Blocks on an Inclined Plane
Construct the free-body diagram for object A and object B in Figure 5.32.

Strategy
We follow the four steps listed in the problem-solving strategy.

Solution

We start by creating a diagram for the first object of interest. In Figure 5.32(a), object A is isolated (circled) and
represented by a dot.



N[rj.ﬂ, ﬁﬂ' I.'.Ierghl of block A

e [}

= {ension

Ny, = normal force exerted by B on A

FB,\ friction force exerted by B on A
(a)

W, = weight of block B

Ng -
\ F / N,z = normal force exerted by Aon B
A8 ;

_."f"?u : e Ny = normal force exerted by the incline plane on B
L \ i ! f.a = friction force exerted by A on B

TB = friction force exerted by the incline plane on B

(b)
Figure 5.32 (a) The free-body diagram for isolated object A. (b) The free-body diagram for isolated object B. Comparing the two drawings,
we see that friction acts in the opposite direction in the two figures. Because object A experiences a force that tends to pull it to the right,
friction must act to the left. Because object B experiences a component of its weight that pulls it to the left, down the incline, the friction

force must oppose it and act up the ramp. Friction always acts opposite the intended direction of motion.

We now include any force that acts on the body. Here, no applied force is present. The weight of the object acts
as a force pointing vertically downward, and the presence of the cord indicates a force of tension pointing away
from the object. Object A has one interface and hence experiences a normal force, directed away from the
interface. The source of this force is object B, and this normal force is labeled accordingly. Since object B has a
tendency to slide down, object A has a tendency to slide up with respect to the interface, so the friction fga is
directed downward parallel to the inclined plane.

As noted in step 4 of the problem-solving strategy, we then construct the free-body diagram in Figure 5.32(b)
using the same approach. Object B experiences two normal forces and two friction forces due to the presence
of two contact surfaces. The interface with the inclined plane exerts external forces of Ng and fg, and the
interface with object B exerts the normal force Nag and friction fag; Nag is directed away from object B, and
fAB is opposing the tendency of the relative motion of object B with respect to object A.

Significance

The object under consideration in each part of this problem was circled in gray. When you are first learning
how to draw free-body diagrams, you will find it helpful to circle the object before deciding what forces are
acting on that particular object. This focuses your attention, preventing you from considering forces that are
not acting on the body.

@ EXAMPLE 5.15

Two Blocks in Contact
A force is applied to two blocks in contact, as shown.

Strategy

Draw a free-body diagram for each block. Be sure to consider Newton’s third law at the interface where the two
blocks touch.
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5
_-

Solution

Significance

Y

-> -
Ay is the action force of block 2 on block 1. A5 is the reaction force of block 1 on block 2. We use these free-
body diagrams in Applications of Newton’s Laws.

@ EXAMPLE 5.16

Block on the Table (Coupled Blocks)

A Dblock rests on the table, as shown. A light rope is attached to it and runs over a pulley. The other end of the
rope is attached to a second block. The two blocks are said to be coupled. Block m; exerts a force due to its
weight, which causes the system (two blocks and a string) to accelerate.

Strategy

We assume that the string has no mass so that we do not have to consider it as a separate object. Draw a free-

body diagram for each block.

—i

Access for free at openstax.org.




5.7 e Drawing Free-Body Diagrams

Solution

i g

Significance

Each block accelerates (notice the labels shown for 31 and 32); however, assuming the string remains taut, the
. . - - . .

magnitudes of acceleration are equal. Thus, we have |a; | = |a;|. If we were to continue solving the problem,

we could simply call the acceleration a. Also, we use two free-body diagrams because we are usually finding

tension T, which may require us to use a system of two equations in this type of problem. The tension is the

same on both m; and mj.

) CHECK YOUR UNDERSTANDING 5.10

(a) Draw the free-body diagram for the situation shown. (b) Redraw it showing components; use x-axes parallel
to the two ramps.

@ INTERACTIVE

View this simulation (https://openstax.org/1/21forcemotion) to predict, qualitatively, how an external force will

affect the speed and direction of an object’s motion. Explain the effects with the help of a free-body diagram.
Use free-body diagrams to draw position, velocity, acceleration, and force graphs, and vice versa. Explain how
the graphs relate to one another. Given a scenario or a graph, sketch all four graphs.
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CHAPTER REVIEW
Key Terms

dynamics study of how forces affect the motion of
objects and systems

external force force acting on an object or system
that originates outside of the object or system

force push or pull on an object with a specific
magnitude and direction; can be represented by
vectors or expressed as a multiple of a standard
force

free fall situation in which the only force acting on
an object is gravity

free-body diagram sketch showing all external
forces acting on an object or system; the system is
represented by a single isolated point, and the
forces are represented by vectors extending
outward from that point

Hooke’s law in a spring, a restoring force
proportional to and in the opposite direction of
the imposed displacement

inertia ability of an object to resist changes in its
motion

inertial reference frame reference frame moving
at constant velocity relative to an inertial frame is
also inertial; a reference frame accelerating
relative to an inertial frame is not inertial

law of inertia see Newton’s first law of motion

net external force vector sum of all external forces
acting on an object or system; causes a mass to

Key Equations
Net external force

Newton’s first law

-
Newton’s second law, vector form Fret =
Newton’s second law, scalar form Fhet = ma
-
Newton’s second law, component form Fy
, = dp

Newton’s second law, momentum form  Fye = =
Definition of weight, vector form W= mﬁ
Definition of weight, scalar form w=mg

N

Newton’s third law

accelerate

newton SI unit of force; 1 N is the force needed to
accelerate an object with a mass of 1 kg at a rate
of 1 m/s?

Newton’s first law of motion body at rest remains
at rest or, if in motion, remains in motion at
constant velocity unless acted on by a net
external force; also known as the law of inertia

Newton’s second law of motion acceleration of a
system is directly proportional to and in the same
direction as the net external force acting on the
system and is inversely proportional to its mass

Newton’s third law of motion whenever one body
exerts a force on a second body, the first body
experiences a force that is equal in magnitude
and opposite in direction to the force that it exerts

normal force force supporting the weight of an
object, or a load, that is perpendicular to the
surface of contact between the load and its
support; the surface applies this force to an object
to support the weight of the object

tension pulling force that acts along a stretched
flexible connector, such as a rope or cable

thrust reaction force that pushes a body forward in
response to a backward force

weight force W due to gravity acting on an object of
mass m

Foo= Y = Fy 4+ 4

- > -
v = constant when Fpet = ON

3 F =i

- -
= may, ZFy = mﬁy, and ZFZ = ma,.



Normal force on an object resting on a > 5

. N=-mg
horizontal surface, vector form
Normal force on an object resting on a

. N = mg
horizontal surface, scalar form
Normal force on an object resting on an
o N = mgcos 6
inclined plane, scalar form
Tension in a cable supporting an object

pp g ] T=w=mg

of mass m at rest, scalar form

Summary

5.1 Forces

Dynamics is the study of how forces affect the
motion of objects, whereas kinematics simply
describes the way objects move.

Force is a push or pull that can be defined in
terms of various standards, and it is a vector
that has both magnitude and direction.
External forces are any outside forces that act
on a body. A free-body diagram is a drawing of
all external forces acting on a body.

The SI unit of force is the newton (N).

5.2 Newton's First Law

According to Newton’s first law, there must be a
cause for any change in velocity (a change in
either magnitude or direction) to occur. This law
is also known as the law of inertia.

Friction is an external force that causes an
object to slow down.

Inertia is the tendency of an object to remain at
rest or remain in motion. Inertia is related to an
object’s mass.

If an object’s velocity relative to a given frame is
constant, then the frame is inertial. This means
that for an inertial reference frame, Newton’s
first law is valid.

Equilibrium is achieved when the forces on a
system are balanced.

A net force of zero means that an object is either
at rest or moving with constant velocity; that is,
it is not accelerating.

5.3 Newton's Second Law

An external force acts on a system from outside
the system, as opposed to internal forces, which
act between components within the system.

Newton’s second law of motion says that the net

external force on an object with a certain mass
is directly proportional to and in the same
direction as the acceleration of the object.
Newton’s second law can also describe net force
as the instantaneous rate of change of
momentum. Thus, a net external force causes
nonzero acceleration.

5.4 Mass and Weight

Mass is the quantity of matter in a substance.
The weight of an object is the net force on a
falling object, or its gravitational force. The
object experiences acceleration due to gravity.
Some upward resistance force from the air acts
on all falling objects on Earth, so they can never
truly be in free fall.

Careful distinctions must be made between free
fall and weightlessness using the definition of
weight as force due to gravity acting on an object
of a certain mass.

5.5 Newton’s Third Law

Newton’s third law of motion represents a basic
symmetry in nature, with an experienced force
equal in magnitude and opposite in direction to
an exerted force.

Two equal and opposite forces do not cancel
because they act on different systems.
Action-reaction pairs include a swimmer
pushing off a wall, helicopters creating lift by
pushing air down, and an octopus propelling
itself forward by ejecting water from its body.
Rockets, airplanes, and cars are pushed forward
by a thrust reaction force.

Choosing a system is an important analytical
step in understanding the physics of a problem
and solving it.




5.6 Common Forces

When an object rests on a surface, the surface
applies a force to the object that supports the
weight of the object. This supporting force acts
perpendicular to and away from the surface. It is
called a normal force.

When an object rests on a nonaccelerating
horizontal surface, the magnitude of the normal
force is equal to the weight of the object.

When an object rests on an inclined plane that
makes an angle 8 with the horizontal surface,
the weight of the object can be resolved into
components that act perpendicular and parallel
to the surface of the plane.

The pulling force that acts along a stretched
flexible connector, such as a rope or cable, is
called tension. When a rope supports the weight
of an object at rest, the tension in the rope is
equal to the weight of the object. If the object is
accelerating, tension is greater than weight, and
if it is accelerating opposite to the motion,
tension is less than weight.

The force of friction is a force experienced by a
moving object (or an object that has a tendency

Conceptual Questions

5.1 Forces

1. What properties do forces have that allow us to

classify them as vectors?

5.2 Newton's First Law

2.

Taking a frame attached to Earth as inertial,
which of the following objects cannot have
inertial frames attached to them, and which are
inertial reference frames?

(a) A car moving at constant velocity

(b) A car that is accelerating

(c) An elevator in free fall

(d) A space capsule orbiting Earth

(e) An elevator descending uniformly

. Awoman was transporting an open box of

cupcakes to a school party. The car in front of her
stopped suddenly; she applied her brakes
immediately. She was wearing her seat belt and
suffered no physical harm (just a great deal of
embarrassment), but the cupcakes flew into the
dashboard and became “smushcakes.” Explain
what happened.

to move) parallel to the interface opposing the
motion (or its tendency).

The force developed in a spring obeys Hooke’s
law, according to which its magnitude is
proportional to the displacement and has a
sense in the opposite direction of the
displacement.

Real forces have a physical origin, whereas
fictitious forces occur because the observer is in
an accelerating or noninertial frame of
reference.

5.7 Drawing Free-Body Diagrams

To draw a free-body diagram, we draw the
object of interest, draw all forces acting on that
object, and resolve all force vectors into x- and
y-components. We must draw a separate free-
body diagram for each object in the problem.

A free-body diagram is a useful means of
describing and analyzing all the forces that act
on a body to determine equilibrium according to
Newton’s first law or acceleration according to
Newton’s second law.

5.3 Newton's Second Law

4. Why can we neglect forces such as those holding

5.

a body together when we apply Newton’s second
law?

A rock is thrown straight up. At the top of the
trajectory, the velocity is momentarily zero. Does
this imply that the force acting on the object is
zero? Explain your answer.

5.4 Mass and Weight

6. What is the relationship between weight and

8.

mass? Which is an intrinsic, unchanging
property of a body?

. How much does a 70-kg astronaut weight in

space, far from any celestial body? What is her
mass at this location?

Which of the following statements is accurate?
(a) Mass and weight are the same thing expressed
in different units.

(b) If an object has no weight, it must have no
mass.

(c) If the weight of an object varies, so must the
mass.

(d) Mass and inertia are different concepts.

(e) Weight is always proportional to mass.



9. When you stand on Earth, your feet push against
it with a force equal to your weight. Why doesn’t
Earth accelerate away from you?

10. How would you give the value of g in vector

form?

5.5 Newton’s Third Law

11. Identify the action and reaction forces in the
following situations: (a) Earth attracts the Moon,
(b) a boy kicks a football, (c) a rocket accelerates
upward, (d) a car accelerates forward, (e) a high
jumper leaps, and (f) a bullet is shot from a gun.

12. Suppose that you are holding a cup of coffee in
your hand. Identify all forces on the cup and the
reaction to each force.

13. (a) Why does an ordinary rifle recoil (kick
backward) when fired? (b) The barrel of a
recoilless rifle is open at both ends. Describe
how Newton’s third law applies when one is
fired. (c) Can you safely stand close behind one
when it is fired?

Problems
5.1 Forces

19. Two ropes are attached to a tree, and forces of
F; =2.0i +4.0j Nand F, = 3.0} + 6.0] N are
applied. The forces are coplanar (in the same
plane). (a) What is the resultant (net force) of
these two force vectors? (b) Find the magnitude
and direction of this net force.

20. Atelephone pole has three cables pulling as
shown from above, with

- A A - A
F; = (300.0i + 500.0j ), ¥, = —200.0i, and

ﬁg = —800.0‘/]'\. (a) Find the net force on the
telephone pole in component form. (b) Find the
magnitude and direction of this net force.

¥i =
Fy

1

Y5
21. Two teenagers are pulling on ropes attached to
a tree. The angle between the ropes is 30.0°.
David pulls with a force of 400.0 N and

5.6 Common Forces

14. Atableis placed on a rug. Then a book is placed
on the table. What does the floor exert a normal
force on?

15. A particle is moving to the right. (a) Can the
force on it be acting to the left? If yes, what
would happen? (b) Can that force be acting
downward? If yes, why?

5.7 Drawing Free-Body Diagrams

16. In completing the solution for a problem
involving forces, what do we do after
constructing the free-body diagram? That is,
what do we apply?

17. If abookislocated on a table, how many forces
should be shown in a free-body diagram of the
book? Describe them.

18. If the book in the previous question is in free
fall, how many forces should be shown in a free-
body diagram of the book? Describe them.

Stephanie pulls with a force of 300.0 N. (a) Find
the component form of the net force. (b) Find
the magnitude of the resultant (net) force on the
tree and the angle it makes with David’s rope.

5.2 Newton's First Law

~
0

22. Two forces off‘l =120 (1 — ./]\) N and

NG

po_ 1500 (3 _% : :

F, = W (1 - ) N act on an object. Find the
>

third force F'5 that is needed to balance the first

two forces.

23. While sliding a couch across a floor, Andrea and
Jennifer exert forces i':‘ A and ﬁ] on the couch.
Andrea’s force is due north with a magnitude of
130.0 N and Jennifer’s force is 32° east of north
with a magnitude of 180.0 N. (a) Find the net
force in component form. (b) Find the
magnitude and direction of the net force. (c) If
Andrea and Jennifer’s housemates, David and
Stephanie, disagree with the move and want to
prevent its relocation, with what combined
force f‘DS should they push so that the couch
does not move?

5.3 Newton's Second Law

24. Andrea, a 63.0-kg sprinter, starts a race with an
acceleration of 4.200 m/s2. What is the net




25.

26.

27.

28.

29.

30.

external force on her?

If the sprinter from the previous problem
accelerates at that rate for 20.00 m and then
maintains that velocity for the remainder of a
100.00-m dash, what will her time be for the
race?

A cleaner pushes a 4.50-kg laundry cart in such
a way that the net external force on it is 60.0 N.
Calculate the magnitude of his cart’s
acceleration.

Astronauts in orbit are apparently weightless.
This means that a clever method of measuring
the mass of astronauts is needed to monitor
their mass gains or losses, and adjust their diet.
One way to do this is to exert a known force on
an astronaut and measure the acceleration
produced. Suppose a net external force of 50.0
N is exerted, and an astronaut’s acceleration is
measured to be 0.893 m/s2. (a) Calculate her
mass. (b) By exerting a force on the astronaut,
the vehicle in which she orbits experiences an
equal and opposite force. Use this knowledge to
find an equation for the acceleration of the
system (astronaut and spaceship) that would be
measured by a nearby observer. (c) Discuss how
this would affect the measurement of the
astronaut’s acceleration. Propose a method by
which recoil of the vehicle is avoided.

In Figure 5.12, the net external force on the
24-kg mower is given as 51 N. If the force of
friction opposing the motion is 24 N, what force
F (in newtons) is the person exerting on the
mower? Suppose the mower is moving at 1.5 m/
s when the force Fis removed. How far will the
mower go before stopping?

The rocket sled shown below accelerates opposite to

the motion at a rate of 196 m/s2. What force is
necessary to produce this acceleration opposite to
the motion? Assume that the rockets are off. The
mass of the system is 2.10 X 103 kg.

—ay,

If the rocket sled shown in the previous problem
starts with only one rocket burning, what is the
magnitude of this acceleration? Assume that the
mass of the system is 2.10 X 103 kg, the thrust
Tis2.40 x 10% N, and the force of friction
opposing the motion is 650.0 N. (b) Why is the

31.

32.

33.

34.

35.

36.

37.

acceleration not one-fourth of what it is with all
rockets burning?

What is the acceleration opposite to the motion
of the rocket sled if it comes torestin 1.10 s
from a speed of 1000.0 km/h? (Such
acceleration opposite to the motion caused one
test subject to black out and have temporary
blindness.)

Suppose two children push horizontally, but in
exactly opposite directions, on a third child in a
wagon. The first child exerts a force of 75.0 N,
the second exerts a force of 90.0 N, friction is
12.0 N, and the mass of the third child plus
wagon is 23.0 kg. (a) What is the system of
interest if the acceleration of the child in the
wagon is to be calculated? (See the free-body
diagram.) (b) Calculate the acceleration. (c)
What would the acceleration be if friction were
15.0 N?
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A powerful motorcycle can produce an
acceleration of 3.50 m/s% while traveling at 90.0
km/h. At that speed, the forces resisting motion,
including friction and air resistance, total 400.0
N. (Air resistance is analogous to air friction. It
always opposes the motion of an object.) What is
the magnitude of the force that motorcycle
exerts backward on the ground to produce its
acceleration if the mass of the motorcycle with
rider is 245 kg?

A car with a mass of 1000.0 kg accelerates from
0t090.0 km/hin 10.0 s. (a) What is its
acceleration? (b) What is the net force on the
car?

The driver in the previous problem applies the
brakes when the car is moving at 90.0 km/h,
and the car comes to rest after traveling 40.0 m.
What is the net force on the car during its
acceleration opposite to the motion?

An 80.0-kg passenger in an SUV traveling at
1.00 x 10 km/h is wearing a seat belt. The
driver slams on the brakes and the SUV stops in
45.0 m. Find the force of the seat belt on the
passenger.

A particle of mass 2.0 kg is acted on by a single

force i{‘l = 18iN. (a) What is the particle’s



38.

39.

40.

acceleration? (b) If the particle starts at rest,
how far does it travel in the first 5.0 s?

Suppose that the particle of the previous
problem also experiences forces ﬁ‘z =—15iN
and ﬁ'3 = 6.05 N. What is its acceleration in this
case?

Find the acceleration of the body of mass 5.0 kg

shown below.
¥i

10.0i N

~2.0I N ]

—-4.0j N

x

In the following figure, the horizontal surface on
which this block slides is frictionless. If the two
forces acting on it each have magnitude

F =30.0Nand M = 10.0 kg, what is the
magnitude of the resulting acceleration of the
block? )

5.4 Mass and Weight

41.

42.

43.

44.

The weight of an astronaut plus his space suit
on the Moon is only 250 N. (a) How much does
the suited astronaut weigh on Earth? (b) What is
the mass on the Moon? On Earth?

Suppose the mass of a fully loaded module in
which astronauts take off from the Moon is

1.00 x 10* kg. The thrust of its engines is

3.00 x 10* N. (a) Calculate the module’s
magnitude of acceleration in a vertical takeoff
from the Moon. (b) Could it lift off from Earth? If
not, why not? If it could, calculate the
magnitude of its acceleration.

A rocket sled accelerates at a rate of 49.0 m/sZ.
Its passenger has a mass of 75.0 kg. (a)
Calculate the horizontal component of the force
the seat exerts against his body. Compare this
with his weight using a ratio. (b) Calculate the
direction and magnitude of the total force the
seat exerts against his body.

Repeat the previous problem for a situation in
which the rocket sled accelerates opposite to
the motion at a rate of 201 m/s2. In this
problem, the forces are exerted by the seat and

45.

46.

47.

48.

49.

50.

the seat belt.

A body of mass 2.00 kg is pushed straight
upward by a 25.0 N vertical force. What is its
acceleration?

A car weighing 12,500 N starts from rest and
accelerates to 83.0 km/h in 5.00 s. The friction
force is 1350 N. Find the applied force produced
by the engine.

A body with a mass of 10.0 kg is assumed to be
in Earth’s gravitational field with g = 9.80 m/s2.
What is the net force on the body if there are no
other external forces acting on the object?

A fireman has mass m; he hears the fire alarm
and slides down the pole with acceleration a
(which is less than gin magnitude). (a) Write an
equation giving the vertical force he must apply
to the pole. (b) If his mass is 90.0 kg and he
accelerates at 5.00 m/s?, what is the magnitude
of his applied force?

A baseball catcher is performing a stunt for a
television commercial. He will catch a baseball
(mass 145 g) dropped from a height of 60.0 m
above his glove. His glove stops the ball in
0.0100 s. What is the force exerted by his glove
on the ball?

When the Moon is directly overhead at sunset,
the force by Earth on the Moon, Fgy;, is
essentially at 90° to the force by the Sun on the
Moon, Fgy, as shown below. Given that

Fem = 1.98 x 1029 Nand

Fgm = 4.36 x 1020 N, all other forces on the
Moon are negligible, and the mass of the Moon
is 7.35 x 10?2 kg, determine the magnitude of
the Moon’s acceleration.

FEM

o =

Moon Fsm

5.5 Newton’s Third Law

51.

52.

(a) What net external force is exerted on a
1100.0-kg artillery shell fired from a battleship
if the shell is accelerated at 2.40 x 10* m/s2?
(b) What is the magnitude of the force exerted
on the ship by the artillery shell, and why?

A brave but inadequate rugby player is being
pushed backward by an opposing player who is
exerting a force of 800.0 N on him. The mass of
the losing player plus equipment is 90.0 kg, and
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he is accelerating backward at 1.20 m/s2. (a) tension.
What is the force of friction between the losing
player’s feet and the grass? (b) What force does
the winning player exert on the ground to move
forward if his mass plus equipment is 110.0 kg?
53. Ahistory book is lying on top of a physics book on a
desk, as shown below; a free-body diagram is also
shown. The history and physics books weigh 14 N D
and 18 N, respectively. Identify each force on each (s | -‘__' -
book with a double subscript notation (for instance, | B
the contact force of the history book pressing
against physics book can be described as if'Hp), and
determine the value of each of these forces,
explaining the process used.
4 56. Suppose the shinbone in the preceding image
/ was a femur in a traction setup for a broken
| bone, with pulleys and rope available. How
J ' might we be able to increase the force along the
femur using the same weight?
l T ' | 57. Two teams of nine members each engage in a
‘ | tug-of-war, pulling in opposite directions on a
| horizontal rope. Each of the first team’s
| members has an average mass of 68 kg and
History book Physics book exerts an average force of 1350 N horizontally
on the ground as they pull on the rope. Each of
5 the second team’s members has an average
dp mass of 73 kg and exerts an average force of
o 1365 N horizontally on the ground as they pull
Fon on the rope in the opposite direction. (a) What is
the magnitude of the acceleration of the two
-4 o teams, and which team wins? (b) What is the
g - i:'h tension in the section of rope between the
ah Fep ’ teams?
58. What force does a trampoline have to apply to
54. A truck collides with a car, and during the Jennifer, a 45.0-kg gymnast, to accelerate her
collision, the net force on each vehicle is straight up at 7.50 m/s2? The answer is
essentially the force exerted by the other. independent of the velocity of the gymnast—she
Suppose the mass of the car is 550 kg, the mass can be moving up or down or can be instantly
of the truck is 2200 kg, and the magnitude of stationary.
the truck’s acceleration is 10 m/s”. Find the 59. (a) Calculate the tension in a vertical strand of
magnitude of the car’s acceleration. spider web if a spider of mass 2.00 X 1075 kg
hangs motionless on it. (b) Calculate the tension
5.6 Common Forces in a horizontal strand of spider web if the same
55. Aleg is suspended in a traction system, as spider sits motionless in the middle of it much

like the tightrope walker in Figure 5.26. The
strand sags at an angle of 12° below the
horizontal. Compare this with the tension in the
vertical strand (find their ratio).

60. Suppose Kevin, a 60.0-kg gymnast, climbs a
rope. (@) What is the tension in the rope if he

shown below. (a) Which pulley in the figure is
used to calculate the force exerted on the foot?
(b) What is the tension in the rope? Here ’f‘ is
the tension, Vvleg is the weight of the leg, and w
is the weight of the load that provides the

Access for free at openstax.org.



61.

62.

63.

64.

65.

climbs at a constant speed? (b) What is the
tension in the rope if he accelerates upward at a
rate of 1.50 m/s2?

Show that, as explained in the text, a force F|
exerted on a flexible medium at its center and
perpendicular to its length (such as on the
tightrope wire in Figure 5.26) gives rise to a
tension of magnitude T = F| /2 sin (0).
Consider Figure 5.28. The driver attempts to get
the car out of the mud by exerting a
perpendicular force of 610.0 N, and the distance
she pushes in the middle of the rope is 1.00 m
while she stands 6.00 m away from the car on
the left and 6.00 m away from the tree on the
right. What is the tension Tin the rope, and how
do you find the answer?

A bird has a mass of 26 g and perches in the middle

of a stretched telephone line. (a) Show that the
tension in the line can be calculated using the

. _ mg
equation T = XY

the line is straight.

One end of a 30-m rope is tied to a tree; the
other end is tied to a car stuck in the mud. The
motorist pulls sideways on the midpoint of the
rope, displacing it a distance of 2 m. If he exerts
a force of 80 N under these conditions,
determine the force exerted on the car.
Consider the baby being weighed in the
following figure. (a) What is the mass of the
infant and basket if a scale reading of 55 N is
observed? (b) What is tension 7 in the cord
attaching the baby to the scale? (c) What is
tension 75 in the cord attaching the scale to the
ceiling, if the scale has a mass of 0.500 kg? (d)
Sketch the situation, indicating the system of
interest used to solve each part. The masses of
the cords are negligible.

. Determine the tension when
(b) & = 5° and (c) & = 0.5°. Assume that each half of
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66. What force must be applied to a 100.0-kg crate
on a frictionless plane inclined at 30° to cause
an acceleration of 2.0 m/s? up the plane?

LN

67. A 2.0-kgblock is on a perfectly smooth ramp
that makes an angle of 30° with the horizontal.
(a) What is the block’s acceleration down the
ramp and the force of the ramp on the block? (b)
What force applied upward along and parallel to
the ramp would allow the block to move with
constant velocity?

5.7 Drawing Free-Body Diagrams

68. A ball of mass mhangs at rest, suspended by a
string. (a) Sketch all forces. (b) Draw the free-
body diagram for the ball.

69. A car moves along a horizontal road. Draw a
free-body diagram; be sure to include the
friction of the road that opposes the forward
motion of the car.

70. Arunner pushes against the track, as shown. (a)
Provide a free-body diagram showing all the




71.

forces on the runner. (Hint: Place all forces at
the center of his body, and include his weight.)
(b) Give a revised diagram showing the
xy-component form.

(credit: modification of work by "Greenwich
Photography"/Flickr)

The traffic light hangs from the cables as shown.
Draw a free-body diagram on a coordinate plane

Additional Problems

72.

73.

74.

75.

Two small forces, i)‘l = —2.40i — 6.103 N and

ﬁ‘z =8.50i — 9.70?]'\ N, are exerted on a rogue
asteroid by a pair of space tractors. (a) Find the
net force. (b) What are the magnitude and
direction of the net force? (c) If the mass of the
asteroid is 125 kg, what acceleration does it
experience (in vector form)? (d) What are the
magnitude and direction of the acceleration?
Two forces of 25 and 45 N act on an object.
Their directions differ by 70°. The resulting
acceleration has magnitude of 10.0 m/s2. What
is the mass of the body?

A force of 1600 N acts parallel to a ramp to push
a 300-kg piano into a moving van. The ramp is
inclined at 20°. (a) What is the acceleration of
the piano up the ramp? (b) What is the velocity
of the piano when it reaches the top if the ramp
is 4.0 m long and the piano starts from rest?
Draw a free-body diagram of a diver who has
entered the water, moved downward, and is
acted on by an upward force due to the water
which balances the weight (that is, the diver is
suspended).

for this situation.

w= 200N

76. For a swimmer who has just jumped off a diving

board, assume air resistance is negligible. The
swimmer has a mass of 80.0 kg and jumps off a
board 10.0 m above the water. Three seconds
after entering the water, her downward motion
is stopped. What average upward force did the
water exert on her?

77. (a) Find an equation to determine the

magnitude of the net force required to stop a car
of mass m, given that the initial speed of the car
is vg and the stopping distance is x. (b) Find the
magnitude of the net force if the mass of the car
is 1050 kg, the initial speed is 40.0 km/h, and
the stopping distance is 25.0 m.

78. Asailboat has a mass of 1.50 x 103 kg and is

acted on by a force of 2.00 X 10 N toward the
east, while the wind acts behind the sails with a
force of 3.00 x 103 N in a direction 45° north of
east. Find the magnitude and direction of the
resulting acceleration.



79. Find the acceleration of the body of mass 10.0

80. Abody of mass 2.0 kg is moving along the x-axis

81.

82.

kg shown below.
i

10.0MN
200N
100N

x

with a speed of 3.0 m/s at the instant
represented below. (a) What is the acceleration
of the body? (b) What is the body’s velocity 10.0

s later? (c) What is its displacement after 10.0 s?
Yi

- =
Force Fp has twice the magnitude of force F 4 .
Find the direction in which the particle

accelerates in this figure.
¥i

A
Shown below is a body of mass 1.0 kg under the

influence of the forces i{‘A, ]?‘B, and mg. If the
body accelerates to the left at 20 m/sZ, what are
= =

F4 and Fp?

"1

83.

84.

85.

86.

87.
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A force acts on a car of mass m so that the speed
vof the car increases with position x as

v= kx2, where kis constant and all quantities
are in SI units. Find the force acting on the car
as a function of position.

A 7.0-N force parallel to an incline is applied to
a 1.0-kg crate. The ramp is tilted at 20° and is
frictionless. (a) What is the acceleration of the
crate? (b) If all other conditions are the same
but the ramp has a friction force of 1.9 N, what
is the acceleration?

Two boxes, A and B, are at rest. Box A is on level
ground, while box B rests on an inclined plane
tilted at angle 8 with the horizontal. (a) Write
expressions for the normal force acting on each
block. (b) Compare the two forces; that is, tell
which one is larger or whether they are equal in
magnitude. (c) If the angle of incline is 10°,
which force is greater?

A mass of 250.0 g is suspended from a spring
hanging vertically. The spring stretches 6.00
cm. How much will the spring stretch if the
suspended mass is 530.0 g?

As shown below, two identical springs, each
with the spring constant 20 N/m, support a
15.0-N weight. (a) What is the tension in spring
A? (b) What is the amount of stretch of spring A
from the rest position?
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88. Shown below is a 30.0-kg block resting on a
frictionless ramp inclined at 60° to the
horizontal. The block is held by a spring that is
stretched 5.0 cm. What is the force constant of

the spring? \
$/
S/

rd

Y
4 S

_:"\EU‘

89. In building a house, carpenters use nails from a
large box. The box is suspended from a spring
twice during the day to measure the usage of
nails. At the beginning of the day, the spring
stretches 50 cm. At the end of the day, the
spring stretches 30 cm. What fraction or
percentage of the nails have been used?

Access for free at openstax.org.

90.

91.

92.

A force is applied to a block to move it up a 30°
incline. The incline is frictionless. If F = 65.0 N
and M = 5.00 kg, what is the magnitude of the
acceleration of the block?

Two forces are applied to a 5.0-kg object, and it
accelerates at a rate of 2.0 m/s? in the positive
y-direction. If one of the forces acts in the
positive x-direction with magnitude 12.0 N, find
the magnitude of the other force.

The block on the right shown below has more
mass than the block on the left (my > my). Draw
free-body diagrams for each block.




Challenge Problems

93. If two tugboats pull on a disabled vessel, as shown  98.
here in an overhead view, the disabled vessel will be
pulled along the direction indicated by the result of
the exerted forces. (a) Draw a free-body diagram for

the vessel. Assume no friction or drag forces affect

The velocities of a 3.0-kg object att = 6.0 s and
t = 8.0sare (3.01 — 6.0j + 4.0k) m/s and
(—2.0’i\ + 4.0§) m/s, respectively. If the object is
moving at constant acceleration, what is the
force acting on it?

the vessel. (b) Did you include all forces in the 99. A 120-kg astronaut is riding in a rocket sled that
overhead view in your free-body diagram? Why or is sliding along an inclined plane. The sled has a
why not? horizontal component of acceleration of
5.0 m/s? and a downward component of
3.8 m/s2. Calculate the magnitude of the force
on the rider by the sled. (Hint: Remember that
gravitational acceleration must be considered.)
100. Two forces are acting on a 5.0-kg object that
moves with acceleration 2.0 m/s? in the
positive y-direction. If one of the forces acts in
the positive x-direction and has magnitude of
12 N, what is the magnitude of the other force?
101. Suppose that you are viewing a soccer game
from a helicopter above the playing field. Two
soccer players simultaneously kick a

94. A 10.0-kg object is initially moving east at 15.0 stationary soccer ball on the flat field; the
my/s. Then a force acts on it for 2.00 s, after soccer ball has mass 0.420 kg. The first player
whi(.:h it moves northwest. also a.t 15 ’O m/s kicks with force 162 N at 9.0° north of west. At

. T ' the same instant, the second player kicks with
What are the magnitude and direction of the force 215 N at 15° east of south. Find the
average force that acted on the object over the . Ca ~
2.00-s interval? acceleration of the ballin i and j form.

95. On June 25, 1983, shot-putter Udo Beyer of East 102. A 10.0-}<g mass hangs from a SP“ng that h.as
Germany threw the 7.26-kg shot 22.22 m, which the spring constant 535 N/m. Find the position
at that time was a world record. (a) If the shot of t}.1e. end of the spring awazy from its rest
was released at a height of 2.20 m with a position. (Use g =9.80 m/s. ) .
projection angle of 45.0°, what was its initial 103. A 0.0502-.kg pa%r of fuzzy dice is attached'to
velocity? (b) If while in Beyer’s hand the shot the rearview mirror of a car by a short string.
was accelerated uniformly over a distance of The car accelerates at constant rate, and th?
1.20 m. what was the net force on it? dice hang at an angle of 3.20° from the vertical

2. A body,of mass m moves in a horizontal because of the car’s acceleration. What is the
direction such that at time tits position is given magn}tude of the acceleration of the car? )
by x(1) = a 4 1+ b3 + ct. where a. b. and care 104. Atacircus, a donkey pulls on a sled carrying a
constants. (a) What is the acceleration of the Smal} clown ,W ith a force given by
body? (b) What is the time-dependent force 2.48i + 4‘33-] N. A horse pulls on t.he same
acting on the body? sled, aiding the hapless donkey, with a force of

97. Abody of mass m has initial velocity vg in the 6.56i +5.33j N. The mass of the sled is 575

positive x-direction. It is acted on by a constant
force Ffor time t until the velocity becomes
zero; the force continues to act on the body until
its velocity becomes —vg in the same amount of
time. Write an expression for the total distance
the body travels in terms of the variables
indicated.

kg. Using fand j\ form for the answer to each
problem, find (a) the net force on the sled
when the two animals act together, (b) the
acceleration of the sled, and (c) the velocity
after 6.50 s.




105. Hanging from the ceiling over a baby bed, well

out of baby’s reach, is a string with plastic
shapes, as shown here. The string is taut (there
is no slack), as shown by the straight
segments. Each plastic shape has the same
mass m, and they are equally spaced by a
distance d, as shown. The angles labeled 6
describe the angle formed by the end of the
string and the ceiling at each end. The center
length of sting is horizontal. The remaining
two segments each form an angle with the
horizontal, labeled ¢. Let T} be the tension in
the leftmost section of the string, T, be the
tension in the section adjacent to it, and 73 be
the tension in the horizontal segment. (a) Find
an equation for the tension in each section of
the string in terms of the variables m, g, and 6.
(b) Find the angle ¢ in terms of the angle 6. (c)
If & = 5.10°, what is the value of ¢? (d) Find the
distance x between the endpoints in terms of d

106.

107.

108.

109.

A bullet shot from a rifle has mass of 10.0 g
and travels to the right at 350 m/s. It strikes a
target, a large bag of sand, penetrating it a
distance of 34.0 cm. Find the magnitude and
direction of the retarding force that slows and
stops the bullet.

An object is acted on by three simultaneous
forces: f‘l = (—3.00§ + 2.003) N,

F, = (6.00f - 4.003) N, and

ﬁ3 = (2.00§ + 5.00:]'\) N. The object
experiences acceleration of 4.23 m/s2. (a) Find
the acceleration vector in terms of m. (b) Find
the mass of the object. (c) If the object begins
from rest, find its speed after 5.00 s. (d) Find
the components of the velocity of the object
after 5.00 s.

In a particle accelerator, a proton has mass
1.67 x 10727 kg and an initial speed of

2.00 x 10° m/s. It moves in a straight line,
and its speed increases t0 9.00 x 10° m/sina
distance of 10.0 cm. Assume that the
acceleration is constant. Find the magnitude of
the force exerted on the proton.

A drone is being directed across a frictionless
ice-covered lake. The mass of the drone is 1.50
kg, and its velocity is 3.00im/s. After 10.0 s, the
velocity is 9.001 + 4.003m/s. If a constant force
in the horizontal direction is causing this
change in motion, find (a) the components of
the force and (b) the magnitude of the force.



CHAPTER 6 _
Applications of Newton's Laws

Figure 6.1 Stock cars racing in the Grand National Divisional race at Iowa Speedway in May, 2015. Cars often
reach speeds of 200 mph (320 km/h). (credit: modification of work by Erik Schneider/U.S. Navy)

Chapter Outline

6.1 Solving Problems with Newton’s Laws

6.2 Friction

6.3 Centripetal Force

6.4 Drag Force and Terminal Speed

INTRODUCTION Car racing has grown in popularity in recent years. As each car moves in a curved path
around the turn, its wheels also spin rapidly. The wheels complete many revolutions while the car makes only
part of one (a circular arc). How can we describe the velocities, accelerations, and forces involved? What force
keeps a racecar from spinning out, hitting the wall bordering the track? What provides this force? Why is the
track banked? We answer all of these questions in this chapter as we expand our consideration of Newton’s
laws of motion.



6.1 Solving Problems with Newton’s Laws

Learning Objectives
By the end of this section, you will be able to:
e Apply problem-solving techniques to solve for quantities in more complex systems of forces
e Use concepts from kinematics to solve problems using Newton'’s laws of motion
e Solve more complex equilibrium problems
e Solve more complex acceleration problems
e Apply calculus to more advanced dynamics problems

Success in problem solving is necessary to understand and apply physical principles. We developed a pattern
of analyzing and setting up the solutions to problems involving Newton’s laws in Newton’s Laws of Motion; in
this chapter, we continue to discuss these strategies and apply a step-by-step process.

Problem-Solving Strategies

We follow here the basics of problem solving presented earlier in this text, but we emphasize specific
strategies that are useful in applying Newton’s laws of motion. Once you identify the physical principles
involved in the problem and determine that they include Newton’s laws of motion, you can apply these steps to
find a solution. These techniques also reinforce concepts that are useful in many other areas of physics. Many
problem-solving strategies are stated outright in the worked examples, so the following techniques should
reinforce skills you have already begun to develop.

@ PROBLEM-SOLVING STRATEGY

Applying Newton’s Laws of Motion

1. Identify the physical principles involved by listing the givens and the quantities to be calculated.

2. Sketch the situation, using arrows to represent all forces.

3. Determine the system of interest. The result is a free-body diagram that is essential to solving the
problem.

4. Apply Newton’s second law to solve the problem. If necessary, apply appropriate kinematic equations from
the chapter on motion along a straight line.

5. Check the solution to see whether it is reasonable.

Let’s apply this problem-solving strategy to the challenge of lifting a grand piano into a second-story
apartment. Once we have determined that Newton’s laws of motion are involved (if the problem involves
forces), it is particularly important to draw a careful sketch of the situation. Such a sketch is shown in Figure
6.2(a). Then, as in Figure 6.2(b), we can represent all forces with arrows. Whenever sufficient information
exists, it is best to label these arrows carefully and make the length and direction of each correspond to the
represented force.



This force isnot a
force on the system of
interest but rather a

force exerted by the
system on the outside k1 *
waorld. 1t must be T
omitted from =
IET the free-body - *
diegyan. These farces
System of must be
interest equal and
opposie
f since the net
T | Free-body external force
. e diagram i5 zerg. Thus
W; T=-w
() (b} (c) (d)
Sketch Identify forces Define system of interest Add forces

Figure 6.2 (a) A grand piano is being lifted to a second-story apartment. (b) Arrows are used to represent all forces: '1: is the tension in the
rope above the piano, I_}T is the force that the piano exerts on the rope, and W is the weight of the piano. All other forces, such as the nudge
of a breeze, are assumed to be negligible. (c) Suppose we are given the piano’s mass and asked to find the tension in the rope. We then
define the system of interest as shown and draw a free-body diagram. Now f‘T is no longer shown, because it is not a force acting on the
system of interest; rather, fTT acts on the outside world. (d) Showing only the arrows, the head-to-tail method of addition is used. It is

>
apparent that if the piano is stationary, T = —w.

As with most problems, we next need to identify what needs to be determined and what is known or can be
inferred from the problem as stated, that is, make a list of knowns and unknowns. It is particularly crucial to
identify the system of interest, since Newton’s second law involves only external forces. We can then determine
which forces are external and which are internal, a necessary step to employ Newton’s second law. (See Figure
6.2(c).) Newton’s third law may be used to identify whether forces are exerted between components of a system
(internal) or between the system and something outside (external). As illustrated in Newton’s Laws of Motion,
the system of interest depends on the question we need to answer. Only forces are shown in free-body
diagrams, not acceleration or velocity. We have drawn several free-body diagrams in previous worked
examples. Figure 6.2(c) shows a free-body diagram for the system of interest. Note that no internal forces are
shown in a free-body diagram.

Once a free-body diagram is drawn, we apply Newton’s second law. This is done in Figure 6.2(d) for a particular
situation. In general, once external forces are clearly identified in free-body diagrams, it should be a
straightforward task to put them into equation form and solve for the unknown, as done in all previous
examples. If the problem is one-dimensional—that is, if all forces are parallel—then the forces can be handled
algebraically. If the problem is two-dimensional, then it must be broken down into a pair of one-dimensional
problems. We do this by projecting the force vectors onto a set of axes chosen for convenience. As seen in
previous examples, the choice of axes can simplify the problem. For example, when an incline is involved, a set
of axes with one axis parallel to the incline and one perpendicular to it is most convenient. It is almost always
convenient to make one axis parallel to the direction of motion, if this is known. Generally, just write Newton’s
second law in components along the different directions. Then, you have the following equations:

ZFX = may, ZFy = may.

(If, for example, the system is accelerating horizontally, then you can then set a, = 0.) We need this
information to determine unknown forces acting on a system.

As always, we must check the solution. In some cases, it is easy to tell whether the solution is reasonable. For
example, it is reasonable to find that friction causes an object to slide down an incline more slowly than when
no friction exists. In practice, intuition develops gradually through problem solving; with experience, it



becomes progressively easier to judge whether an answer is reasonable. Another way to check a solution is to
check the units. If we are solving for force and end up with units of millimeters per second, then we have made
a mistake.

There are many interesting applications of Newton’s laws of motion, a few more of which are presented in this
section. These serve also to illustrate some further subtleties of physics and to help build problem-solving
skills. We look first at problems involving particle equilibrium, which make use of Newton’s first law, and then
consider particle acceleration, which involves Newton’s second law.

Particle Equilibrium

Recall that a particle in equilibrium is one for which the external forces are balanced. Static equilibrium
involves objects at rest, and dynamic equilibrium involves objects in motion without acceleration, but it is
important to remember that these conditions are relative. For example, an object may be at rest when viewed
from our frame of reference, but the same object would appear to be in motion when viewed by someone
moving at a constant velocity. We now make use of the knowledge attained in Newton’s Laws of Motion,
regarding the different types of forces and the use of free-body diagrams, to solve additional problems in
particle equilibrium.

@ EXAMPLE 6.1

Different Tensions at Different Angles

Consider the traffic light (mass of 15.0 kg) suspended from two wires as shown in Figure 6.3. Find the tension
in each wire, neglecting the masses of the wires.

Sketch Just some of the forces Only forces on the system
are shown here. are shown,

| w Systemot | W W
| | interest

(a) (b) (c)

Free-body diagram

T, :I'U. Ty, 3 The net vertical
\ f rﬂ“:e t‘,‘-" ZETO, 50
8 45‘5 1y = - -
30" —a) Tyt Ty = W
LIt Tou Tax 4 Tax The net horizontal
w — force is zero, so
w a e
TL:r = _sz
{d) (&)

Figure 6.3 A traffic light is suspended from two wires. (b) Some of the forces involved. (c) Only forces acting on the system are shown

here. The free-body diagram for the traffic light is also shown. (d) The forces projected onto vertical (y) and horizontal (x) axes. The



horizontal components of the tensions must cancel, and the sum of the vertical components of the tensions must equal the weight of the

traffic light. (e) The free-body diagram shows the vertical and horizontal forces acting on the traffic light.

Strategy

The system of interest is the traffic light, and its free-body diagram is shown in Figure 6.3(c). The three forces
involved are not parallel, and so they must be projected onto a coordinate system. The most convenient
coordinate system has one axis vertical and one horizontal, and the vector projections on it are shown in
Figure 6.3(d). There are two unknowns in this problem (7} and 75), so two equations are needed to find them.
These two equations come from applying Newton’s second law along the vertical and horizontal axes, noting
that the net external force is zero along each axis because acceleration is zero.

Solution
First consider the horizontal or x-axis:
Fretx = Tox +T1x = 0.
Thus, as you might expect,
IT1x| = Taxl.
This gives us the following relationship:
T} cos 30° = T cos 45°.
Thus,
T, = 1.225T).

Note that T and T, are not equal in this case because the angles on either side are not equal. It is reasonable
that T, ends up being greater than 77 because it is exerted more vertically than 77 .

Now consider the force components along the vertical or y-axis:

Frety =Ty + Ty, —w=0.
This implies

Ty + Ty, = w.

Substituting the expressions for the vertical components gives

T} sin 30° + T»sin 45° = w.
There are two unknowns in this equation, but substituting the expression for T, in terms of T reduces this to
one equation with one unknown:

T1(0.500) + (1.225T7)(0.707) = w = mg,
which yields
1.366T; = (15.0 kg)(9.80 m/s?).

Solving this last equation gives the magnitude of 7 to be
T, = 108 N.

Finally, we find the magnitude of T by using the relationship between them, T, = 1.225T, found above. Thus
we obtain

T, = 132N.

Significance

Both tensions would be larger if both wires were more horizontal, and they will be equal if and only if the
angles on either side are the same (as they were in the earlier example of a tightrope walker in Newton’s Laws
of Motion.




Particle Acceleration

We have given a variety of examples of particles in equilibrium. We now turn our attention to particle
acceleration problems, which are the result of a nonzero net force. Refer again to the steps given at the
beginning of this section, and notice how they are applied to the following examples.

@ EXAMPLE 6.2

Drag Force on a Barge

Two tugboats push on a barge at different angles (Figure 6.4). The first tugbhoat exerts a force of 2.7 X 10° Nin
the x-direction, and the second tugboat exerts a force of 3.6 X 10° N in the y-direction. The mass of the barge
is 5.0 x 10° kg and its acceleration is observed to be 7.5 x 1072 m/s? in the direction shown. What is the
drag force of the water on the barge resisting the motion? (Note: Drag force is a frictional force exerted by
fluids, such as air or water. The drag force opposes the motion of the object. Since the barge is flat bottomed,
we can assume that the drag force is in the direction opposite of motion of the barge.)

A

(a) (b)

Figure 6.4 (a) A view from above of two tugboats pushing on a barge. (b) The free-body diagram for the ship contains only forces acting in

the plane of the water. It omits the two vertical forces—the weight of the barge and the buoyant force of the water supporting it cancel and

N
are not shown. Note that Fypp is the total applied force of the tugboats.

Strategy

The directions and magnitudes of acceleration and the applied forces are given in Figure 6.4(a). We define the
-

total force of the tugboats on the barge as Fapp so that

> > >

The drag of the water if‘D is in the direction opposite to the direction of motion of the boat; this force thus
works against f‘app, as shown in the free-body diagram in Figure 6.4(b). The system of interest here is the
barge, since the forces on it are given as well as its acceleration. Because the applied forces are perpendicular,
the x- and y-axes are in the same direction as ﬁ‘l and ﬁ‘z. The problem quickly becomes a one-dimensional
problem along the direction of i{‘app, since friction is in the direction opposite to if‘app. Our strategy is to find
the magnitude and direction of the net applied force i:‘app and then apply Newton’s second law to solve for the
drag force F‘D.

Solution

-
Since Fy and F), are perpendicular, we can find the magnitude and direction of F,pp directly. First, the
resultant magnitude is given by the Pythagorean theorem:



Fupp = /F2 + F} = \/(2.7 x 10°N)” + (3.6 x 10°N)” = 4.5 x 10° N.

The angle is given by

F ) 10°
6 =tan~! <—2) =tan~! <M> = 53.1°.
F 27 x 10°N

5
From Newton'’s first law, we know this is the same direction as the acceleration. We also know that Fp is in the

N
opposite direction of Fapp, since it acts to slow down the acceleration. Therefore, the net external force is in the

= =
same direction as Fypp, but its magnitude is slightly less than Fapp. The problem is now one-dimensional.
From the free-body diagram, we can see that

Fret = Fapp - p.
However, Newton’s second law states that
Fhet = ma.
Thus,
Fapp — Fp = ma.
This can be solved for the magnitude of the drag force of the water Fp in terms of known quantities:
Fp = Fapp — ma.
Substituting known values gives

Fp = (45 x 10°N) — (5.0 x 10°kg) (7.5 x 1072 m/s?) =75 x 10* N.

> >
The direction of Fp has already been determined to be in the direction opposite to Fapp, or at an angle of 53°
south of west.

Significance

The numbers used in this example are reasonable for a moderately large barge. It is certainly difficult to obtain
larger accelerations with tugboats, and small speeds are desirable to avoid running the barge into the docks.
Drag is relatively small for a well-designed hull at low speeds, consistent with the answer to this example,
where Fp is less than 1/600th of the weight of the ship.

In Newton'’s Laws of Motion, we discussed the normal force, which is a contact force that acts normal to the
surface so that an object does not have an acceleration perpendicular to the surface. The bathroom scale is an
excellent example of a normal force acting on a body. It provides a quantitative reading of how much it must
push upward to support the weight of an object. But can you predict what you would see on the dial of a
bathroom scale if you stood on it during an elevator ride? Will you see a value greater than your weight when
the elevator starts up? What about when the elevator moves upward at a constant speed? Take a guess before
reading the next example.

@ EXAMPLE 6.3

What Does the Bathroom Scale Read in an Elevator?

Figure 6.5 shows a 75.0-kg man (weight of about 165 1b.) standing on a bathroom scale in an elevator. Calculate
the scale reading: (a) if the elevator accelerates upward at a rate of 1.20 m/sz, and (b) if the elevator moves
upward at a constant speed of 1 m/s.
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Figure 6.5 (a) The various forces acting when a person stands on a bathroom scale in an elevator. The arrows are approximately correct
for when the elevator is accelerating upward—broken arrows represent forces too large to be drawn to scale. ’_I" is the tension in the
supporting cable, W is the weight of the person, Ws is the weight of the scale, We is the weight of the elevator, f?s is the force of the scale on
the person, ﬁ‘p is the force of the person on the scale, i:‘t is the force of the scale on the floor of the elevator, and 1_\3 is the force of the floor
upward on the scale. (b) The free-body diagram shows only the external forces acting on the designated system of interest—the

person—and is the diagram we use for the solution of the problem.

Strategy

If the scale at rest is accurate, its reading equals ﬁ‘p, the magnitude of the force the person exerts downward on
it. Figure 6.5(a) shows the numerous forces acting on the elevator, scale, and person. It makes this one-
dimensional problem look much more formidable than if the person is chosen to be the system of interest and
a free-body diagram is drawn, as in Figure 6.5(b). Analysis of the free-body diagram using Newton’s laws can
produce answers to both Figure 6.5(a) and (b) of this example, as well as some other questions that might arise.

>
The only forces acting on the person are his weight w and the upward force of the scale Fy. According to
= =
Newton’s third law, F, and Fs are equal in magnitude and opposite in direction, so that we need to find Fj in
order to find what the scale reads. We can do this, as usual, by applying Newton’s second law,
-
Fnet = ma.
> -
From the free-body diagram, we see that Fpet = Fy — W, so we have
Fs — w=ma.
Solving for F; gives us an equation with only one unknown:
Fy =ma+ w,

or, because w = mg, simply



Fy = ma + mg.

No assumptions were made about the acceleration, so this solution should be valid for a variety of
accelerations in addition to those in this situation. (Note: We are considering the case when the elevator is
accelerating upward. If the elevator is accelerating downward, Newton’s second law becomes Fy — w = —ma.)

Solution

a. We have a = 1.20 m/s2, so that
Fs = (75.0k2)(9.80 m/s?) + (75.0 kg)(1.20 m/s?)

yielding
Fy = 825N.
b. Now, what happens when the elevator reaches a constant upward velocity? Will the scale still read more
than his weight? For any constant velocity—up, down, or stationary—acceleration is zero because a = %

and Av = 0. Thus,
Fs=ma+mg=0+mg
or
Fs = (75.0kg)(9.80 m/s?),
which gives
Fy, =735N.
Significance
The scale reading in Figure 6.5(a) is about 185 Ib. What would the scale have read if he were stationary? Since
his acceleration would be zero, the force of the scale would be equal to his weight:
Fne[=ma=0=Fg_w

Fs=w=mg
Fy = (75.0kg)(9.80 m/sz) =735N.

Thus, the scale reading in the elevator is greater than his 735-N (165-1b.) weight. This means that the scale is
pushing up on the person with a force greater than his weight, as it must in order to accelerate him upward.
Clearly, the greater the acceleration of the elevator, the greater the scale reading, consistent with what you feel
in rapidly accelerating versus slowly accelerating elevators. In Figure 6.5(b), the scale reading is 735 N, which
equals the person’s weight. This is the case whenever the elevator has a constant velocity—moving up, moving
down, or stationary.

CHECK YOUR UNDERSTANDING 6.1

Now calculate the scale reading when the elevator accelerates downward at a rate of 1.20 m/s2.

The solution to the previous example also applies to an elevator accelerating downward, as mentioned. When
an elevator accelerates downward, a is negative, and the scale reading is less than the weight of the person. If a
constant downward velocity is reached, the scale reading again becomes equal to the person’s weight. If the
elevator is in free fall and accelerating downward at g, then the scale reading is zero and the person appears to
be weightless.

@ EXAMPLE 6.4

Two Attached Blocks

Figure 6.6 shows a block of mass m on a frictionless, horizontal surface. It is pulled by a light string that
passes over a frictionless and massless pulley. The other end of the string is connected to a block of mass m5.
Find the acceleration of the blocks and the tension in the string in terms of m;, m,, and g.



| = ﬂ11 —lb T
ml i]
T N ¥i
| a,
T %
iy
My
W,

(a) (b)

Figure 6.6 (a) Block 1 is connected by a light string to block 2. (b) The free-body diagrams of the blocks.

Strategy

We draw a free-body diagram for each mass separately, as shown in Figure 6.6. Then we analyze each one to
find the required unknowns. The forces on block 1 are the gravitational force, the contact force of the surface,
and the tension in the string. Block 2 is subjected to the gravitational force and the string tension. Newton’s
second law applies to each, so we write two vector equations:

- N - -

Forblock1: T +w; + N =ma;
=

For block 2: T + W, = m,a,.

Notice that 'f is the same for both blocks. Since the string and the pulley have negligible mass, and since there
is no friction in the pulley, the tension is the same throughout the string. We can now write component
equations for each block. All forces are either horizontal or vertical, so we can use the same horizontal/vertical
coordinate system for both objects

Solution

The component equations follow from the vector equations above. We see that block 1 has the vertical forces
balanced, so we ignore them and write an equation relating the x-components. There are no horizontal forces
on block 2, so only the y-equation is written. We obtain these results:

Block 1 Block 2
ZFX:maX ZFy:may
Ty =mjajy Ty —myg =myay,.
When block 1 moves to the right, block 2 travels an equal distance downward; thus, aj, = —ay,,. Writing the
common acceleration of the blocks as a = aj, = —ap), we now have
T=ma

and
T—-myg=—-ma.
From these two equations, we can express a and Tin terms of the masses m| and my, and g :
my

a = ——
m1+m2g



and

mym
T=—12¢
mp +myp

Significance

Notice that the tension in the string is less than the weight of the block hanging from the end of it. A common
error in problems like this is to set T' = my g. You can see from the free-body diagram of block 2 that cannot be
correct if the block is accelerating.

) CHECK YOUR UNDERSTANDING 6.2

Calculate the acceleration of the system, and the tension in the string, when the masses are m; = 5.00 kg and
my = 3.00 kg.

@ EXAMPLE 6.5

Atwood Machine

A classic problem in physics, similar to the one we just solved, is that of the Atwood machine, which consists of
a rope running over a pulley, with two objects of different mass attached. It is particularly useful in
understanding the connection between force and motion. In Figure 6.7, m; = 2.00 kg and mp = 4.00 kg.
Consider the pulley to be frictionless. (a) If my is released, what will its acceleration be? (b) What is the tension
in the string?

Block 1 Block 2
T T
m, i m,
I -
m; | Wy
ﬁ?

m.,

[
Figure 6.7 An Atwood machine and free-body diagrams for each of the two blocks.

Strategy

We draw a free-body diagram for each mass separately, as shown in the figure. Then we analyze each diagram
to find the required unknowns. This may involve the solution of simultaneous equations. It is also important to
note the similarity with the previous example. As block 2 accelerates with acceleration a, in the downward
direction, block 1 accelerates upward with acceleration a;. Thus, a = a; = —a,.

Solution

a. We have
Forml,ZFy=T—m1g=m1a. Formg,ZFy=T—m2g=—m2a.



(The negative sign in front of m, a indicates that my accelerates downward; both blocks accelerate at the
same rate, but in opposite directions.) Solve the two equations simultaneously (subtract them) and the

result is
(my —my)g = (my + my)a.

Solving for a:
my—my  4kg—2kg

m +my°  4kg+2ke

a= (9.8 m/s?) = 3.27 m/s?.

b. Observing the first block, we see that
T—-—mg=ma

T =m(g+a)=2kg)9.8 m/s? + 3.27 m/sz) =26.1 N.

Significance

The result for the acceleration given in the solution can be interpreted as the ratio of the unbalanced force on
the system, (my — my)g, to the total mass of the system, m| + m,. We can also use the Atwood machine to
measure local gravitational field strength.

CHECK YOUR UNDERSTANDING 6.3

Determine a general formula in terms of m, my and g for calculating the tension in the string for the Atwood
machine shown above.

Newton’s Laws of Motion and Kinematics

Physics is most interesting and most powerful when applied to general situations that involve more than a
narrow set of physical principles. Newton’s laws of motion can also be integrated with other concepts that have
been discussed previously in this text to solve problems of motion. For example, forces produce accelerations,
a topic of kinematics, and hence the relevance of earlier chapters.

When approaching problems that involve various types of forces, acceleration, velocity, and/or position, listing
the givens and the quantities to be calculated will allow you to identify the principles involved. Then, you can
refer to the chapters that deal with a particular topic and solve the problem using strategies outlined in the
text. The following worked example illustrates how the problem-solving strategy given earlier in this chapter,
as well as strategies presented in other chapters, is applied to an integrated concept problem.

@ EXAMPLE 6.6

What Force Must a Soccer Player Exert to Reach Top Speed?

A soccer player starts at rest and accelerates forward, reaching a velocity of 8.00 m/s in 2.50 s. (a) What is her
average acceleration? (b) What average force does the ground exert forward on the runner so that she achieves
this acceleration? The player’s mass is 70.0 kg, and air resistance is negligible.

Strategy

To find the answers to this problem, we use the problem-solving strategy given earlier in this chapter. The
solutions to each part of the example illustrate how to apply specific problem-solving steps. In this case, we do
not need to use all of the steps. We simply identify the physical principles, and thus the knowns and unknowns;
apply Newton’s second law; and check to see whether the answer is reasonable.

Solution

a. We are given the initial and final velocities (zero and 8.00 m/s forward); thus, the change in velocity is
Av = 8.00 m/s. We are given the elapsed time, so At = 2.50 s. The unknown is acceleration, which can be
found from its definition:



Av
a=—.
At
Substituting the known values yields
_ 8.00m/s
~ 2505

b. Here we are asked to find the average force the ground exerts on the runner to produce this acceleration.
(Remember that we are dealing with the force or forces acting on the object of interest.) This is the reaction
force to that exerted by the player backward against the ground, by Newton’s third law. Neglecting air
resistance, this would be equal in magnitude to the net external force on the player, since this force causes
her acceleration. Since we now know the player’s acceleration and are given her mass, we can use

Newton’s second law to find the force exerted. That is,
Fret = ma.

=3.20m/s2.

Substituting the known values of m and a gives
Fpet = (70.0kg)(3.20 m/sz) =224 N.

This is a reasonable result: The acceleration is attainable for an athlete in good condition. The force is about 50
pounds, a reasonable average force.

Significance

This example illustrates how to apply problem-solving strategies to situations that include topics from
different chapters. The first step is to identify the physical principles, the knowns, and the unknowns involved
in the problem. The second step is to solve for the unknown, in this case using Newton’s second law. Finally, we
check our answer to ensure it is reasonable. These techniques for integrated concept problems will be useful
in applications of physics outside of a physics course, such as in your profession, in other science disciplines,
and in everyday life.

CHECK YOUR UNDERSTANDING 6.4

The soccer player stops after completing the play described above, but now notices that the ball is in position
to be stolen. If she now experiences a force of 126 N to attempt to steal the ball, which is 2.00 m away from her,
how long will it take her to get to the ball?

@ EXAMPLE 6.7

What Force Acts on a Model Helicopter?

A 1.50-kg model helicopter has a velocity of 5.00j m/s at t = 0. It is accelerated at a constant rate for two
seconds (2.00 s) after which it has a velocity of (6.00i + 12.00j ) m/s. What is the magnitude of the resultant
force acting on the helicopter during this time interval?

Strategy

We can easily set up a coordinate system in which the x-axis (f direction) is horizontal, and the y-axis (‘/i\
direction) is vertical. We know that Az = 2.00s and Av = (6.00i + 12.00j m/s) — (5.00j m/s). From this, we can
calculate the acceleration by the definition; we can then apply Newton’s second law.

Solution
We have

,— Av _ (6.00i +12.00§ms) — (5.0 m/s)
A 2.00s

Z F = ma = (1.50 kg)(3.001 + 3.507 m/s?) = 4.50f + 5.25] N.

= 3.001 + 3.50j m/s>




The magnitude of the force is now easily found:

F= \/(4.50 N)2 + (525 N)2 = 6.91 N.

Significance

The original problem was stated in terms of i- :]'\vector components, so we used vector methods. Compare
this example with the previous example.

) CHECK YOUR UNDERSTANDING 6.5

Find the direction of the resultant for the 1.50-kg model helicopter.

@ EXAMPLE 6.8

Baggage Tractor

Figure 6.8(a) shows a baggage tractor pulling luggage carts from an airplane. The tractor has mass 650.0 kg,
while cart A has mass 250.0 kg and cart B has mass 150.0 kg. The driving force acting for a brief period of time
accelerates the system from rest and acts for 3.00 s. (a) If this driving force is given by F = (820.0¢) N, find the
speed after 3.00 seconds. (b) What is the horizontal force acting on the connecting cable between the tractor
and cart A at this instant?

tractor N-ﬂ- NE NUHE-I.OI
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Tractor Cant A CanB
(a) (b)
Figure 6.8 (a) A free-body diagram is shown, which indicates all the external forces on the system consisting of the tractor and baggage

carts for carrying airline luggage. (b) A free-body diagram of the tractor only is shown isolated in order to calculate the tension in the cable

to the carts.

Strategy

A free-body diagram shows the driving force of the tractor, which gives the system its acceleration. We only
need to consider motion in the horizontal direction. The vertical forces balance each other and it is not
necessary to consider them. For part b, we make use of a free-body diagram of the tractor alone to determine

S
the force between it and cart A. This exposes the coupling force T, which is our objective.

Solution

a. Z Fyx = mgystemax and Z F, = 820.0t, so
820.0r = (650.0 +250.0 + 150.0)a
a = 0.7809:.

Since acceleration is a function of time, we can determine the velocity of the tractor by using a = % with
the initial condition that vy = O at# = 0. We integrate from¢ = 0tot = 3:
3.00

3 3.00 3.00
dv = adt, / dv = / adt = / 0.7809tdt, v = 0.39051‘2]0 =3.51m/s.
0 0 0



b. Refer to the free-body diagram in Figure 6.8(b).
Z Fy = mMyractorax
820.0t = T = mactor(0.7805)¢
(820.0)(3.00) — T = (650.0)(0.7805)(3.00)
T = 938N.

Significance

Since the force varies with time, we must use calculus to solve this problem. Notice how the total mass of the
system was important in solving Figure 6.8(a), whereas only the mass of the truck (since it supplied the force)
was of use in Figure 6.8(b).

Recall that v = % anda = %. If acceleration is a function of time, we can use the calculus forms developed in

Motion Along a Straight Line, as shown in this example. However, sometimes acceleration is a function of
displacement. In this case, we can derive an important result from these calculus relations. Solving for dtin
each, we have dt = % and dt = %. Now, equating these expressions, we have % = %. We can rearrange this

to obtain ads = vdv.

@ EXAMPLE 6.9

Motion of a Projectile Fired Vertically

A 10.0-kg mortar shell is fired vertically upward from the ground, with an initial velocity of 50.0 m/s (see
Figure 6.9). Determine the maximum height it will travel if atmospheric resistance is measured as

Fp = (0.01000%) N, where vis the speed at any instant.

{b)
Figure 6.9 (a) The mortar fires a shell straight up; we consider the friction force provided by the air. (b) A free-body diagram is shown
which indicates all the forces on the mortar shell. (credit a: modification of work by 0S541/DoD; The appearance of U.S. Department of

Defense (DoD) visual information does not imply or constitute DoD endorsement.)

Strategy
The known force on the mortar shell can be related to its acceleration using the equations of motion.



Kinematics can then be used to relate the mortar shell’s acceleration to its position.

Solution

Initially, yg = 0 and vy = 50.0 m/s. At the maximum height y = h, v = 0. The free-body diagram shows Fp to
act downward, because it slows the upward motion of the mortar shell. Thus, we can write

ZFy = may

—Fp—w = may
—0.01000%2 —98.0 = 10.0a
a = —0.001000% — 9.80.

The acceleration depends on vand is therefore variable. Since a = f(v), we can relate a to vusing the
rearrangement described above,

ads = vdv.

We replace ds with dy because we are dealing with the vertical direction,
ady = vdv, (—0.001001)2 —9.80)dy = vdv.

We now separate the variables (v's and dv’s on one side; dy on the other):

/hd _ /0 vdv
o 7 Js00 (=0.0010002 — 9.80)
h 0
d
/0 dy = —/500 © 0010(1))1);+ 950) = (=5 x 10*)In(0.001000? + 9.80)

Thus, h = 114 m.

0

50.0

Significance

Notice the need to apply calculus since the force is not constant, which also means that acceleration is not
constant. To make matters worse, the force depends on v (not f), and so we must use the trick explained prior
to the example. The answer for the height indicates a lower elevation if there were air resistance. We will deal
with the effects of air resistance and other drag forces in greater detail in Drag Force and Terminal Speed.

CHECK YOUR UNDERSTANDING 6.6

If atmospheric resistance is neglected, find the maximum height for the mortar shell. Is calculus required for
this solution?

INTERACTIVE

Explore the forces at work in this simulation (https://openstax.org/l/21forcesatwork) when you try to push a
filing cabinet. Create an applied force and see the resulting frictional force and total force acting on the
cabinet. Charts show the forces, position, velocity, and acceleration vs. time. View a free-body diagram of all
the forces (including gravitational and normal forces).



https://openstax.org/l/21forcesatwork

6.2 Friction

Learning Objectives
By the end of this section, you will be able to:
e Describe the general characteristics of friction
e List the various types of friction
e Calculate the magnitude of static and kinetic friction, and use these in problems involving Newton’s laws of
motion

When a body is in motion, it has resistance because the body interacts with its surroundings. This resistance is
a force of friction. Friction opposes relative motion between systems in contact but also allows us to move, a
concept that becomes obvious if you try to walk on ice. Friction is a common yet complex force, and its
behavior still not completely understood. Still, it is possible to understand the circumstances in which it
behaves.

Static and Kinetic Friction

The basic definition of friction is relatively simple to state.

Friction

Friction is a force that opposes relative motion between systems in contact.

There are several forms of friction. One of the simpler characteristics of sliding friction is that it is parallel to
the contact surfaces between systems and is always in a direction that opposes motion or attempted motion of
the systems relative to each other. If two systems are in contact and moving relative to one another, then the
friction between them is called kinetic friction. For example, friction slows a hockey puck sliding on ice. When
objects are stationary, static friction can act between them; the static friction is usually greater than the kinetic
friction between two objects.

Static and Kinetic Friction

If two systems are in contact and stationary relative to one another, then the friction between them is called
static friction. If two systems are in contact and moving relative to one another, then the friction between
them is called kinetic friction.

Imagine, for example, trying to slide a heavy crate across a concrete floor—you might push very hard on the
crate and not move it at all. This means that the static friction responds to what you do—it increases to be equal
to and in the opposite direction of your push. If you finally push hard enough, the crate seems to slip suddenly
and starts to move. Now static friction gives way to kinetic friction. Once in motion, it is easier to keep it in
motion than it was to get it started, indicating that the kinetic frictional force is less than the static frictional
force. If you add mass to the crate, say by placing a box on top of it, you need to push even harder to get it
started and also to keep it moving. Furthermore, if you oiled the concrete you would find it easier to get the
crate started and keep it going (as you might expect).

Figure 6.10 is a crude pictorial representation of how friction occurs at the interface between two objects.
Close-up inspection of these surfaces shows them to be rough. Thus, when you push to get an object moving (in
this case, a crate), you must raise the object until it can skip along with just the tips of the surface hitting,
breaking off the points, or both. A considerable force can be resisted by friction with no apparent motion. The
harder the surfaces are pushed together (such as if another box is placed on the crate), the more force is
needed to move them. Part of the friction is due to adhesive forces between the surface molecules of the two
objects, which explains the dependence of friction on the nature of the substances. For example, rubber-soled
shoes slip less than those with leather soles. Adhesion varies with substances in contact and is a complicated



aspect of surface physics. Once an object is moving, there are fewer points of contact (fewer molecules
adhering), so less force is required to keep the object moving. At small but nonzero speeds, friction is nearly
independent of speed.
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Figure 6.10 Frictional forces, such as E always oppose motion or attempted motion between objects in contact. Friction arises in part
because of the roughness of the surfaces in contact, as seen in the expanded view. For the object to move, it must rise to where the peaks
of the top surface can skip along the bottom surface. Thus, a force is required just to set the object in motion. Some of the peaks will be
broken off, also requiring a force to maintain motion. Much of the friction is actually due to attractive forces between molecules making up
the two objects, so that even perfectly smooth surfaces are not friction-free. (In fact, perfectly smooth, clean surfaces of similar materials

would adhere, forming a bond called a “cold weld.”)

The magnitude of the frictional force has two forms: one for static situations (static friction), the other for
situations involving motion (kinetic friction). What follows is an approximate empirical (experimentally
determined) model only. These equations for static and kinetic friction are not vector equations.

Magnitude of Static Friction

The magnitude of static friction f is
fs < usN, 6.1

where yg is the coefficient of static friction and Nis the magnitude of the normal force.

The symbol < means less than or equal to, implying that static friction can have a maximum value of ug N.
Static friction is a responsive force that increases to be equal and opposite to whatever force is exerted, up to
its maximum limit. Once the applied force exceeds

fs(max), the object moves. Thus,
Sfs(max) = s N.

Magnitude of Kinetic Friction

The magnitude of kinetic friction fy is given by
Jx = N, 6.2

where yy is the coefficient of kinetic friction.

A system in which fj = pi N is described as a system in which friction behaves simply. The transition from
static friction to kinetic friction is illustrated in Figure 6.11.
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Figure 6.11 (a) The force of friction f between the block and the rough surface opposes the direction of the applied force i:‘ The
magnitude of the static friction balances that of the applied force. This is shown in the left side of the graph in (c). (b) At some point, the
magnitude of the applied force is greater than the force of kinetic friction, and the block moves to the right. This is shown in the right side of

the graph. (c) The graph of the frictional force versus the applied force; note that fs(max) > fi. This means that pg > py.

Asyou can see in Table 6.1, the coefficients of kinetic friction are less than their static counterparts. The
approximate values of u are stated to only one or two digits to indicate the approximate description of friction
given by the preceding two equations.



System

Static Friction pg

Kinetic Friction py

Rubber on dry concrete 1.0 0.7
Rubber on wet concrete 0.5-0.7 0.3-0.5
Wood on wood 0.5 0.3
Waxed wood on wet snow 0.14 0.1
Metal on wood 0.5 0.3
Steel on steel (dry) 0.6 0.3
Steel on steel (oiled) 0.05 0.03
Teflon on steel 0.04 0.04
Bone lubricated by synovial fluid | 0.016 0.015
Shoes on wood 0.9 0.7
Shoes on ice 0.1 0.05
Ice on ice 0.1 0.03
Steel on ice 0.4 0.02

Table 6.1 Approximate Coefficients of Static and Kinetic Friction

Equation 6.1 and Equation 6.2 include the dependence of friction on materials and the normal force. The
direction of friction is always opposite that of motion, parallel to the surface between objects, and
perpendicular to the normal force. For example, if the crate you try to push (with a force parallel to the floor)
has a mass of 100 kg, then the normal force is equal to its weight,

w = mg = (100kg) (9.80 m/s*) = 980N,

perpendicular to the floor. If the coefficient of static friction is 0.45, you would have to exert a force parallel to
the floor greater than

Sfs(max) = us N = (0.45)(980N) = 440N

to move the crate. Once there is motion, friction is less and the coefficient of kinetic friction might be 0.30, so
that a force of only

Ji = ue N = (0.30)(980N) = 290N

keeps it moving at a constant speed. If the floor is lubricated, both coefficients are considerably less than they
would be without lubrication. Coefficient of friction is a unitless quantity with a magnitude usually between 0
and 1.0. The actual value depends on the two surfaces that are in contact.

Many people have experienced the slipperiness of walking on ice. However, many parts of the body, especially
the joints, have much smaller coefficients of friction—often three or four times less than ice. A joint is formed
by the ends of two bones, which are connected by thick tissues. The knee joint is formed by the lower leg bone
(the tibia) and the thighbone (the femur). The hip is a ball (at the end of the femur) and socket (part of the
pelvis) joint. The ends of the bones in the joint are covered by cartilage, which provides a smooth, almost-



glassy surface. The joints also produce a fluid (synovial fluid) that reduces friction and wear. A damaged or
arthritic joint can be replaced by an artificial joint (Figure 6.12). These replacements can be made of metals
(stainless steel or titanium) or plastic (polyethylene), also with very small coefficients of friction.

Figure 6.12 Artificial knee replacement is a procedure that has been performed for more than 20 years. These post-operative X-rays

show a right knee joint replacement. (credit: modification of work by Mike Baird)

Natural lubricants include saliva produced in our mouths to aid in the swallowing process, and the slippery
mucus found between organs in the body, allowing them to move freely past each other during heartbeats,
during breathing, and when a person moves. Hospitals and doctor’s clinics commonly use artificial lubricants,
such as gels, to reduce friction.

The equations given for static and kinetic friction are empirical laws that describe the behavior of the forces of
friction. While these formulas are very useful for practical purposes, they do not have the status of
mathematical statements that represent general principles (e.g., Newton’s second law). In fact, there are cases
for which these equations are not even good approximations. For instance, neither formula is accurate for
lubricated surfaces or for two surfaces siding across each other at high speeds. Unless specified, we will not be
concerned with these exceptions.

@ EXAMPLE 6.10

Static and Kinetic Friction
A 20.0-kg crate is at rest on a floor as shown in Figure 6.13. The coefficient of static friction between the crate

and floor is 0.700 and the coefficient of kinetic friction is 0.600. A horizontal force f’ is applied to the crate.
- ~ - ~ - ~ - a
Find the force of friction if (a) P = 20.0 Ni, (b) P = 30.0 Ni, (¢c) P = 120.0 N1, and (d) P = 180.0 Ni.
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Figure 6.13 (a) A crate on a horizontal surface is pushed with a force P. (b) The forces on the crate. Here, f may represent either the static

or the kinetic frictional force.

Strategy

The free-body diagram of the crate is shown in Figure 6.13(b). We apply Newton’s second law in the horizontal
and vertical directions, including the friction force in opposition to the direction of motion of the box.

Solution
Newton’s second law GIVES

ZFx=max ZFy=may
P — f = may N-w=0.
Here we are using the symbol fto represent the frictional force since we have not yet determined whether the

crate is subject to station friction or kinetic friction. We do this whenever we are unsure what type of friction is
acting. Now the weight of the crate is

= (20.0 kg)(9.80 m/s?) = 196 N,

which is also equal to N. The maximum force of static friction is therefore (0.700) (196 N) = 137 N. As long as

f’ is less than 137 N, the force of static friction keeps the crate stationary and fg = f’ Thus, (a) fs = 20.0N, (b)
fs =30.0N,and (c) fs = 120.0N.

N
(d) If P = 180.0 N, the applied force is greater than the maximum force of static friction (137 N), so the crate
can no longer remain at rest. Once the crate is in motion, kinetic friction acts. Then

Jx = ux N = (0.600)(196 N) = 118 N,
and the acceleration is

P—fc 180.0N—-1I8N

= =3.10m/s>.
m 20.0kg s

axy =

Significance

This example illustrates how we consider friction in a dynamics problem. Notice that static friction has a value
that matches the applied force, until we reach the maximum value of static friction. Also, no motion can occur
until the applied force equals the force of static friction, but the force of kinetic friction will then become
smaller.

CHECK YOUR UNDERSTANDING 6.7

A block of mass 1.0 kg rests on a horizontal surface. The frictional coefficients for the block and surface are



us = 0.50 and py = 0.40. (a) What is the minimum horizontal force required to move the block? (b) What is the
block’s acceleration when this force is applied?

Friction and the Inclined Plane

One situation where friction plays an obvious role is that of an object on a slope. It might be a crate being
pushed up a ramp to a loading dock or a skateboarder coasting down a mountain, but the basic physics is the
same. We usually generalize the sloping surface and call it an inclined plane but then pretend that the surface
is flat. Let’s look at an example of analyzing motion on an inclined plane with friction.

@ EXAMPLE 6.11

Downbhill Skier
A skier with a mass of 62 kg is sliding down a snowy slope at a constant acceleration. Find the coefficient of
kinetic friction for the skier if friction is known to be 45.0 N.

Strategy
The magnitude of kinetic friction is given as 45.0 N. Kinetic friction is related to the normal force N by
fx = ux N; thus, we can find the coefficient of kinetic friction if we can find the normal force on the skier. The
normal force is always perpendicular to the surface, and since there is no motion perpendicular to the surface,
the normal force should equal the component of the skier’s weight perpendicular to the slope. (See Figure 6.14,
which repeats a figure from the chapter on Newton’s laws of motion.)

I| l'lI
| / Free-body diagram
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Figure 6.14 The motion of the skier and friction are parallel to the slope, so it is most convenient to project all forces onto a coordinate

system where one axis is parallel to the slope and the other is perpendicular (axes shown to left of skier). The normal force 1_\3 is
-
perpendicular to the slope, and friction f is parallel to the slope, but the skier’s weight W has components along both axes, namely \'i'y and

Wy. The normal force 1_\1) is equal in magnitude to VVy, so there is no motion perpendicular to the slope.
We have
N = w), = wcos 25° = mg cos 25°.
Substituting this into our expression for kinetic friction, we obtain
Jx = pxmg cos 25°,

which can now be solved for the coefficient of kinetic friction .



Solution
Solving for yy gives

_ S K S

N~ wcos25°  mgcos25°

Hk

Substituting known values on the right-hand side of the equation,
45.
= >0 N2 =0.082
(62 kg)(9.80 m/s*)(0.906)

Hx

Significance

This result is a little smaller than the coefficient listed in Table 6.1 for waxed wood on snow, but it is still
reasonable since values of the coefficients of friction can vary greatly. In situations like this, where an object of
mass m slides down a slope that makes an angle 6 with the horizontal, friction is given by fi = ymg cos 6. All
objects slide down a slope with constant acceleration under these circumstances.

We have discussed that when an object rests on a horizontal surface, the normal force supporting it is equal in
magnitude to its weight. Furthermore, simple friction is always proportional to the normal force. When an
object is not on a horizontal surface, as with the inclined plane, we must find the force acting on the object that
is directed perpendicular to the surface; it is a component of the weight.

We now derive a useful relationship for calculating coefficient of friction on an inclined plane. Notice that the
result applies only for situations in which the object slides at constant speed down the ramp.

An object slides down an inclined plane at a constant velocity if the net force on the object is zero. We can use
this fact to measure the coefficient of kinetic friction between two objects. As shown in Example 6.11, the
kinetic friction on a slope is fi = uxmg cos 6. The component of the weight down the slope is equal to mg sin 0
(see the free-body diagram in Figure 6.14). These forces act in opposite directions, so when they have equal
magnitude, the acceleration is zero. Writing these out,

Hmg cos @ = mg sin 6.
Solving for yy, we find that

mg sin 0
Uy = —————— =tané.
mg cos 6
Put a coin on a book and tilt it until the coin slides at a constant velocity down the book. You might need to tap
the book lightly to get the coin to move. Measure the angle of tilt relative to the horizontal and find yy . Note
that the coin does not start to slide at all until an angle greater than 6 is attained, since the coefficient of static
friction is larger than the coefficient of kinetic friction. Think about how this may affect the value for y and its

uncertainty.

Atomic-Scale Explanations of Friction

The simpler aspects of friction dealt with so far are its macroscopic (large-scale) characteristics. Great strides
have been made in the atomic-scale explanation of friction during the past several decades. Researchers are
finding that the atomic nature of friction seems to have several fundamental characteristics. These
characteristics not only explain some of the simpler aspects of friction—they also hold the potential for the
development of nearly friction-free environments that could save hundreds of billions of dollars in energy
which is currently being converted (unnecessarily) into heat.

Figure 6.15 illustrates one macroscopic characteristic of friction that is explained by microscopic (small-scale)
research. We have noted that friction is proportional to the normal force, but not to the amount of area in
contact, a somewhat counterintuitive notion. When two rough surfaces are in contact, the actual contact area
is a tiny fraction of the total area because only high spots touch. When a greater normal force is exerted, the
actual contact area increases, and we find that the friction is proportional to this area.
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Figure 6.15 Two rough surfaces in contact have a much smaller area of actual contact than their total area. When the normal force is

larger as a result of a larger applied force, the area of actual contact increases, as does friction.

However, the atomic-scale view promises to explain far more than the simpler features of friction. The
mechanism for how heat is generated is now being determined. In other words, why do surfaces get warmer
when rubbed? Essentially, atoms are linked with one another to form lattices. When surfaces rub, the surface
atoms adhere and cause atomic lattices to vibrate—essentially creating sound waves that penetrate the
material. The sound waves diminish with distance, and their energy is converted into heat. Chemical reactions
that are related to frictional wear can also occur between atoms and molecules on the surfaces. Figure 6.16
shows how the tip of a probe drawn across another material is deformed by atomic-scale friction. The force
needed to drag the tip can be measured and is found to be related to shear stress, which is discussed in Static
Equilibrium and Elasticity. The variation in shear stress is remarkable (more than a factor of 1012) and difficult
to predict theoretically, but shear stress is yielding a fundamental understanding of a large-scale phenomenon
known since ancient times—friction.
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Figure 6.16 The tip of a probe is deformed sideways by frictional force as the probe is dragged across a surface. Measurements of how

the force varies for different materials are yielding fundamental insights into the atomic nature of friction.

@ INTERACTIVE

Describe a model for friction (https://openstax.org/l/21friction) on a molecular level. Describe matter in terms
of molecular motion. The description should include diagrams to support the description; how the
temperature affects the image; what are the differences and similarities between solid, liquid, and gas particle
motion; and how the size and speed of gas molecules relate to everyday objects.
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@ EXAMPLE 6.12

Sliding Blocks
The two blocks of Figure 6.17 are attached to each other by a massless string that is wrapped around a

frictionless pulley. When the bottom 4.00-kg block is pulled to the left by the constant force f’, the top 2.00-kg
block slides across it to the right. Find the magnitude of the force necessary to move the blocks at constant
speed. Assume that the coefficient of kinetic friction between all surfaces is 0.400.
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Figure 6.17 (a) Each block moves at constant velocity. (b) Free-body diagrams for the blocks.

Strategy

We analyze the motions of the two blocks separately. The top block is subjected to a contact force exerted by
the bottom block. The components of this force are the normal force N and the frictional force —0.400N .
Other forces on the top block are the tension 71 in the string and the weight of the top block itself, 19.6 N. The
bottom block is subjected to contact forces due to the top block and due to the floor. The first contact force has
components —N| and 0.400 N, which are simply reaction forces to the contact forces that the bottom block
exerts on the top block. The components of the contact force of the floor are N, and 0.400 N, . Other forces on
this block are — P, the tension T1i, and the weight -39.2 N.

Solution

Since the top block is moving horizontally to the right at constant velocity, its acceleration is zero in both the
horizontal and the vertical directions. From Newton’s second law,

ZFX = mjay ZFy = may

T —0.400N, 0 Ny —-196N = 0.

Solving for the two unknowns, we obtain Ny = 19.6 Nand T' = 0.40N; = 7.84 N. The bottom block is also not
accelerating, so the application of Newton’s second law to this block gives

ZFX = mpay ZFy =myay
T—-P+0.400 N; +0.400 N, =0 Ny, —392N-N; =0.

The values of Ny and Twere found with the first set of equations. When these values are substituted into the
second set of equations, we can determine N, and P. They are



Ny =588N and P=39.2N.

Significance
Understanding what direction in which to draw the friction force is often troublesome. Notice that each friction
force labeled in Figure 6.17 acts in the direction opposite the motion of its corresponding block.

@ EXAMPLE 6.13

A Crate on an Accelerating Truck

A 50.0-kg crate rests on the bed of a truck as shown in Figure 6.18. The coefficients of friction between the
surfaces are yx = 0.300 and ug = 0.400. Find the frictional force on the crate when the truck is accelerating
forward relative to the ground at (a) 2.00 m/s?, and (b) 5.00 m/s?.

(@) (b)

Figure 6.18 (a) A crate rests on the bed of the truck that is accelerating forward. (b) The free-body diagram of the crate.

Strategy

The forces on the crate are its weight and the normal and frictional forces due to contact with the truck bed.
We start by assuming that the crate is not slipping. In this case, the static frictional force f acts on the crate.
Furthermore, the accelerations of the crate and the truck are equal.

Solution

a. Application of Newton’s second law to the crate, using the reference frame attached to the ground, yields
ZFX = may ZFy = may
fs (50.0 kg)(2.00 m/s?) N—-490 x 10°N = (50.0kg)(0)
= 1.00 x 10>°N N = 490 x 10>N.

We can now check the validity of our no-slip assumption. The maximum value of the force of static friction
is
ps N = (0.400)(4.90 x 10> N) = 196N,
whereas the actual force of static friction that acts when the truck accelerates forward at 2.00 m/s? is only
1.00 x 102 N. Thus, the assumption of no slipping is valid.
b. If the crate is to move with the truck when it accelerates at 5.0 m/52, the force of static friction must be
fs = mayx = (50.0kg)(5.00 m/sz) =250 N.

Since this exceeds the maximum of 196 N, the crate must slip. The frictional force is therefore kinetic and
is
fr = ux N =(0.300)(4.90 x 102 N) = 147 N.

The horizontal acceleration of the crate relative to the ground is now found from



Z Fy = may
147N (50.0 kg)ay,
soay = 2.94m/s2.

Significance
Relative to the ground, the truck is accelerating forward at 5.0 m/s? and the crate is accelerating forward at

2.94 m/s2. Hence the crate is sliding backward relative to the bed of the truck with an acceleration
2.94 m/s> —5.00 m/s> = —2.06 m/s.

@ EXAMPLE 6.14

Snowboarding

Earlier, we analyzed the situation of a downhill skier moving at constant velocity to determine the coefficient of
kinetic friction. Now let’s do a similar analysis to determine acceleration. The snowboarder of Figure 6.19
glides down a slope that is inclined at 0 = 139 to the horizontal. The coefficient of kinetic friction between the
board and the snow is yx = 0.20. What is the acceleration of the snowboarder?

mg cos 13°

mg sin 13°

(1)

Figure 6.19 (a) A snowboarder glides down a slope inclined at 13° to the horizontal. (b) The free-body diagram of the snowboarder.

Strategy

The forces acting on the snowboarder are her weight and the contact force of the slope, which has a component
normal to the incline and a component along the incline (force of kinetic friction). Because she moves along
the slope, the most convenient reference frame for analyzing her motion is one with the x-axis along and the
y-axis perpendicular to the incline. In this frame, both the normal and the frictional forces lie along coordinate
axes, the components of the weight are mg sin 6 along the slope and mg cos 6 at right angles into the slope, and
the only acceleration is along the x-axis (ay = O) .

Solution
We can now apply Newton’s second law to the snowboarder:

ZFX = may ZFy=may

mgsinf — u, N = may N — mg cos 8 = m(0).

From the second equation, N = mg cos . Upon substituting this into the first equation, we find



ax = g(sinf — py cos @)
= g(sin 13° — 0.20 cos 13°) = 0.29 m/s2.

Significance
Notice from this equation that if 8 is small enough or gy is large enough, ay is negative, that is, the
snowboarder slows down.

CHECK YOUR UNDERSTANDING 6.8

The snowboarder is now moving down a hill with incline 10.0°. What is the skier’s acceleration?

6.3 Centripetal Force

Learning Objectives
By the end of this section, you will be able to:
e Explain the equation for centripetal acceleration
e Apply Newton's second law to develop the equation for centripetal force
e Use circular motion concepts in solving problems involving Newton'’s laws of motion

In Motion in Two and Three Dimensions, we examined the basic concepts of circular motion. An object
undergoing circular motion, like one of the race cars shown at the beginning of this chapter, must be
accelerating because it is changing the direction of its velocity. We proved that this centrally directed
acceleration, called centripetal acceleration, is given by the formula

ac = —
-
where vis the velocity of the object, directed along a tangent line to the curve at any instant. If we know the
angular velocity w, then we can use

ac = r?.

Angular velocity gives the rate at which the object is turning through the curve, in units of rad/s. This
acceleration acts along the radius of the curved path and is thus also referred to as a radial acceleration.

An acceleration must be produced by a force. Any force or combination of forces can cause a centripetal or
radial acceleration. Just a few examples are the tension in the rope on a tether ball, the force of Earth’s gravity
on the Moon, friction between roller skates and a rink floor, a banked roadway’s force on a car, and forces on
the tube of a spinning centrifuge. Any net force causing uniform circular motion is called a centripetal force.
The direction of a centripetal force is toward the center of curvature, the same as the direction of centripetal
acceleration. According to Newton’s second law of motion, net force is mass times acceleration: Fye; = ma. For
uniform circular motion, the acceleration is the centripetal acceleration: a = ac. Thus, the magnitude of
centripetal force F; is

Fe. = mac.

2
By substituting the expressions for centripetal acceleration ac(a; = ”7; ac = rcoz), we get two expressions for
the centripetal force F; in terms of mass, velocity, angular velocity, and radius of curvature:

UZ
Fe=m—; F, = mra?. 6.3
r

-
You may use whichever expression for centripetal force is more convenient. Centripetal force Fis always
perpendicular to the path and points to the center of curvature, because a. is perpendicular to the velocity and
points to the center of curvature. Note that if you solve the first expression for r, you get



ml)2

Fe

r =

This implies that for a given mass and velocity, a large centripetal force causes a small radius of
curvature—that is, a tight curve, as in Figure 6.20.

F_ is paraliel to a_ since F_ = ma,

lamge

Figure 6.20 The frictional force supplies the centripetal force and is numerically equal to it. Centripetal force is perpendicular to velocity
and causes uniform circular motion. The larger the F., the smaller the radius of curvature rand the sharper the curve. The second curve

has the same v, but a larger F;, produces a smaller r.

@ EXAMPLE 6.15

What Coefficient of Friction Do Cars Need on a Flat Curve?

(a) Calculate the centripetal force exerted on a 900.0-kg car that negotiates a 500.0-m radius curve at 25.00 m/
s. (b) Assuming an unbanked curve, find the minimum static coefficient of friction between the tires and the
road, static friction being the reason that keeps the car from slipping (Figure 6.21).
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Free-body
diagram

—t

Figure 6.21 This car on level ground is moving away and turning to the left. The centripetal force causing the car to turn in a circular path
is due to friction between the tires and the road. A minimum coefficient of friction is needed, or the car will move in a larger-radius curve

and leave the roadway.

Strategy

2
a. Weknow that F, = % Thus,
m2 (900.0 kg)(25.00 m/s)?

=1125N.
r (500.0m) SN

FC:

b. Figure 6.21 shows the forces acting on the car on an unbanked (level ground) curve. Friction is to the left,
keeping the car from slipping, and because it is the only horizontal force acting on the car, the friction is
the centripetal force in this case. We know that the maximum static friction (at which the tires roll but do
not slip) is pg N, where pg is the static coefficient of friction and N is the normal force. The normal force
equals the car’s weight on level ground, so N = mg. Thus the centripetal force in this situation is

Fe=f=psN = psmg.
Now we have a relationship between centripetal force and the coefficient of friction. Using the equation

2
v
Fe=m—,
r

we obtain
UZ
m— = psmg.
r

We solve this for ug, noting that mass cancels, and obtain



Substituting the knowns,
(25.00 m/s)?

= (500.0m)(9.80 m/s?)

Hs

(Because coefficients of friction are approximate, the answer is given to only two digits.)

Significance

The coefficient of friction found in Figure 6.21(b) is much smaller than is typically found between tires and
roads. The car still negotiates the curve if the coefficient is greater than 0.13, because static friction is a
responsive force, able to assume a value less than but no more than pg N. A higher coefficient would also allow
the car to negotiate the curve at a higher speed, but if the coefficient of friction is less, the safe speed would be
less than 25 m/s. Note that mass cancels, implying that, in this example, it does not matter how heavily loaded
the car is to negotiate the turn. Mass cancels because friction is assumed proportional to the normal force,
which in turn is proportional to mass. If the surface of the road were banked, the normal force would be
greater, as discussed next.

CHECK YOUR UNDERSTANDING 6.9

A car moving at 96.8 km/h travels around a circular curve of radius 182.9 m on a flat country road. What must
be the minimum coefficient of static friction to keep the car from slipping?

Banked Curves

Let us now consider banked curves, where the slope of the road helps you negotiate the curve (Figure 6.22).
The greater the angle 6, the faster you can take the curve. Race tracks for bikes as well as cars, for example,
often have steeply banked curves. In an “ideally banked curve,” the angle 6 is such that you can negotiate the
curve at a certain speed without the aid of friction between the tires and the road. We will derive an expression
for 0 for an ideally banked curve and consider an example related to it.

Ncos fl =w

Nsinfl=F, =F

net

Figure 6.22 The car on this banked curve is moving away and turning to the left.

For ideal banking, the net external force equals the horizontal centripetal force in the absence of friction. The
components of the normal force Nin the horizontal and vertical directions must equal the centripetal force
and the weight of the car, respectively. In cases in which forces are not parallel, it is most convenient to
consider components along perpendicular axes—in this case, the vertical and horizontal directions.

Figure 6.22 shows a free-body diagram for a car on a frictionless banked curve. If the angle 0 is ideal for the
speed and radius, then the net external force equals the necessary centripetal force. The only two external
forces acting on the car are its weight W and the normal force of the road l_\3 . (A frictionless surface can only
exert a force perpendicular to the surface—that is, a normal force.) These two forces must add to give a net



external force that is horizontal toward the center of curvature and has magnitude muv?/r. Because this is the
crucial force and it is horizontal, we use a coordinate system with vertical and horizontal axes. Only the normal
force has a horizontal component, so this must equal the centripetal force, that is,

2
Nsinf = ﬂ.
r
Because the car does not leave the surface of the road, the net vertical force must be zero, meaning that the
vertical components of the two external forces must be equal in magnitude and opposite in direction. From
Figure 6.22, we see that the vertical component of the normal force is N cos 6, and the only other vertical force
is the car’s weight. These must be equal in magnitude; thus,

N cos 6 = mg.

Now we can combine these two equations to eliminate N and get an expression for 6, as desired. Solving the
second equation for N = mg/ (cosf) and substituting this into the first yields

: 2
sinf _ mu
8cosd r
m02
mgtanf = =
2
— 1%
tanf = T
Taking the inverse tangent gives
2
_ v
0 = tan™! <—> 6.4
rg

This expression can be understood by considering how # depends on vand r. A large € is obtained for a large v
and a small . That is, roads must be steeply banked for high speeds and sharp curves. Friction helps, because

it allows you to take the curve at greater or lower speed than if the curve were frictionless. Note that § does not
depend on the mass of the vehicle.

@ EXAMPLE 6.16

What Is the Ideal Speed to Take a Steeply Banked Tight Curve?

Curves on some test tracks and race courses, such as Daytona International Speedway in Florida, are very
steeply banked. This banking, with the aid of tire friction and very stable car configurations, allows the curves
to be taken at very high speed. To illustrate, calculate the speed at which a 100.0-m radius curve banked at
31.0° should be driven if the road were frictionless.

Strategy

We first note that all terms in the expression for the ideal angle of a banked curve except for speed are known;
thus, we need only rearrange it so that speed appears on the left-hand side and then substitute known
quantities.

Solution
Starting with
2
v
tanf = —,
rg
we get

U= 4/rgtané.

Noting that tan 31.0° = 0.609, we obtain



v= \/(100.0 m)(9.80 m/s2)(0.609) = 24.4 m/s.

Significance
This is just about 165 km/h, consistent with a very steeply banked and rather sharp curve. Tire friction enables
a vehicle to take the curve at significantly higher speeds.

Airplanes also make turns by banking. The lift force, due to the force of the air on the wing, acts at right angles
to the wing. When the airplane banks, the pilot is obtaining greater lift than necessary for level flight. The
vertical component of lift balances the airplane’s weight, and the horizontal component accelerates the plane.
The banking angle shown in Figure 6.23 is given by 6. We analyze the forces in the same way we treat the case
of the car rounding a banked curve.

Figure 6.23 Inabanked turn, the horizontal component of lift is unbalanced and accelerates the plane. The normal component of lift

balances the plane’s weight. The banking angle is given by 8. Compare the vector diagram with that shown in Figure 6.22.

@ INTERACTIVE

Join the ladybug (https://openstax.org/l/21ladybug) in an exploration of rotational motion. Rotate the merry-
go-round to change its angle or choose a constant angular velocity or angular acceleration. Explore how
circular motion relates to the bug’s xy-position, velocity, and acceleration using vectors or graphs.

@ INTERACTIVE

A circular motion requires a force, the so-called centripetal force, which is directed to the axis of rotation. This
simplified model of a carousel (https://openstax.org/l/21carousel) demonstrates this force.

Inertial Forces and Noninertial (Accelerated) Frames: The Coriolis Force

What do taking off in a jet airplane, turning a corner in a car, riding a merry-go-round, and the circular motion
of a tropical cyclone have in common? Each exhibits inertial forces—forces that merely seem to arise from
motion, because the observer’s frame of reference is accelerating or rotating. When taking off in a jet, most
people would agree it feels as if you are being pushed back into the seat as the airplane accelerates down the
runway. Yet a physicist would say that you tend to remain stationary while the seat pushes forward on you. An
even more common experience occurs when you make a tight curve in your car—say, to the right (Figure 6.24).
You feel as if you are thrown (that is, forced) toward the left relative to the car. Again, a physicist would say that
you are going in a straight line (recall Newton’s first law) but the car moves to the right, not that you are


https://openstax.org/l/21ladybug
https://openstax.org/l/21carousel

experiencing a force from the left.

(@ {b)
Figure 6.24 (a) The car driver feels herself forced to the left relative to the car when she makes a right turn. This is an inertial force arising
from the use of the car as a frame of reference. (b) In Earth’s frame of reference, the driver moves in a straight line, obeying Newton’s first
law, and the car moves to the right. There is no force to the left on the driver relative to Earth. Instead, there is a force to the right on the car

to make it turn.

We can reconcile these points of view by examining the frames of reference used. Let us concentrate on people
in a car. Passengers instinctively use the car as a frame of reference, whereas a physicist might use Earth. The
physicist might make this choice because Earth is nearly an inertial frame of reference, in which all forces
have an identifiable physical origin. In such a frame of reference, Newton’s laws of motion take the form given
in Newton’s Laws of Motion. The car is a noninertial frame of reference because it is accelerated to the side.
The force to the left sensed by car passengers is an inertial force having no physical origin (it is due purely to
the inertia of the passenger, not to some physical cause such as tension, friction, or gravitation). The car, as
well as the driver, is actually accelerating to the right. This inertial force is said to be an inertial force because it
does not have a physical origin, such as gravity.

A physicist will choose whatever reference frame is most convenient for the situation being analyzed. There is
no problem to a physicist in including inertial forces and Newton’s second law, as usual, if that is more
convenient, for example, on a merry-go-round or on a rotating planet. Noninertial (accelerated) frames of
reference are used when it is useful to do so. Different frames of reference must be considered in discussing
the motion of an astronaut in a spacecraft traveling at speeds near the speed of light, as you will appreciate in
the study of the special theory of relativity.

Let us now take a mental ride on a merry-go-round—specifically, a rapidly rotating playground merry-go-
round (Figure 6.25). You take the merry-go-round to be your frame of reference because you rotate together.
When rotating in that noninertial frame of reference, you feel an inertial force that tends to throw you off; this
is often referred to as a centrifugal force (not to be confused with centripetal force). Centrifugal force is a
commonly used term, but it does not actually exist. You must hang on tightly to counteract your inertia (which
people often refer to as centrifugal force). In Earth’s frame of reference, there is no force trying to throw you off;
we emphasize that centrifugal force is a fiction. You must hang on to make yourself go in a circle because
otherwise you would go in a straight line, right off the merry-go-round, in keeping with Newton’s first law. But
the force you exert acts toward the center of the circle.
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Figure 6.25 (a) A rider on a merry-go-round feels as if he is being thrown off. This inertial force is sometimes mistakenly called the
centrifugal force in an effort to explain the rider’s motion in the rotating frame of reference. (b) In an inertial frame of reference and
according to Newton’s laws, it is his inertia that carries him off (the unshaded rider has Fpet = 0 and heads in a straight line). A force,

Feentripetal is needed to cause a circular path.

This inertial effect, carrying you away from the center of rotation if there is no centripetal force to cause
circular motion, is put to good use in centrifuges (Figure 6.26). A centrifuge spins a sample very rapidly, as
mentioned earlier in this chapter. Viewed from the rotating frame of reference, the inertial force throws
particles outward, hastening their sedimentation. The greater the angular velocity, the greater the centrifugal
force. But what really happens is that the inertia of the particles carries them along a line tangent to the circle
while the test tube is forced in a circular path by a centripetal force.
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Figure 6.26 Centrifuges use inertia to perform their task. Particles in the fluid sediment settle out because their inertia carries them away
from the center of rotation. The large angular velocity of the centrifuge quickens the sedimentation. Ultimately, the particles come into

contact with the test tube walls, which then supply the centripetal force needed to make them move in a circle of constant radius.

Let us now consider what happens if something moves in a rotating frame of reference. For example, what if
you slide a ball directly away from the center of the merry-go-round, as shown in Figure 6.27? The ball follows
a straight path relative to Earth (assuming negligible friction) and a path curved to the right on the merry-go-
round’s surface. A person standing next to the merry-go-round sees the ball moving straight and the merry-go-
round rotating underneath it. In the merry-go-round’s frame of reference, we explain the apparent curve to the



right by using an inertial force, called the Coriolis force, which causes the ball to curve to the right. The
Coriolis force can be used by anyone in that frame of reference to explain why objects follow curved paths and
allows us to apply Newton’s laws in noninertial frames of reference.

r ol Fath relative

: r Path relative to
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Figure 6.27 Looking down on the counterclockwise rotation of a merry-go-round, we see that a ball slid straight toward the edge follows a
path curved to the right. The person slides the ball toward point B, starting at point A. Both points rotate to the shaded positions (A’ and B’)

shown in the time that the ball follows the curved path in the rotating frame and a straight path in Earth’s frame.

Up until now, we have considered Earth to be an inertial frame of reference with little or no worry about effects
due to its rotation. Yet such effects do exist—in the rotation of weather systems, for example. Most
consequences of Earth’s rotation can be qualitatively understood by analogy with the merry-go-round. Viewed
from above the North Pole, Earth rotates counterclockwise, as does the merry-go-round in Figure 6.27. As on
the merry-go-round, any motion in Earth’s Northern Hemisphere experiences a Coriolis force to the right. Just
the opposite occurs in the Southern Hemisphere; there, the force is to the left. Because Earth’s angular velocity
is small, the Coriolis force is usually negligible, but for large-scale motions, such as wind patterns, it has
substantial effects.

The Coriolis force causes hurricanes in the Northern Hemisphere to rotate in the counterclockwise direction,
whereas tropical cyclones in the Southern Hemisphere rotate in the clockwise direction. (The terms hurricane,
typhoon, and tropical storm are regionally specific names for cyclones, which are storm systems characterized
by low pressure centers, strong winds, and heavy rains.) Figure 6.28 helps show how these rotations take place.
Air flows toward any region of low pressure, and tropical cyclones contain particularly low pressures. Thus
winds flow toward the center of a tropical cyclone or a low-pressure weather system at the surface. In the
Northern Hemisphere, these inward winds are deflected to the right, as shown in the figure, producing a
counterclockwise circulation at the surface for low-pressure zones of any type. Low pressure at the surface is
associated with rising air, which also produces cooling and cloud formation, making low-pressure patterns
quite visible from space. Conversely, wind circulation around high-pressure zones is clockwise in the Southern
Hemisphere but is less visible because high pressure is associated with sinking air, producing clear skies.



(@) (b) () (d)

Figure 6.28 (a) The counterclockwise rotation of this Northern Hemisphere hurricane is a major consequence of the Coriolis force. (b)
Without the Coriolis force, air would flow straight into a low-pressure zone, such as that found in tropical cyclones. (c) The Coriolis force
deflects the winds to the right, producing a counterclockwise rotation. (d) Wind flowing away from a high-pressure zone is also deflected to
the right, producing a clockwise rotation. (e) The opposite direction of rotation is produced by the Coriolis force in the Southern

Hemisphere, leading to tropical cyclones. (credit a and credit e: modifications of work by NASA)

The rotation of tropical cyclones and the path of a ball on a merry-go-round can just as well be explained by
inertia and the rotation of the system underneath. When noninertial frames are used, inertial forces, such as
the Coriolis force, must be invented to explain the curved path. There is no identifiable physical source for
these inertial forces. In an inertial frame, inertia explains the path, and no force is found to be without an
identifiable source. Either view allows us to describe nature, but a view in an inertial frame is the simplest in
the sense that all forces have origins and explanations.

6.4 Drag Force and Terminal Speed

Learning Objectives
By the end of this section, you will be able to:
e Express the drag force mathematically
e Describe applications of the drag force
e Define terminal velocity
e Determine an object’s terminal velocity given its mass

Another interesting force in everyday life is the force of drag on an object when it is moving in a fluid (either a
gas or a liquid). You feel the drag force when you move your hand through water. You might also feel it if you
move your hand during a strong wind. The faster you move your hand, the harder it is to move. You feel a
smaller drag force when you tilt your hand so only the side goes through the air—you have decreased the area
of your hand that faces the direction of motion.

Drag Forces

Like friction, the drag force always opposes the motion of an object. Unlike simple friction, the drag force is
proportional to some function of the velocity of the object in that fluid. This functionality is complicated and
depends upon the shape of the object, its size, its velocity, and the fluid it is in. For most large objects such as
cyclists, cars, and baseballs not moving too slowly, the magnitude of the drag force Fp is proportional to the
square of the speed of the object. We can write this relationship mathematically as Fp « v2. When taking into



account other factors, this relationship becomes

1
Fp = ECpAuz, 6.5

where Cis the drag coefficient, A is the area of the object facing the fluid, and p is the density of the fluid.
(Recall that density is mass per unit volume.) This equation can also be written in a more generalized fashion
as Fp = bu", where bis a constant equivalent to 0.5CpA. We have set the exponent n for these equations as 2
because when an object is moving at high velocity through air, the magnitude of the drag force is proportional
to the square of the speed. As we shall see in Fluid Mechanics, for small particles moving at low speeds in a
fluid, the exponent nis equal to 1.

Drag Force

Drag force Fp is proportional to the square of the speed of the object. Mathematically,

1
FD = EC[) AU2,

where Cis the drag coefficient, A is the area of the object facing the fluid, and p is the density of the fluid.

Athletes as well as car designers seek to reduce the drag force to lower their race times (Figure 6.29).
Aerodynamic shaping of an automobile can reduce the drag force and thus increase a car’s gas mileage.

Figure 6.29 From racing cars to bobsled racers, aerodynamic shaping is crucial to achieving top speeds. Bobsleds are designed for speed

and are shaped like a bullet with tapered fins. (credit: “U.S. Army”/Wikimedia Commons)

The value of the drag coefficient Cis determined empirically, usually with the use of a wind tunnel (Figure
6.30).



Figure 6.30 NASA researchers test a model plane in a wind tunnel. (credit: NASA/Ames)

The drag coefficient can depend upon velocity, but we assume that it is a constant here. Table 6.2 lists some
typical drag coefficients for a variety of objects. Notice that the drag coefficient is a dimensionless quantity. At
highway speeds, over 50% of the power of a car is used to overcome air drag. The most fuel-efficient cruising
speed is about 70-80 km/h (about 45-50 mi/h). For this reason, during the 1970s oil crisis in the United
States, maximum speeds on highways were set at about 90 km/h (55 mi/h).

Object c
Airfoil 0.05
Toyota Camry 0.28
Ford Focus 0.32
Honda Civic 0.36
Ferrari Testarossa 0.37

Dodge Ram Pickup 0.43

Sphere 0.45

Hummer H2 SUV 0.64

Skydiver (feet first) 0.70

Bicycle 0.90




Object (o

Skydiver (horizontal) | 1.0

Circular flat plate 1.12

Table 6.2 Typical Values of Drag Coefficient C

Substantial research is under way in the sporting world to minimize drag. The dimples on golf balls are being
redesigned, as are the clothes that athletes wear. Bicycle racers and some swimmers and runners wear full
bodysuits. Australian Cathy Freeman wore a full body suit in the 2000 Sydney Olympics and won a gold medal
in the 400-m race. Many swimmers in the 2008 Beijing Olympics wore (Speedo) body suits; it might have made
a difference in breaking many world records (Figure 6.31). Most elite swimmers (and cyclists) shave their body
hair. Such innovations can have the effect of slicing away milliseconds in a race, sometimes making the
difference between a gold and a silver medal. One consequence is that careful and precise guidelines must be
continuously developed to maintain the integrity of the sport.

Figure 6.31 Body suits, such as this LZR Racer Suit, have been credited with aiding in many world records after their release in 2008.

Smoother “skin” and more compression forces on a swimmer’s body provide at least 10% less drag. (credit: NASA/Kathy Barnstorff)

Terminal Velocity

Some interesting situations connected to Newton’s second law occur when considering the effects of drag
forces upon a moving object. For instance, consider a skydiver falling through air under the influence of
gravity. The two forces acting on him are the force of gravity and the drag force (ignoring the small buoyant
force). The downward force of gravity remains constant regardless of the velocity at which the person is
moving. However, as the person’s velocity increases, the magnitude of the drag force increases until the
magnitude of the drag force is equal to the gravitational force, thus producing a net force of zero. A zero net
force means that there is no acceleration, as shown by Newton’s second law. At this point, the person’s velocity
remains constant and we say that the person has reached his terminal velocity (vT). Since Fp is proportional
to the speed squared, a heavier skydiver must go faster for Fp to equal his weight. Let’s see how this works out
more quantitatively.

At the terminal velocity,
Fret =mg— Fp =ma=0.
Thus,
mg = Fp.



Using the equation for drag force, we have

m =1CA1)2.
g 5 pPAUT

or = 2mg
=1\ pca

Assume the density of airis p = 1.21 kg/m3 . A 75-kg skydiver descending head first has a cross-sectional area
of approximately A = 0.18 m? anda drag coefficient of approximately C = 0.70. We find that

- 2(75 kg)(9.80 m/s?)
TV (121 kgm®)(0.70)(0.18 m2)

Solving for the velocity, we obtain

=98 m/s = 350 km/h.

This means a skydiver with a mass of 75 kg achieves a terminal velocity of about 350 km/h while traveling in a
headfirst position, minimizing the area and his drag. In a spread-eagle position, that terminal velocity may
decrease to about 200 km/h as the area increases. This terminal velocity becomes much smaller after the
parachute opens.

@ EXAMPLE 6.17

Terminal Velocity of a Skydiver
Find the terminal velocity of an 85-kg skydiver falling in a spread-eagle position.

Strategy

At terminal velocity, Fhet = 0. Thus, the drag force on the skydiver must equal the force of gravity (the person’s
weight). Using the equation of drag force, we find mg = %pCsz.

Solution
The terminal velocity vT can be written as

2
o = 2mg _ 285k)O80m/sY)
\/ pCA (1.21 kg/m?)(1.0)(0.70 m2)

This result is consistent with the value for v mentioned earlier. The 75-kg skydiver going feet first had a
terminal velocity of v = 98 m/s. He weighed less but had a smaller frontal area and so a smaller drag due to
the air.

Significance

CHECK YOUR UNDERSTANDING 6.10

Find the terminal velocity of a 50-kg skydiver falling in spread-eagle fashion.

The size of the object that is falling through air presents another interesting application of air drag. If you fall
from a 5-m-high branch of a tree, you will likely get hurt—possibly fracturing a bone. However, a small squirrel
does this all the time, without getting hurt. You do not reach a terminal velocity in such a short distance, but
the squirrel does.

The following interesting quote on animal size and terminal velocity is from a 1928 essay by a British biologist,
J. B. S. Haldane, titled “On Being the Right Size.”

“To the mouse and any smaller animal, [gravity] presents practically no dangers. You can drop a mouse down a
thousand-yard mine shaft; and, on arriving at the bottom, it gets a slight shock and walks away, provided that
the ground is fairly soft. A rat is killed, a man is broken, and a horse splashes. For the resistance presented to



6.4 ¢ Drag Force and Terminal Speed

movement by the air is proportional to the surface of the moving object. Divide an animal’s length, breadth,
and height each by ten; its weight is reduced to a thousandth, but its surface only to a hundredth. So the
resistance to falling in the case of the small animal is relatively ten times greater than the driving force.”

The above quadratic dependence of air drag upon velocity does not hold if the object is very small, is going
very slow, or is in a denser medium than air. Then we find that the drag force is proportional just to the
velocity. This relationship is given by Stokes’ law.

Stokes’ Law
For a spherical object falling in a medium, the drag force is
Fy = 6rmrnu, 6.6

where ris the radius of the object, # is the viscosity of the fluid, and vis the object’s velocity.

Good examples of Stokes’ law are provided by microorganisms, pollen, and dust particles. Because each of
these objects is so small, we find that many of these objects travel unaided only at a constant (terminal)
velocity. Terminal velocities for bacteria (size about 1 pm) can be about 2 pm/s. To move at a greater speed,
many bacteria swim using flagella (organelles shaped like little tails) that are powered by little motors
embedded in the cell.

Sediment in a lake can move at a greater terminal velocity (about 5 pm/s), so it can take days for it to reach the
bottom of the lake after being deposited on the surface.

If we compare animals living on land with those in water, you can see how drag has influenced evolution. Fish,
dolphins, and even massive whales are streamlined in shape to reduce drag forces. Birds are streamlined and
migratory species that fly large distances often have particular features such as long necks. Flocks of birds fly
in the shape of a spearhead as the flock forms a streamlined pattern (Figure 6.32). In humans, one important
example of streamlining is the shape of sperm, which need to be efficient in their use of energy.

Figure 6.32 Geese fly in a V formation during their long migratory travels. This shape reduces drag and energy consumption for individual

birds, and also allows them a better way to communicate. (credit: modification of work by “Julo”/Wikimedia Commons)

@ INTERACTIVE

In lecture demonstrations, we do measurements of the drag force (https://openstax.org/l/21dragforce) on
different objects. The objects are placed in a uniform airstream created by a fan. Calculate the Reynolds
number and the drag coefficient.

293


https://openstax.org/l/21dragforce

The Calculus of Velocity-Dependent Frictional Forces

When a body slides across a surface, the frictional force on it is approximately constant and given by uy N.
Unfortunately, the frictional force on a body moving through a liquid or a gas does not behave so simply. This
drag force is generally a complicated function of the body’s velocity. However, for a body moving in a straight
line at moderate speeds through a liquid such as water, the frictional force can often be approximated by

SR =—bv,

where b is a constant whose value depends on the dimensions and shape of the body and the properties of the
liquid, and vis the velocity of the body. Two situations for which the frictional force can be represented by this
equation are a motorboat moving through water and a small object falling slowly through a liquid.

Let’s consider the object falling through a liquid. The free-body diagram of this object with the positive
direction downward is shown in Figure 6.33. Newton’s second law in the vertical direction gives the differential
equation
dv
mg—bv=m—,

& dt
where we have written the acceleration as dv/dt. As vincreases, the frictional force —bvincreases until it
matches mg. At this point, there is no acceleration and the velocity remains constant at the terminal velocity
vT. From the previous equation,

mg — bur =0,
S0

mg
vr = T

<l

Figure 6.33 Free-body diagram of an object falling through a resistive medium.

We can find the object’s velocity by integrating the differential equation for v. First, we rearrange terms in this
equation to obtain

dv _
g— (bimyv

Assuming that v = 0 atf = 0, integration of this equation yields

v dU, t
L A—
/0 g — (bimy /0

or




where v' and ¢' are dummy variables of integration. With the limits given, we find

—m[ln (g— 2U) —Ing] =1
b m

Since InA — InB = In(A/B), and In(A/B) = x implies e = A/B, we obtain

g — (bv/m) _ pbilm
g

B

and

U= %(1 _ e—bl/m).

Notice thatast — ©, v — mg/b = vT, which is the terminal velocity.

The position at any time may be found by integrating the equation for v. With v = dy/dt,

dy = %(1 — e bimygy.
Assuming y = O whent = 0,
y ! ,
/ dyl — E/ (1 _ e_bt/m)dt,,
0 b Jo
which integrates to
2
mg m-g. _
y= Tt + b—2(€ btim _ 1)

@ EXAMPLE 6.18

Effect of the Resistive Force on a Motorboat

A motorboat is moving across a lake at a speed v when its motor suddenly freezes up and stops. The boat then
slows down under the frictional force fg = —bv. (a) What are the velocity and position of the boat as functions
of time? (b) If the boat slows down from 4.0 to 1.0 m/s in 10 s, how far does it travel before stopping?

Solution
a. With the motor stopped, the only horizontal force on the boat is fg = —bv, so from Newton’s second law,
dv b
m— = —bv,
dt
which we can write as
dv b
— = ——dt.
v m

Integrating this equation between the time zero when the velocity is vg and the time t when the velocity is

v, we have
v dU’ b t
[ [
o VU m Jo
Thus,
v b
In— =——1,
2] m
which, since InA = x implies e = A, we can write this as
_ —bt/m
v =uyge .

Now from the definition of velocity,



dx _
= = e bt/m’
dt

so we have

dx = vge "™ dr.

x t ,
/ dx' = vy / e btim gy
0 0

With the initial position zero, we have

and
moy  _per |t mu _
- _ Oe bt/m| — 0(1 —e bt/m).
b 0 b
As time increases, e ?/m 0, and the position of the boat approaches a limiting value
muog
Xmax = T

Although this tells us that the boat takes an infinite amount of time to reach xmax, the boat effectively
stops after a reasonable time. For example, at t = 10m/b, we have
v= er—lo ~45 x 107 vg,

whereas we also have
x = xmax (1 — ¢719) =~ 0.99995x na .

Therefore, the boat’s velocity and position have essentially reached their final values.
b. With vy =4.0m/s and v = 1.0 m/s, we have 1.0 m/s = (4.0 m/s)e_(b/’")(lo ) so

In0.25 =-In4.0 = —2(10 s),
m

and
b 1 _1 _1
—=—In4.0s" =0.145"".
m 10
Now the boat’s limiting position is
muy 4.0 m/s 29m
X = =
T b T 014571

Significance

In the both of the previous examples, we found “limiting” values. The terminal velocity is the same as the
limiting velocity, which is the velocity of the falling object after a (relatively) long time has passed. Similarly,
the limiting distance of the boat is the distance the boat will travel after a long amount of time has passed. Due
to the properties of exponential decay, the time involved to reach either of these values is actually not too long
(certainly not an infinite amount of time!) but they are quickly found by taking the limit to infinity.

CHECK YOUR UNDERSTANDING 6.11

Suppose the resistive force of the air on a skydiver can be approximated by f = —buv?. If the terminal velocity
of a 100-kg skydiver is 60 m/s, what is the value of b?



CHAPTER REVIEW
Key Terms

banked curve curve in aroad that is slopingin a
manner that helps a vehicle negotiate the curve

centripetal force any net force causing uniform
circular motion

Coriolis force inertial force causing the apparent
deflection of moving objects when viewed in a
rotating frame of reference

drag force force that always opposes the motion of
an object in a fluid; unlike simple friction, the
drag force is proportional to some function of the
velocity of the object in that fluid

friction force that opposes relative motion or
attempts at motion between systems in contact

ideal banking sloping of a curve in a road, where
the angle of the slope allows the vehicle to
negotiate the curve at a certain speed without the

Key Equations
Magnitude of static friction fs < usN
Magnitude of kinetic friction  fr = ux N

Centripetal force

2
Ideal angle of a banked curve tan = ‘r’—g
Drag force Fp = %CpAU2
Stokes’ law Fy = 6mrqu
Summary

6.1 Solving Problems with Newton’s Laws

« Newton’s laws of motion can be applied in
numerous situations to solve motion problems.

« Some problems contain multiple force vectors
acting in different directions on an object. Be
sure to draw diagrams, resolve all force vectors
into horizontal and vertical components, and
draw a free-body diagram. Always analyze the
direction in which an object accelerates so that
you can determine whether Fpet = ma or
Fret = 0.

» The normal force on an object is not always
equal in magnitude to the weight of the object. If
an object is accelerating vertically, the normal

= U2 F. =
C—mT or C—mra)

aid of friction between the tires and the road; the
net external force on the vehicle equals the
horizontal centripetal force in the absence of
friction

inertial force force that has no physical origin

kinetic friction force that opposes the motion of
two systems that are in contact and moving
relative to each other

noninertial frame of reference accelerated frame
of reference

static friction force that opposes the motion of two
systems that are in contact and are not moving
relative to each other

terminal velocity constant velocity achieved by a
falling object, which occurs when the weight of
the object is balanced by the upward drag force

2

force is less than or greater than the weight of
the object. Also, if the object is on an inclined
plane, the normal force is always less than the
full weight of the object.

- Some problems contain several physical
quantities, such as forces, acceleration, velocity,
or position. You can apply concepts from
kinematics and dynamics to solve these
problems.

6.2 Friction

« Friction is a contact force that opposes the
motion or attempted motion between two
systems. Simple friction is proportional to the
normal force N supporting the two systems.




« The magnitude of static friction force between
two materials stationary relative to each other is
determined using the coefficient of static
friction, which depends on both materials.

« The kinetic friction force between two materials
moving relative to each other is determined
using the coefficient of kinetic friction, which
also depends on both materials and is always
less than the coefficient of static friction.

6.3 Centripetal Force

-

« Centripetal force F. is a “center-seeking” force
that always points toward the center of rotation.
It is perpendicular to linear velocity and has the

magnitude
Fc = mac.

Conceptual Questions

6.1 Solving Problems with Newton’s Laws

1. To simulate the apparent weightlessness of space
orbit, astronauts are trained in the hold of a cargo
aircraft that is accelerating downward at g. Why
do they appear to be weightless, as measured by
standing on a bathroom scale, in this accelerated
frame of reference? Is there any difference
between their apparent weightlessness in orbit
and in the aircraft?

6.2 Friction

2. The glue on a piece of tape can exert forces. Can
these forces be a type of simple friction? Explain,
considering especially that tape can stick to
vertical walls and even to ceilings.

3. When you learn to drive, you discover that you
need to let up slightly on the brake pedal as you
come to a stop or the car will stop with a jerk.
Explain this in terms of the relationship between
static and kinetic friction.

4. When you push a piece of chalk across a
chalkboard, it sometimes screeches because it
rapidly alternates between slipping and sticking
to the board. Describe this process in more
detail, in particular, explaining how it is related
to the fact that kinetic friction is less than static
friction. (The same slip-grab process occurs
when tires screech on pavement.)

5. A physics major is cooking breakfast when she
notices that the frictional force between her steel
spatula and Teflon frying pan is only 0.200 N.
Knowing the coefficient of kinetic friction
between the two materials, she quickly calculates

Rotating and accelerated frames of reference
are noninertial. Inertial forces, such as the
Coriolis force, are needed to explain motion in
such frames.

6.4 Drag Force and Terminal Speed

Drag forces acting on an object moving in a fluid
oppose the motion. For larger objects (such as a
baseball) moving at a velocity in air, the drag
force is determined using the drag coefficient
(typical values are given in Table 6.2), the area of
the object facing the fluid, and the fluid density.
For small objects (such as a bacterium) moving
in a denser medium (such as water), the drag
force is given by Stokes’ law.

the normal force. What is it?

6.3 Centripetal Force

6. If you wish to reduce the stress (which is related

to centripetal force) on high-speed tires, would
you use large- or small-diameter tires? Explain.

. Define centripetal force. Can any type of force (for

example, tension, gravitational force, friction,
and so on) be a centripetal force? Can any
combination of forces be a centripetal force?

. If centripetal force is directed toward the center,

why do you feel that you are ‘thrown’ away from
the center as a car goes around a curve? Explain.
Race car drivers routinely cut corners, as shown
below (Path 2). Explain how this allows the curve
to be taken at the greatest speed.



Path 1
1

10. Many amusement parks have rides that make

11.

12.

13.

vertical loops like the one shown below. For
safety, the cars are attached to the rails in such
a way that they cannot fall off. If the car goes
over the top at just the right speed, gravity alone
will supply the centripetal force. What other
force acts and what is its direction if:

(a) The car goes over the top at faster than this
speed?

(b) The car goes over the top at slower than this
speed?

What causes water to be removed from clothes

in a spin-dryer?

As a skater forms a circle, what force is
responsible for making his turn? Use a free-

body diagram in your answer.

Suppose a child is riding on a merry-go-round at a

14.

15.

distance about halfway between its center and edge.
She has a lunch box resting on wax paper, so that
there is very little friction between it and the merry-
go-round. Which path shown below will the lunch
box take when she lets go? The lunch box leaves a
trail in the dust on the merry-go-round. Is that trail
straight, curved to the left, or curved to the right?
Explain your answer.

Merry-go-round’s rotating
frame of reference

Do you feel yourself thrown to either side when
you negotiate a curve that is ideally banked for
your car’s speed? What is the direction of the
force exerted on you by the car seat?
Suppose a mass is moving in a circular path on a
frictionless table as shown below. In Earth’s frame of
reference, there is no centrifugal force pulling the
mass away from the center of rotation, yet there is a
force stretching the string attaching the mass to the
nail. Using concepts related to centripetal force and
Newton’s third law, explain what force stretches the
string, identifying its physical origin.

.I 4
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17.
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19.

When a toilet is flushed or a sink is drained, the
water (and other material) begins to rotate
about the drain on the way down. Assuming no
initial rotation and a flow initially directly
straight toward the drain, explain what causes
the rotation and which direction it has in the
Northern Hemisphere. (Note that this is a small
effect and in most toilets the rotation is caused
by directional water jets.) Would the direction of
rotation reverse if water were forced up the
drain?

A car rounds a curve and encounters a patch of
ice with a very low coefficient of kinetic fiction.
The car slides off the road. Describe the path of
the car as it leaves the road.

In one amusement park ride, riders enter a
large vertical barrel and stand against the wall
on its horizontal floor. The barrel is spun up and
the floor drops away. Riders feel as if they are
pinned to the wall by a force something like the
gravitational force. This is an inertial force
sensed and used by the riders to explain events
in the rotating frame of reference of the barrel.
Explain in an inertial frame of reference (Earth
is nearly one) what pins the riders to the wall,
and identify all forces acting on them.

Two friends are having a conversation. Anna
says a satellite in orbit is in free fall because the

Problems

6.1 Solving Problems with Newton’s Laws

25.

26.

A 30.0-kg girl in a swing is pushed to one side

and held at rest by a horizontal force f‘ so that
the swing ropes are 30.0° with respect to the
vertical. (a) Calculate the tension in each of the
two ropes supporting the swing under these

conditions. (b) Calculate the magnitude of f‘
Find the tension in each of the three cables
supporting the traffic light if it weighs 2.00 x
102 N.

20.

satellite keeps falling toward Earth. Tom says a
satellite in orbit is not in free fall because the
acceleration due to gravity is not 9.80 m/s%. Who
do you agree with and why?

A nonrotating frame of reference placed at the
center of the Sun is very nearly an inertial one.
Why is it not exactly an inertial frame?

6.4 Drag Force and Terminal Speed

21.

22

23.

24.

27.

Athletes such as swimmers and bicyclists wear
body suits in competition. Formulate a list of
pros and cons of such suits.

Two expressions were used for the drag force
experienced by a moving object in a liquid. One
depended upon the speed, while the other was
proportional to the square of the speed. In
which types of motion would each of these
expressions be more applicable than the other
one?

As cars travel, oil and gasoline leaks onto the
road surface. If a light rain falls, what does this
do to the control of the car? Does a heavy rain
make any difference?

Why can a squirrel jump from a tree branch to
the ground and run away undamaged, while a
human could break a bone in such a fall?

w= 200N

Y

Three forces act on an object, considered to be a
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30.

particle, which moves with constant velocity

v= (3i — 2?]'\) m/s. Two of the forces are

F| = 31 +5] — 6k)Nand

if'z =(4i- 73\ + Zi(\) N. Find the third force.

A flea jumps by exerting a force of

120 x 107> N straight down on the ground. A
breeze blowing on the flea parallel to the ground
exerts a force of 0.500 x 107° N on the flea
while the flea is still in contact with the ground.
Find the direction and magnitude of the
acceleration of the flea if its mass is

6.00 x 1077 kg. Do not neglect the

gravitational force.

Two muscles in the back of the leg pull upward on
the Achilles tendon, as shown below. (These
muscles are called the medial and lateral heads of

the gastrocnemius muscle.) Find the magnitude and

direction of the total force on the Achilles tendon.
What type of movement could be caused by this
force?

F,(200 N)

Lateral A=
gastrocnemius f i 1

Achilles’ tendon —/

After a mishap, a 76.0-kg circus performer clings to

a trapeze, which is being pulled to the side by
another circus artist, as shown here. Calculate the
tension in the two ropes if the person is
momentarily motionless. Include a free-body
diagram in your solution.

31.

A 35.0-kg dolphin accelerates opposite to the
motion from 12.0 to 7.50 m/s in 2.30 s to join
another dolphin in play. What average force was
exerted to slow the first dolphin if it was moving
horizontally? (The gravitational force is
balanced by the buoyant force of the water.)

32. When starting a foot race, a 70.0-kg sprinter

33.

34.

35.

exerts an average force of 650 N backward on
the ground for 0.800 s. (a) What is his final
speed? (b) How far does he travel?

A large rocket has a mass of 2.00 x 10° kg at
takeoff, and its engines produce a thrust of
3.50 x 107 N. (a) Find its initial acceleration if
it takes off vertically. (b) How long does it take to
reach a velocity of 120 km/h straight up,
assuming constant mass and thrust?

A basketball player jumps straight up for a ball.
To do this, he lowers his body 0.300 m and then
accelerates through this distance by forcefully
straightening his legs. This player leaves the
floor with a vertical velocity sufficient to carry
him 0.900 m above the floor. (a) Calculate his
velocity when he leaves the floor. (b) Calculate
his acceleration while he is straightening his
legs. He goes from zero to the velocity found in
(a) in a distance of 0.300 m. (c) Calculate the
force he exerts on the floor to do this, given that
his massis 110.0 kg.

A 2.50-kg fireworks shell is fired straight up
from a mortar and reaches a height of 110.0 m.
(a) Neglecting air resistance (a poor
assumption, but we will make it for this
example), calculate the shell’s velocity when it
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40.

leaves the mortar. (b) The mortar itself is a tube
0.450 m long. Calculate the average acceleration
of the shell in the tube as it goes from zero to the
velocity found in (a). (c) What is the average
force on the shell in the mortar? Express your
answer in newtons and as a ratio to the weight
of the shell.

A 0.500-kg potato is fired at an angle of 80.0°
above the horizontal from a PVC pipe used as a
“potato gun” and reaches a height of 110.0 m.
(a) Neglecting air resistance, calculate the
potato’s velocity when it leaves the gun. (b) The
gun itself is a tube 0.450 m long. Calculate the
average acceleration of the potato in the tube as
it goes from zero to the velocity found in (a). (c)
What is the average force on the potato in the
gun? Express your answer in newtons and as a
ratio to the weight of the potato.

An elevator filled with passengers has a mass of
1.70 x 103 kg. (a) The elevator accelerates
upward from rest at a rate of 1.20 m/s? for 1.50
s. Calculate the tension in the cable supporting
the elevator. (b) The elevator continues upward
at constant velocity for 8.50 s. What is the
tension in the cable during this time? (c) The
elevator accelerates opposite to the motion at a
rate of 0.600 m/s2 for 3.00 s. What is the tension
in the cable during acceleration opposite to the
motion? (d) How high has the elevator moved
above its original starting point, and what is its
final velocity?

A 20.0-g ball hangs from the roof of a freight car
by a string. When the freight car begins to move,
the string makes an angle of 35.0° with the
vertical. (a) What is the acceleration of the
freight car? (b) What is the tension in the string?
A student’s backpack, full of textbooks, is hung
from a spring scale attached to the ceiling of an
elevator. When the elevator is accelerating
downward at 3.8 m/s2, the scale reads 60 N. (a)
What is the mass of the backpack? (b) What
does the scale read if the elevator moves
upward while speeding up at a rate 3.8 m/s%? (c)
What does the scale read if the elevator moves
upward at constant velocity? (d) If the elevator
had no brakes and the cable supporting it were
to break loose so that the elevator could fall
freely, what would the spring scale read?

A service elevator takes a load of garbage, mass
10.0 kg, from a floor of a skyscraper under
construction, down to ground level, accelerating
downward at a rate of 1.2 m/s2. Find the
magnitude of the force the garbage exerts on the

41.

42.

43.

floor of the service elevator?

A roller coaster car starts from rest at the top of
a track 30.0 m long and inclined at 20.0° to the
horizontal. Assume that friction can be ignored.
(a) What is the acceleration of the car? (b) How
much time elapses before it reaches the bottom
of the track?

The device shown below is the Atwood’s
machine considered in Example 6.5. Assuming
that the masses of the string and the frictionless
pulley are negligible, (a) find an equation for the
acceleration of the two blocks; (b) find an
equation for the tension in the string; and (c)
find both the acceleration and tension when
block 1 has mass 2.00 kg and block 2 has mass
4.00 kg.

my

Two blocks are connected by a massless rope as
shown below. The mass of the block on the table
is 4.0 kg and the hanging mass is 1.0 kg. The
table and the pulley are frictionless. (a) Find the
acceleration of the system. (b) Find the tension
in the rope. (c) Find the speed with which the
hanging mass hits the floor if it starts from rest
and is initially located 1.0 m from the floor.
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6.2

Shown below are two carts connected by a cord
that passes over a small frictionless pulley. Each
cart rolls freely with negligible friction.
Calculate the acceleration of the carts and the

tension in the cord. _
8
N\ X
- LY

10 kg 2

y :
Aer SO,

A 2.00 kg block (mass 1) and a 4.00 kg block
(mass 2) are connected by a light string as
shown; the inclination of the ramp is 40.0°.
Friction is negligible. What is (a) the
acceleration of each block and (b) the tension in
the string?

Pe

Friction

46.

(a) When rebuilding his car’s engine, a physics
major must exert 3.00 X 102 N of force to
insert a dry steel piston into a steel cylinder.
What is the normal force between the piston
and cylinder? (b) What force would he have to

47.
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exert if the steel parts were oiled?

(a) What is the maximum frictional force in the
knee joint of a person who supports 66.0 kg of
her mass on that knee? (b) During strenuous
exercise, it is possible to exert forces to the
joints that are easily 10 times greater than the
weight being supported. What is the maximum
force of friction under such conditions? The
frictional forces in joints are relatively small in
all circumstances except when the joints
deteriorate, such as from injury or arthritis.
Increased frictional forces can cause further
damage and pain.

Suppose you have a 120-kg wooden crate
resting on a wood floor, with coefficient of static
friction 0.500 between these wood surfaces. (a)
What maximum force can you exert horizontally
on the crate without moving it? (b) If you
continue to exert this force once the crate starts
to slip, what will its acceleration then be? The
coefficient of sliding friction is known to be
0.300 for this situation.

(a) If half of the weight of a small 1.00 x 103-kg
utility truck is supported by its two drive
wheels, what is the maximum acceleration it
can achieve on dry concrete? (b) Will a metal
cabinet lying on the wooden bed of the truck
slip if it accelerates at this rate? (c) Solve both
problems assuming the truck has four-wheel
drive.

A team of eight dogs pulls a sled with waxed
wood runners on wet snow (mush!). The dogs
have average masses of 19.0 kg, and the loaded
sled with its rider has a mass of 210 kg. (a)
Calculate the acceleration of the dogs starting
from rest if each dog exerts an average force of
185 N backward on the snow. (b) Calculate the
force in the coupling between the dogs and the
sled.

Consider the 65.0-kg ice skater being pushed by
two others shown below. (a) Find the direction
and magnitude of Fy, the total force exerted on
her by the others, given that the magnitudes Fj
and F, are 26.4 N and 18.6 N, respectively. (b)
What is her initial acceleration if she is initially
stationary and wearing steel-bladed skates that
point in the direction of Fiy ? (¢c) What is her
acceleration assuming she is already moving in
the direction of Fyot ? (Remember that friction
always acts in the direction opposite that of
motion or attempted motion between surfaces
in contact.)
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Free-body diagram

{b)
Show that the acceleration of any object down a
frictionless incline that makes an angle 8 with the
horizontal is a = g sin 6. (Note that this
acceleration is indegendent of mass.)

W = mg W,

Show that the acceleration of any object down
an incline where friction behaves simply (that
is, where fy = u N) is a = g(sin 0 — py cos 0).
Note that the acceleration is independent of
mass and reduces to the expression found in
the previous problem when friction becomes
negligibly small (¢, = 0).
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Calculate the acceleration opposite to the
motion of a snow boarder going up a 5.00°
slope, assuming the coefficient of friction for
waxed wood on wet snow. The result of the
preceding problem may be useful, but be
careful to consider the fact that the snow
boarder is going uphill.

A machine at a post office sends packages out a
chute and down a ramp to be loaded into
delivery vehicles. (a) Calculate the acceleration
of a box heading down a 10.0° slope, assuming
the coefficient of friction for a parcel on waxed
wood is 0.100. (b) Find the angle of the slope
down which this box could move at a constant
velocity. You can neglect air resistance in both
parts.

If an object is to rest on an incline without
slipping, then friction must equal the
component of the weight of the object parallel to
the incline. This requires greater and greater
friction for steeper slopes. Show that the
maximum angle of an incline above the
horizontal for which an object will not slide
down is @ = tan™! Us. You may use the result of
the previous problem. Assume that a = 0 and
that static friction has reached its maximum
value.

W |

Calculate the maximum acceleration of a car
that is heading down a 6.00° slope (one that
makes an angle of 6.00° with the horizontal)
under the following road conditions. You may
assume that the weight of the car is evenly
distributed on all four tires and that the
coefficient of static friction is involved—that is,
the tires are not allowed to slip during the
acceleration opposite to the motion. (Ignore
rolling.) Calculate for a car: (a) On dry concrete.
(b) On wet concrete. (c) On ice, assuming that

us = 0.100, the same as for shoes on ice.
Calculate the maximum acceleration of a car
that is heading up a 4.00° slope (one that makes
an angle of 4.00° with the horizontal) under the
following road conditions. Assume that only half
the weight of the car is supported by the two
drive wheels and that the coefficient of static
friction is involved—that is, the tires are not
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allowed to slip during the acceleration. (Ignore
rolling.) (@) On dry concrete. (b) On wet
concrete. (c) On ice, assuming that ys = 0.100,
the same as for shoes on ice.

Repeat the preceding problem for a car with
four-wheel drive.

A freight train consists of two 8.00 x 10°-kg
engines and 45 cars with average masses of
5.50 x 10° kg. (a) What force must each engine
exert backward on the track to accelerate the
train at a rate of 5.00 X 10~2m/s? if the force of
friction is 7.50 x 10°N, assuming the engines
exert identical forces? This is not a large
frictional force for such a massive system.
Rolling friction for trains is small, and
consequently, trains are very energy-efficient
transportation systems. (b) What is the force in
the coupling between the 37th and 38th cars
(this is the force each exerts on the other),
assuming all cars have the same mass and that
friction is evenly distributed among all of the
cars and engines?

Consider the 52.0-kg mountain climber shown
below. (a) Find the tension in the rope and the
force that the mountain climber must exert with
her feet on the vertical rock face to remain
stationary. Assume that the force is exerted
parallel to her legs. Also, assume negligible
force exerted by her arms. (b) What is the
minimum coefficient of friction between her
shoes and the cliff?

A contestant in a winter sporting event pushes a
45.0-kg block of ice across a frozen lake as shown

below. The coefficient of friction of ice can be found

in Table 6.1. (a) Calculate the minimum force Fhe
must exert to get the block moving. (b) What is its
acceleration once it starts to move, if that force is
maintained?
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63. The contestant now pulls the block of ice with a rope
over his shoulder at the same angle above the
horizontal as shown below. The coefficient of friction
of ice can be found in Table 6.1. Calculate the
minimum force F he must exert to get the block
moving. (b) What is its acceleration once it starts to
move, if that force is maintained?

64. At a post office, a parcel that is a 20.0-kg box
slides down a ramp inclined at 30.0° with the
horizontal. The coefficient of kinetic friction
between the box and plane is 0.0300. (a) Find
the acceleration of the box. (b) Find the velocity
of the box as it reaches the end of the plane, if
the length of the plane is 2 m and the box starts
at rest.

6.3 Centripetal Force

65. (a) A 22.0-kg child is riding a playground merry-
go-round that is rotating at 40.0 rev/min. What
centripetal force is exerted if he is 1.25 m from
its center? (b) What centripetal force is exerted
if the merry-go-round rotates at 3.00 rev/min
and he is 8.00 m from its center? (c) Compare
each force with his weight.

66. Calculate the centripetal force on the end of a
100-m (radius) wind turbine blade that is
rotating at 0.5 rev/s. Assume the mass is 4 kg.

67. What is the ideal banking angle for a gentle turn
of 1.20-km radius on a highway with a 105 km/h
speed limit (about 65 mi/h), assuming everyone
travels at the limit?

68. What is the ideal speed to take a 100.0-m-radius
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69.

70.

71.

72.
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curve banked at a 20.0° angle?

(a) What is the radius of a bobsled turn banked
at 75.0° and taken at 30.0 m/s, assuming it is
ideally banked? (b) Calculate the centripetal
acceleration. (c) Does this acceleration seem
large to you?

Part of riding a bicycle involves leaning at the
correct angle when making a turn, as seen
below. To be stable, the force exerted by the
ground must be on a line going through the
center of gravity. The force on the bicycle wheel
can be resolved into two perpendicular
components—friction parallel to the road (this
must supply the centripetal force) and the
vertical normal force (which must equal the
system’s weight). (a) Show that @ (as defined as
shown) is related to the speed vand radius of
curvature rof the turn in the same way as for an
ideally banked roadway—that is,

6 = tan™! (vZ/rg). (b) Calculate 6 for a 12.0-m/s

turn of radius 30.0 m (as in a race).
Free-body diagram

F = sum of N and F,
N o= w

If a car takes a banked curve at less than the

ideal speed, friction is needed to keep it from
sliding toward the inside of the curve (a

problem on icy mountain roads). (a) Calculate

the ideal speed to take a 100.0 m radius curve
banked at 15.0°. (b) What is the minimum
coefficient of friction needed for a frightened
driver to take the same curve at 20.0 km/h?
Modern roller coasters have vertical loops like the
one shown here. The radius of curvature is smaller
at the top than on the sides so that the downward
centripetal acceleration at the top will be greater
than the acceleration due to gravity, keeping the
passengers pressed firmly into their seats. What is
the speed of the roller coaster at the top of the loop
if the radius of curvature there is 15.0 m and the
downward acceleration of the caris 1.50 g?

Access for free at openstax.org.
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73. Achild of mass 40.0 kg is in a roller coaster car
that travels in a loop of radius 7.00 m. At point A
the speed of the car is 10.0 m/s, and at point B, the
speed is 10.5 m/s. Assume the child is not holding
on and does not wear a seat belt. (a) What is the
force of the car seat on the child at point A? (b)
What is the force of the car seat on the child at
point B? (c) What minimum speed is required to
keep the child in his seat at point A?

74. In the simple Bohr model of the ground state of
the hydrogen atom, the electron travels in a
circular orbit around a fixed proton. The radius
of the orbitis 5.28 x 101! m, and the speed of
the electron is 2.18 x 10° m/s. The mass of an
electronis 9.11 x 1073! kg. What is the force
on the electron?

Railroad tracks follow a circular curve of radius
500.0 m and are banked at an angle of 5.0°. For
trains of what speed are these tracks designed?
The CERN particle accelerator is circular with a
circumference of 7.0 km. (a) What is the
acceleration of the protons

75.
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(m=1.67 x 10727 kg) that move around the
accelerator at 5% of the speed of light? (The
speed of light is v = 3.00 x 103 m/s.) (b) What
is the force on the protons?

A car rounds an unbanked curve of radius 65 m.
If the coefficient of static friction between the
road and car is 0.70, what is the maximum
speed at which the car can traverse the curve
without slipping?

A banked highway is designed for traffic moving
at 90.0 km/h. The radius of the curve is 310 m.
What is the angle of banking of the highway?

6.4 Drag Force and Terminal Speed
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The terminal velocity of a person falling in air
depends upon the weight and the area of the
person facing the fluid. Find the terminal
velocity (in meters per second and kilometers
per hour) of an 80.0-kg skydiver falling in a
headfirst position with a surface area of

0.140 m?.

A 60.0-kg and a 90.0-kg skydiver jump from an
airplane at an altitude of 6.00 X 103 m, both
falling in a headfirst position. Make some
assumption on their frontal areas and calculate
their terminal velocities. How long will it take
for each skydiver to reach the ground (assuming
the time to reach terminal velocity is small)?
Assume all values are accurate to three
significant digits.

A 560-g squirrel with a surface area of 930 cm?
falls from a 5.0-m tree to the ground. Estimate
its terminal velocity. (Use a drag coefficient for a
horizontal skydiver.) What will be the velocity of
a 56-kg person hitting the ground, assuming no
drag contribution in such a short distance?

To maintain a constant speed, the force
provided by a car’s engine must equal the drag
force plus the force of friction of the road (the
rolling resistance). (a) What are the drag forces
at 70 km/h and 100 km/h for a Toyota Camry?
(Drag area is 0.70 m?) (b) What is the drag force

Additional Problems

90.

(a) What is the final velocity of a car originally
traveling at 50.0 km/h that accelerates opposite
to the motion at a rate of 0.400 m/s? for 50.0 s?
Assume a coefficient of friction of 1.0. (b) What
is unreasonable about the result? (¢) Which
premise is unreasonable, or which premises are
inconsistent?

83.
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at 70 km/h and 100 km/h for a Hummer H2?
(Drag area is 2.44 mz) Assume all values are
accurate to three significant digits.

By what factor does the drag force on a car
increase as it goes from 65 to 110 km/h?
Calculate the velocity a spherical rain drop
would achieve falling from 5.00 km (a) in the
absence of air drag (b) with air drag. Take the
size across of the drop to be 4 mm, the density
tobe 1.00 x 103 kg/m3, and the surface area to
be 7r2.

Using Stokes’ law, verify that the units for
viscosity are kilograms per meter per second.
Find the terminal velocity of a spherical
bacterium (diameter 2.00 pm) falling in water.
You will first need to note that the drag force is
equal to the weight at terminal velocity. Take the
density of the bacterium to be

1.10 x 103 kg/m>.

Stokes’ law describes sedimentation of particles
in liquids and can be used to measure viscosity.
Particles in liquids achieve terminal velocity
quickly. One can measure the time it takes for a
particle to fall a certain distance and then use
Stokes’ law to calculate the viscosity of the
liquid. Suppose a steel ball bearing (density

7.8 x 10° kg/m3, diameter 3.0 mm) is dropped
in a container of motor oil. It takes 12 s to fall a
distance of 0.60 m. Calculate the viscosity of the
oil.

Suppose that the resistive force of the air on a
skydiver can be approximated by f = —bv2. 1f
the terminal velocity of a 50.0-kg skydiver is
60.0 m/s, what is the value of b?

A small diamond of mass 10.0 g drops from a
swimmer'’s earring and falls through the water,
reaching a terminal velocity of 2.0 m/s. (a)
Assuming the frictional force on the diamond
obeys f = —bv, what is b? (b) How far does the
diamond fall before it reaches 90 percent of its
terminal speed?

A 75.0-kg woman stands on a bathroom scale in
an elevator that accelerates from rest to 30.0 m/
sin 2.00 s. (a) Calculate the scale reading in
newtons and compare it with her weight. (The
scale exerts an upward force on her equal to its
reading.) (b) What is unreasonable about the
result? (c) Which premise is unreasonable, or
which premises are inconsistent?
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92. (a) Calculate the minimum coefficient of friction 95. As shown below, if M = 6.0 kg, what is the
needed for a car to negotiate an unbanked 50.0 tension in the connecting string? The pulley and
m radius curve at 30.0 m/s. (b) What is all surfaces are frictionless.

unreasonable about the result? (c) Which
premises are unreasonable or inconsistent?

93. Asshown below, if M = 5.50 kg, what is the
tension in string 1?

96. A small space probe is released from a
spaceship. The space probe has mass 20.0 kg
and contains 90.0 kg of fuel. It starts from rest

94. As shown below, if F = 60.0 N and M = 4.00 kg, in deep space, from the origin of a coordinate
what is the magnitude of the acceleration of the system based on the spaceship,.and bur.ns fuel
suspended object? All surfaces are frictionless. at the rate of 3.00 kg/s. The engine provides a

E constant thrust of 120.0 N. (a) Write an
n” expression for the mass of the space probe as a

function of time, between 0 and 30 seconds,

assuming that the engine ignites fuel beginning

att = 0. (b) What is the velocity after 15.0 s? (c)

What is the position of the space probe after

15.0 s, with initial position at the origin? (d)

Write an expression for the position as a

M function of time, for ¢t > 30.0 s.

97. A half-full recycling bin has mass 3.0 kg and is
pushed up a 40.0° incline with constant speed
under the action of a 26-N force acting up and
parallel to the incline. The incline has friction.
What magnitude force must act up and parallel
to the incline for the bin to move down the
incline at constant velocity?

98. A child has mass 6.0 kg and slides down a 35°
incline with constant speed under the action of
a 34-N force acting up and parallel to the
incline. What is the coefficient of kinetic friction
between the child and the surface of the
incline?
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99. The two barges shown here are coupled by a cable of 106.
negligible mass. The mass of the front barge is
2.00 x 103 kg and the mass of the rear barge is
3.00 x 103 kg. A tugboat pulls the front barge with a
horizontal force of magnitude 20.0 X 103 N, and the 107.
frictional forces of the water on the front and rear
barges are 8.00 x 103 Nand 10.0 x 10 N,
respectively. Find the horizontal acceleration of the

A 1.5-kg mass has an acceleration of

(4.0§ — 3.03\) m/s2. Only two forces act on the
mass. If one of the forces is (2.0i — 1.43\) N,
what is the magnitude of the other force?

A box is dropped onto a conveyor belt moving
at 3.4 m/s. If the coefficient of friction between
the box and the belt is 0.27, how long will it
take before the box moves without slipping?

barges and the tension in the connecting cable.

108.

Shown below is a 10.0-kg block being pushed
by a horizontal force F of magnitude 200.0 N.
The coefficient of kinetic friction between the
two surfaces is 0.50. Find the acceleration of
the block.

Fo———s  10ky
3.00 x 103 kg 2.00 x 10% kg
b X -
30'2
100. Ifthe order of the barges of the preceding
exercise is reversed so that the tugboat pulls 109. Asshown below, the mass of block 1 is
the 3.00 x 103 -kg barge with a force of m) = 4.0 kg, while the mass of block 2 is
20.0 x 103 N, what are the acceleration of the my = 8.0 kg. The coefficient of friction
barges and the tension in the coupling cable? between m; and the inclined surface is
101. An object with mass m moves along the x-axis. px = 0.40. What is the acceleration of the
Its position at any time is given by system?
x(t) = pt3 + qt2 where p and q are constants.
Find the net force on this object for any time t.
102. A helicopter with mass 2.35 x 10% kghasa
position given by
2(1) = (0.020 )i + (2.20)] — (0.060 2)K. Find
the net force on the helicopter at = 3.0's.
103. Located at the origin, an electric car of mass m
is at rest and in equilibrium. A time dependent
force of ﬁ‘(t) is applied at time t = 0, and its
components are Fy(f) = p + nt and F),(¢) = gt e
where p, 9 and nare cons_Eants. Find the ) /"X;ﬁ“
position r(¢) and velocity v(¢) as functions of -
time t. 110. A studentis attempting to move a 30-kg mini-
104. A particle of mass m is located at the origin. It fridge into her dorm room. During a moment
is at rest and in equilibrium. A time- of inattention, the mini-fridge slides down a 35
dependent force of i:’(t) is applied at time degree incline at constant speed when she
t = 0, and its components are Fy(7) = pt and applies a force of 25 N acting up and parallel to
F, (1) = n + qt where p, g, and n are constants. the incline. What is the coefficient of kinetic
Find the position 2(¢) and velo city (1) as frict.ion.between the fridge and the surface of
functions of time t. the incline?
105. A 2.0-kg object has a velocity of 4.01 m/s at

t = 0. A constant resultant force of

(2.0§ + 4.03) N then acts on the object for 3.0
s. What is the magnitude of the object’s
velocity at the end of the 3.0-s interval?




111.

112,

113.

114.

A crate of mass 100.0 kg rests on a rough
surface inclined at an angle of 37.0° with the
horizontal. A massless rope to which a force
can be applied parallel to the surface is
attached to the crate and leads to the top of the
incline. In its present state, the crate is just
ready to slip and start to move down the plane.
The coefficient of friction is 80% of that for the
static case. (a) What is the coefficient of static
friction? (b) What is the maximum force that
can be applied upward along the plane on the
rope and not move the block? (c) With a
slightly greater applied force, the block will
slide up the plane. Once it begins to move,
what is its acceleration and what reduced force
is necessary to keep it moving upward at
constant speed? (d) If the block is given a slight
nudge to get it started down the plane, what
will be its acceleration in that direction? (e)
Once the block begins to slide downward, what
upward force on the rope is required to keep
the block from accelerating downward?

A car is moving at high speed along a highway
when the driver makes an emergency braking.
The wheels become locked (stop rolling), and
the resulting skid marks are 32.0 meters long.
If the coefficient of kinetic friction between
tires and road is 0.550, and the acceleration
was constant during braking, how fast was the
car going when the wheels became locked?

A crate having mass 50.0 kg falls horizontally off the119.
back of the flatbed truck, which is traveling at 100

km/h. Find the value of the coefficient of kinetic

115.

116.

117.

118.

friction between the road and crate if the crate slides

50 m on the road in coming to rest. The initial speed

of the crate is the same as the truck, 100 km/h.
100 kmih

A 15-kg sled is pulled across a horizontal,
snow-covered surface by a force applied to a
rope at 30 degrees with the horizontal. The
coefficient of kinetic friction between the sled
and the snow is 0.20. (a) If the force is 33 N,
what is the horizontal acceleration of the sled?
(b) What must the force be in order to pull the
sled at constant velocity?

120.

A 30.0-g ball at the end of a string is swung in a
vertical circle with a radius of 25.0 cm. The
tangential velocity is 200.0 cm/s. Find the
tension in the string: (a) at the top of the circle,
(b) at the bottom of the circle, and (c) at a
distance of 12.5 cm from the center of the
circle (r = 12.5 cm).

A particle of mass 0.50 kg starts moves
through a circular path in the xy-plane with a
position given by

T() = (4.0 cos 3t)f + (4.0sin 3t):]'\ where risin
meters and tis in seconds. (a) Find the velocity
and acceleration vectors as functions of time.
(b) Show that the acceleration vector always
points toward the center of the circle (and thus
represents centripetal acceleration). (c) Find
the centripetal force vector as a function of
time.

A stunt cyclist rides on the interior of a
cylinder 12 m in radius. The coefficient of
static friction between the tires and the wall is
0.68. Find the value of the minimum speed for
the cyclist to perform the stunt.

When a body of mass 0.25 kg is attached to a
vertical massless spring, it is extended 5.0 cm
from its unstretched length of 4.0 cm. The
body and spring are placed on a horizontal
frictionless surface and rotated about the held
end of the spring at 2.0 rev/s. How far is the
spring stretched?

A piece of bacon starts to slide down the pan
when one side of a pan is raised up 5.0 cm. If
the length of the pan from pivot to the raising
point is 23.5 cm, what is the coefficient of
static friction between the pan and the bacon?
A plumb bob hangs from the roof of a railroad
car. The car rounds a circular track of radius
300.0 m at a speed of 90.0 km/h. At what angle
relative to the vertical does the plumb bob
hang?

. An airplane flies at 120.0 m/s and banks at a

30° angle. If its mass is 2.50 X 103 kg, (a)
what is the magnitude of the lift force? (b) what
is the radius of the turn?



122. The position of a particle is given by

rH=A (cos ot + sin a)tj) ,Where wis a
constant. (a) Show that the particle moves in a
circle of radius A. (b) Calculate d¥/dt and then
show that the speed of the particle is a
constant A, . (c) Determine d*¥/dr? and show
that a is given bya; = r?. (d) Calculate the
centripetal force on the particle. [Hint: For (b)
and (c), you will need to use

(d/dt) (cos wt) = —w sin wt and

(d/dt) (sin wt) = w cos wt.

Two blocks connected by a string are pulled
across a horizontal surface by a force applied to

123.

one of the blocks, as shown below. The coefficient

of kinetic friction between the blocks and the
surface is 0.25. If each block has an acceleration

of 2.0 m/s? to the right, what is the magnitude Fof 126.

the applied force?

3.0 kg

l.ﬂl't_q_j--l-ﬂ

124. As shown below, the coefficient of kinetic
friction between the surface and the larger
block is 0.20, and the coefficient of kinetic
friction between the surface and the smaller
block is 0.30.If F = 10 N and M = 1.0 kg, what
is the tension in the connecti_ng string?

-—Fh

2M ——— M

125.

127.
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In the figure, the coefficient of kinetic friction
between the surface and the blocks is py . If

M = 1.0kg, find an expression for the magnitude of
the acceleration of either block (in terms of F, py,
and g).

N,

Two blocks are stacked as shown below, and rest on
a frictionless surface. There is friction between the
two blocks (coefficient of friction y). An external
force is applied to the top block at an angle  with
the horizontal. What is the maximum force F that
can be a_pplied for the two blocks to move together?

A box rests on the (horizontal) back of a truck.
The coefficient of static friction between the
box and the surface on which it rests is 0.24.
What maximum distance can the truck travel
(starting from rest and moving horizontally
with constant acceleration) in 3.0 s without
having the box slide?
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128. A double-incline plane is shown below. The
coefficient of friction on the left surface is
0.30, and on the right surface 0.16. Calculate
the acceleration of the system.

Challenge Problems

129. In a later chapter, you will find that the weight

of a particle varies with altitude such that
mgr, 2

w= rzo
ris the distance from Earth’s center. If the
particle is fired vertically with velocity vg from
Earth’s surface, determine its velocity as a
function of position r. (Hint: use adr = vdv,
the rearrangement mentioned in the text.)

where rq is the radius of Earth and
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130. Alarge centrifuge, like the one shown below, is

to expose aspiring astronauts to accelerations

used131.

similar to those experienced in rocket launches and
atmospheric reentries. (a) At what angular velocity
is the centripetal acceleration 10gif the rider is 15.0
m from the center of rotation? (b) The rider’s cage

hangs on a pivot at the end of the arm, allowing
swing outward during rotation as shown in the

itto

bottom accompanying figure. At what angle 6 below

the horizontal will the cage hang when the
centripetal acceleration is 10g? (Hint: The arm

132.

supplies centripetal force and supports the weight
of the cage. Draw a free-body diagram of the forces

to see what the angle 6 should be.)
! L J

133.

Frea-body

Fa

E

[

diagram

&_ﬁem

!
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A car of mass 1000.0 kg is traveling along a
level road at 100.0 km/h when its brakes are
applied. Calculate the stopping distance if the
coefficient of kinetic friction of the tires is
0.500. Neglect air resistance. (Hint: since the
distance traveled is of interest rather than the
time, x is the desired independent variable
and not t. Use the Chain Rule to change the
variable; 4 = 4v dx _ v%. )

dt — dx dt
An airplane flying at 200.0 m/s makes a turn

that takes 4.0 min. What bank angle is
required? What is the percentage increase in
the perceived weight of the passengers?

A skydiver is at an altitude of 1520 m. After
10.0 seconds of free fall, he opens his
parachute and finds that the air resistance,
Fp, is given by the formula Fp = —bv, where
bis a constant and vis the velocity. If

b = 0.750, and the mass of the skydiver is 82.0
kg, first set up differential equations for the
velocity and the position, and then find: (a) the
speed of the skydiver when the parachute
opens, (b) the distance fallen before the
parachute opens, (c) the terminal velocity after
the parachute opens (find the limiting
velocity), and (d) the time the skydiver is in the
air after the parachute opens.

. In atelevision commerecial, a small, spherical

bead of mass 4.00 g is released from rest at

t = 0 in a bottle of liquid shampoo. The
terminal speed is observed to be 2.00 cm/s.
Find (a) the value of the constant bin the
equation v = ZE(1 — ¢~/™), and (b) the value
of the resistive force when the bead reaches
terminal speed.

A boater and motor boat are at rest on a lake.
Together, they have mass 200.0 kg. If the
thrust of the motor is a constant force of 40.0 N
in the direction of motion, and if the resistive
force of the water is numerically equivalent to
2 times the speed vof the boat, set up and
solve the differential equation to find: (a) the
velocity of the boat at time t; (b) the limiting
velocity (the velocity after a long time has
passed).
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CHAPTER 7

Work and Kinetic Energy

Figure 7.1 A sprinter exerts her maximum power with the greatest force in the short time her foot is in contact with
the ground. This adds to her kinetic energy, preventing her from slowing down during the race. Pushing back hard on
the track generates a reaction force that propels the sprinter forward to win at the finish. (credit: modification of
work by Marie-Lan Nguyen)

Chapter Outline

7.1 Work

7.2 Kinetic Energy

7.3 Work-Energy Theorem

7.4 Power

INTRODUCTION In this chapter, we discuss some basic physical concepts involved in every physical motion
in the universe, going beyond the concepts of force and change in motion, which we discussed in Motion in
Two and Three Dimensions and Newton’s Laws of Motion. These concepts are work, kinetic energy, and power.
We explain how these quantities are related to one another, which will lead us to a fundamental relationship
called the work-energy theorem. In the next chapter, we generalize this idea to the broader principle of
conservation of energy.

The application of Newton’s laws usually requires solving differential equations that relate the forces acting on
an object to the accelerations they produce. Often, an analytic solution is intractable or impossible, requiring
lengthy numerical solutions or simulations to get approximate results. In such situations, more general
relations, like the work-energy theorem (or the conservation of energy), can still provide useful answers to



many questions and require a more modest amount of mathematical calculation. In particular, you will see
how the work-energy theorem is useful in relating the speeds of a particle, at different points along its
trajectory, to the forces acting on it, even when the trajectory is otherwise too complicated to deal with. Thus,
some aspects of motion can be addressed with fewer equations and without vector decompositions.

7.1 Work

Learning Objectives

By the end of this section, you will be able to:
e Represent the work done by any force
e Evaluate the work done for various forces

In physics, work is done on an object when energy is transferred to the object. In other words, work is done
when a force acts on something that undergoes a displacement from one position to another. Forces can vary
as a function of position, and displacements can be along various paths between two points. We first define the

_)
increment of work dW done by a force F acting through an infinitesimal displacement d¥ as the dot product of
these two vectors:

dW = - d¥ =|F||d| cos 0. 7.1

Then, we can add up the contributions for infinitesimal displacements, along a path between two positions, to
get the total work.

Work Done by a Force

The work done by a force is the integral of the force with respect to displacement along the path of the
displacement:

.
Wiyp = / F - dr. -

path AB

The vectors involved in the definition of the work done by a force acting on a particle are illustrated in Figure
7.2.

o path
al

Figure 7.2 Vectors used to define work. The force acting on a particle and its infinitesimal displacement are shown at one point along the
path between A and B. The infinitesimal work is the dot product of these two vectors; the total work is the integral of the dot product along
the path.

We choose to express the dot product in terms of the magnitudes of the vectors and the cosine of the angle
between them, because the meaning of the dot product for work can be put into words more directly in terms
of magnitudes and angles. We could equally well have expressed the dot product in terms of the various
components introduced in Vectors. In two dimensions, these were the x- and y-components in Cartesian
coordinates, or the r- and @-components in polar coordinates; in three dimensions, it was just x-, y-, and
z-components. Which choice is more convenient depends on the situation. In words, you can express Equation
7.1 for the work done by a force acting over a displacement as a product of one component acting parallel to
the other component. From the properties of vectors, it doesn’t matter if you take the component of the force
parallel to the displacement or the component of the displacement parallel to the force—you get the same



result either way.

Recall that the magnitude of a force times the cosine of the angle the force makes with a given direction is the
component of the force in the given direction. The components of a vector can be positive, negative, or zero,
depending on whether the angle between the vector and the component-direction is between 0° and 90° or 90°
and 180°, or is equal to 90°. As a result, the work done by a force can be positive, negative, or zero, depending
on whether the force is generally in the direction of the displacement, generally opposite to the displacement,
or perpendicular to the displacement. The maximum work is done by a given force when it is along the
direction of the displacement (cos @ = +1), and zero work is done when the force is perpendicular to the
displacement (cos 8 = 0).

The units of work are units of force multiplied by units of length, which in the SI system is newtons times
meters, N - m. This combination is called a joule, for historical reasons that we will mention later, and is
abbreviated as J. In the English system, still used in the United States, the unit of force is the pound (Ib) and the
unit of distance is the foot (ft), so the unit of work is the foot-pound (ft - Ib).

Work Done by Constant Forces and Contact Forces

The simplest work to evaluate is that done by a force that is constant in magnitude and direction. In this case,
we can factor out the force; the remaining integral is just the total displacement, which only depends on the
end points A and B, but not on the path between them:

B
Wup = i‘) / dr = f*’) . (?B —?A) = )f*’)“?B —?A|cost9 (constant force).
A

We can also see this by writing out Equation 7.2 in Cartesian coordinates and using the fact that the
components of the force are constant:

B B B
Wap = /f-d?: /(dex+Fydy+dez):Fx/ dx+Fy/ dy+Fz/ dz
A A A
path AB path AB

= o >
=Fx(xp—x4)+ F,(yp—ya)+ F;(zp—z4) = F - (fp —ry).

_)
Figure 7.3(a) shows a person exerting a constant force F along the handle of a lawn mower, which makes an
p——
angle 6 with the horizontal. The horizontal displacement of the lawn mower, over which the force acts, is d .

- —
The work done on the lawn mower isW = F - d = Fd cos 0, which the figure also illustrates as the horizontal
component of the force times the magnitude of the displacement.
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(b) ()

Figure 7.3 Work done by a constant force. (a) A person pushes a lawn mower with a constant force. The component of the force parallel

to the displacement is the work done, as shown in the equation in the figure. (b) A person holds a briefcase. No work is done because the

displacement is zero. (c) The person in (b) walks horizontally while holding the briefcase. No work is done because cos 8 is zero.

Figure 7.3(b) shows a person holding a briefcase. The person must exert an upward force, equal in magnitude
to the weight of the briefcase, but this force does no work, because the displacement over which it acts is zero.

In Figure 7.3(c), where the person in (b) is walking horizontally with constant speed, the work done by the
person on the briefcase is still zero, but now because the angle between the force exerted and the displacement

- -
is 90° (F perpendicular to d) and cos 90° = 0.

@ EXAMPLE 7.1

Calculating the Work You Do to Push a Lawn Mower
How much work is done on the lawn mower by the person in Figure 7.3(a) if he exerts a constant force of 75.0
N at an angle 35° below the horizontal and pushes the mower 25.0 m on level ground?

Strategy

We can solve this problem by substituting the given values into the definition of work done on an object by a
constant force, stated in the equation W = Fd cos 6. The force, angle, and displacement are given, so that only
the work Wis unknown.
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Solution
The equation for the work is

W = Fdcos 6.

Substituting the known values gives
W = (75.0 N)(25.0 m)cos(35.0°) = 1.54 X 103 7.

Significance
Even though one and a half kilojoules may seem like a lot of work, we will see in Potential Energy and
Conservation of Energy that it’s only about as much work as you could do by burning one sixth of a gram of fat.

When you mow the grass, other forces act on the lawn mower besides the force you exert—namely, the contact
force of the ground and the gravitational force of Earth. Let’s consider the work done by these forces in general.
For an object moving on a surface, the displacement dT is tangent to the surface. The part of the contact force

>
on the object that is perpendicular to the surface is the normal force N. Since the cosine of the angle between
the normal and the tangent to a surface is zero, we have

dWxn =N-dt = 0.

The normal force never does work under these circumstances. (Note that if the displacement d¥ did have a
relative component perpendicular to the surface, the object would either leave the surface or break through it,
and there would no longer be any normal contact force. However, if the object is more than a particle, and has
an internal structure, the normal contact force can do work on it, for example, by displacing it or deforming its
shape. This will be mentioned in the next chapter.)

-

The part of the contact force on the object that is parallel to the surface is friction, f. For this object sliding
->

along the surface, kinetic friction f} is opposite to dr, relative to the surface, so the work done by kinetic

5
friction is negative. If the magnitude of f is constant (as it would be if all the other forces on the object were
constant), then the work done by friction is

B B
Wfr:/A fk-di"=—fk/A |dr| = —fi Il aBl. 7.3

where |l 4 g| is the path length on the surface. The force of static friction does no work in the reference frame
between two surfaces because there is never displacement between the surfaces. As an external force, static
friction can do work. Static friction can keep someone from sliding off a sled when the sled is moving and
perform positive work on the person. If you're driving your car at the speed limit on a straight, level stretch of
highway, the negative work done by air resistance is balanced by the positive work done by the static friction of
the road on the drive wheels. You can pull the rug out from under an object in such a way that it slides
backward relative to the rug, but forward relative to the floor. In this case, kinetic friction exerted by the rug on
the object could be in the same direction as the displacement of the object, relative to the floor, and do positive
work. The bottom line is that you need to analyze each particular case to determine the work done by the
forces, whether positive, negative or zero.

@ EXAMPLE 7.2

Moving a Couch

You decide to move your couch to a new position on your horizontal living room floor. The normal force on the
couch is 1 kN and the coefficient of friction is 0.6. (a) You first push the couch 3 m parallel to a wall and then 1
m perpendicular to the wall (A to Bin Figure 7.4). How much work is done by the frictional force? (b) You don’t
like the new position, so you move the couch straight back to its original position (B to A in Figure 7.4). What
was the total work done against friction moving the couch away from its original position and back again?




Path (b) 8
N 1T

3 1m
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I—- o —I““—""’ Path (a)

Figure 7.4 Top view of paths for moving a couch.

Strategy

The magnitude of the force of kinetic friction on the couch is constant, equal to the coefficient of friction times
the normal force, fx = ug N. Therefore, the work done by it is W5 = — fx d, where d is the path length
traversed. The segments of the paths are the sides of a right triangle, so the path lengths are easily calculated.
In part (b), you can use the fact that the work done against a force is the negative of the work done by the force.

Solution

a. The work done by friction i
W=—-(0.6)(1kN)(3m + 1 m) =-2.4kJ.

b. The length of the path along the hypotenuse is 1/10 m, so the total work done against friction is
W =0.6)1kN)(3m +1m + 4/10m) =4.3k]J.

Significance

The total path over which the work of friction was evaluated began and ended at the same point (it was a closed
path), so that the total displacement of the couch was zero. However, the total work was not zero. The reason is
that forces like friction are classified as nonconservative forces, or dissipative forces, as we discuss in the next
chapter.

CHECK YOUR UNDERSTANDING 7.1

Can kinetic friction ever be a constant force for all paths?

The other force on the lawn mower mentioned above was Earth’s gravitational force, or the weight of the
mower. Near the surface of Earth, the gravitational force on an object of mass m has a constant magnitude, mg,
and constant direction, vertically down. Therefore, the work done by gravity on an object is the dot product of
its weight and its displacement. In many cases, it is convenient to express the dot product for gravitational
work in terms of the x-, y-, and z-components of the vectors. A typical coordinate system has the x-axis
horizontal and the y-axis vertically up. Then the gravitational force is —mgj, so the work done by gravity, over
any path from A to B, is

Wgrav,AB =-mgj - (?B - i!A) =-mg(yg —ya)- 7.4

The work done by a constant force of gravity on an object depends only on the object’s weight and the
difference in height through which the object is displaced. Gravity does negative work on an object that moves
upward (yg > y4), or, in other words, you must do positive work against gravity to lift an object upward.
Alternately, gravity does positive work on an object that moves downward (yg < y4), or you do negative work
against gravity to “lift” an object downward, controlling its descent so it doesn’t drop to the ground. (“Lift” is
used as opposed to “drop”.)

@ EXAMPLE 7.3

Shelving a Book

You lift an oversized library book, weighing 20 N, 1 m vertically down from a shelf, and carry it 3 m
horizontally to a table (Figure 7.5). How much work does gravity do on the book? (b) When you're finished, you




move the book in a straight line back to its original place on the shelf. What was the total work done against
gravity, moving the book away from its original position on the shelf and back again?

. A (shelf)

Path (b)

B (table) o

Path (a)

Figure 7.5 Side view of the paths for moving a book to and from a shelf.

Strategy

We have just seen that the work done by a constant force of gravity depends only on the weight of the object
moved and the difference in height for the path taken, W p = —mg (yg — y4). We can evaluate the difference
in height to answer (a) and (b).

Solution

a. Since the book starts on the shelf and is lifted down yg — y4 = —1 m, we have
W =—-20N)(—1m)=201J.

b. There is zero difference in height for any path that begins and ends at the same place on the shelf, so
W =0.

Significance

Gravity does positive work (20 J) when the book moves down from the shelf. The gravitational force between
two objects is an attractive force, which does positive work when the objects get closer together. Gravity does
zero work (0 J) when the book moves horizontally from the shelf to the table and negative work (-20 J) when
the book moves from the table back to the shelf. The total work done by gravity is zero

[20J +0J + (=2017J) = 0]. Unlike friction or other dissipative forces, described in Example 7.2, the total work
done against gravity, over any closed path, is zero. Positive work is done against gravity on the upward parts of
a closed path, but an equal amount of negative work is done against gravity on the downward parts. In other
words, work done against gravity, lifting an object up, is “given back” when the object comes back down.
Forces like gravity (those that do zero work over any closed path) are classified as conservative forces and play
an important role in physics.

CHECK YOUR UNDERSTANDING 7.2

Can Earth’s gravity ever be a constant force for all paths?

Work Done by Forces that Vary

In general, forces may vary in magnitude and direction at points in space, and paths between two points may
be curved. The infinitesimal work done by a variable force can be expressed in terms of the components of the
force and the displacement along the path,

dW = Fydx + Fydy + Fdz.

Here, the components of the force are functions of position along the path, and the displacements depend on
the equations of the path. (Although we chose to illustrate dWin Cartesian coordinates, other coordinates are
better suited to some situations.) Equation 7.2 defines the total work as a line integral, or the limit of a sum of
infinitesimal amounts of work. The physical concept of work is straightforward: you calculate the work for tiny



displacements and add them up. Sometimes the mathematics can seem complicated, but the following
example demonstrates how cleanly they can operate.

@ EXAMPLE 7.4

Work Done by a Variable Force over a Curved Path
An object moves along a parabolic path y = (0.5 m™!)x? from the origin A = (0, 0) to the point B = (2 m, 2 m)

under the action of a force i{‘ =(5 N/m)y’i\ + (10 N/m)xj]'\ (Figure 7.6). Calculate the work done.

yim)i )
/‘ (2.2
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(0.0 x(m)

Figure 7.6 The parabolic path of a particle acted on by a given force.

Strategy

The components of the force are given functions of x and y. We can use the equation of the path to express y
and dyin terms of x and dx; namely,

y=(0.5m " Dx? and dy = 2(0.5 m™")xdx.
Then, the integral for the work is just a definite integral of a function of x.
Solution
The infinitesimal element of work is
dW = Fydx + Fydy = (5 N/'m)ydx + (10 N/m)xdy
= (5 N/m)(0.5 m~)x2dx + (10 N/m)2(0.5 m~")x?dx = (12.5 N/m?)x?dx.
The integral of xZ is x3/3, so

3 2 m

2m x
W= / (12.5 N/m?)x%dx = (12.5 N/mz)?
0

8
= (125Nm?) [ = ) =33.31.

0 3
Significance
This integral was not hard to do. You can follow the same steps, as in this example, to calculate line integrals
representing work for more complicated forces and paths. In this example, everything was given in terms of x-
and y-components, which are easiest to use in evaluating the work in this case. In other situations, magnitudes
and angles might be easier.

CHECK YOUR UNDERSTANDING 7.3

Find the work done by the same force in Example 7.4 over a cubic path, y = (0.25 m‘z)x3, between the same
points A = (0,0)and B = (2m, 2 m).

You saw in Example 7.4 that to evaluate a line integral, you could reduce it to an integral over a single variable
or parameter. Usually, there are several ways to do this, which may be more or less convenient, depending on
the particular case. In Example 7.4, we reduced the line integral to an integral over x, but we could equally well
have chosen to reduce everything to a function of y. We didn’t do that because the functions in y involve the
square root and fractional exponents, which may be less familiar, but for illustrative purposes, we do this now.
Solving for x and dx, in terms of y, along the parabolic path, we get



x =1/y/(05m™!) = \/2m)yand dx = /2 m) x %dy/\/y =dyl\/2m ™)y,

The components of the force, in terms of y, are
Fy = (5 N/m)yand F;, = (10 N/m)x = (10 N/m)+/(2 m)y,
so the infinitesimal work element becomes

dW = Fydx + F,dy = M + (10 N/m) /2 m)y dy
@m=ly

=(5N-m™12) <L + 2\/§> Vydy=(177N-m~ 2yl gy,

NG
12 5 2,302

The integral of y 5Y7'7,s0 the work done from A to Bis

2m
2
W= / (177N -m~ ")y 4y = (177N - m_1/2)§(2 m)*>? =3331.
0

As expected, this is exactly the same result as before.

One very important and widely applicable variable force is the force exerted by a perfectly elastic spring, which
satisfies Hooke’s law ﬁ = —kAX, where kis the spring constant, and AX = X — ﬁeq is the displacement from
the spring’s unstretched (equilibrium) position (Newton’s Laws of Motion). Note that the unstretched position
is only the same as the equilibrium position if no other forces are acting (or, if they are, they cancel one

another). Forces between molecules, or in any system undergoing small displacements from a stable
equilibrium, behave approximately like a spring force.

To calculate the work done by a spring force, we can choose the x-axis along the length of the spring, in the
direction of increasing length, as in Figure 7.7, with the origin at the equilibrium position xeq = 0. (Then
positive x corresponds to a stretch and negative x to a compression.) With this choice of coordinates, the spring

force has only an x-component, Fxy = —kx, and the work done when x changes from x 4 to xpg is
i i 22| 1 2 2
I/Vspring,AB =/A dex=—k/A de=—k7A =_Ek (XB—XA). 7.5
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Figure 7.7 (a) The spring exerts no force at its equilibrium position. The spring exerts a force in the opposite direction to (b) an extension



or stretch, and (c) a compression.

Notice that W4 p depends only on the starting and ending points, A and B, and is independent of the actual
path between them, as long as it starts at A and ends at B. That is, the actual path could involve going back and
forth before ending.

Another interesting thing to notice about Equation 7.5 is that, for this one-dimensional case, you can readily
see the correspondence between the work done by a force and the area under the curve of the force versus its
displacement. Recall that, in general, a one-dimensional integral is the limit of the sum of

infinitesimals, f(x)dx, representing the area of strips, as shown in Figure 7.8. In Equation 7.5, since F = —kx
is a straight line with slope —k, when plotted versus x, the “area” under the line is just an algebraic
combination of triangular “areas,” where “areas” above the x-axis are positive and those below are negative, as
shown in Figure 7.9. The magnitude of one of these “areas” is just one-half the triangle’s base, along the x-axis,
times the triangle’s height, along the force axis. (There are quotation marks around “area” because this base-
height product has the units of work, rather than square meters.)

i

Sirip area /

Sum of

f{x) |- strip areas

Figure 7.8 A curve of f(x) versus x showing the area of an infinitesimal strip, f(x)dx, and the sum of such areas, which is the integral of f(x)

from x1 to x;.

Positive
area MNegative
areas
Figure 7.9 Curve of the spring force f(x) = —kx versus x, showing areas under the line, between x 4 and x g, for both positive and

negative values of x 4. When x 4 is negative, the total area under the curve for the integral in Equation 7.5 is the sum of positive and

negative triangular areas. When x 4 is positive, the total area under the curve is the difference between two negative triangles.

@ EXAMPLE 7.5

Work Done by a Spring Force

A perfectly elastic spring requires 0.54 J of work to stretch 6 cm from its equilibrium position, as in Figure
7.7(b). (a) What is its spring constant k? (b) How much work is required to stretch it an additional 6 cm?

Strategy

Work “required” means work done against the spring force, which is the negative of the work in Equation 7.5,
that is

1
W = Ek(x% -x2).



For part (a), x4 = 0 and xpg = 6¢cm; for part (b), xg = 6cmand xg = 12cm. In part (a), the work is given and
you can solve for the spring constant; in part (b), you can use the value of k, from part (a), to solve for the work.

Solution

a. W =054] = 1k[(6cm)* - 0], s0 k = 3N/cm.
b. W = 1@ N/em)[(12cm)* — (6cm)?] = 1.621].

Significance

Since the work done by a spring force is independent of the path, you only needed to calculate the difference in
the quantity Vakx? at the end points. Notice that the work required to stretch the spring from 0 to 12 cm is four
times that required to stretch it from O to 6 cm, because that work depends on the square of the amount of
stretch from equilibrium, Vakx? . In this circumstance, the work to stretch the spring from 0 to 12 cm is also
equal to the work for a composite path from 0 to 6 cm followed by an additional stretch from 6 cm to 12 cm.
Therefore, AW (0 cmto 6 cm) = W(0cmto 6 cm) + W (6 cm to 12 cm), or

W(6cecmto 12 cm) = 3W(0 cm to 6 cm), as we found above.

CHECK YOUR UNDERSTANDING 7.4

The spring in Example 7.5 is compressed 6 cm from its equilibrium Iength. (a) Does the spring force do
positive or negative work and (b) what is the magnitude?

7.2 Kinetic Energy

Learning Objectives

By the end of this section, you will be able to:
e Calculate the kinetic energy of a particle given its mass and its velocity or momentum
o Evaluate the kinetic energy of a body, relative to different frames of reference

It’s plausible to suppose that the greater the velocity of a body, the greater effect it could have on other bodies.
This does not depend on the direction of the velocity, only its magnitude. At the end of the seventeenth century,
a quantity was introduced into mechanics to explain collisions between two perfectly elastic bodies, in which
one body makes a head-on collision with an identical body at rest. The first body stops, and the second body
moves off with the initial velocity of the first body. (If you have ever played billiards or croquet, or seen a model
of Newton’s Cradle, you have observed this type of collision.) The idea behind this quantity was related to the
forces acting on a body and was referred to as “the energy of motion.” Later on, during the eighteenth century,
the name kinetic energy was given to energy of motion.

With this history in mind, we can now state the classical definition of kinetic energy. Note that when we say
“classical,” we mean non-relativistic, that is, at speeds much less that the speed of light. At speeds comparable
to the speed of light, the special theory of relativity requires a different expression for the kinetic energy of a
particle, as discussed in Relativity.

Since objects (or systems) of interest vary in complexity, we first define the kinetic energy of a particle with
mass m.

Kinetic Energy

The kinetic energy of a particle is one-half the product of the particle’s mass m and the square of its speed
V.

K = —mv~. 7.6

We then extend this definition to any system of particles by adding up the kinetic energies of all the constituent
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particles:
1
K = Z Emvz. 7.7

Note that just as we can express Newton’s second law in terms of either the rate of change of momentum or
mass times the rate of change of velocity, so the kinetic energy of a particle can be expressed in terms of its
mass and momentum (ﬁ = mv), instead of its mass and velocity. Sincev = p/m, we see that

1 rpN\2_ P
(2 -5
m 2m
also expresses the kinetic energy of a single particle. Sometimes, this expression is more convenient to use
than Equation 7.6.

The units of kinetic energy are mass times the square of speed, or kg - m?2/s2. But the units of force are mass
times acceleration, kg - m/s2, so the units of kinetic energy are also the units of force times distance, which are
the units of work, or joules. You will see in the next section that work and kinetic energy have the same units,
because they are different forms of the same, more general, physical property.

@ EXAMPLE 7.6

Kinetic Energy of an Object

(a) What is the kinetic energy of an 80-kg athlete, running at 10 m/s? (b) The Chicxulub crater in Yucatan, one
of the largest existing impact craters on Earth, is thought to have been created by an asteroid, traveling at

22 km/s and releasing 4.2 X 1023 J of kinetic energy upon impact. What was its mass? (c) In nuclear reactors,
thermal neutrons, traveling at about 2.2 km/s, play an important role. What is the kinetic energy of such a
particle?

Strategy

To answer these questions, you can use the definition of kinetic energy in Equation 7.6. You also have to look
up the mass of a neutron.

Solution

Don’t forget to convert km into m to do these calculations, although, to save space, we omitted showing these
conversions.

a. K= 3(80kg)(10 m/s)* = 4.0KJ.
b. m=2K* =242 x 108D/(22km/s)? = 1.7 x 101 kg.
c. K=72(1.68 x 10727 kg)2.2km/s)* =4.1 x 1072 J.

Significance

In this example, we used the way mass and speed are related to kinetic energy, and we encountered a very
wide range of values for the kinetic energies. Different units are commonly used for such very large and very
small values. The energy of the impactor in part (b) can be compared to the explosive yield of TNT and nuclear
explosions, 1 megaton = 4.18 X 101 J. The Chicxulub asteroid’s kinetic energy was about a hundred million
megatons. At the other extreme, the energy of subatomic particle is expressed in electron-volts,

leV = 1.6 x 10719 J. The thermal neutron in part (c) has a kinetic energy of about one fortieth of an electron-
volt.

CHECK YOUR UNDERSTANDING 7.5

(a) A car and a truck are each moving with the same kinetic energy. Assume that the truck has more mass than
the car. Which has the greater speed? (b) A car and a truck are each moving with the same speed. Which has
the greater kinetic energy?



Because velocity is a relative quantity, you can see that the value of kinetic energy must depend on your frame
of reference. You can generally choose a frame of reference that is suited to the purpose of your analysis and
that simplifies your calculations. One such frame of reference is the one in which the observations of the
system are made (likely an external frame). Another choice is a frame that is attached to, or moves with, the
system (likely an internal frame). The equations for relative motion, discussed in Motion in Two and Three
Dimensions, provide a link to calculating the kinetic energy of an object with respect to different frames of
reference.

@ EXAMPLE 7.7

Kinetic Energy Relative to Different Frames

A 75.0-kg person walks down the central aisle of a subway car at a speed of 1.50 m/s relative to the car,
whereas the train is moving at 15.0 m/s relative to the tracks. (a) What is the person’s kinetic energy relative to
the car? (b) What is the person’s kinetic energy relative to the tracks? (c) What is the person’s kinetic energy
relative to a frame moving with the person?

Strategy

Since speeds are given, we can use %mu2 to calculate the person’s kinetic energy. However, in part (a), the

person’s speed is relative to the subway car (as given); in part (b), it is relative to the tracks; and in part (c), it is
zero. If we denote the car frame by C, the track frame by T, and the person by P, the relative velocities in part (b)
are related by Vpy = Vpc + VCT- We can assume that the central aisle and the tracks lie along the same line,
but the direction the person is walking relative to the car isn’t specified, so we will give an answer for each
possibility, vpt = vcT *+ Upc, as shown in Figure 7.10.
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Figure 7.10 The possible motions of a person walking in a train are (a) toward the front of the car and (b) toward the back of the car.

Solution
a. K= %(75.0 kg)(1.50 m/s)?> = 84.47.
b. vpr = (15.0 £ 1.50) m/s. Therefore, the two possible values for kinetic energy relative to the car are

1
K= 5(75.0 kg)(13.5 m/s)?> = 6.83 kJ

and

1
K = —(75.0kg)(16.5 m/s)> = 10.2kJ.

c. Inaframe where vp =0, K = 0 as well.

Significance

You can see that the kinetic energy of an object can have very different values, depending on the frame of
reference. However, the kinetic energy of an object can never be negative, since it is the product of the mass
and the square of the speed, both of which are always positive or zero.

CHECK YOUR UNDERSTANDING 7.6

You are rowing a boat parallel to the banks of a river. Your kinetic energy relative to the banks is less than your
kinetic energy relative to the water. Are you rowing with or against the current?



The kinetic energy of a particle is a single quantity, but the kinetic energy of a system of particles can
sometimes be divided into various types, depending on the system and its motion. For example, if all the
particles in a system have the same velocity, the system is undergoing translational motion and has
translational kinetic energy. If an object is rotating, it could have rotational kinetic energy, or if it’s vibrating, it
could have vibrational kinetic energy. The kinetic energy of a system, relative to an internal frame of reference,
may be called internal kinetic energy. The kinetic energy associated with random molecular motion may be
called thermal energy. These names will be used in later chapters of the book, when appropriate. Regardless of
the name, every kind of kinetic energy is the same physical quantity, representing energy associated with
motion.

@ EXAMPLE 7.8

Special Names for Kinetic Energy

(a) A player lobs a mid-court pass with a 624-g basketball, which covers 15 m in 2 s. What is the basketball’s
horizontal translational kinetic energy while in flight? (b) An average molecule of air, in the basketball in part
(a), has a mass of 29 u, and an average speed of 500 m/s, relative to the basketball. There are about 3 X 1023
molecules inside it, moving in random directions, when the ball is properly inflated. What is the average
translational kinetic energy of the random motion of all the molecules inside, relative to the basketball? (c)
How fast would the basketball have to travel relative to the court, as in part (a), so as to have a kinetic energy
equal to the amount in part (b)?

Strategy

In part (a), first find the horizontal speed of the basketball and then use the definition of kinetic energy in

terms of mass and speed, K = %muz. Then in part (b), convert unified units to kilograms and then use

K= %mv2 to get the average translational kinetic energy of one molecule, relative to the basketball. Then
multiply by the number of molecules to get the total result. Finally, in part (c), we can substitute the amount of
kinetic energy in part (b), and the mass of the basketball in part (a), into the definition K = %mvz, and solve
for v.

Solution

a. The horizontal speed is (15 m)/(2 s), so the horizontal kinetic energy of the basketball is

1
5(0.624 kg)(7.5 m/s)? = 17.61J.

b. The average translational kinetic energy of a molecule is

1
7@9u)(1.66 x 10727 kg/u)(500 m/s)? = 6.02 x 10721 J,

and the total kinetic energy of all the molecules is
(3 x 10%*)(6.02 x 107! J) = 1.80kJ.

c. v= \/2(1.8 kI)/(0.624 kg) = 76.0 m/s.

Significance

In part (a), this kind of kinetic energy can be called the horizontal kinetic energy of an object (the basketball),
relative to its surroundings (the court). If the basketball were spinning, all parts of it would have not just the
average speed, but it would also have rotational kinetic energy. Part (b) reminds us that this kind of kinetic
energy can be called internal or thermal kinetic energy. Notice that this energy is about a hundred times the
energy in part (a). How to make use of thermal energy will be the subject of the chapters on thermodynamics.
In part (c), since the energy in part (b) is about 100 times that in part (a), the speed should be about 10 times as
big, which it is (76 compared to 7.5 m/s).




7.3 Work-Energy Theorem

Learning Objectives
By the end of this section, you will be able to:
e Apply the work-energy theorem to find information about the motion of a particle, given the forces acting on
it
e Use the work-energy theorem to find information about the forces acting on a particle, given information
about its motion

We have discussed how to find the work done on a particle by the forces that act on it, but how is that work
manifested in the motion of the particle? According to Newton’s second law of motion, the sum of all the forces
acting on a particle, or the net force, determines the rate of change in the momentum of the particle, or its
motion. Therefore, we should consider the work done by all the forces acting on a particle, or the net work, to
see what effect it has on the particle’s motion.

Let’s start by looking at the net work done on a particle as it moves over an infinitesimal displacement, which
is the dot product of the net force and the displacement: dWpet = ﬁ‘net - dT. Newton’s second law tells us that
ﬁnet = m(dv/dt), so dWhet = m(dv/dt) - d¥. For the mathematical functions describing the motion of a physical
particle, we can rearrange the differentials dt, etc., as algebraic quantities in this expression, that is,

-

dv - di! - -
dWhet =m (E) - dt = mdv - (E) =mv -dv,

where we substituted the velocity for the time derivative of the displacement and used the commutative
property of the dot product [Equation 2.30]. Since derivatives and integrals of scalars are probably more
familiar to you at this point, we express the dot product in terms of Cartesian coordinates before we integrate
between any two points A and B on the particle’s trajectory. This gives us the net work done on the particle:

B
WhetaB = / (muxdvy + mvydv, + muzdvz)

A 7.8
B —
L=

102 .2, 2B _|1, .2 _
2mlvx+vy+vz|A—|2mv | Kp —Ky4.

In the middle step, we used the fact that the square of the velocity is the sum of the squares of its Cartesian
components, and in the last step, we used the definition of the particle’s kinetic energy. This important result is
called the work-energy theorem (Figure 7.11).

Work-Energy Theorem

The net work done on a particle equals the change in the particle’s kinetic energy:
Whet = Kp — K4. 7.9




Figure 7.11 Horse pulls are common events at state fairs. The work done by the horses pulling on the load results in a change in kinetic

energy of the load, ultimately going faster. (credit: modification of work by “Jassen”/ Flickr)

According to this theorem, when an object slows down, its final kinetic energy is less than its initial kinetic
energy, the change in its kinetic energy is negative, and so is the net work done on it. If an object speeds up, the
net work done on it is positive. When calculating the net work, you must include all the forces that act on an
object. If you leave out any forces that act on an object, or if you include any forces that don’t act on it, you will
get a wrong result.

The importance of the work-energy theorem, and the further generalizations to which it leads, is that it makes
some types of calculations much simpler to accomplish than they would be by trying to solve Newton’s second
law. For example, in Newton’s Laws of Motion, we found the speed of an object sliding down a frictionless plane
by solving Newton’s second law for the acceleration and using kinematic equations for constant acceleration,
obtaining

v% = U12 + 2g(s¢ — s7)sin 6,

where s is the displacement down the plane.
We can also get this result from the work-energy theorem in Equation 7.1. Since only two forces are acting on
the object-gravity and the normal force-and the normal force doesn't do any work, the net work is just the work
- ~
done by gravity. The work dW is the dot product of the force of gravity or F = —mgj and the displacement
_) ~ ~
dr = dxi + dyj . After taking the dot product and integrating from an initial position y; to a final position y,
one finds the net work as
Whet = Weray = —mg(yr — yj),

where yis positive up. The work-energy theorem says that this equals the change in kinetic energy:
1
—mg(y; — yi) = zm(v% - ovd).

Using a right triangle, we can see that (yf — y;) = (sf — s;)sin 8, so the result for the final speed is the same.

What is gained by using the work-energy theorem? The answer is that for a frictionless plane surface, not
much. However, Newton’s second law is easy to solve only for this particular case, whereas the work-energy
theorem gives the final speed for any shaped frictionless surface. For an arbitrary curved surface, the normal
force is not constant, and Newton’s second law may be difficult or impossible to solve analytically. Constant or
not, for motion along a surface, the normal force never does any work, because it’s perpendicular to the
displacement. A calculation using the work-energy theorem avoids this difficulty and applies to more general
situations.



@ PROBLEM-SOLVING STRATEGY

Work-Energy Theorem

1. Draw a free-body diagram for each force on the object.

2. Determine whether or not each force does work over the displacement in the diagram. Be sure to keep any
positive or negative signs in the work done.

3. Add up the total amount of work done by each force.

Set this total work equal to the change in kinetic energy and solve for any unknown parameter.

5. Check your answers. If the object is traveling at a constant speed or zero acceleration, the total work done
should be zero and match the change in kinetic energy. If the total work is positive, the object must have
sped up or increased kinetic energy. If the total work is negative, the object must have slowed down or
decreased kinetic energy.

b

@ EXAMPLE 7.9

Loop-the-Loop

The frictionless track for a toy car includes a loop-the-loop of radius R. How high, measured from the bottom
of the loop, must the car be placed to start from rest on the approaching section of track and go all the way
around the loop?

Figure 7.12 A frictionless track for a toy car has a loop-the-loop in it. How high must the car start so that it can go around the loop without
falling off?

Strategy

The free-body diagram at the final position of the object is drawn in Figure 7.12. The gravitational work is the
only work done over the displacement that is not zero. Since the weight points in the same direction as the net
vertical displacement, the total work done by the gravitational force is positive. From the work-energy
theorem, the starting height determines the speed of the car at the top of the loop,

1
-mg(y» —y1) = Emvzz,

where the notation is shown in the accompanying figure. At the top of the loop, the normal force and gravity are
both down and the acceleration is centripetal, so

4 _F_N+mg_U%
R

The condition for maintaining contact with the track is that there must be some normal force, however slight;
that is, N > 0. Substituting for U% and N, we can find the condition for y; .

Solution

Implement the steps in the strategy to arrive at the desired result:



2
mv —mgR + 2mg(y; — R) 5R

5 g gn
N =-mg+ = >0 or > —.
MmET TR R =0

Significance

On the surface of the loop, the normal component of gravity and the normal contact force must provide the
centripetal acceleration of the car going around the loop. The tangential component of gravity slows down or
speeds up the car. A child would find out how high to start the car by trial and error, but now that you know the
work-energy theorem, you can predict the minimum height (as well as other more useful results) from
physical principles. By using the work-energy theorem, you did not have to solve a differential equation to
determine the height.

) CHECK YOUR UNDERSTANDING 7.7

Suppose the radius of the loop-the-loop in Example 7.9 is 15 cm and the toy car starts from rest at a height of
45 cm above the bottom. What is its speed at the top of the loop?

@ INTERACTIVE

Visit Carleton College’s site to see a video (https://openstax.org/l/21carcollvidrol) of a looping rollercoaster.

In situations where the motion of an object is known, but the values of one or more of the forces acting on it are
not known, you may be able to use the work-energy theorem to get some information about the forces. Work
depends on the force and the distance over which it acts, so the information is provided via their product.

@ EXAMPLE 7.10

Determining a Stopping Force

A bullet has a mass of 40 grains (2.60 g) and a muzzle velocity of 1100 ft./s (335 m/s). It can penetrate eight
1-inch pine boards, each with thickness 0.75 inches. What is the average stopping force exerted by the wood,
as shown in Figure 7.13?

Stopping distance
\ .

v =335 m/s i I
{a) Bullet sirikes boards (k) Boards stop bullet

Figure 7.13 The boards exert a force to stop the bullet. As a result, the boards do work and the bullet loses kinetic energy.

Strategy

We can assume that under the general conditions stated, the bullet loses all its kinetic energy penetrating the
boards, so the work-energy theorem says its initial kinetic energy is equal to the average stopping force times
the distance penetrated. The change in the bullet’s kinetic energy and the net work done stopping it are both
negative, so when you write out the work-energy theorem, with the net work equal to the average force times
the stopping distance, that’s what you get. The total thickness of eight 1-inch pine boards that the bullet

3

penetrates is 8 X ) in.=6in. = 15.2cm.

Solution
Applying the work-energy theorem, we get

Whet = —FaveAs stop = —Kinitial »


https://openstax.org/l/21carcollvidrol

SO

o gmv? 326 X 107 kg)(335 m/s)® 060N
T Asgop 0.152m ‘

Significance

We could have used Newton’s second law and kinematics in this example, but the work-energy theorem also
supplies an answer to less simple situations. The penetration of a bullet, fired vertically upward into a block of
wood, is discussed in one section of Asif Shakur’s recent article [“Bullet-Block Science Video Puzzle.” The
Physics Teacher (January 2015) 53(1): 15-16]. If the bullet is fired dead center into the block, it loses all its
kinetic energy and penetrates slightly farther than if fired off-center. The reason is that if the bullet hits off-
center, it has a little kinetic energy after it stops penetrating, because the block rotates. The work-energy
theorem implies that a smaller change in kinetic energy results in a smaller penetration. You will understand
more of the physics in this interesting article after you finish reading Angular Momentum.

@ INTERACTIVE

Learn more about work and energy in this PhET simulation (https://openstax.org/l/21PhETSimRamp) called
“the ramp.” Try changing the force pushing the box and the frictional force along the incline. The work and
energy plots can be examined to note the total work done and change in kinetic energy of the box.

7.4 Power

Learning Objectives

By the end of this section, you will be able to:
e Relate the work done during a time interval to the power delivered
e Find the power expended by a force acting on a moving body

The concept of work involves force and displacement; the work-energy theorem relates the net work done on a
body to the difference in its kinetic energy, calculated between two points on its trajectory. None of these
quantities or relations involves time explicitly, yet we know that the time available to accomplish a particular
amount of work is frequently just as important to us as the amount itself. In the chapter-opening figure,
several sprinters may have achieved the same velocity at the finish, and therefore did the same amount of
work, but the winner of the race did it in the least amount of time.

We express the relation between work done and the time interval involved in doing it, by introducing the
concept of power. Since work can vary as a function of time, we first define average power as the work done
during a time interval, divided by the interval,

AW

Poye = —. 7.10
ave A7

Then, we can define the instantaneous power (frequently referred to as just plain power).

Power

Power is defined as the rate of doing work, or the limit of the average power for time intervals approaching
zZero,
dw
P —

=—. 7.11
dt

If the power is constant over a time interval, the average power for that interval equals the instantaneous
power, and the work done by the agent supplying the power is W = PAt. If the power during an interval varies
with time, then the work done is the time integral of the power,


https://openstax.org/l/21PhETSimRamp

W = /Pdt.

The work-energy theorem relates how work can be transformed into kinetic energy. Since there are other
forms of energy as well, as we discuss in the next chapter, we can also define power as the rate of transfer of
energy. Work and energy are measured in units of joules, so power is measured in units of joules per second,
which has been given the SI name watts, abbreviation W: 1 J/s = 1 W. Another common unit for expressing the
power capability of everyday devices is horsepower: 1 hp = 746 W.

@ EXAMPLE 7.11

Pull-Up Power

An 80-kg army trainee does pull-ups on a horizontal bar (Figure 7.14). It takes the trainee 0.8 seconds to raise
the body from a lower position to where the chin is above the bar. How much power do the trainee’s muscles
supply moving his body from the lower position to where the chin is above the bar? (Hint: Make reasonable
estimates for any quantities needed.)

Ay
‘ mg
T s

Figure 7.14 What is the power expended in doing ten pull-ups in ten seconds?

Strategy

The work done against gravity, going up or down a distance A4y, is mgAy. Let’s assume that Ay = 2ft ~ 60 cm.
Also, assume that the arms comprise 10% of the body mass and are not included in the moving mass. With
these assumptions, we can calculate the work done.

Solution
The result we get, applying our assumptions, is

mg(Ay)  0.9(80kg)(9.8 m/s%)(0.60 m)

P=
t 0.8s

=529 W.

Significance
This is typical for power expenditure in strenuous exercise; in everyday units, it’'s somewhat more than one
horsepower (1 hp = 746 W).

) CHECK YOUR UNDERSTANDING 7.8

Estimate the power expended by a weightlifter raising a 150-kg barbell 2 m in 3 s.

-
The power involved in moving a body can also be expressed in terms of the forces acting on it. If a force F acts



on a body that is displaced dr in a time dt, the power expended by the force is

7.12

>
p W _E& _g () g4
dt dt dt

where V is the velocity of the body. The fact that the limits implied by the derivatives exist, for the motion of a
real body, justifies the rearrangement of the infinitesimals.

@ EXAMPLE 7.12

Automotive Power Driving Uphill

How much power must an automobile engine expend to move a 1200-kg car up a 15% grade at 90 km/h
(Figure 7.15)? Assume that 25% of this power is dissipated overcoming air resistance and friction.

v =190 krn.fh

h D

Figure 7.15 We want to calculate the power needed to move a car up a hill at constant speed.

15% grade

Strategy

At constant velocity, there is no change in kinetic energy, so the net work done to move the car is zero.
Therefore the power supplied by the engine to move the car equals the power expended against gravity and air
resistance. By assumption, 75% of the power is supplied against gravity, which equals mg -V = mguvsin 6,
where 0 is the angle of the incline. A 15% grade means tan 6 = 0.15. This reasoning allows us to solve for the
power required.

Solution
Carrying out the suggested steps, we find

0.75 P = mgu sin(tan™! 0.15),
or

_ (1200 x 9.8 N)(90 m/3.6 s)sin(8.53°)
B 0.75

or about 78 hp. (You should supply the steps used to convert units.)

= 58kW,

Significance

This is a reasonable amount of power for the engine of a small to mid-size car to supply (1 hp = 0.746 kW).
Note that this is only the power expended to move the car. Much of the engine’s power goes elsewhere, for
example, into waste heat. That’s why cars need radiators. Any remaining power could be used for acceleration,
or to operate the car’s accessories.
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Key Terms

average power work done in a time interval power (or instantaneous power) rate of doing work
divided by the time interval work done when a force acts on something that

kinetic energy energy of motion, one-half an undergoes a displacement from one position to
object’s mass times the square of its speed another

net work work done by all the forces acting on an work-energy theorem network done on a particle
object is equal to the change in its kinetic energy

Key Equations

= N =21 —
Work done by a force over an infinitesimal displacement dW =F -dr = |F | |d r | cos 6
-
Work done by a force acting along a path from Ato B Wap = / F-d¥
pathAB
Work done by a constant force of kinetic friction Wi = —fr |l aBl

Work done going from A to Bby Earth’s gravity, near its surface ~ Werav,aB = —mg(yp — ya)

Work done going from A to B by one-dimensional spring force Wipring,AB = — (%k) (x% - xi)
Kinetic energy of a non-relativistic particle K= % mu? = %
Work-energy theorem Whet = Kp — Ky
Power as rate of doing work P= %
Power as the dot product of force and velocity P=F. v
Summary
7.1 Work height through which it moved.

« The work done by a spring force, acting from an
initial position to a final position, depends only
on the spring constant and the squares of those
positions.

« The infinitesimal increment of work done by a
force, acting over an infinitesimal displacement,
is the dot product of the force and the
displacement.

- The work done by a force, acting over a finite 7.2 Kinetic Energy
path, is the integral of the infinitesimal
increments of work done along the path.

+ The work done against a force is the negative of
the work done by the force.

+ The work done by a normal or frictional contact
force must be determined in each particular
case.

« The work done by the force of gravity, on an
object near the surface of Earth, depends only
on the weight of the object and the difference in

- The kinetic energy of a particle is the product of
one-half its mass and the square of its speed, for
non-relativistic speeds.

» The kinetic energy of a system is the sum of the
kinetic energies of all the particles in the
system.

- Kinetic energy is relative to a frame of reference,
is always positive, and is sometimes given
special names for different types of motion.




7.3 Work-Energy Theorem

Because the net force on a particle is equal to its
mass times the derivative of its velocity, the
integral for the net work done on the particle is
equal to the change in the particle’s kinetic
energy. This is the work-energy theorem.

You can use the work-energy theorem to find
certain properties of a system, without having to
solve the differential equation for Newton’s
second law.

Conceptual Questions
7.1 Work
1

Give an example of something we think of as
work in everyday circumstances that is not work
in the scientific sense. Is energy transferred or
changed in form in your example? If so, explain
how this is accomplished without doing work.

. Give an example of a situation in which there is a

force and a displacement, but the force does no
work. Explain why it does no work.

Describe a situation in which a force is exerted
for a long time but does no work. Explain.

A body moves in a circle at constant speed. Does
the centripetal force that accelerates the body do
any work? Explain.

. Suppose you throw a ball upward and catch it

when it returns at the same height. How much
work does the gravitational force do on the ball
over its entire trip?

. Why is it more difficult to do sit-ups while on a

slant board than on a horizontal surface? (See
below.)

7 ¢ Chapter Review 337

7.4 Power

7

» Power is the rate of doing work; that is, the
derivative of work with respect to time.

« Alternatively, the work done, during a time
interval, is the integral of the power supplied
over the time interval.

« The power delivered by a force, acting on a
moving particle, is the dot product of the force
and the particle’s velocity.

. As ayoung man, Tarzan climbed up a vine to

reach his tree house. As he got older, he decided
to build and use a staircase instead. Since the
work of the gravitational force mgis path
independent, what did the King of the Apes gain
in using stairs?

7.2 Kinetic Energy

8.

A particle of m has a velocity of Ux,i\ + Uy,/].\ + Uzﬁ.
Is its kinetic energy given by

m(sz’i\ + Uyzj + Uzzﬁ)/Z? If not, what is the
correct expression?

One particle has mass m and a second particle
has mass 2m. The second particle is moving with
speed vand the first with speed 2v. How do their
kinetic energies compare?

10. A person drops a pebble of mass m from a

height h, and it hits the floor with kinetic energy
K. The person drops another pebble of mass m,




from a height of 2h, and it hits the floor with the
same kinetic energy K. How do the masses of
the pebbles compare?

7.3 Work-Energy Theorem

11.

12.

13.

14.

The person shown below does work on the lawn
mower. Under what conditions would the mower
gain energy from the person pushing the mower?
Under what conditions would it lose energy?

W= Fdcos i

Fy
Work done on a system puts energy into it.
Work done by a system removes energy from it.
Give an example for each statement.

Two marbles of masses m and 2m are dropped
from a height h. Compare their kinetic energies
when they reach the ground.

Compare the work required to accelerate a car
of mass 2000 kg from 30.0 to 40.0 km/h with
that required for an acceleration from 50.0 to
60.0 km/h.

Problems
7.1 Work

23.

24.

25.

26.

How much work does a supermarket checkout
attendant do on a can of soup he pushes 0.600
m horizontally with a force of 5.00 N?

A 75.0-kg person climbs stairs, gaining 2.50 m
in height. Find the work done to accomplish this
task.

(a) Calculate the work done on a 1500-kg
elevator car by its cable to lift it 40.0 m at
constant speed, assuming friction averages 100
N. (b) What is the work done on the lift by the
gravitational force in this process? (c) What is
the total work done on the lift?

Suppose a car travels 108 km at a speed of 30.0
m/s, and uses 2.0 gal of gasoline. Only 30% of
the gasoline goes into useful work by the force
that keeps the car moving at constant speed
despite friction. (The energy content of gasoline
is about 140 MJ/gal.) (a) What is the magnitude
of the force exerted to keep the car moving at

15.

16.

Suppose you are jogging at constant velocity.
Are you doing any work on the environment and
vice versa?

Two forces act to double the speed of a particle,
initially moving with kinetic energy of 1 J. One
of the forces does 4 J of work. How much work
does the other force do?

7.4 Power

17.

20.

21.
22.

27.

28.

Most electrical appliances are rated in watts.
Does this rating depend on how long the
appliance is on? (When off, it is a zero-watt
device.) Explain in terms of the definition of
power.

. Explain, in terms of the definition of power, why

energy consumption is sometimes listed in
kilowatt-hours rather than joules. What is the
relationship between these two energy units?

. A spark of static electricity, such as that you

might receive from a doorknob on a cold dry
day, may carry a few hundred watts of power.
Explain why you are not injured by such a
spark.

Does the work done in lifting an object depend
on how fast it is lifted? Does the power
expended depend on how fast it is lifted?

Can the power expended by a force be negative?
How can a 50-W light bulb use more energy
than a 1000-W oven?

constant speed? (b) If the required force is
directly proportional to speed, how many

gallons will be used to drive 108 km at a speed

of 28.0 m/s?

Calculate the work done by an 85.0-kg man who
pushes a crate 4.00 m up along a ramp that makes
an angle of 20.0° with the horizontal (see below). He
exerts a force of 500 N on the crate parallel to the
ramp and moves at a constant speed. Be certain to
include the work he does on the crate and on his
body to get up the ramp.

How much work is done by the boy pulling his sister
30.0 m in a wagon as shown below? Assume no



29.

30.

friction acts on the wagon.

A shopper pushes a grocery cart 20.0 m at
constant speed on level ground, againsta 35.0 N
frictional force. He pushes in a direction 25.0°
below the horizontal. (a) What is the work done
on the cart by friction? (b) What is the work
done on the cart by the gravitational force? (c)
What is the work done on the cart by the
shopper? (d) Find the force the shopper exerts,
using energy considerations. (e) What is the
total work done on the cart?

Suppose the ski patrol lowers a rescue sled and
victim, having a total mass of 90.0 kg, down a
60.0° slope at constant speed, as shown below.
The coefficient of friction between the sled and
the snow is 0.100. (a) How much work is done
by friction as the sled moves 30.0 m along the
hill? (b) How much work is done by the rope on
the sled in this distance? (c) What is the work
done by the gravitational force on the sled? (d)
What is the total work done?

31.

35.

36.

37.

38.

39.

A constant 20-N force pushes a small ball in the
direction of the force over a distance of 5.0 m.
What is the work done by the force?

. Atoy cart is pulled a distance of 6.0 min a

straight line across the floor. The force pulling
the cart has a magnitude of 20 N and is directed
at 37° above the horizontal. What is the work
done by this force?

. A 5.0-kg box rests on a horizontal surface. The

coefficient of kinetic friction between the box
and surface is ug = 0.50. A horizontal force
pulls the box at constant velocity for 10 cm.
Find the work done by (a) the applied horizontal
force, (b) the frictional force, and (c) the net
force.

. Asled plus passenger with total mass 50 kg is

pulled 20 m across the snow (y; = 0.20) at
constant velocity by a force directed 25° above
the horizontal. Calculate (a) the work of the
applied force, (b) the work of friction, and (c) the
total work.

Suppose that the sled plus passenger of the
preceding problem is pushed 20 m across the
snow at constant velocity by a force directed 30°
below the horizontal. Calculate (a) the work of
the applied force, (b) the work of friction, and (c)
the total work.

How much work does the force

F(x) = (—2.0/x) N do on a particle as it moves
fromx =2.0mtox =5.0m?

How much work is done against the
gravitational force on a 5.0-kg briefcase when it
is carried from the ground floor to the roof of
the Empire State Building, a vertical climb of
380 m?

It takes 500 J of work to compress a spring 10
cm. What is the force constant of the spring?

A bungee cord is essentially a very long rubber
band that can stretch up to four times its
unstretched length. However, its spring
constant varies over its stretch [see Menz, P.G.
“The Physics of Bungee Jumping.” The Physics
Teacher (November 1993) 31: 483-487]. Take
the length of the cord to be along the x-direction
and define the stretch x as the length of the cord
Iminus its un-stretched length /y; that is,

x =1 — Il (see below). Suppose a particular
bungee cord has a spring constant, for

0 < x <4.88m,of k; =204 N/m and for

x > 4.88m, of ko = 111 N/m. (Recall that the
spring constant is the slope of the force F(x)
versus its stretch x.) (a) What is the tension in
the cord when the stretch is 16.7 m (the
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40.

41.

42.

43.
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maximum desired for a given jump)? (b) How
much work must be done against the elastic

(credit: modification of work by Graeme

Figure 7.16
Churchard)

A bungee cord exerts a nonlinear elastic force of
magnitude F(x) = k;x + kp x3, where xis the
distance the cord is stretched, k| = 204 N/m
and kp = —0.233 N/m>. How much work must
be done on the cord to stretch it 16.7 m?
Engineers desire to model the magnitude of the
elastic force of a bungee cord using the equation

F(x)=a[w_(9_m)2],

9m x+9 m
where xis the stretch of the cord along its
length and ais a constant. If it takes 22.0 kJ of
work to stretch the cord by 16.7 m, determine
the value of the constant a.
A particle moving in the xy-plane is subject to a
force
- 2 N
F(x,y) = (50 N/m)(xi + 3-J)
where x and y are in meters. Calculate the work
done on the particle by this force, as it moves in
a straight line from the point (3 m, 4 m) to the
point (6 m, 8 m).
A particle moves along a curved path
y(x) = (10m){1 + cos[(0.1 m~1)x]}, from
x = 0to x = 10z m, subject to a tangential force
of variable magnitude
F(x) = (10 N)sin[(0.1 m~!)x]. How much work
does the force do? (Hint: Consult a table of
integrals or use a numerical integration

Access for free at openstax.org.

program.)

7.2 Kinetic Energy

44.

45.

46.

47.

48.

49.

Compare the kinetic energy of a 20,000-kg
truck moving at 110 km/h with that of an
80.0-kg astronaut in orbit moving at 27,500 km/
h.

(a) How fast must a 3000-kg elephant move to
have the same kinetic energy as a 65.0-kg
sprinter running at 10.0 m/s? (b) Discuss how
the larger energies needed for the movement of
larger animals would relate to metabolic rates.
Estimate the kinetic energy of a 90,000-ton
aircraft carrier moving at a speed of at 30 knots.
You will need to look up the definition of a
nautical mile to use in converting the unit for
speed, where 1 knot equals 1 nautical mile per
hour. Furthermore for this problem, 1 ton is
equivalent to 2,000 pounds.

Calculate the kinetic energies of (a) a 2000.0-kg
automobile moving at 100.0 km/h; (b) an 80.-kg
runner sprinting at 10. m/s; and (c) a

9.1 x 1073! -kg electron moving at

2.0 x 107 mp/s.

A 5.0-kg body has three times the kinetic energy
of an 8.0-kg body. Calculate the ratio of the
speeds of these bodies.

An 8.0-g bullet has a speed of 800 m/s. (a) What
is its kinetic energy? (b) What is its kinetic
energy if the speed is halved?

7.3 Work-Energy Theorem

50.

51.

52.

(a) Calculate the force needed to bring a 950-kg
car to rest from a speed of 90.0 km/h in a
distance of 120 m (a fairly typical distance for a
non-panic stop). (b) Suppose instead the car
hits a concrete abutment at full speed and is
brought to a stop in 2.00 m. Calculate the force
exerted on the car and compare it with the force
found in part (a).

A car’s bumper is designed to withstand a
4.0-km/h (1.1-m/s) collision with an immovable
object without damage to the body of the car.
The bumper cushions the shock by absorbing
the force over a distance. Calculate the
magnitude of the average force on a bumper
that collapses 0.200 m while bringing a 900-kg
car to rest from an initial speed of 1.1 m/s.
Boxing gloves are padded to lessen the force of a
blow. (a) Calculate the force exerted by a boxing
glove on an opponent’s face, if the glove and
face compress 7.50 cm during a blow in which



53.

54.

55.

56.

57.

58.

59.

60.

the 7.00-kg arm and glove are brought to rest
from an initial speed of 10.0 m/s. (b) Calculate
the force exerted by an identical blow in the
days when no gloves were used, and the
knuckles and face would compress only 2.00
cm. Assume the change in mass by removing
the glove is negligible. (c) Discuss the
magnitude of the force with glove on. Does it
seem high enough to cause damage even
though it is lower than the force with no glove?
Using energy considerations, calculate the
average force a 60.0-kg sprinter exerts
backward on the track to accelerate from 2.00 to
8.00 m/s in a distance of 25.0 m, if he
encounters a headwind that exerts an average
force of 30.0 N against him.

A 5.0-kg box has an acceleration of 2.0 m/s>
when it is pulled by a horizontal force across a
surface with ug = 0.50. Find the work done
over a distance of 10 cm by (a) the horizontal
force, (b) the frictional force, and (c) the net
force. (d) What is the change in kinetic energy of
the box?

A constant 10-N horizontal force is applied to a
20-kg cart at rest on a level floor. If friction is
negligible, what is the speed of the cart when it
has been pushed 8.0 m?

In the preceding problem, the 10-N force is
applied at an angle of 45° below the horizontal.
What is the speed of the cart when it has been
pushed 8.0 m?

Compare the work required to stop a 100-kg
crate sliding at 1.0 m/s and an 8.0-g bullet
traveling at 500 m/s.

A wagon with its passenger sits at the top of a
hill. The wagon is given a slight push and rolls
100 m down a 10° incline to the bottom of the
hill. What is the wagon’s speed when it reaches
the end of the incline. Assume that the retarding
force of friction is negligible.

An 8.0-g bullet with a speed of 800 m/s is shot
into a wooden block and penetrates 20 cm
before stopping. What is the average force of the
wood on the bullet? Assume the block does not
move.

A 2.0-kg block starts with a speed of 10 m/s at
the bottom of a plane inclined at 37° to the
horizontal. The coefficient of sliding friction
between the block and plane is u; = 0.30. (a)
Use the work-energy principle to determine
how far the block slides along the plane before
momentarily coming to rest. (b) After stopping,
the block slides back down the plane. What is its

61.

62.

63.

64.

65.

66.

speed when it reaches the bottom? (Hint: For
the round trip, only the force of friction does
work on the block.)

When a 3.0-kg block is pushed against a
massless spring of force constant

4.5 x 103 N/m, the spring is compressed 8.0
cm. The block is released, and it slides 2.0 m
(from the point at which it is released) across a
horizontal surface before friction stops it. What
is the coefficient of kinetic friction between the
block and the surface?

A small block of mass 200 g starts at rest at A,
slides to B where its speed is vg = 8.0 m/s, then
slides along the horizontal surface a distance 10
m before coming to rest at C. (See below.) (a)
What is the work of friction along the curved
surface? (b) What is the coefficient of kinetic

friction along the horizontal surface?
A

-—+m

£
t
|
1

10m

A small object is placed at the top of an incline
that is essentially frictionless. The object slides
down the incline onto a rough horizontal
surface, where it stops in 5.0 s after traveling 60
m. (a) What is the speed of the object at the
bottom of the incline and its acceleration along
the horizontal surface? (b) What is the height of
the incline?

When released, a 100-g block slides down the
path shown below, reaching the bottom with a
speed of 4.0 m/s. How much work does the force
of friction do?

i 4

20m 4.0 mis

—_—

A 0.22LR-caliber bullet like that mentioned in
Example 7.10 is fired into a door made of a
single thickness of 1-inch pine boards. How fast
would the bullet be traveling after it penetrated
through the door?

A sled starts from rest at the top of a snow-
covered incline that makes a 22° angle with the
horizontal. After sliding 75 m down the slope,
its speed is 14 m/s. Use the work-energy
theorem to calculate the coefficient of kinetic




friction between the runners of the sled and the
snowy surface.

7.4 Power

67.

68.

69.

70.

71.

72.

73.

74.

75.

A person in good physical condition can put out
100 W of useful power for several hours at a
stretch, perhaps by pedaling a mechanism that
drives an electric generator. Neglecting any
problems of generator efficiency and practical
considerations such as resting time: (a) How
many people would it take to run a 4.00-kW
electric clothes dryer? (b) How many people
would it take to replace a large electric power
plant that generates 800 MW?

What is the cost of operating a 3.00-W electric
clock for a year if the cost of electricity is
$0.0900 per kW - h?

Alarge household air conditioner may consume
15.0 kW of power. What is the cost of operating
this air conditioner 3.00 h per day for 30.0 d if
the cost of electricity is $0.110 per kW - h?

(a) What is the average power consumption in
watts of an appliance that uses 5.00 kW - h of
energy per day? (b) How many joules of energy
does this appliance consume in a year?

(a) What is the average useful power output of a
person who does 6.00 X 10° J of useful work in
8.00 h? (b) Working at this rate, how long will it
take this person to lift 2000 kg of bricks 1.50 m
to a platform? (Work done to lift his body can be
omitted because it is not considered useful
output here.)

A 500-kg dragster accelerates from rest to a
final speed of 110 m/s in 400 m (about a quarter
of a mile) and encounters an average frictional
force of 1200 N. What is its average power
output in watts and horsepower if this takes
7.30s?

(a) How long will it take an 850-kg car with a
useful power output of 40.0 hp (1 hp equals 746
W) to reach a speed of 15.0 m/s, neglecting
friction? (b) How long will this acceleration take
if the car also climbs a 3.00-m high hill in the
process?

(a) Find the useful power output of an elevator
motor that lifts a 2500-kg load a height of 35.0
min 12.0 s, if it also increases the speed from
rest to 4.00 m/s. Note that the total mass of the
counterbalanced system is 10,000 kg—so that
only 2500 kg is raised in height, but the full
10,000 kg is accelerated. (b) What does it cost, if
electricity is $0.0900 per kW - h ?

(a) How long would it take a 1.50 X 10°-kg

76.

77.

78.
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80.
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83.

airplane with engines that produce 100 MW of
power to reach a speed of 250 m/s and an
altitude of 12.0 km if air resistance were
negligible? (b) If it actually takes 900 s, what is
the power? (c) Given this power, what is the
average force of air resistance if the airplane
takes 1200 s? (Hint: You must find the distance
the plane travels in 1200 s assuming constant
acceleration.)

Calculate the power output needed for a 950-kg
car to climb a 2.00° slope at a constant 30.0 m/s
while encountering wind resistance and friction
totaling 600 N.

A man of mass 80 kg runs up a flight of stairs 20
m high in 10 s. (a) how much power is used to
lift the man? (b) If the man’s body is 25%
efficient, how much power does he expend?
The man of the preceding problem consumes
approximately 1.05 X 107 J (2500 food
calories) of energy per day in maintaining a
constant weight. What is the average power he
produces over a day? Compare this with his
power production when he runs up the stairs.
An electron in a television tube is accelerated
uniformly from rest to a speed of 8.4 x 107 m/s
over a distance of 2.5 cm. What is the power
delivered to the electron at the instant that its
displacement is 1.0 cm?

Coal is lifted out of a mine a vertical distance of
50 m by an engine that supplies 500 W to a
conveyor belt. How much coal per minute can
be brought to the surface? Ignore the effects of
friction.

A girl pulls her 15-kg wagon along a flat
sidewalk by applying a 10-N force at 37° to the
horizontal. Assume that friction is negligible
and that the wagon starts from rest. (a) How
much work does the girl do on the wagon in the
first 2.0 s. (b) How much instantaneous power
does she exert att = 2.0 s?

A typical automobile engine has an efficiency of
25%. Suppose that the engine of a 1000-kg
automobile has a maximum power output of
140 hp. What is the maximum grade that the
automobile can climb at 50 km/h if the
frictional retarding force on it is 300 N?

When jogging at 13 km/h on a level surface, a
70-kg man uses energy at a rate of
approximately 850 W. Using the facts that the
“human engine” is approximately 25% efficient,
determine the rate at which this man uses
energy when jogging up a 5.0° slope at this
same speed. Assume that the frictional



retarding force is the same in both cases.

Additional Problems

84. A cartis pulled a distance D on a flat, horizontal 89. Aboy pulls a 5-kg cart with a 20-N force at an
surface by a constant force Fthat acts at an angle 6 angle of 30° above the horizontal for a length of
with the horizontal direction. The other forces on the time. Over this time frame, the cart moves a
object during this time are gravity (Fy,), normal distance of 12 m on the horizontal floor. (a) Find
forces (Fy1) and (Fn2), and rolling frictions F,; and the work done on the cart by the boy. (b) What
F,», as shown below. What is the work done by each will be the work done by the boy if he pulled
force? with the same force horizontally instead of at an

£ angle of 30° above the horizontal over the same
F distance?
i 90. A crate of mass 200 kg is to be brought from a
Displacement 2 site on the ground floor to a third floor

apartment. The workers know that they can

Fm 3 either use the elevator first, then slide it along
p2 the third floor to the apartment, or first slide the
crate to another location marked C below, and
2 E then take the elevator to the third floor and slide
r * E 2 it on the third floor a shorter distance. The
" trouble is that the third floor is very rough
85. Consider a particle on which several forces act, compared to the ground floor. Given that the
one of WhiCAh is knov\/f\n to be constant in time: coefficient of kinetic friction between the crate
F; = (3N)i+ (4 N)j. As aresult, the particle and the ground floor is 0.100 and between the
moves along the x-axis from x = 0tox = Smin crate and the third floor surface is 0.300, find
some time interval. What is the work done by the work needed by the workers for each path
ii"l ? shown from A to E. Assume that the force the
86. Consider a particle on which several forces act, workers need to do is just enough to slide the
one of which is known to be constant in time: crate at constant velocity (zero acceleration).
i‘l =(@3 N)f + (4 N),/]'\. As a result, the particle Note: The work by the elevator against the force
moves first along the x-axis from x = 0 to of gravity is not done by the gz?::;f

x = 5 mand then parallel to the y-axis from
y = 0to y = 6 m. What is the work done by f‘l ?

87. Consider a particle on which several forces act,
one of which is known to be constant in time:
ﬁ‘l =3 N)i +4 N)j]'\. As a result, the particle
moves along a straight path from a Cartesian
coordinate of (0 m, O m) to (5 m, 6 m). What is
the work done by i:’l ?

88. Consider a particle on which a force acts that
depends on the position of the particle. This
force is given by ﬁl = (2y)f + (3x)f]'\. Find the
work done by this force when the particle moves
from the origin to a point 5 meters to the right
on the x-axis.




91.

92.

93.

A hockey puck of mass 0.17 kg is shot across a
rough floor with the roughness different at
different places, which can be described by a
position-dependent coefficient of kinetic
friction. For a puck moving along the x-axis, the
coefficient of kinetic friction is the following
function of x, where xis in m:

u(x) = 0.1 + 0.05x. Find the work done by the
kinetic frictional force on the hockey puck when
it has moved (a) from x = 0 to x = 2 m, and (b)
fromx =2mtox =4m.

A horizontal force of 20 N is required to keep a
5.0 kg box traveling at a constant speed up a
frictionless incline for a vertical height change
of 3.0 m. (a) What is the work done by gravity
during this change in height? (b) What is the
work done by the normal force? (c) What is the
work done by the horizontal force?

A 7.0-kg box slides along a horizontal
frictionless floor at 1.7 m/s and collides with a
relatively massless spring that compresses 23
cm before the box comes to a stop. (a) How
much kinetic energy does the box have before it
collides with the spring? (b) Calculate the work
done by the spring. (c) Determine the spring
constant of the spring.

9.

95.

96.

97.
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You are driving your car on a straight road with
a coefficient of friction between the tires and
the road of 0.55. A large piece of debris falls in
front of your view and you immediate slam on
the brakes, leaving a skid mark of 30.5 m
(100-feet) long before coming to a stop. A
policeman sees your car stopped on the road,
looks at the skid mark, and gives you a ticket for
traveling over the 13.4 m/s (30 mph) speed
limit. Should you fight the speeding ticket in
court?

A crate is being pushed across a rough floor
surface. If no force is applied on the crate, the
crate will slow down and come to a stop. If the
crate of mass 50 kg moving at speed 8 m/s
comes to rest in 10 seconds, what is the rate at
which the frictional force on the crate takes
energy away from the crate?

Suppose a horizontal force of 20 N is required to
maintain a speed of 8 m/s of a 50 kg crate. (a)
What is the power of this force? (b) Note that the
acceleration of the crate is zero despite the fact
that 20 N force acts on the crate horizontally.
What happens to the energy given to the crate
as a result of the work done by this 20 N force?
Grains from a hopper falls at a rate of 10 kg/s
vertically onto a conveyor belt that is moving
horizontally at a constant speed of 2 m/s. (a)
What force is needed to keep the conveyor belt
moving at the constant velocity? (b) What is the
minimum power of the motor driving the
conveyor belt?

A cyclist in a race must climb a 5° hill at a speed
of 8 m/s. If the mass of the bike and the biker
together is 80 kg, what must be the power
output of the biker to achieve the goal?



Challenge Problems

99.

100.

101.

102.

Shown below is a 40-kg crate that is pushed at
constant velocity a distance 8.0 m along a 30°

incline by the horizontal force i*z‘ The coefficient
of kinetic friction between the crate and the
incline is pp = 0.40. Calculate the work done by
(a) the applied force, (b) the frictional force, (c)
the gravitational force, and (d) the net force.

40 kg

= N
e =1
) 4

The surface of the preceding problem is
modified so that the coefficient of kinetic
friction is decreased. The same horizontal
force is applied to the crate, and after being
pushed 8.0 m, its speed is 5.0 m/s. How much
work is now done by the force of friction?
Assume that the crate starts at rest.

The force F(x) varies with position, as shown
below. Find the work done by this force on a
particle as it moves from x = 1.0 m to

x=5.0m.
Flx) (M) 4
6.0+

404
2.0

o 20 4.}*9 8,0 X{m)
-20
404

Find the work done by the same force in
Example 7.4, between the same points,

A =(0,0) and B = (2 m,2 m), over a circular
arc of radius 2 m, centered at (0, 2 m). Evaluate
the path integral using Cartesian coordinates.
(Hint: You will probably need to consult a table
of integrals.)

103.

104.

105.

106.

107.

108.

Answer the preceding problem using polar
coordinates.

Find the work done by the same force in
Example 7.4, between the same points,

A =(0,0) and B = (2 m, 2 m), over a circular
arc of radius 2 m, centered at (2 m, 0). Evaluate
the path integral using Cartesian coordinates.
(Hint: You will probably need to consult a table
of integrals.)

Answer the preceding problem using polar
coordinates.

Constant power Pis delivered to a car of mass
m by its engine. Show that if air resistance can
be ignored, the distance covered in a time t by
the car, starting from rest, is given by

s = (8P/9m)! 2132,

Suppose that the air resistance a car
encounters is independent of its speed. When
the car travels at 15 m/s, its engine delivers 20
hp to its wheels. (a) What is the power
delivered to the wheels when the car travels at
30 m/s? (b) How much energy does the car use
in covering 10 km at 15 m/s? At 30 m/s?
Assume that the engine is 25% efficient. (c)
Answer the same questions if the force of air
resistance is proportional to the speed of the
automobile. (d) What do these results, plus
your experience with gasoline consumption,
tell you about air resistance?

Consider a linear spring, as in Figure 7.7(a),
with mass M uniformly distributed along its
length. The left end of the spring is fixed, but
the right end, at the equilibrium position

x = 0, is moving with speed vin the
x-direction. What is the total kinetic energy of
the spring? (Hint: First express the kinetic
energy of an infinitesimal element of the
spring dm in terms of the total mass,
equilibrium length, speed of the right-hand
end, and position along the spring; then
integrate.)
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CHAPTER 8

Potential Energ%/ and
Conservation o

Energy

Figure 8.1 Shown here is part of a Ball Machine sculpture by George Rhoads. A ball in this contraption is lifted,
rolls, falls, bounces, and collides with various objects, but throughout its travels, its kinetic energy changes in
definite, predictable amounts, which depend on its position and the objects with which it interacts. (credit:
modification of work by Roland Tanglao)

Chapter Outline

8.1 Potential Energy of a System

8.2 Conservative and Non-Conservative Forces

8.3 Conservation of Energy

8.4 Potential Energy Diagrams and Stability

8.5 Sources of Energy

INTRODUCTION In George Rhoads’ rolling ball sculpture, the principle of conservation of energy governs the
changes in the ball’s kinetic energy and relates them to changes and transfers for other types of energy
associated with the ball’s interactions. In this chapter, we introduce the important concept of potential energy.
This will enable us to formulate the law of conservation of mechanical energy and to apply it to simple systems,
making solving problems easier. In the final section on sources of energy, we will consider energy transfers
and the general law of conservation of energy. Throughout this book, the law of conservation of energy will be
applied in increasingly more detail, as you encounter more complex and varied systems, and other forms of



energy.

8.1 Potential Energy of a System

Learning Objectives
By the end of this section, you will be able to:
e Relate the difference of potential energy to work done on a particle for a system without friction or air drag
e Explain the meaning of the zero of the potential energy function for a system
e Calculate and apply the gravitational potential energy for an object near Earth’s surface and the elastic
potential energy of a mass-spring system

In Work, we saw that the work done on an object by the constant gravitational force, near the surface of Earth,
over any displacement is a function only of the difference in the positions of the end-points of the
displacement. This property allows us to define a different kind of energy for the system than its kinetic
energy, which is called potential energy. We consider various properties and types of potential energy in the
following subsections.

Potential Energy Basics

In Motion in Two and Three Dimensions, we analyzed the motion of a projectile, like kicking a football in
Figure 8.2. For this example, let’s ignore friction and air resistance. As the football rises, the work done by the
gravitational force on the football is negative, because the ball’s displacement is positive vertically and the
force due to gravity is negative vertically. We also noted that the ball slowed down until it reached its highest
point in the motion, thereby decreasing the ball’s kinetic energy. This loss in kinetic energy translates to a gain
in gravitational potential energy of the football-Earth system.

As the football falls toward Earth, the work done on the football is now positive, because the displacement and
the gravitational force both point vertically downward. The ball also speeds up, which indicates an increase in
kinetic energy. Therefore, energy is converted from gravitational potential energy back into kinetic energy.

3. At highest paint,
kinetic energy is minimum,
potential energy Is maximum
2. Ball ascends, = 4. Ball descends,
kingtic energy decreases, kinetic energy increases,
potential energy Increases potential energy decreases

1. Kicker toes wark 5. Receiver catches the ball, %
o on the ball, giving it kinetic energy equals maximum, _g
: 0 maximum kinetic energy, potential energy is minimum »
Y - potential energy s minimum ‘
" Y

Figure 8.2 As a football starts its descent toward the wide receiver, gravitational potential energy is converted back into kinetic energy.

Based on this scenario, we can define the difference of potential energy from point A to point B as the negative
of the work done:

AUsp=Up — Uy = —Wyp. 8.1

This formula explicitly states a potential energy difference, not just an absolute potential energy. Therefore,
we need to define potential energy at a given position in such a way as to state standard values of potential
energy on their own, rather than potential energy differences. We do this by rewriting the potential energy
function in terms of an arbitrary constant,



AU =U®) - U®Ty). 8.2

The choice of the potential energy at a starting location of ?0 is made out of convenience in the given problem.
Most importantly, whatever choice is made should be stated and kept consistent throughout the given
problem. There are some well-accepted choices of initial potential energy. For example, the lowest height in a
problem is usually defined as zero potential energy, or if an object is in space, the farthest point away from the
system is often defined as zero potential energy. Then, the potential energy, with respect to zero at ?0, is just
UF).

As long as there is no friction or air resistance, the change in kinetic energy of the football equals negative of
the change in gravitational potential energy of the football. This can be generalized to any potential energy:

AKsp =—AUyp. 83

Let’s look at a specific example, choosing zero potential energy for gravitational potential energy at convenient
points.

@ EXAMPLE 8.1

Basic Properties of Potential Energy

A particle moves along the x-axis under the action of a force given by F = —ax?, where a = 3 N/m2. (a) What is
the difference in its potential energy as it moves from x4 = 1 mto xg = 2 m? (b) What is the particle’s
potential energy at x = 1 m with respect to a given 0.5 J of potential energy at x = 0?

Strategy

(a) The difference in potential energy is the negative of the work done, as defined by Equation 8.1. The work is
defined in the previous chapter as the dot product of the force with the distance. Since the particle is moving
forward in the x-direction, the dot product simplifies to a multiplication (i i= 1). To find the total work done,
we need to integrate the function between the given limits. After integration, we can state the work or the
change in potential energy. (b) The potential energy function, with respect to zero at x = 0, is the indefinite
integral encountered in part (a), with the constant of integration determined from Equation 8.3. Then, we
substitute the x-value into the function of potential energy to calculate the potential energy at x = 1 m.

Solution

a. The work done by the given force as the particle moves from coordinate xto x + dx in one dimension is
=
dW =F - dt = Fdx = —ax*dx.

Substituting this expression into Equation 8.1, we obtain
X2
2 1 2, 3)2m
AU =-W = [ ax’dx=Z(3N/m’)x |1 =171
X1
b. The indefinite integral for the potential energy function in part (a) is

1
Uk = gax3 + const.,

and we want the constant to be determined by
U(@©0)=0.51.
Thus, the potential energy with respect to zero at x = 0 is just

1
U (x) = gax3 +0.57.

Therefore, the potential energy at x = 1 m s

U(lm)= %(3N/m2) (Im)’ +0.57=15].



Significance

In this one-dimensional example, any function we can integrate, independent of path, is conservative. Notice
how we applied the definition of potential energy difference to determine the potential energy function with
respect to zero at a chosen point. Also notice that the potential energy, as determined in part (b), at x = 1 mis
U(m)=1Jandatx =2mis U (2 m) = 8J; their difference is the result in part (a).

CHECK YOUR UNDERSTANDING 8.1

In Example 8.1, what are the potential energies of the particle at x = 1 m and x = 2 m with respect to zero at
x = 1.5 m? Verify that the difference of potential energy is still 7 J.

Systems of Several Particles

In general, a system of interest could consist of several particles. The difference in the potential energy of the
system is the negative of the work done by gravitational or elastic forces, which, as we will see in the next
section, are conservative forces. The potential energy difference depends only on the initial and final positions
of the particles, and on some parameters that characterize the interaction (like mass for gravity or the spring
constant for a Hooke’s law force).

It is important to remember that potential energy is a property of the interactions between objects in a chosen
system, and not just a property of each object. This is especially true for electric forces, although in the
examples of potential energy we consider below, parts of the system are either so big (like Earth, compared to
an object on its surface) or so small (like a massless spring), that the changes those parts undergo are
negligible when included in the system.

Types of Potential Energy

For each type of interaction present in a system, you can label a corresponding type of potential energy. The
total potential energy of the system is the sum of the potential energies of all the types. (This follows from the
additive property of the dot product in the expression for the work done.) Let’s look at some specific examples
of types of potential energy discussed in Work. First, we consider each of these forces when acting separately,
and then when both act together.

Gravitational potential energy near Earth’s surface

The system of interest consists of our planet, Earth, and one or more particles near its surface (or bodies small
enough to be considered as particles, compared to Earth). The gravitational force on each particle (or body) is
just its weight mg near the surface of Earth, acting vertically down. According to Newton’s third law, each
particle exerts a force on Earth of equal magnitude but in the opposite direction. Newton’s second law tells us
that the magnitude of the acceleration produced by each of these forces on Earth is mg divided by Earth’s
mass. Since the ratio of the mass of any ordinary object to the mass of Earth is vanishingly small, the motion of
Earth can be completely neglected. Therefore, we consider this system to be a group of single-particle systems,
subject to the uniform gravitational force of Earth.

In Work, the work done on a body by Earth’s uniform gravitational force, near its surface, depended on the
mass of the body, the acceleration due to gravity, and the difference in height the body traversed, as given by
Equation 7.4. By definition, this work is the negative of the difference in the gravitational potential energy, so
that difference is

AUgray = — grav,AB = Mg yB—y4). 84

You can see from this that the gravitational potential energy function, near Earth’s surface, is
U (y) = mgy + const. 8.5

You can choose the value of the constant, as described in the discussion of Equation 8.2; however, for solving
most problems, the most convenient constant to choose is zero for when y = 0, which is the lowest vertical



position in the problem.

@ EXAMPLE 8.2

Gravitational Potential Energy of a Hiker

The summit of Great Blue Hill in Milton, MA, is 147 m above its base and has an elevation above sea level of
195 m (Figure 8.3). (Its Native American name, Massachusett, was adopted by settlers for naming the Bay
Colony and state near its location.) A 75-kg hiker ascends from the base to the summit. What is the
gravitational potential energy of the hiker-Earth system with respect to zero gravitational potential energy at
base height, when the hiker is (a) at the base of the hill, (b) at the summit, and (c) at sea level, afterward?

——————————————— T Summit {195 m above sea level)
147 m

Base
Sea level

Figure 8.3 Sketch of the profile of Great Blue Hill, Milton, MA. The altitudes of the three levels are indicated.

Strategy

First, we need to pick an origin for the y-axis and then determine the value of the constant that makes the
potential energy zero at the height of the base. Then, we can determine the potential energies from Equation
8.5, based on the relationship between the zero potential energy height and the height at which the hiker is
located.

Solution

a. Let’s choose the origin for the y-axis at base height, where we also want the zero of potential energy to be.

This choice makes the constant equal to zero and
U (base) = U (0) =0.

b. Atthe summit, y = 147 m, so
U (summit) = U (147 m) = mgh = (75 X 9.8 N) (147 m) = 108 kJ.

c. Atsealevel, y = (147 — 195)m = —48 m, so
U (sea-level) = (75 X 9.8 N) (=48 m) = —35.3klJ.

Significance

Besides illustrating the use of Equation 8.4 and Equation 8.5, the values of gravitational potential energy we
found are reasonable. The gravitational potential energy is higher at the summit than at the base, and lower at
sea level than at the base. Gravity does work on you on your way up, too! It does negative work and not quite as
much (in magnitude), as your muscles do. But it certainly does work. Similarly, your muscles do work on your
way down, as negative work. The numerical values of the potential energies depend on the choice of zero of
potential energy, but the physically meaningful differences of potential energy do not. [Note that since
Equation 8.2 is a difference, the numerical values do not depend on the origin of coordinates.]

) CHECK YOUR UNDERSTANDING 8.2

What are the values of the gravitational potential energy of the hiker at the base, summit, and sea level, with
respect to a sea-level zero of potential energy?

Elastic potential energy
In Work, we saw that the work done by a perfectly elastic spring, in one dimension, depends only on the spring
constant and the squares of the displacements from the unstretched position, as given in Equation 7.5. This



work involves only the properties of a Hooke’s law interaction and not the properties of real springs and
whatever objects are attached to them. Therefore, we can define the difference of elastic potential energy for a
spring force as the negative of the work done by the spring force in this equation, before we consider systems
that embody this type of force. Thus,

1
AU = —Wyp = zk(x% - x3), 8.6
where the object travels from point A to point B. The potential energy function corresponding to this difference
is

1
U(x) = Ekx2 + const. 8.7

If the spring force is the only force acting, it is simplest to take the zero of potential energy at x = 0, when the
spring is at its unstretched length. Then, the constant is Equation 8.7 is zero. (Other choices may be more
convenient if other forces are acting.)

@ EXAMPLE 8.3

Spring Potential Energy

A system contains a perfectly elastic spring, with an unstretched length of 20 cm and a spring constant of 4 N/
cm. (a) How much elastic potential energy does the spring contribute when its length is 23 cm? (b) How much
more potential energy does it contribute if its length increases to 26 cm?

Strategy

When the spring is at its unstretched length, it contributes nothing to the potential energy of the system, so we
can use Equation 8.7 with the constant equal to zero. The value of x is the length minus the unstretched length.
When the spring is expanded, the spring’s displacement or difference between its relaxed length and stretched
length should be used for the x-value in calculating the potential energy of the spring.

Solution

a. The displacement of the spring is x = 23 cm — 20 cm = 3 cm, so the contributed potential energy is
U= 2kx* = 2(4N/em) (3 cm)* = 0.18].

b. When the spring’s displacement is x = 26 cm — 20 cm = 6 cm, the potential energy is
U= %kx2 = %(4 N/cm) (6 cm)2 = 0.72J, which is a 0.54-J increase over the amount in part (a).

Significance
Calculating the elastic potential energy and potential energy differences from Equation 8.7 involves solving for

the potential energies based on the given lengths of the spring. Since U depends on xz, the potential energy for
a compression (negative x) is the same as for an extension of equal magnitude.

CHECK YOUR UNDERSTANDING 8.3

When the length of the spring in Example 8.3 changes from an initial value of 22.0 cm to a final value, the
elastic potential energy it contributes changes by —0.0800 J. Find the final length.

Gravitational and elastic potential energy

A simple system embodying both gravitational and elastic types of potential energy is a one-dimensional,
vertical mass-spring system. This consists of a massive particle (or block), hung from one end of a perfectly
elastic, massless spring, the other end of which is fixed, as illustrated in Figure 8.4.
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Figure 8.4 A vertical mass-spring system, with the positive y-axis pointing upward. The mass is initially at an unstretched spring length,

point A. Then it is released, expanding past point B to point C, where it comes to a stop.

First, let's consider the potential energy of the system. We need to define the constant in the potential energy
function of Equation 8.5. Often, the ground is a suitable choice for when the gravitational potential energy is
zero; however, in this case, the highest point or when y = 0 is a convenient location for zero gravitational
potential energy. Note that this choice is arbitrary, and the problem can be solved correctly even if another
choice is picked.

We must also define the elastic potential energy of the system and the corresponding constant, as detailed in
Equation 8.7. This is where the spring is unstretched, or at the y = 0 position.

If we consider that the total energy of the system is conserved, then the energy at point A equals point C. The
block is placed just on the spring so its initial kinetic energy is zero. By the setup of the problem discussed
previously, both the gravitational potential energy and elastic potential energy are equal to zero. Therefore, the
initial energy of the system is zero. When the block arrives at point C, its kinetic energy is zero. However, it now
has both gravitational potential energy and elastic potential energy. Therefore, we can solve for the distance y
that the block travels before coming to a stop:

Ky + Ug=Kc+Uc
2
0 = 0+mgyc + 3k(yc)

—2mg
yo =
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Figure 8.5 A bungee jumper transforms gravitational potential energy at the start of the jump into elastic potential energy at the bottom

of the jump.

@ EXAMPLE 8.4

Potential Energy of a Vertical Mass-Spring System

A block weighing 1.2 N is hung from a spring with a spring constant of 6.0 N/m, as shown in Figure 8.4. (a)
What is the maximum expansion of the spring, as seen at point C? (b) What is the total potential energy at
point B, halfway between A and C? (¢) What is the speed of the block at point B?

Strategy

In part (a) we calculate the distance y¢ as discussed in the previous text. Then in part (b), we use half of the y
value to calculate the potential energy at point B using equations Equation 8.4 and Equation 8.6. This energy
must be equal to the kinetic energy, Equation 7.6, at point B since the initial energy of the system is zero. By
calculating the kinetic energy at point B, we can now calculate the speed of the block at point B.

Solution

a. Since the total energy of the system is zero at point A as discussed previously, the maximum expansion of
the spring is calculated to be:

2
e = %

212Ny _
Yo = Gonm) = —040m

b. The position of ypgis half of the position at yc or —0.20 m. The total potential energy at point B would
therefore be:

Up = mgyp+Tk(ye)
Up = (1.2N)(=020m) + £(6 N/m) (~0.20m)*
Ug = —0.12]
c. The mass of the block is the weight divided by gravity.
m= e _ 1'2—N=o.121<g
g 9.8m/s?

Access for free at openstax.org.



The kinetic energy at point B therefore is 0.12 J because the total energy is zero. Therefore, the speed of
the block at point B is equal to

_ 1.2
K = 5 mu

— [2K _  [200.12)) _

Even though the potential energy due to gravity is relative to a chosen zero location, the solutions to this
problem would be the same if the zero energy points were chosen at different locations.

Significance

() CHECK YOUR UNDERSTANDING 8.4

Suppose the mass in Equation 8.6 is doubled while keeping the all other conditions the same. Would the
maximum expansion of the spring increase, decrease, or remain the same? Would the speed at point B be
larger, smaller, or the same compared to the original mass?

@ INTERACTIVE

View this simulation (https://openstax.org/l/21conenerskat) to learn about conservation of energy with a
skater! Build tracks, ramps and jumps for the skater and view the kinetic energy, potential energy and friction
as he moves. You can also take the skater to different planets or even space!

A sample chart of a variety of energies is shown in Table 8.1 to give you an idea about typical energy values
associated with certain events. Some of these are calculated using kinetic energy, whereas others are
calculated by using quantities found in a form of potential energy that may not have been discussed at this
point.

Object/phenomenon Energy in joules
Big Bang 1098
Annual world energy use 4.0 x 1020
Large fusion bomb (9 megaton) 3.8 x 1010

Hiroshima-size fission bomb (10 kiloton) | 4.2 X 1013

1 barrel crude oil 5.9 x 10°
1 metric ton TNT 42 x 10°
1 gallon of gasoline 1.2 x 108

Daily adult food intake (recommended) 1.2 x 107

1000-kg car at 90 km/h 3.1 x 10°

Tennis ball at 100 km/h 22

Mosquito (10_2 gat0.5 m/s) 1.3 x 107°



https://openstax.org/l/21conenerskat

Object/phenomenon Energy in joules

Single electron in a TV tube beam 4.0 x 10713

Energy to break one DNA strand 10719

Table 8.1 Energy of Various Objects and Phenomena

8.2 Conservative and Non-Conservative Forces

Learning Objectives
By the end of this section, you will be able to:
e Characterize a conservative force in several different ways
e Specify mathematical conditions that must be satisfied by a conservative force and its components
e Relate the conservative force between particles of a system to the potential energy of the system
e Calculate the components of a conservative force in various cases

In Potential Energy and Conservation of Energy, any transition between kinetic and potential energy
conserved the total energy of the system. This was path independent, meaning that we can start and stop at
any two points in the problem, and the total energy of the system—kinetic plus potential—at these points are
equal to each other. This is characteristic of a conservative force. We dealt with conservative forces in the
preceding section, such as the gravitational force and spring force. When comparing the motion of the football
in Figure 8.2, the total energy of the system never changes, even though the gravitational potential energy of
the football increases, as the ball rises relative to ground and falls back to the initial gravitational potential
energy when the football player catches the ball. Non-conservative forces are dissipative forces such as
friction or air resistance. These forces take energy away from the system as the system progresses, energy that
you can’t get back. These forces are path dependent; therefore it matters where the object starts and stops.

Conservative Force

The work done by a conservative force is independent of the path; in other words, the work done by a
conservative force is the same for any path connecting two points:

WAB,path-l = / Feons - dF = WAB,path-2 = / Feons - dF.

8.8
AB,path-1 AB,path-2
The work done by a non-conservative force depends on the path taken.
Equivalently, a force is conservative if the work it does around any closed path is zero:
-
Welosed path = Feons - d¥ = 0. 8.9

[In Equation 8.9, we use the notation of a circle in the middle of the integral sign for a line integral over a closed
path, a notation found in most physics and engineering texts.] Equation 8.8 and Equation 8.9 are equivalent
because any closed path is the sum of two paths: the first going from A to B, and the second going from Bto A.
The work done going along a path from B to A is the negative of the work done going along the same path from
Ato B, where A and B are any two points on the closed path:




0= /Fcons ' d? = / ifcons -d¥ + / i‘:‘Icons - dr

AB,path-1 BA,path-2
= / Feons - dF — / Feons - df = 0.
AB,path-1 AB,path-2

You might ask how we go about proving whether or not a force is conservative, since the definitions involve any
and all paths from A to B, or any and all closed paths, but to do the integral for the work, you have to choose a
particular path. One answer is that the work done is independent of path if the infinitesimal work F-dfisan
exact differential, the way the infinitesimal net work was equal to the exact differential of the kinetic energy,
dWhet = my - dV = dymv?,

when we derived the work-energy theorem in Work-Energy Theorem. There are mathematical conditions that
you can use to test whether the infinitesimal work done by a force is an exact differential, and the force is
conservative. These conditions only involve differentiation and are thus relatively easy to apply. In two
dimensions, the condition for F - df = Fydx + F,dyto be an exact differential is

dF, _ dF,

dy = 8.10

You may recall that the work done by the force in Example 7.4 depended on the path. For that force,
Fy = (5N/m) yand F, = (10 N/m) x.
Therefore,

(dFx/dy) = 5N/m # (dFy/dx) = 10 N/m,

which indicates it is a non-conservative force. Can you see what you could change to make it a conservative
force?

Figure 8.6 A grinding wheel applies a non-conservative force, because the work done depends on how many rotations the wheel makes,

so it is path-dependent. (credit: modification of work by Grantez Stephens, U.S. Navy)

@ EXAMPLE 8.5

Conservative or Not?

Which of the following two-dimensional forces are conservative and which are not? Assume a and b are
constants with appropriate units:

3% 3% b} 3 N ax§+ayf]'\
b / 2yIn(x/b ——5
(@) axy’i+ ayx J,()a[(y x)l+ y1In(x )J],(C) ey



Strategy

Apply the condition stated in Equation 8.10, namely, using the derivatives of the components of each force
indicated. If the derivative of the y-component of the force with respect to x is equal to the derivative of the
x-component of the force with respect to y, the force is a conservative force, which means the path taken for
potential energy or work calculations always yields the same results.

Solution
d(axy3> dF d(ayx3>
a. dhx A 3axy2 and % = ——~ = 3ayx2, so this force is non-conservative.
dy dy dx dx
d(ayzlx) dF:
b. ddﬂ =/ _2a and =¥ = dQayIn(x/b)) _ ﬂ, so this force is conservative.
y dy x dx dx x
2,.2 2,.2
dFx d(”x/<x i )) ax(2y) dFy d<ay/<x Y )) : :
c. =X = = - = —— = —————=% again conservative.
dy dy 2.,.2\2 dx dx
(x +y )
Significance

The conditions in Equation 8.10 are derivatives as functions of a single variable; in three dimensions, similar
conditions exist that involve more derivatives.

CHECK YOUR UNDERSTANDING 8.5

A two-dimensional, conservative force is zero on the x- and y-axes, and satisfies the condition
(dFyldy) = (dFy/dx) = (4 N/m3) xy. What is the magnitude of the force at the point x = y = 1 m?

Before leaving this section, we note that non-conservative forces do not have potential energy associated with
them because the energy is lost to the system and can’t be turned into useful work later. So there is always a
conservative force associated with every potential energy. We have seen that potential energy is defined in
relation to the work done by conservative forces. That relation, Equation 8.1, involved an integral for the work;
starting with the force and displacement, you integrated to get the work and the change in potential energy.
However, integration is the inverse operation of differentiation; you could equally well have started with the
potential energy and taken its derivative, with respect to displacement, to get the force. The infinitesimal
increment of potential energy is the dot product of the force and the infinitesimal displacement,

dU = —F - dl = —Fydl.

Here, we chose to represent the displacement in an arbitrary direction by df, so as not to be restricted to any
particular coordinate direction. We also expressed the dot product in terms of the magnitude of the
infinitesimal displacement and the component of the force in its direction. Both these quantities are scalars, so
you can divide by dI to get

F = du 8.11
| = —7. b
This equation gives the relation between force and the potential energy associated with it. In words, the
component of a conservative force, in a particular direction, equals the negative of the derivative of the
corresponding potential energy, with respect to a displacement in that direction. For one-dimensional motion,
say along the x-axis, Equation 8.11 give the entire vector force, F = in = —%—Ui.

X

— 2 ~ aU 2 aU I~
F=Fxl+FyJ =—<g>l— <0_y>J

From this equation, you can see why Equation 8.11 is the condition for the work to be an exact differential, in

In two dimensions,



terms of the derivatives of the components of the force. In general, a partial derivative notation is used. If a
function has many variables in it, the derivative is taken only of the variable the partial derivative specifies.
The other variables are held constant. In three dimensions, you add another term for the z-component, and the
result is that the force is the negative of the gradient of the potential energy. However, we won’t be looking at
three-dimensional examples just yet.

@ EXAMPLE 8.6

Force due to a Quartic Potential Energy
The potential energy for a particle undergoing one-dimensional motion along the x-axis is

1
U(x) = Zcx“,

where ¢ = 8 N/m°. Its total energy at x = 0is 2 J, and it is not subject to any non-conservative forces. Find (a)
the positions where its kinetic energy is zero and (b) the forces at those positions.

Strategy

(a) We can find the positions where K = 0, so the potential energy equals the total energy of the given system.
(b) Using Equation 8.11, we can find the force evaluated at the positions found from the previous part, since
the mechanical energy is conserved.

Solution
a. The total energy of the system of 2 J equals the quartic elastic energy as given in the problem,

1
20 =7 (8N’ ) x*.

Solving for xy results in xf = +1 m.
b. From Equation 8.11,
Fy = —dUldx = —cx>.

Thus, evaluating the force at +1 m, we get

N o o

F = (8 N/m%)(+1 m)*i = +8 Ni.
At both positions, the magnitude of the forces is 8 N and the directions are toward the origin, since this is
the potential energy for a restoring force.

Significance
Finding the force from the potential energy is mathematically easier than finding the potential energy from the
force, because differentiating a function is generally easier than integrating one.

CHECK YOUR UNDERSTANDING 8.6

Find the forces on the particle in Example 8.6 when its kinetic energy is 1.0 Jat x = 0.

8.3 Conservation of Energy

Learning Objectives
By the end of this section, you will be able to:
e Formulate the principle of conservation of mechanical energy, with or without the presence of non-
conservative forces
e Use the conservation of mechanical energy to calculate various properties of simple systems

In this section, we elaborate and extend the result we derived in Potential Energy of a System, where we re-
wrote the work-energy theorem in terms of the change in the kinetic and potential energies of a particle. This
will lead us to a discussion of the important principle of the conservation of mechanical energy. As you




continue to examine other topics in physics, in later chapters of this book, you will see how this conservation
law is generalized to encompass other types of energy and energy transfers. The last section of this chapter
provides a preview.

The terms ‘conserved quantity’ and ‘conservation law’ have specific, scientific meanings in physics, which are
different from the everyday meanings associated with the use of these words. (The same comment is also true
about the scientific and everyday uses of the word ‘work.”) In everyday usage, you could conserve water by not
using it, or by using less of it, or by re-using it. Water is composed of molecules consisting of two atoms of
hydrogen and one of oxygen. Bring these atoms together to form a molecule and you create water; dissociate
the atoms in such a molecule and you destroy water. However, in scientific usage, a conserved quantity for a
system stays constant, changes by a definite amount that is transferred to other systems, and/or is converted
into other forms of that quantity. A conserved quantity, in the scientific sense, can be transformed, but not
strictly created or destroyed. Thus, there is no physical law of conservation of water.

Systems with a Single Particle or Object

We first consider a system with a single particle or object. Returning to our development of Equation 8.2, recall
that we first separated all the forces acting on a particle into conservative and non-conservative types, and
wrote the work done by each type of force as a separate term in the work-energy theorem. We then replaced
the work done by the conservative forces by the change in the potential energy of the particle, combining it
with the change in the particle’s kinetic energy to get Equation 8.2. Now, we write this equation without the
middle step and define the sum of the kinetic and potential energies, K + U = FE; to be the mechanical
energy of the particle.

Conservation of Energy

The mechanical energy E of a particle stays constant unless forces outside the system or non-conservative
forces do work on it, in which case, the change in the mechanical energy is equal to the work done by the
non-conservative forces:

Wac,ap = A(K+U)p = AE4B. 8.12

This statement expresses the concept of energy conservation for a classical particle as long as there is no
non-conservative work. Recall that a classical particle is just a point mass, is nonrelativistic, and obeys
Newton’s laws of motion. In Relativity, we will see that conservation of energy still applies to a non-classical
particle, but for that to happen, we have to make a slight adjustment to the definition of energy.

It is sometimes convenient to separate the case where the work done by non-conservative forces is zero, either
because no such forces are assumed present, or, like the normal force, they do zero work when the motion is
parallel to the surface. Then

0=Wicap =AK+U)p =AEyp. 8.13
In this case, the conservation of mechanical energy can be expressed as follows: The mechanical energy of a

particle does not change if all the non-conservative forces that may act on it do no work. Understanding the
concept of energy conservation is the important thing, not the particular equation you use to express it.

@ PROBLEM-SOLVING STRATEGY

Conservation of Energy

1. Identify the body or bodies to be studied (the system). Often, in applications of the principle of mechanical
energy conservation, we study more than one body at the same time.

2. Identify all forces acting on the body or bodies.

3. Determine whether each force that does work is conservative. If a non-conservative force (e.g., friction) is


mathified-book/col12031/af275420-6050-4707-995c-57b9cc13c358:f8a0085a-0147-4fba-b6fa-d2b74a020c0e.xhtml

doing work, then mechanical energy is not conserved. The system must then be analyzed with non-
conservative work, Equation 8.13.
4. For every force that does work, choose a reference point and determine the potential energy function for
the force. The reference points for the various potential energies do not have to be at the same location.
5. Apply the principle of mechanical energy conservation by setting the sum of the kinetic energies and
potential energies equal at every point of interest.

@ EXAMPLE 8.7

Simple Pendulum

A particle of mass m is hung from the ceiling by a massless string of length 1.0 m, as shown in Figure 8.7. The
particle is released from rest, when the angle between the string and the downward vertical direction is 30°.
What is its speed when it reaches the lowest point of its arc?

Figure 8.7 A particle hung from a string constitutes a simple pendulum. It is shown when released from rest, along with some distances

used in analyzing the motion.

Strategy

Using our problem-solving strategy, the first step is to define that we are interested in the particle-Earth
system. Second, only the gravitational force is acting on the particle, which is conservative (step 3). We neglect
air resistance in the problem, and no work is done by the string tension, which is perpendicular to the arc of
the motion. Therefore, the mechanical energy of the system is conserved, as represented by Equation 8.13,

0 = A(K + U). Because the particle starts from rest, the increase in the kinetic energy is just the kinetic
energy at the lowest point. This increase in kinetic energy equals the decrease in the gravitational potential
energy, which we can calculate from the geometry. In step 4, we choose a reference point for zero gravitational
potential energy to be at the lowest vertical point the particle achieves, which is mid-swing. Lastly, in step 5, we
set the sum of energies at the highest point (initial) of the swing to the lowest point (final) of the swing to
ultimately solve for the final speed.

Solution
We are neglecting non-conservative forces, so we write the energy conservation formula relating the particle at
the highest point (initial) and the lowest point in the swing (final) as

K; +U; = Ky + Us.
Since the particle is released from rest, the initial kinetic energy is zero. At the lowest point, we define the
gravitational potential energy to be zero. Therefore our conservation of energy formula reduces to

0+mgh = %mv2+0

v = +/2gh.

The vertical height of the particle is not given directly in the problem. This can be solved for by using



trigonometry and two givens: the length of the pendulum and the angle through which the particle is vertically
pulled up. Looking at the diagram, the vertical dashed line is the length of the pendulum string. The vertical
height is labeled h. The other partial length of the vertical string can be calculated with trigonometry. That
piece is solved for by

cos@ = x/L,x = Lcos®6.
Therefore, by looking at the two parts of the string, we can solve for the height h,
x+h = L
Lcos@+h L
h = L—Lcos8=L(l-cosb).

We substitute this height into the previous expression solved for speed to calculate our result:

v=+/2gL (1 —cos ) = \/2 (9.8m/s?) (1 m) (1 — cos 30°) = 1.62 m/s.

Significance

We found the speed directly from the conservation of mechanical energy, without having to solve the
differential equation for the motion of a pendulum (see Oscillations). We can approach this problem in terms
of bar graphs of total energy. Initially, the particle has all potential energy, being at the highest point, and no
kinetic energy. When the particle crosses the lowest point at the bottom of the swing, the energy moves from
the potential energy column to the kinetic energy column. Therefore, we can imagine a progression of this
transfer as the particle moves between its highest point, lowest point of the swing, and back to the highest
point (Figure 8.8). As the particle travels from the lowest point in the swing to the highest point on the far right
hand side of the diagram, the energy bars go in reverse order from (c) to (b) to (a).

L L |

Energy (J)
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Figure 8.8 Bar graphs representing the total energy (E), potential energy (U), and kinetic energy (K) of the particle in different positions.
(@) The total energy of the system equals the potential energy and the kinetic energy is zero, which is found at the highest point the particle
reaches. (b) The particle is midway between the highest and lowest point, so the kinetic energy plus potential energy bar graphs equal the

total energy. (c) The particle is at the lowest point of the swing, so the kinetic energy bar graph is the highest and equal to the total energy

of the system.

) CHECK YOUR UNDERSTANDING 8.7

How high above the bottom of its arc is the particle in the simple pendulum above, when its speed is 0.81 m/s?

@ EXAMPLE 8.8

Air Resistance on a Falling Object

A helicopter is hovering at an altitude of 1 km when a panel from its underside breaks loose and plummets to
the ground (Figure 8.9). The mass of the panel is 15 kg, and it hits the ground with a speed of 45 m/s. How




much mechanical energy was dissipated by air resistance during the panel’s descent?

'
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Figure 8.9 A helicopter loses a panel that falls until it reaches terminal velocity of 45 m/s. How much did air resistance contribute to the

dissipation of energy in this problem?

Strategy
Step 1: Here only one body is being investigated.

Step 2: Gravitational force is acting on the panel, as well as air resistance, which is stated in the problem.

Step 3: Gravitational force is conservative; however, the non-conservative force of air resistance does negative
work on the falling panel, so we can use the conservation of mechanical energy, in the form expressed by
Equation 8.12, to find the energy dissipated. This energy is the magnitude of the work:

AEgiss = [Wheit| = |AK + Uyl .

Step 4: The initial kinetic energy, at y; = 1 km, is zero. We set the gravitational potential energy to zero at
ground level out of convenience.

Step 5: The non-conservative work is set equal to the energies to solve for the work dissipated by air resistance.

Solution
The mechanical energy dissipated by air resistance is the algebraic sum of the gain in the kinetic energy and
loss in potential energy. Therefore the calculation of this energy is
AEgiss = |Kr — K; + Ur = Uj|
= |3 (15kg) (45 m/s)* — 0 + 0 — (15 kg) (9.8 m/s? ) (1000 m)| = 130 kI.

Significance
Most of the initial mechanical energy of the panel (U;), 147 kJ, was lost to air resistance. Notice that we were

able to calculate the energy dissipated without knowing what the force of air resistance was, only that it was
dissipative.

) CHECK YOUR UNDERSTANDING 8.8



You probably recall that, neglecting air resistance, if you throw a projectile straight up, the time it takes to
reach its maximum height equals the time it takes to fall from the maximum height back to the starting height.
Suppose you cannot neglect air resistance, as in Example 8.8. Is the time the projectile takes to go up (a)
greater than, (b) less than, or (c) equal to the time it takes to come back down? Explain.

In these examples, we were able to use conservation of energy to calculate the speed of a particle just at
particular points in its motion. But the method of analyzing particle motion, starting from energy
conservation, is more powerful than that. More advanced treatments of the theory of mechanics allow you to
calculate the full time dependence of a particle’s motion, for a given potential energy. In fact, it is often the case
that a better model for particle motion is provided by the form of its kinetic and potential energies, rather than
an equation for force acting on it. (This is especially true for the quantum mechanical description of particles
like electrons or atoms.)

We can illustrate some of the simplest features of this energy-based approach by considering a particle in one-
dimensional motion, with potential energy U(x) and no non-conservative interactions present. Equation 8.12
and the definition of velocity require

K = Im?=E-U(®)

p = dx _  [AE-UQ)
dt m ’

Separate the variables x and tand integrate, from an initial time # = 0 to an arbitrary time, to get

8.14

t b
t=/dt=/ dx :
V2[E-U(x)]/m
0 X0

If you can do the integral in Equation 8.14, then you can solve for x as a function of t.

@ EXAMPLE 8.9

Constant Acceleration

Use the potential energy U (x) = —E (x/xg), for E > 0, in Equation 8.14 to find the position x of a particle as a
function of time t.

Strategy

Since we know how the potential energy changes as a function of x, we can substitute for U (x) in Equation
8.14, integrate, and then solve for x. This results in an expression of x as a function of time with constants of
energy E, mass m, and the initial position xg.

Solution

Following the first two suggested steps in the above strategy,

1

. /x dx B 24/(xp — x)
\/(2E/mx0) (xg — x) \/(ZE/mxo)
X0

VQEImxg)

2yG =, = -

Solving for the position, we obtain x () = xg — %(E/mxo) 2.

Significance

The position as a function of time, for this potential, represents one-dimensional motion with constant
acceleration, a = (E/mx) , starting at rest from position xg. This is not so surprising, since this is a potential
energy for a constant force, F = —dU/dx = E/xg,and a = F/m.

CHECK YOUR UNDERSTANDING 8.9



What potential energy U (x) can you substitute in Equation 8.13 that will result in motion with constant
velocity of 2 m/s for a particle of mass 1 kg and mechanical energy 1 J?

We will look at another more physically appropriate example of the use of Equation 8.13 after we have explored
some further implications that can be drawn from the functional form of a particle’s potential energy.

Systems with Several Particles or Objects

Systems generally consist of more than one particle or object. However, the conservation of mechanical
energy, in one of the forms in Equation 8.12 or Equation 8.13, is a fundamental law of physics and applies to
any system. You just have to include the kinetic and potential energies of all the particles, and the work done
by all the non-conservative forces acting on them. Until you learn more about the dynamics of systems
composed of many particles, in Linear Momentum and Collisions, Fixed-Axis Rotation, and Angular
Momentum, it is better to postpone discussing the application of energy conservation to then.

8.4 Potential Energy Diagrams and Stability

Learning Objectives
By the end of this section, you will be able to:
e Create and interpret graphs of potential energy
e Explain the connection between stability and potential energy

Often, you can get a good deal of useful information about the dynamical behavior of a mechanical system just
by interpreting a graph of its potential energy as a function of position, called a potential energy diagram.
This is most easily accomplished for a one-dimensional system, whose potential energy can be plotted in one
two-dimensional graph—for example, U(x) versus x—on a piece of paper or a computer program. For systems
whose motion is in more than one dimension, the motion needs to be studied in three-dimensional space. We
will simplify our procedure for one-dimensional motion only.

First, let’s look at an object, freely falling vertically, near the surface of Earth, in the absence of air resistance.
The mechanical energy of the object is conserved, E = K + U, and the potential energy, with respect to zero at
ground level, is U (y) = mgy, which is a straight line through the origin with slope mg. In the graph shown in
Figure 8.10, the x-axis is the height above the ground y and the y-axis is the object’s energy.
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Figure 8.10 The potential energy graph for an object in vertical free fall, with various quantities indicated.

The line at energy E represents the constant mechanical energy of the object, whereas the kinetic and
potential energies, K4 and U4, are indicated at a particular height y 4. You can see how the total energy is
divided between kinetic and potential energy as the object’s height changes. Since kinetic energy can never be
negative, there is a maximum potential energy and a maximum height, which an object with the given total
energy cannot exceed:

K=E-U2>0,
UXLE



If we use the gravitational potential energy reference point of zero at yg, we can rewrite the gravitational
potential energy U as mgy. Solving for y results in

¥y < E/mg = ymax.

We note in this expression that the quantity of the total energy divided by the weight (mg) is located at the
maximum height of the particle, or ymax . At the maximum height, the kinetic energy and the speed are zero, so
if the object were initially traveling upward, its velocity would go through zero there, and ypnax would be a
turning point in the motion. At ground level, yy = 0, the potential energy is zero, and the kinetic energy and
the speed are maximum:

E = K() = %mvoz,

vop = *=\2E/m.

The maximum speed +v( gives the initial velocity necessary to reach ymax, the maximum height, and —vy
represents the final velocity, after falling from ymax . You can read all this information, and more, from the
potential energy diagram we have shown.

Consider a mass-spring system on a frictionless, stationary, horizontal surface, so that gravity and the normal
contact force do no work and can be ignored (Figure 8.11). This is like a one-dimensional system, whose
mechanical energy Eis a constant and whose potential energy, with respect to zero energy at zero
displacement from the spring’s unstretched length, x = 0, is U (x) = Lpx2,
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Figure 8.11 (a) A glider between springs on an air track is an example of a horizontal mass-spring system. (b) The potential energy

diagram for this system, with various quantities indicated.

You can read off the same type of information from the potential energy diagram in this case, as in the case for
the body in vertical free fall, but since the spring potential energy describes a variable force, you can learn
more from this graph. As for the object in vertical free fall, you can deduce the physically allowable range of
motion and the maximum values of distance and speed, from the limits on the kinetic energy,0 < K < E.
Therefore, K = 0 and U = E at a turning point, of which there are two for the elastic spring potential energy,

Xmax = +4/2E/k.

The glider’s motion is confined to the region between the turning points, —xmax < X < Xmax. This is true for
any (positive) value of E because the potential energy is unbounded with respect to x. For this reason, as well
as the shape of the potential energy curve, U(x) is called an infinite potential well. At the bottom of the potential

well, x = 0, U = 0 and the kinetic energy is a maximum, K = E, so vpax = +\/2E/m.

However, from the slope of this potential energy curve, you can also deduce information about the force on the
glider and its acceleration. We saw earlier that the negative of the slope of the potential energy is the spring
force, which in this case is also the net force, and thus is proportional to the acceleration. When x = 0, the



slope, the force, and the acceleration are all zero, so this is an equilibrium poeint. The negative of the slope, on
either side of the equilibrium point, gives a force pointing back to the equilibrium point, F = +kx, so the
equilibrium is termed stable and the force is called a restoring force. This implies that U(x) has a relative
minimum there. If the force on either side of an equilibrium point has a direction opposite from that direction
of position change, the equilibrium is termed unstable, and this implies that U(x) has a relative maximum
there.

@ EXAMPLE 8.10

Quartic and Quadratic Potential Energy Diagram
The potential energy for a particle undergoing one-dimensional motion along the x-axis is
Uk = 2(x4 — xz), where Uis in joules and x is in meters. The particle is not subject to any non-conservative

forces and its mechanical energy is constant at E = —0.25 J. (a) Is the motion of the particle confined to any
regions on the x-axis, and if so, what are they? (b) Are there any equilibrium points, and if so, where are they
and are they stable or unstable?

Strategy

First, we need to graph the potential energy as a function of x. The function is zero at the origin, becomes
negative as x increases in the positive or negative directions (x2 is larger than x4 forx < 1), and then becomes
positive at sufficiently large |x|. Your graph should look like a double potential well, with the zeros determined
by solving the equation U (x) = 0, and the extremes determined by examining the first and second derivatives
of U(x), as shown in Figure 8.12.
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Figure 8.12 The potential energy graph for a one-dimensional, quartic and quadratic potential energy, with various quantities indicated.

You can find the values of (a) the allowed regions along the x-axis, for the given value of the mechanical energy,
from the condition that the kinetic energy can’t be negative, and (b) the equilibrium points and their stability
from the properties of the force (stable for a relative minimum and unstable for a relative maximum of
potential energy).

You can just eyeball the graph to reach qualitative answers to the questions in this example. That, after all, is
the value of potential energy diagrams. You can see that there are two allowed regions for the motion (E > U)
and three equilibrium points (slope dU/dx = 0), of which the central one is unstable (d2 Uldx? < O) ,and the



other two are stable (d2 Uldx?* > 0) .

Solution

a. To find the allowed regions for x, we use the condition
1 4 2
K=E-U=—-——-2 - > 0.
4 (x X ) =

If we complete the square in x2, this condition simplifies to Z(x2 — %) < 1 which we can solve to obtain

_4’
1 [ 1, 1
2 g =% =7 g

This represents two allowed regions, x, < x < xg and —xg < x < —xp, where x, = 0.38 and xg = 0.92
(in meters).
b. To find the equilibrium points, we solve the equation
dUldx = 8x> —4x =0

and find x = 0 and x = +xg, where xp = 1/\/5 = 0.707 (meters). The second derivative
dPUldx* =24x% — 4

is negative at x = 0, so that position is a relative maximum and the equilibrium there is unstable. The
second derivative is positive at x = £x¢, so these positions are relative minima and represent stable
equilibria.

Significance

The particle in this example can oscillate in the allowed region about either of the two stable equilibrium
points we found, but it does not have enough energy to escape from whichever potential well it happens to
initially be in. The conservation of mechanical energy and the relations between kinetic energy and speed, and
potential energy and force, enable you to deduce much information about the qualitative behavior of the
motion of a particle, as well as some quantitative information, from a graph of its potential energy.

CHECK YOUR UNDERSTANDING 8.10
Repeat Example 8.10 when the particle’s mechanical energy is +0.25 J.

Before ending this section, let’s practice applying the method based on the potential energy of a particle to find
its position as a function of time, for the one-dimensional, mass-spring system considered earlier in this
section.

@ EXAMPLE 8.11

Sinusoidal Oscillations
Find x(?) for a particle moving with a constant mechanical energy E > 0 and a potential energy U (x) = %kxz,

when the particle starts from rest at time ¢ = 0.

Strategy

We follow the same steps as we did in Example 8.9. Substitute the potential energy Uinto Equation 8.14 and
factor out the constants, like m or k. Integrate the function and solve the resulting expression for position,
which is now a function of time.

Solution

Substitute the potential energy in Equation 8.14 and integrate using an integral solver found on a web search:



/x dx ml| . 4 x . X0
1= =4/ |[sin ——— | —sin —
JJwmlaEn -]V V2Elk V2Ek

From the initial conditions at ¢ = 0, the initial kinetic energy is zero and the initial potential energy is
%kxo2 = E, from which you can see that xo/4/(2E/k) = +1 and sin™! ()= +90°. Now you can solve for x:

x (1) = \/QETK) sin [ (/kim) t £ 90°| = +£/(ZETk) cos [ (y/kim) 1] .

Significance
A few paragraphs earlier, we referred to this mass-spring system as an example of a harmonic oscillator. Here,
we anticipate that a harmonic oscillator executes sinusoidal oscillations with a maximum displacement of

v/(2E/k) (called the amplitude) and a rate of oscillation of (1/27) v/ k/m (called the frequency). Further
discussions about oscillations can be found in Oscillations.

CHECK YOUR UNDERSTANDING 8.11

Find x (¢) for the mass-spring system in Example 8.11 if the particle starts from xy = 0 at ¢t = 0. What is the
particle’s initial velocity?

8.5 Sources of Energy

Learning Objectives
By the end of this section, you will be able to:
e Describe energy transformations and conversions in general terms
e Explain what it means for an energy source to be renewable or nonrenewable

In this chapter, we have studied energy. We learned that energy can take different forms and can be
transferred from one form to another. You will find that energy is discussed in many everyday, as well as
scientific, contexts, because it is involved in all physical processes. It will also become apparent that many
situations are best understood, or most easily conceptualized, by considering energy. So far, no experimental
results have contradicted the conservation of energy. In fact, whenever measurements have appeared to
conflict with energy conservation, new forms of energy have been discovered or recognized in accordance with
this principle.

What are some other forms of energy? Many of these are covered in later chapters (also see Figure 8.13), but
let’s detail a few here:

- Atoms and molecules inside all objects are in random motion. The internal kinetic energy from these
random motions is called thermal energy, because it is related to the temperature of the object. Note that
thermal energy can also be transferred from one place to another, not transformed or converted, by the
familiar processes of conduction, convection, and radiation. In this case, the energy is known as heat
energy.

« Electrical energyis a common form that is converted to many other forms and does work in a wide range
of practical situations.

« Fuels, such as gasoline and food, have chemical energy, which is potential energy arising from their
molecular structure. Chemical energy can be converted into thermal energy by reactions like oxidation.
Chemical reactions can also produce electrical energy, such as in batteries. Electrical energy can, in turn,
produce thermal energy and light, such as in an electric heater or a light bulb.

« Light is just one kind of electromagnetic radiation, or radiant energy, which also includes radio, infrared,
ultraviolet, X-rays, and gamma rays. All bodies with thermal energy can radiate energy in electromagnetic
waves.

« Nuclear energy comes from reactions and processes that convert measurable amounts of mass into
energy. Nuclear energy is transformed into radiant energy in the Sun, into thermal energy in the boilers of
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nuclear power plants, and then into electrical energy in the generators of power plants. These and all other
forms of energy can be transformed into one another and, to a certain degree, can be converted into
mechanical work.

Thermal energy. Winds arise from
movement of air as the atmosphere Iries
to equalize global temperatures (Ch. 18),

Chemical energy: Burming is the MNuclear energy: Muclear fusion produces  Radiant energy: Many materiais
oxidation of carbon compounds, as  energy in the Sun, which is the ultimate ahsorb energy from radiation as
in an engine (Ch. 21}, source of all energy on Earth (Ch. 43). heat or electricity (Chs. 18, 33, 39).

Electrical energy: Mechanical energy

produces electricity by moving a conductor

through a magnetic field {Ch. 29),
Figure 8.13 Energy that we use in society takes many forms, which be converted from one into another depending on the process
involved. We will study many of these forms of energy in later chapters in this text. (credit “sun”: modification of work by EIT - SOHO
Consortium, ESA, NASA credit “solar panels”: “modification of work by “kjkolb”/Wikimedia Commons; credit “gas burner”: modification of

work by Steven Depolo)

The transformation of energy from one form into another happens all the time. The chemical energy in food is
converted into thermal energy through metabolism; light energy is converted into chemical energy through
photosynthesis. Another example of energy conversion occurs in a solar cell. Sunlight impinging on a solar cell
produces electricity, which can be used to run electric motors or heat water. In an example encompassing
many steps, the chemical energy contained in coal is converted into thermal energy as it burns in a furnace, to
transform water into steam, in a boiler. Some of the thermal energy in the steam is then converted into
mechanical energy as it expands and spins a turbine, which is connected to a generator to produce electrical
energy. In these examples, not all of the initial energy is converted into the forms mentioned, because some
energy is always transferred to the environment.

Energy is an important element at all levels of society. We live in a very interdependent world, and access to
adequate and reliable energy resources is crucial for economic growth and for maintaining the quality of our
lives. The principal energy resources used in the world are shown in Figure 8.14. The figure distinguishes
between two major types of energy sources: renewable and non-renewable, and further divides each type
into a few more specific kinds. Renewable sources are energy sources that are replenished through naturally
occurring, ongoing processes, on a time scale that is much shorter than the anticipated lifetime of the
civilization using the source. Non-renewable sources are depleted once some of the energy they contain is
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extracted and converted into other kinds of energy. The natural processes by which non-renewable sources
are formed typically take place over geological time scales.

Total World Energy Renewables
Consumption by Source y Biomass heat 11.44%
(2010) y: B Solar hotwater 0.17%
ey B Geothermal heat 0.12%
e - B Hydropower 3.34%
/'J. " Ethanol 0.50%
* 1 M Biodiesel 0.17%
Biomass electricity  0.28%
= Wind power 0.51%
- B Geothermal electricity 0.07%
- T Solar PV power 0.06%
W Solar CSP 0.002%
B Dcean power 0.001%

Total

B Fossil fuels  B80.6%
¥ Renewables 16.7%
B Muclear 2.7%

Figure 8.14 World energy consumption by source; the percentage of renewables is increasing, accounting for 19% in 2012.

Our most important non-renewable energy sources are fossil fuels, such as coal, petroleum, and natural gas.
These account for about 81% of the world’s energy consumption, as shown in the figure. Burning fossil fuels
creates chemical reactions that transform potential energy, in the molecular structures of the reactants, into
thermal energy and products. This thermal energy can be used to heat buildings or to operate steam-driven
machinery. Internal combustion and jet engines convert some of the energy of rapidly expanding gases,
released from burning gasoline, into mechanical work. Electrical power generation is mostly derived from
transferring energy in expanding steam, via turbines, into mechanical work, which rotates coils of wire in
magnetic fields to generate electricity. Nuclear energy is the other non-renewable source shown in Figure 8.14
and supplies about 3% of the world’s consumption. Nuclear reactions release energy by transforming potential
energy, in the structure of nuclei, into thermal energy, analogous to energy release in chemical reactions. The
thermal energy obtained from nuclear reactions can be transferred and converted into other forms in the
same ways that energy from fossil fuels are used.

An unfortunate byproduct of relying on energy produced from the combustion of fossil fuels is the release of
carbon dioxide into the atmosphere and its contribution to global warming. Nuclear energy poses
environmental problems as well, including the safety and disposal of nuclear waste. Besides these important
consequences, reserves of non-renewable sources of energy are limited and, given the rapidly growing rate of
world energy consumption, may not last for more than a few hundred years. Considerable effort is going on to
develop and expand the use of renewable sources of energy, involving a significant percentage of the world’s
physicists and engineers.

Four of the renewable energy sources listed in Figure 8.14—those using material from plants as fuel (biomass
heat, ethanol, biodiesel, and biomass electricity)—involve the same types of energy transformations and
conversions as just discussed for fossil and nuclear fuels. The other major types of renewable energy sources
are hydropower, wind power, geothermal power, and solar power.

Hydropower is produced by converting the gravitational potential energy of falling or flowing water into kinetic
energy and then into work to run electric generators or machinery. Converting the mechanical energy in ocean
surface waves and tides is in development. Wind power also converts kinetic energy into work, which can be
used directly to generate electricity, operate mills, and propel sailboats.

The interior of Earth has a great deal of thermal energy, part of which is left over from its original formation
(gravitational potential energy converted into thermal energy) and part of which is released from radioactive
minerals (a form of natural nuclear energy). It will take a very long time for this geothermal energy to escape
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into space, so people generally regard it as a renewable source, when actually, it’s just inexhaustible on human
time scales.

The source of solar power is energy carried by the electromagnetic waves radiated by the Sun. Most of this
energy is carried by visible light and infrared (heat) radiation. When suitable materials absorb electromagnetic
waves, radiant energy is converted into thermal energy, which can be used to heat water, or when
concentrated, to make steam and generate electricity (Figure 8.15). However, in another important physical
process, known as the photoelectric effect, energetic radiation impinging on certain materials is directly
converted into electricity. Materials that do this are called photovoltaics (PV in Figure 8.14). Some solar power
systems use lenses or mirrors to concentrate the Sun’s rays, before converting their energy through
photovoltaics, and these are qualified as CSP in Figure 8.14.

Figure 8.15 Solar cell arrays found in a sunny area converting the solar energy into stored electrical energy. (credit: modification of work
by Sarah Swenty, U.S. Fish and Wildlife Service)

As we finish this chapter on energy and work, it is relevant to draw some distinctions between two sometimes
misunderstood terms in the area of energy use. As we mentioned earlier, the “law of conservation of energy” is
a very useful principle in analyzing physical processes. It cannot be proven from basic principles but is a very
good bookkeeping device, and no exceptions have ever been found. It states that the total amount of energy in
an isolated system always remains constant. Related to this principle, but remarkably different from it, is the
important philosophy of energy conservation. This concept has to do with seeking to decrease the amount of
energy used by an individual or group through reducing activities (e.g., turning down thermostats, diving fewer
kilometers) and/or increasing conversion efficiencies in the performance of a particular task, such as
developing and using more efficient room heaters, cars that have greater miles-per-gallon ratings, energy-
efficient compact fluorescent lights, etc.

Since energy in an isolated system is not destroyed, created, or generated, you might wonder why we need to
be concerned about our energy resources, since energy is a conserved quantity. The problem is that the final
result of most energy transformations is waste heat, that is, work that has been “degraded” in the energy
transformation. We will discuss this idea in more detail in the chapters on thermodynamics.
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CHAPTER REVIEW
Key Terms

conservative force force that does work
independent of path

conserved quantity one that cannot be created or
destroyed, but may be transformed between
different forms of itself

energy conservation total energy of an isolated
system is constant

equilibrium point position where the assumed
conservative, net force on a particle, given by the
slope of its potential energy curve, is zero

exact differential is the total differential of a
function and requires the use of partial
derivatives if the function involves more than one
dimension

mechanical energy sum of the kinetic and
potential energies

non-conservative force force that does work that

Key Equations
Difference of potential energy

Potential energy with respect to zero of
potential energy at ?0

Gravitational potential energy near Earth’s surface

Potential energy for an ideal spring

Work done by conservative force over a closed path

Condition for conservative force in two dimensions

Conservative force is the negative derivative of potential energy

Conservation of energy with no
non-conservative forces

Summary

8.1 Potential Energy of a System

« For a single-particle system, the difference of
potential energy is the opposite of the work
done by the forces acting on the particle as it
moves from one position to another.

« Since only differences of potential energy are

depends on path

non-renewable energy source that is not
renewable, but is depleted by human
consumption

potential energy function of position, energy
possessed by an object relative to the system
considered

potential energy diagram graph of a particle’s
potential energy as a function of position

potential energy difference negative of the work
done acting between two points in space

renewable energy source that is replenished by
natural processes, over human time scales

turning point position where the velocity of a
particle, in one-dimensional motion, changes
sign

AUpp =Up—Upr =-Wyp
AU =U (¥) - U (%)

U (y) = mgy + const.

U= %kx2 + const.

N
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physically meaningful, the zero of the potential
energy function can be chosen at a convenient
location.

» The potential energies for Earth’s constant
gravity, near its surface, and for a Hooke’s law
force are linear and quadratic functions of
position, respectively.




8.2 Conservative and Non-Conservative

Forces

A conservative force is one for which the work
done is independent of path. Equivalently, a
force is conservative if the work done over any
closed path is zero.

A non-conservative force is one for which the
work done depends on the path.

For a conservative force, the infinitesimal work
is an exact differential. This implies conditions
on the derivatives of the force’s components.
The component of a conservative force, in a
particular direction, equals the negative of the
derivative of the potential energy for that force,
with respect to a displacement in that direction.

8.3 Conservation of Energy

A conserved quantity is a physical property that
stays constant regardless of the path taken.

A form of the work-energy theorem says that the
change in the mechanical energy of a particle
equals the work done on it by non-conservative
forces.

If non-conservative forces do no work and there
are no external forces, the mechanical energy of
a particle stays constant. This is a statement of
the conservation of mechanical energy and
there is no change in the total mechanical
energy.

For one-dimensional particle motion, in which
the mechanical energy is constant and the
potential energy is known, the particle’s
position, as a function of time, can be found by
evaluating an integral that is derived from the

Conceptual Questions

8.1 Potential Energy of a System

1.

The kinetic energy of a system must always be
positive or zero. Explain whether this is true for
the potential energy of a system.

. The force exerted by a diving board is

conservative, provided the internal friction is
negligible. Assuming friction is negligible,
describe changes in the potential energy of a
diving board as a swimmer drives from it,
starting just before the swimmer steps on the
board until just after his feet leave it.

. Describe the gravitational potential energy

transfers and transformations for a javelin,
starting from the point at which an athlete picks
up the javelin and ending when the javelin is

conservation of mechanical energy.

8.4 Potential Energy Diagrams and

Stability

Interpreting a one-dimensional potential energy
diagram allows you to obtain qualitative, and
some quantitative, information about the
motion of a particle.

At a turning point, the potential energy equals
the mechanical energy and the kinetic energy is
zero, indicating that the direction of the velocity
reverses there.

The negative of the slope of the potential energy
curve, for a particle, equals the one-dimensional
component of the conservative force on the
particle. At an equilibrium point, the slope is
zero and is a stable (unstable) equilibrium for a
potential energy minimum (maximum).

8.5 Sources of Energy

Energy can be transferred from one system to
another and transformed or converted from one
type into another. Some of the basic types of
energy are kinetic, potential, thermal, and
electromagnetic.

Renewable energy sources are those that are
replenished by ongoing natural processes, over
human time scales. Examples are wind, water,
geothermal, and solar power.

Non-renewable energy sources are those that
are depleted by consumption, over human time
scales. Examples are fossil fuel and nuclear
power.

stuck into the ground after being thrown.

. A couple of soccer balls of equal mass are kicked

off the ground at the same speed but at different
angles. Soccer ball A is kicked off at an angle
slightly above the horizontal, whereas ball B is
kicked slightly below the vertical. How do each of
the following compare for ball A and ball B? (a)
The initial kinetic energy and (b) the change in
gravitational potential energy from the ground to
the highest point? If the energy in part (a) differs
from part (b), explain why there is a difference
between the two energies.

What is the dominant factor that affects the
speed of an object that started from rest down a
frictionless incline if the only work done on the
object is from gravitational forces?



6.

Two people observe a leaf falling from a tree. One
person is standing on a ladder and the other is on
the ground. If each person were to compare the
energy of the leaf observed, would each person
find the following to be the same or different for
the leaf, from the point where it falls off the tree
to when it hits the ground: (a) the kinetic energy
of the leaf; (b) the change in gravitational
potential energy; (c) the final gravitational
potential energy?

8.2 Conservative and Non-Conservative

Forces

7.

8.

What is the physical meaning of a non-
conservative force?

A bottle rocket is shot straight up in the air with a
speed 30 m/s. If the air resistance is ignored, the
bottle would go up to a height of approximately
46 m. However, the rocket goes up to only 35 m
before returning to the ground. What happened?
Explain, giving only a qualitative response.

An external force acts on a particle during a trip
from one point to another and back to that same
point. This particle is only effected by
conservative forces. Does this particle’s kinetic
energy and potential energy change as a result of
this trip?

8.3 Conservation of Energy

10.

11.

When a body slides down an inclined plane,

does the work of friction depend on the body’s
initial speed? Answer the same question for a
body sliding down a curved surface.

Consider the following scenario. A car for which
friction is not negligible accelerates from rest down
a hill, running out of gasoline after a short distance
(see below). The driver lets the car coast farther
down the hill, then up and over a small crest. He
then coasts down that hill into a gas station, where
he brakes to a stop and fills the tank with gasoline.
Identify the forms of energy the car has, and how
they are changed and transferred in this series of
events.

Problems

8.1 Potential Energy of a System

19.

Using values from Table 8.1, how many DNA
molecules could be broken by the energy
carried by a single electron in the beam of an

12.

13.

14.

15.

16.

17.

18.

Coasis
down

hill Coasts up

over crest

Coasts down
Stops for
gasoline

5

—

A dropped ball bounces to one-half its original
height. Discuss the energy transformations that
take place.

“E = K + U constant is a special case of the
work-energy theorem.” Discuss this statement.

In a common physics demonstration, a bowling ball
is suspended from the ceiling by a rope.

The professor pulls the ball away from its
equilibrium position and holds it adjacent to his
nose, as shown below. He releases the ball so that it
swings directly away from him. Does he get struck
by the ball on its return swing? What is he trying to
show in this demonstration?

e Fo_o

A child jumps up and down on a bed, reaching a
higher height after each bounce. Explain how
the child can increase his maximum
gravitational potential energy with each bounce.
Can a non-conservative force increase the
mechanical energy of the system?

Neglecting air resistance, how much would I
have to raise the vertical height if I wanted to
double the impact speed of a falling object?

A box is dropped onto a spring at its
equilibrium position. The spring compresses
with the box attached and comes to rest. Since
the spring is in the vertical position, does the
change in the gravitational potential energy of
the box while the spring is compressing need to
be considered in this problem?

old-fashioned TV tube? (These electrons were
not dangerous in themselves, but they did
create dangerous X-rays. Later-model tube TVs
had shielding that absorbed X-rays before they




20.

21.

22.

23.

escaped and exposed viewers.)

If the energy in fusion bombs were used to
supply the energy needs of the world, how many
of the 9-megaton variety would be needed for a
year’s supply of energy (using data from Figure
8.4)?

A camera weighing 10 N falls from a small
drone hovering 20 m overhead and enters free
fall. What is the gravitational potential energy
change of the camera from the drone to the
ground if you take a reference point of (a) the
ground being zero gravitational potential
energy? (b) The drone being zero gravitational
potential energy? What is the gravitational
potential energy of the camera (c) before it falls
from the drone and (d) after the camera lands
on the ground if the reference point of zero
gravitational potential energy is taken to be a
second person looking out of a building 30 m
from the ground?

Someone drops a 50 — g pebble off of a docked
cruise ship, 70.0 m from the water line. A
person on a dock 3.0 m from the water line
holds out a net to catch the pebble. (a) How
much work is done on the pebble by gravity
during the drop? (b) What is the change in the
gravitational potential energy during the drop?
If the gravitational potential energy is zero at
the water line, what is the gravitational potential
energy (c) when the pebble is dropped? (d)
When it reaches the net? What if the
gravitational potential energy was 30.0 Joules at
water level? (e) Find the answers to the same
questions in (c) and (d).

A cat’s crinkle ball toy of mass 15 g is thrown
straight up with an initial speed of 3 m/s.
Assume in this problem that air drag is
negligible. (a) What is the kinetic energy of the
ball as it leaves the hand? (b) How much work is
done by the gravitational force during the ball’s
rise to its peak? (c) What is the change in the
gravitational potential energy of the ball during
the rise to its peak? (d) If the gravitational
potential energy is taken to be zero at the point
where it leaves your hand, what is the
gravitational potential energy when it reaches
the maximum height? (e) What if the
gravitational potential energy is taken to be zero
at the maximum height the ball reaches, what
would the gravitational potential energy be
when it leaves the hand? (f) What is the
maximum height the ball reaches?

8.2 Conservative and Non-Conservative

Forces

24.

25.

26.
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30.

A force F (x) = (3.0/x) N acts on a particle as it
moves along the positive x-axis. (a) How much
work does the force do on the particle as it
moves from x = 2.0 m to x = 5.0 m? (b) Picking
a convenient reference point of the potential

energy to be zero at x = ®, find the potential

energy for this force.
A force F (x) = (—S.Ox2 + 7.0x) N actson a

particle. How much work does the force do on
the particle as it moves from x = 2.0 m to
x=5.0m?

Find the force corresponding to the potential
energy U (x) = —a/x + bix2.

The potential energy function for either one of
the two atoms in a diatomic molecule is often
approximated by U (x) = a/x'% — b/x% where x
is the distance between the atoms. (a) At what
distance of separation does the potential energy

have a local minimum (not at x = )? (b) What

is the force on an atom at this separation? (c)
How does the force vary with the separation
distance?

A particle of mass 2.0 kg moves under the
influence of the force F (x) = (3/ \/;) N. Ifits

speed at x = 2.0 mis v = 6.0 m/s, what is its
speed atx = 7.0m?

A particle of mass 2.0 kg moves under the
influence of the force F (x) = (—5x2 + 7x) N.

If its speed at x = —4.0 mis v = 20.0 m/s, what

isits speed at x = 4.0 m?

A crate on rollers is being pushed without frictional
loss of energy across the floor of a freight car (see
the following figure). The car is moving to the right
with a constant speed vg. If the crate starts at rest
relative to the freight car, then from the work-energy
theorem, Fd = m02/2, where d, the distance the
crate moves, and v, the speed of the crate, are both
measured relative to the freight car. (a) To an
observer at rest beside the tracks, what distance d’ is
the crate pushed when it moves the distance din the
car? (b) What are the crate’s initial and final speeds
vo’ and v’ as measured by the observer beside the
tracks? (c) Show that Fd' = m(v’)2/2 — m(v’0)2/2
and, consequently, that work is equal to the change
in kinetic energy in both reference systems.



8.3 Conservation of Energy

31. Aboy throws a ball of mass 0.25 kg straight
upward with an initial speed of 20 m/s When the
ball returns to the boy, its speed is 17 m/s How
much much work does air resistance do on the
ball during its flight?

32. A mouse of mass 200 g falls 100 m down a
vertical mine shaft and lands at the bottom with
a speed of 8.0 m/s. During its fall, how much
work is done on the mouse by air resistance?

33. Using energy considerations and assuming
negligible air resistance, show that a rock
thrown from a bridge 20.0 m above water with
an initial speed of 15.0 m/s strikes the water
with a speed of 24.8 m/s independent of the
direction thrown. (Hint: show that
K; +U; = K¢ + Uy)

34. A 1.0-kgball at the end of a 2.0-m string swings
in a vertical plane. At its lowest point the ball is
moving with a speed of 10 m/s. (a) What is its
speed at the top of its path? (b) What is the
tension in the string when the ball is at the
bottom and at the top of its path?

35. Ignoring details associated with friction, extra
forces exerted by arm and leg muscles, and
other factors, we can consider a pole vault as the
conversion of an athlete’s running kinetic
energy to gravitational potential energy. If an
athlete is to lift his body 4.8 m during a vault,
what speed must he have when he plants his
pole?

36. Tarzan grabs a vine hanging vertically from a
tall tree when he is running at 9.0 m/s. (a) How
high can he swing upward? (b) Does the length
of the vine affect this height?

37. Assume that the force of a bow on an arrow
behaves like the spring force. In aiming the
arrow, an archer pulls the bow back 50 cm and
holds it in position with a force of 150 N. If the
mass of the arrow is 50 g and the “spring” is
massless, what is the speed of the arrow
immediately after it leaves the bow?

38. A 100 — kg man is skiing across level ground at a
speed of 8.0 m/s when he comes to the small slope
1.8 m higher than ground level shown in the

39.

40.

41.

42.

43.

following figure. (a) If the skier coasts up the hill,
what is his speed when he reaches the top plateau?
Assume friction between the snow and skis is
negligible. (b) What is his speed when he reaches the
upper level if an 80 — N frictional force acts on the
skis?

A sled of mass 70 kg starts from rest and slides
down a 10° incline 80 m long. It then travels for
20 m horizontally before starting back up an 8°
incline. It travels 80 m along this incline before
coming to rest. What is the magnitude of the net
work done on the sled by friction?

A girl on a skateboard (total mass of 40 kg) is
moving at a speed of 10 m/s at the bottom of a
long ramp. The ramp is inclined at 20° with
respect to the horizontal. If she travels 14.2 m
upward along the ramp before stopping, what is
the net frictional force on her?

A baseball of mass 0.25 kg is hit at home plate
with a speed of 40 m/s. When it lands in a seat
in the left-field bleachers a horizontal distance
120 m from home plate, it is moving at 30 m/s.
If the ball lands 20 m above the spot where it
was hit, how much work is done on it by air
resistance?

A small block of mass m slides without friction
around the loop-the-loop apparatus shown
below. (a) If the block starts from rest at A, what
is its speed at B? (b) What is the force of the
track on the block at B?

The massless spring of a spring gun has a force
constant k = 12 N/cm. When the gun is aimed
vertically, a 15-g projectile is shot to a height of
5.0 m above the end of the expanded spring.
(See below.) How much was the spring
compressed initially?




v

T
d=2
g |

NNNNNVM@
NNANNNN

44. A small ball is tied to a string and set rotating
with negligible friction in a vertical circle. If the
ball moves over the top of the circle at its
slowest possible speed (so that the tension in
the string is negligible), what is the tension in
the string at the bottom of the circle, assuming
there is no additional energy added to the ball
during rotation?

8.4 Potential Energy Diagrams and
Stability

45. A mysterious constant force of 10 N acts
horizontally on everything. The direction of the
force is found to be always pointed toward a wall
in a big hall. Find the potential energy of a
particle due to this force when it is at a distance
x from the wall, assuming the potential energy
at the wall to be zero.

46. A single force F (x) = —4.0x (in newtons) acts
on a 1.0-kg body. When x = 3.5 m, the speed of
the body is 4.0 m/s. What is its speed at
x=2.0m?

47. A particle of mass 4.0 kg is constrained to move
along the x-axis under a single force
F (x) = —cx3, where ¢ = 8.0 N/m>. The
particle’s speed at A, where x4 = 1.0m, is 6.0
m/s. What is its speed at B, where xp = —2.0 m?

48. The force on a particle of mass 2.0 kg varies
with position according to F (x) = —3.0x2 (xin
meters, F(x) in newtons). The particle’s velocity
at x = 2.0 mis 5.0 m/s. Calculate the
mechanical energy of the particle using (a) the
origin as the reference point and (b) x =4.0m
as the reference point. (c) Find the particle’s
velocity at x = 1.0 m. Do this part of the
problem for each reference point.

49. A 4.0-kg particle moving along the x-axis is acted
upon by the force whose functional form appears
below. The velocity of the particle at x = 0 is
v = 6.0 m/s. Find the particle’s speed at

50.

51.

x = (a)2.0m, (b)4.0 m, (c) 10.0 m, (d) Does the
particle turn around at some point and head back
toward the origin? (e) Repeat part (d) if
v=20m/satx = 0.

Flx}(N) 4
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A particle of mass 0.50 kg moves along the x-axis
with a potential energy whose dependence on x is
shown below. (a) What is the force on the particle at
x =2.0,5.0,8.0, and 12 m? (b) If the total
mechanical energy E of the particle is —6.0 J, what
are the minimum and maximum positions of the
particle? (c) What are these positions if E = 2.0J?
(d) If E = 16J, what are the speeds of the particle at
the positions listed in part (a)?
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(a) Sketch a graph of the potential energy

function U (x) = kx2/2 + Ae‘”‘"2 , where
k, A, and a are constants. (b) What is the force
corresponding to this potential energy? (c)
Suppose a particle of mass m moving with this
potential energy has a velocity v, when its
position is x = a. Show that the particle does
not pass through the origin unless

mva2 + ka?

2(1—e‘““2>.

A<

8.5 Sources of Energy

52.

In the cartoon movie Pocahontas
(https://openstax.org/l/21pocahontclip) ,
Pocahontas runs to the edge of a cliff and jumps
off, showcasing the fun side of her personality.
(a) If she is running at 3.0 m/s before jumping
off the cliff and she hits the water at the bottom
of the cliff at 20.0 m/s, how high is the cliff?
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Assume negligible air drag in this cartoon. (b) If
she jumped off the same cliff from a standstill,
how fast would she be falling right before she hit
the water?
In the reality television show “Amazing Race”
https://openstax.org/l/21amazraceclip), a
contestant is firing 12-kg watermelons from a
slingshot to hit targets down the field. The
slingshot is pulled back 1.5 m and the
watermelon is considered to be at ground level.
The launch point is 0.3 m from the ground and
the targets are 10 m horizontally away.
Calculate the spring constant of the slingshot.
In the Back to the Future movies
(https://openstax.org/l/21bactofutclip) , a
DeLorean car of mass 1230 kg travels at 88
miles per hour to venture back to the future. (a)
What is the kinetic energy of the DeLorean? (b)
What spring constant would be needed to stop
this DeLorean in a distance of 0.1m?
In the Hunger Games movie
(https://openstax.org/l/21HungGamesclip) ,
Katniss Everdeen fires a 0.0200-kg arrow from
ground level to pierce an apple up on a stage.
The spring constant of the bow is 330 N/m and
she pulls the arrow back a distance of 0.55 m.
The apple on the stage is 5.00 m higher than the
launching point of the arrow. At what speed
does the arrow (a) leave the bow? (b) strike the
apple?
In a “Top Fail” video (https://openstax.org/l/
21topfailvideo) , two women run at each other
and collide by hitting exercise balls together. If
each woman has a mass of 50 kg, which
includes the exercise ball, and one woman runs
to the right at 2.0 m/s and the other is running
toward her at 1.0 m/s, (a) how much total kinetic
energy is there in the system? (b) If energy is
conserved after the collision and each exercise
ball has a mass of 2.0 kg, how fast would the
balls fly off toward the camera?
In a Coyote/Road Runner cartoon clip
(https://openstax.org/l/21coyroadcarcl) , a
spring expands quickly and sends the coyote
into a rock. If the spring extended 5 m and sent
the coyote of mass 20 kg to a speed of 15 m/s, (a)
what is the spring constant of this spring? (b) If
the coyote were sent vertically into the air with
the energy given to him by the spring, how high
could he go if there were no non-conservative
forces?
In an iconic movie scene, Forrest Gump
(https://openstax.org/1/21 ForrGumpvid) runs

59.
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64.

around the country. If he is running at a
constant speed of 3 m/s, would it take him more
or less energy to run uphill or downhill and
why?

In the movie Monty Python and the Holy Grail
(https://openstax.org/l/21 monpytmovcl) a cow
is catapulted from the top of a castle wall over to
the people down below. The gravitational
potential energy is set to zero at ground level.
The cow is launched from a spring of spring
constant 1.1 x 10* N/m that is expanded 0.5 m
from equilibrium. If the castle is 9.1 m tall and
the mass of the cow is 110 kg, (a) what is the
gravitational potential energy of the cow at the
top of the castle? (b) What is the elastic spring
energy of the cow before the catapult is
released? (c) What is the speed of the cow right
before it lands on the ground?

A 60.0-kg skier with an initial speed of 12.0 m/s

coasts up a 2.50-m high rise as shown. Find her final
speed at the top, given that the coefficient of friction

between her skis and the snow is 0.80.
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(a) How high a hill can a car coast up (engines
disengaged) if work done by friction is

negligible and its initial speed is 110 km/h? (b)

If, in actuality, a 750-kg car with an initial speed
of 110 km/h is observed to coast up a hill to a
height 22.0 m above its starting point, how

much thermal energy was generated by

friction? (c) What is the average force of friction
if the hill has a slope of 2.5° above the
horizontal?

A5.00 x 10° -kg subway train is brought to a
stop from a speed of 0.500 m/s in 0.400 m by a
large spring bumper at the end of its track.

What is the spring constant k of the spring?

A pogo stick has a spring with a spring constant
of2.5 x 10% N/m, which can be compressed
12.0 cm. To what maximum height from the
uncompressed spring can a child jump on the
stick using only the energy in the spring, if the
child and stick have a total mass of 40 kg?

A block of mass 500 g is attached to a spring of
spring constant 80 N/m (see the following figure).
The other end of the spring is attached to a support
while the mass rests on a rough surface with a

coefficient of friction of 0.20 that is inclined at angle
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of 30°. The block is pushed along the surface till the
spring compresses by 10 cm and is then released

from rest. (a) How much potential energy was

stored in the block-spring-support system when the 67.
block was just released? (b) Determine the speed of

the block when it crosses the point when the spring

is neither compressed nor stretched. (c) Determine

the position of the block where it just comes to rest

caught by someone whose hands are (a) 1.00 m
from ground level? (b) 4.00 m from ground
level? Neglect air drag.

A child (32 kg) jumps up and down on a
trampoline. The trampoline exerts a spring
restoring force on the child with a constant of
5000 N/m. At the highest point of the bounce,
the child is 1.0 m above the level surface of the

on its way up the incline.

)

trampoline. What is the compression distance
of the trampoline? Neglect the bending of the

legs or any transfer of energy of the child into

the trampoline while jumping.

68. Shown below is a box of mass m that sits on a
% S frictionless incline at an angle above the
- ‘ horizontal § = 30°. This box is connected by a
i \3[!'” relatively massless string, over a frictionless
pulley, and finally connected to a box at rest
65. A block of mass 200 g is attached at the end of a over the ledge, labeled m,.If m| and m, are a
massless spring at equilibrium length of spring height h above the ground and my >> my: (a)
constant 50 N/m. The other end of the spring is What is the initial gravitational potential energy
attached to the ceiling and the mass is released of the system? (b) What is the final kinetic
at a height considered to be where the energy of the system?
gravitational potential energy is zero. (a) What is
the net potential energy of the block at the
instant the block is at the lowest point? (b) What
is the net potential energy of the block at the
midpoint of its descent? (c) What is the speed of
the block at the midpoint of its descent?
66. A T-shirt cannon launches a shirt at 5.00 m/s
from a platform height of 3.00 m from ground
level. How fast will the shirt be traveling if it is
Additional Problems
69. A massless spring with force constant 71. Block 2 shown below slides along a frictionless

70.

k = 200 N/m hangs from the ceiling. A 2.0-kg
block is attached to the free end of the spring
and released. If the block falls 17 cm before
starting back upwards, how much work is done
by friction during its descent?

A particle of mass 2.0 kg moves under the
influence of the force F (x) = (—5x2 + 7x) N.

Suppose a frictional force also acts on the
particle. If the particle’s speed when it starts at
x = —4.0 mis 0.0 m/s and when it arrives at

x =4.0m is 9.0 m/s, how much work is done on
it by the frictional force between x = —4.0 m
and x = 4.0 m?

table as block 1 falls. Both blocks are attached
by a frictionless pulley. Find the speed of the
blocks after they have each moved 2.0 m.
Assume that they start at rest and that the
pulley has negligible mass. Use m; = 2.0 kg and
my =4.0kg.

—_—
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72. Abody of mass m and negligible size starts from 75. Shown below is a small ball of mass m attached

rest and slides down the surface of a frictionless to a string of length a. A small peg is located a
solid sphere of radius R. (See below.) Prove that distance h below the point where the string is
the body leaves the sphere when supported. If the ball is released when the string
0 = cos™! 2/3). is horizontal, show that h must be greater than
3a/5 if the ball is to swing completely around
the peg.
a |

i
\ . _L
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76. A block leaves a frictionless inclined surface
horizontally after dropping off by a height h. Find
the horizontal distance D where it will land on the
floor, in terms of h, H, and g.

$v=20

73. A mysterious force acts on all particles along a
particular line and always points towards a
particular point Pon the line. The magnitude of h
the force on a particle increases as the cube of l v
the distance from that point; that is F oor3 | if the ____
distance from P to the position of the particle is H a\“\m
r. Let b be the proportionality constant, and L
write the magnitude of the force as F = br. i"'_D"_"'I
Find the potential energy of a particle subjected
to this force when the particle is at a distance D 77. Ablock of mass m, after sliding down a frictionless
from P, assuming the potential energy to be incline, strikes another block of mass M that is
zero when the particle is at P. attached to a spring of spring constant k (see

74. An object of mass 10 kg is released at point A, slides below). The blocks stick together upon impact and
to the bottom of the 30° incline, then collides with a travel together. (a) Find the compression of the
horizontal massless spring, compressing it a spring in terms of m, M, h, g, and kwhen the
maximum distance of 0.75 m. (See below.) The combination comes to rest. Hint: The speed of the
spring constant is 500 N/m, the height of the incline combined blocks m + M (v7) is based on the speed
is 2.0 m, and the horizontal surface is frictionless. of block m just prior to the collision with the block
(a) What is the speed of the object at the bottom of M (v1) based on the equation vy = (m/m) + M (vy).
the incline? (b) What is the work of friction on the This will be discussed further in the chapter on
object while it is on the incline? (c) The spring Linear Momentum and Collisions. (b) The loss of
recoils and sends the object back toward the incline. kinetic energy as a result of the bonding of the two
What is the speed of the object when it reaches the masses upon impact is stored in the so-called
base of the incline? (d) What vertical distance does binding energy of the two masses. Calculate the
it move back up the incline? binding energy.

A Mgv=20
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A block of mass 300 g is attached to a spring of
spring constant 100 N/m. The other end of the
spring is attached to a support while the block
rests on a smooth horizontal table and can slide
freely without any friction. The block is pushed
horizontally till the spring compresses by 12
cm, and then the block is released from rest. (a)
How much potential energy was stored in the
block-spring support system when the block
was just released? (b) Determine the speed of
the block when it crosses the point when the
spring is neither compressed nor stretched. (c)
Determine the speed of the block when it has
traveled a distance of 20 cm from where it was
released.

Consider a block of mass 0.200 kg attached to a
spring of spring constant 100 N/m. The block is
placed on a frictionless table, and the other end
of the spring is attached to the wall so that the
spring is level with the table. The block is then
pushed in so that the spring is compressed by
10.0 cm. Find the speed of the block as it
crosses (a) the point when the spring is not
stretched, (b) 5.00 cm to the left of point in (a),
and (c) 5.00 cm to the right of point in (a).

A skier starts from rest and slides downhill.
What will be the speed of the skier if he drops by
20 meters in vertical height? Ignore any air
resistance (which will, in reality, be quite a lot),
and any friction between the skis and the snow.
Repeat the preceding problem, but this time,
suppose that the work done by air resistance
cannot be ignored. Let the work done by the air
resistance when the skier goes from Ato B
along the given hilly path be —-2000 J. The work
done by air resistance is negative since the air
resistance acts in the opposite direction to the
displacement. Supposing the mass of the skier
is 50 kg, what is the speed of the skier at point
B?

Two bodies are interacting by a conservative
force. Show that the mechanical energy of an
isolated system consisting of two bodies
interacting with a conservative force is
conserved. (Hint: Start by using Newton’s third
law and the definition of work to find the work
done on each body by the conservative force.)

83.
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In an amusement park, a car rolls in a track as

shown below. Find the speed of the car at A, B, and C.
Note that the work done by the rolling friction is zero

since the displacement of the point at which the

rolling friction acts on the tires is momentarily at

rest and therefore has a zero displacement.

v==0
B
50 m
A 40'm
20m
ki C
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A 200-g steel ball is tied to a 2.00-m “massless”
string and hung from the ceiling to make a
pendulum, and then, the ball is brought to a
position making a 30° angle with the vertical
direction and released from rest. Ignoring the
effects of the air resistance, find the speed of the
ball when the string (a) is vertically down, (b)
makes an angle of 20° with the vertical and (c)
makes an angle of 10° with the vertical.

A 300 g hockey puck is shot across an ice-
covered pond. Before the hockey puck was hit,
the puck was at rest. After the hit, the puck has
a speed of 40 m/s. The puck comes to rest after
going a distance of 30 m. (a) Describe how the
energy of the puck changes over time, giving the
numerical values of any work or energy
involved. (b) Find the magnitude of the net
friction force.

A projectile of mass 2 kg is fired with a speed of
20 m/s at an angle of 30° with respect to the
horizontal. (a) Calculate the initial total energy
of the projectile given that the reference point of
zero gravitational potential energy at the launch
position. (b) Calculate the kinetic energy at the
highest vertical position of the projectile. (c)
Calculate the gravitational potential energy at
the highest vertical position. (d) Calculate the
maximum height that the projectile reaches.
Compare this result by solving the same
problem using your knowledge of projectile
motion.
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An artillery shell is fired at a target 200 m above
the ground. When the shell is 100 m in the air, it
has a speed of 100 m/s. What is its speed when
it hits its target? Neglect air friction.

How much energy is lost to a dissipative drag
force if a 60-kg person falls at a constant speed
for 15 meters?

89.
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A box slides on a frictionless surface with a total
energy of 50 J. It hits a spring and compresses
the spring a distance of 25 cm from
equilibrium. If the same box with the same
initial energy slides on a rough surface, it only
compresses the spring a distance of 15 cm, how
much energy must have been lost by sliding on
the rough surface?
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CHAPTER 9
Linear Momentum and

Collisions

Figure 9.1 The concepts of impulse, momentum, and center of mass are crucial for a major-league baseball player
to successfully get a hit. If he misjudges these quantities, he might break his bat instead. (credit: modification of
work by “Cathy T”/Flickr)

Chapter Outline

9.1 Linear Momentum

9.2 Impulse and Collisions

9.3 Conservation of Linear Momentum

9.4 Types of Collisions

9.5 Collisions in Multiple Dimensions

9.6 Center of Mass

9.7 Rocket Propulsion

INTRODUCTION The concepts of work, energy, and the work-energy theorem are valuable for two primary
reasons: First, they are powerful computational tools, making it much easier to analyze complex physical
systems than is possible using Newton’s laws directly (for example, systems with nonconstant forces); and
second, the observation that the total energy of a closed system is conserved means that the system can only
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evolve in ways that are consistent with energy conservation. In other words, a system cannot evolve randomly;
it can only change in ways that conserve energy.

In this chapter, we develop and define another conserved quantity, called linear momentum, and another
relationship (the impulse-momentum theorem), which will put an additional constraint on how a system
evolves in time. Conservation of momentum is useful for understanding collisions, such as that shown in the
above image. It is just as powerful, just as important, and just as useful as conservation of energy and the work-
energy theorem.

9.1 Linear Momentum

Learning Objectives

By the end of this section, you will be able to:
e Explain what momentum is, physically
e Calculate the momentum of a moving object

Our study of kinetic energy showed that a complete understanding of an object’s motion must include both its
mass and its velocity (K = (1/2)m02). However, as powerful as this concept is, it does not include any
information about the direction of the moving object’s velocity vector. We’ll now define a physical quantity that
includes direction.

Like kinetic energy, this quantity includes both mass and velocity; like kinetic energy, it is a way of
characterizing the “quantity of motion” of an object. It is given the name momentum (from the Latin word
movimentum, meaning “movement”), and it is represented by the symbol p.

Momentum
The momentum p of an object is the product of its mass and its velocity:

p = mv. 9.1

Momentum

Figure 9.2 The velocity and momentum vectors for the ball are in the same direction. The mass of the ball is about 0.5 kg, so the

Access for free at openstax.org.
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momentum vector is about half the length of the velocity vector because momentum is velocity time mass. (credit: modification of work by

Ben Sutherland)

As shown in Figure 9.2, momentum is a vector quantity (since velocity is). This is one of the things that makes
momentum useful and not a duplication of kinetic energy. It is perhaps most useful when determining
whether an object’s motion is difficult to change (Figure 9.3) or easy to change (Figure 9.4).

Figure 9.3 This supertanker transports a huge mass of oil; as a consequence, it takes a long time for a force to change its (comparatively

small) velocity. (credit: modification of work by “the_tahoe_guy”/Flickr)

Gas molecule

Container

Figure 9.4 Gas molecules can have very large velocities, but these velocities change nearly instantaneously when they collide with the

container walls or with each other. This is primarily because their masses are so tiny.

Unlike kinetic energy, momentum depends equally on an object’s mass and velocity. For example, as you will
learn when you study thermodynamics, the average speed of an air molecule at room temperature is
approximately 500 m/s, with an average molecular mass of 6 X 10725 kg; its momentum is thus

2 kg-m

_ m _
Pmolecule = (6 x 1072 kg) (500 ?> =3 x 10 S

For comparison, a typical automobile might have a speed of only 15 m/s, but a mass of 1400 kg, giving it a

momentum of
kg -m

pear = (1400 kg) (15 ?) = 21,000 £

These momenta are different by 27 orders of magnitude, or a factor of a billion billion billion!
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9.2 Impulse and Collisions

Learning Objectives
By the end of this section, you will be able to:
e Explain what an impulse is, physically
e Describe what an impulse does
e Relate impulses to collisions
e Apply the impulse-momentum theorem to solve problems

We have defined momentum to be the product of mass and velocity. Therefore, if an object’s velocity should
change (due to the application of a force on the object), then necessarily, its momentum changes as well. This
indicates a connection between momentum and force. The purpose of this section is to explore and describe
that connection.

Suppose you apply a force on a free object for some amount of time. Clearly, the larger the force, the larger the
object’s change of momentum will be. Alternatively, the more time you spend applying this force, again the
larger the change of momentum will be, as depicted in Figure 9.5. The amount by which the object’s motion
changes is therefore proportional to the magnitude of the force, and also to the time interval over which the
force is applied.

F.ly Ap
—— .ﬁ.—
F. 21, 2Ap
— fie—

Figure 9.5 The change in momentum of an object is proportional to the length of time during which the force is applied. If a force is
exerted on the lower ball for twice as long as on the upper ball, then the change in the momentum of the lower ball is twice that of the

upper ball.

Mathematically, if a quantity is proportional to two (or more) things, then it is proportional to the product of
those things. The product of a force and a time interval (over which that force acts) is called impulse, and is

given the symbol j

Impulse

Let i:’(t) be the force applied to an object over some differential time interval dt (Figure 9.6). The resulting
impulse on the object is defined as

dJ = F(r)dt. 9.2




Figure 9.6 A force applied by a tennis racquet to a tennis ball over a time interval generates an impulse acting on the ball.

The total impulse over the interval ty — #; is
> SN ' 5
J= dJ or J = F(t)d:. 9.3
4 4

Equation 9.2 and Equation 9.3 together say that when a force is applied for an infinitesimal time interval dt, it

causes an infinitesimal impulse dj, and the total impulse given to the object is defined to be the sum (integral)
of all these infinitesimal impulses.

To calculate the impulse using Equation 9.3, we need to know the force function F(f), which we often don’t.
However, a result from calculus is useful here: Recall that the average value of a function over some interval is
calculated by

_ 1 o d
f(X)ave_EA. S()dx

1

where Ax = x¢ — x;. Applying this to the time-dependent force function, we obtain

> 1 L
Fave = A F()dt. 9.4
Therefore, from Equation 9.3,
_j = ﬁ‘ave At 9.5

The idea here is that you can calculate the impulse on the object even if you don’t know the details of the force
as a function of time; you only need the average force. In fact, though, the process is usually reversed: You
determine the impulse (by measurement or calculation) and then calculate the average force that caused that
impulse.

To calculate the impulse, a useful result follows from writing the force in Equation 9.3 as ﬁ'(t) = ma(r):

N 5 't
J= / F(t)dt =m / a(ndr = m [V(tp) — i .
t ti

i
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- -
For a constant force Fave = F = ma, this simplifies to
-
J= maAt = me - mVi = m(;')f - VI)
That is,
-
J = mAvV. 9.6

Note that the integral form, Equation 9.3, applies to constant forces as well; in that case, since the force is
independent of time, it comes out of the integral, which can then be trivially evaluated.

@ EXAMPLE 9.1

The Arizona Meteor Crater

Approximately 50,000 years ago, a large (radius of 25 m) iron-nickel meteorite collided with Earth at an
estimated speed of 1.28 X 10* m/s in what is now the northern Arizona desert, in the United States. The
impact produced a crater that is still visible today (Figure 9.7); it is approximately 1200 m (three-quarters of a
mile) in diameter, 170 m deep, and has a rim that rises 45 m above the surrounding desert plain. Iron-nickel
meteorites typically have a density of p = 7970 kg/m3. Use impulse considerations to estimate the average
force and the maximum force that the meteor applied to Earth during the impact.

Figure 9.7 The Arizona Meteor Crater in Flagstaff, Arizona (often referred to as the Barringer Crater after the person who first suggested

its origin and whose family owns the land). (credit: modification of work by “Shane.torgerson”/Wikimedia Commons)

Strategy

It is conceptually easier to reverse the question and calculate the force that Earth applied on the meteor in
order to stop it. Therefore, we’ll calculate the force on the meteor and then use Newton’s third law to argue that
the force from the meteor on Earth was equal in magnitude and opposite in direction.

Using the given data about the meteor, and making reasonable guesses about the shape of the meteor and
impact time, we first calculate the impulse using Equation 9.6. We then use the relationship between force and
impulse Equation 9.5 to estimate the average force during impact. Next, we choose a reasonable force function
for the impact event, calculate the average value of that function Equation 9.4, and set the resulting expression
equal to the calculated average force. This enables us to solve for the maximum force.
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Solution

Define upward to be the +y-direction. For simplicity, assume the meteor is traveling vertically downward prior
to impact. In that case, its initial velocity is V; = —uv; j, and the force Earth exerts on the meteor points upward,
e d ~

F(t) = +F(¢)j. The situation at t = 0 is depicted below.

¥

A fq‘;}

Meteor &1‘1

Earth

! ﬁu:. "ﬁm

The average force during the impact is related to the impulse by

o J
Fave = A_t
From Equation 9.6, j = mAV, so we have
f = mAV
At

The mass is equal to the product of the meteor’s density and its volume:

m=pV.

If we assume (guess) that the meteor was roughly spherical, we have
y =R
= =nR".
3
Thus we obtain
5> pVAV P(%ﬂR3) (Ve —¥i)
wver Ar T At '

The problem says the velocity at impact was —1.28 x 10% m/sj'\ (the final velocity is zero); also, we guess that
the primary impact lasted about tax = 2 s. Substituting these values gives

(7970 %) 425 m3] [0 2-(-128x 10% 1F)] -

2s

i‘Lzlve =
=+(333 x 102N)j

This is the average force applied during the collision. Notice that this force vector points in the same direction
as the change of velocity vector AV.

Next, we calculate the maximum force. The impulse is related to the force function by



N Imax _,
J=/ F(t)dt.
fi

We need to make a reasonable choice for the force as a function of time. We define t = 0 to be the moment the
meteor first touches the ground. Then we assume the force is a maximum at impact, and rapidly drops to zero.
A function that does this is

F) = Foge ™! (7).,

(The parameter 7 represents how rapidly the force decreases to zero.) The average force is
1 Imax _12/ 2 2
Fave=E/ Fmaxe ( i )dt
0

where At = tax — 0 8. Since we already have a numeric value for F,ye, we can use the result of the integral to
obtain Fyax.

Choosing 7 = %tmax (this is a common choice, as you will see in later chapters), and guessing that tax = 25,
this integral evaluates to

Fayg = 0.458 Fax .-
Thus, the maximum force has a magnitude of

0.458 Fpax = 3.33 x 102N
Frax = 727 X 102N’

The complete force function, including the direction, is
Fo = (727 x 102 N) e (523,
This is the force Earth applied to the meteor; by Newton’s third law, the force the meteor applied to Earth is
F)=—(7.27 x 102 N) ™" (5%)5
which is the answer to the original question.

Significance
The graph of this function contains important information. Let’s graph (the magnitude of) both this function
and the average force together (Figure 9.8).



9.2 e Impulse and Collisions

Meteor Impact Force
F{1) and Average Force

7 X 10125 Ao
6 X 1012
E 5 3 1012 —
g 4x102+
& 3 x 1012
2 1p12 -
1= 1012

0

These areas are equal Average Force

0 0.5 1 1.5 2
Time (s)

Figure 9.8 A graph of the average force (in red) and the force as a function of time (blue) of the meteor impact. The areas under the curves

are equal to each other, and are numerically equal to the applied impulse.

Notice that the area under each plot has been filled in. For the plot of the (constant) force Faye, the area is a
rectangle, corresponding to Fyye At = J. As for the plot of F(#), recall from calculus that the area under the plot
of a function is numerically equal to the integral of that function, over the specified interval; so here, that is

max
/ F(t)dt = J. Thus, the areas are equal, and both represent the impulse that the meteor applied to Earth
0

during the two-second impact. The average force on Earth sounds like a huge force, and it is. Nevertheless,
Earth barely noticed it. The acceleration Earth obtained was just

2 —Faoe  —(333x 102N)j <56 « 10-13 m)/,\
Mear 597 x 102% kg ' 2 )7

which is completely immeasurable. That said, the impact created seismic waves that nowadays could be
detected by modern monitoring equipment.

@ EXAMPLE 9.2

The Benefits of Impulse

A car traveling at 27 m/s collides with a building. The collision with the building causes the car to come to a
stop in approximately 1 second. The driver, who weighs 860 N, is protected by a combination of a variable-
tension seatbelt and an airbag (Figure 9.9). (In effect, the driver collides with the seatbelt and airbag and not
with the building.) The airbag and seatbelt slow his velocity, such that he comes to a stop in approximately 2.5
S.

a. What average force does the driver experience during the collision?
b. Without the seatbelt and airbag, his collision time (with the steering wheel) would have been
approximately 0.20 s. What force would he experience in this case?
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Befare Collision After

V, = (27 mis)i

@

Figure 9.9 The motion of a car and its driver at the instant before and the instant after colliding with the wall. The restrained driver
experiences a large backward force from the seatbelt and airbag, which causes his velocity to decrease to zero. (The forward force from the

seatback is much smaller than the backward force, so we neglect it in the solution.)

Strategy

We are given the driver’s weight, his initial and final velocities, and the time of collision; we are asked to
calculate a force. Impulse seems the right way to tackle this; we can combine Equation 9.5 and Equation 9.6.

Solution

a. Define the +x-direction to be the direction the car is initially moving. We know

- -
J =FAt
and
j = mAV.
Since Jis equal to both those things, they must be equal to each other:
= -
FAr = mAv.
We need to convert this weight to the equivalent mass, expressed in SI units:
860 N
— =87.8kg.
9.8 m/s? s
Remembering that AV = Vf — Vi, and noting that the final velocity is zero, we solve for the force:
> 0-upi — (27 m/s)i .
F= L = (87.8k ——— | = - (948 N)i.
" = g)< 255 ) (G481

The negative sign implies that the force slows him down. For perspective, this is about 1.1 times his own
weight.
b. Same calculation, just the different time interval:

F= (87.8kg) (M

020s ) =— (11,853 N)i

which is about 14 times his own weight. Big difference!

Significance

You see that the value of an airbag is how greatly it reduces the force on the vehicle occupants. For this reason,
they have been required on all passenger vehicles in the United States since 1991, and have been
commonplace throughout Europe and Asia since the mid-1990s. The change of momentum in a crash is the
same, with or without an airbag; the force, however, is vastly different.

Effect of Impulse

Since an impulse is a force acting for some amount of time, it causes an object’s motion to change. Recall



Equation 9.6:

N

J = mAv.
Because mv is the momentum of a system, mA¥V is the change of momentum Aﬁ. This gives us the following
relation, called the impulse-momentum theorem (or relation).

Impulse-Momentum Theorem

An impulse applied to a system changes the system’s momentum, and that change of momentum is exactly
equal to the impulse that was applied:

J= Ap. 9.7

The impulse-momentum theorem is depicted graphically in Figure 9.10.

= V
J — el
S B Ball receives impulse
|
—
p+ p :
—_— = ..\'_\ Impulse is added to initial momentum
x,:_l_ gen = :1" 50 change in momentum
- . equals the impulse
v

After impulse ball has final momentum

Figure 9.10 Illustration of impulse-momentum theorem. (a) A ball with initial velocity VO and momentum f)'o receives an impulse 3 (b)
This impulse is added vectorially to the initial momentum. (c) Thus, the impulse equals the change in momentum, j = Aﬁ. (d) After the

impulse, the ball moves off with its new momentum f)f.
There are two crucial concepts in the impulse-momentum theorem:

Impulse is a vector quantity; an impulse of, say, — (10N - s) iis very different from an impulse of + (10 N - s) i
they cause completely opposite changes of momentum.

An impulse does not cause momentum; rather, it causes a change in the momentum of an object. Thus, you
must subtract the final momentum from the initial momentum, and—since momentum is also a vector
quantity—you must take careful account of the signs of the momentum vectors.

The most common questions asked in relation to impulse are to calculate the applied force, or the change of
