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6.2 The law of gravitation
This section will introduce us to one of the fundamental laws of physics – 
Newton’s law of gravitation. The law of gravitation makes it possible to 
calculate the orbits of the planets around the Sun, and predicts the motion 
of comets, satellites and entire galaxies. Newton’s law of gravitation was 
published in his Philosophiae Naturalis Principia Mathematica in 1686. 

Newton’s law of gravitation
We have seen that Newton’s second law implies that whenever a particle 
moves with acceleration, a net force must be acting on it. The proverbial 
apple falling freely under gravity is accelerating at 9.8 m s−2 and thus 
experiences a net force in the direction of the acceleration. This force is 
what we call the ‘weight’ of the apple. Similarly, a planet that orbits around 
the Sun also experiences acceleration and thus a force is acting on it. 
Newton hypothesised that the force responsible for the falling apple is the 
same as the force acting on a planet as it moves around the Sun. 

Newton proposed that the attractive force of gravitation between two 
point masses is given by the formula:

F = G 
M1M2

r 2

where M1 and M2 are the masses of the attracting bodies, r the 
distance between their centres of mass and G a constant called 
Newton’s constant of universal gravitation. It has the value 
G = 6.667 × 10−11 N m2 kg−2. The direction of the force is along 
the line joining the two masses.

This formula applies to point masses, that is to say masses that are very 
small (in comparison with their separation). In the case of objects such as 
the Sun, the Earth, and so on, the formula still applies since the separation 
of, say, the Sun and a planet is enormous compared with the radii of the 
Sun and the planet. In addition, Newton proved that for bodies that are 
spherical and of uniform density, one can assume that the entire mass of 
the body is concentrated at its centre – as if the body is a point mass.

Learning objectives

• Solve problems where the 
gravitational force plays the 
role of a centripetal force, in 
particular orbital motion.

• Use the concepts of gravitational 
force, gravitational " eld strength, 
orbital speed and orbital period.

• Determine the net gravitational 
" eld strength due to two point 
masses.

Learning objectivesLearning objectives

The laws of mechanics, along with Newton’s law of 
gravitation, are the basis of classical physics. They describe a 
perfectly deterministic system. This means that if we know 

the positions and velocities of the particles in a system at some instant 
of time, then the future positions and velocities of the particles can 
be predicted with absolute certainty. Since the beginning of the 
20th century we have known that this is not true in many cases. 
In situations normally associated with ‘chaos’ the sensitivity of the 
system to the initial conditions is such that it is not possible to make 
accurate predictions of the future state.
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Figure 6.10 shows the gravitational force between two masses. The 
gravitational force is always attractive. The magnitude of the force on 
each mass is the same. This follows both from the formula as well as from 
Newton’s third law.

Worked example
6.8 Estimate the force between the Sun and the Earth.

The average distance between the Earth and the Sun is r = 1.5 × 1011 m.

The mass of the Earth is 5.98 × 1024 kg and the mass of the Sun is 1.99 × 1030 kg. 

Substituting these values into the formula F = 
GM1M2

r 2
 gives:

 F = 
6.67 × 10−11 × 5.98 × 1024 × 1.99 × 1030

(1.5 × 1011)2

So: F = 3.5 × 1022 N

Gravitational fi eld strength
Physicists (and philosophers) since the time of Newton, including 
Newton himself, wondered how a mass ‘knows’ about the presence of 
another mass nearby that will attract it. By the 19th century, physicists had 
developed the idea of a ‘" eld’, which was to provide a (partial) answer to 
the question. A mass M is said to create a gravitational ! eld in the space 
around it. This means that when another mass is placed at some point near 
M, it ‘feels’ the gravitational " eld in the form of a gravitational force. 

We de" ne gravitational ! eld strength as follows.

The gravitational # eld strength at a certain point is the 
gravitational force per unit mass experienced by a small point 
mass m placed at that point. 

M

m 
F

r

M m 
F

F

F

Figure 6.10 The mass of the spherical body to the left can be thought to be 
concentrated at its centre.

Where did the law of 
gravitation come from? 
Not just from Newton’s 

great intuition but also from 
the knowledge obtained earlier 
by Kepler that planets move 
around the Sun with a period 
that is proportional to the 32 
power of the average orbit radius. 
To get such a law, the force of 
gravitation had to be an inverse 
square law.
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In other words, if the gravitational force exerted on m is F, then:

g = 
F
m

Turning this around, we " nd that the gravitational force on a point mass 
m is F = mg. But this is the expression we previously called the weight of 
the mass m. So we learn that the gravitational " eld strength is the same as 
the acceleration of free fall. 

The force experienced by a small point mass m placed at distance r 
from a (spherical) mass M is:

F = G 
Mm
r2

So the gravitational " eld strength    
F
m  of the spherical mass M is:

g = G 
M
r 2

The unit of gravitational " eld strength is N kg−1. (This unit is 
equivalent to m s−2.)

The gravitational " eld strength is a vector quantity whose direction is 
given by the direction of the force a point mass would experience if placed 
at the point of interest. The gravitational " eld strength around a single point 
or spherical mass is radial, which means that it points towards the centre of 
the mass creating the " eld. This is illustrated in Figure 6.11. This " eld is not 
uniform – the " eld lines gets farther apart with increasing distance from the 
point mass. (You will learn more about " elds in Topic 10.)

In contrast Figure 6.12 shows a " eld with constant gravitational 
" eld strength. Here the " eld lines are equally spaced and parallel. The 
assumption of constant acceleration of free fall (which we used for 
projectile motion in Topic 2) corresponds to this case.

Worked examples
6.9 The distance between two bodies is doubled. Predict what will happen to the gravitational force between them.

Since the force is inversely proportional to the square of the separation, doubling the separation reduces the force 
by a factor of 22 = 4.

Figure 6.11 The gravitational fi eld around a 
point (or spherical) mass is radial.

Figure 6.12 The gravitational fi eld above a 
fl at mass is uniform.
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6.10 Determine the acceleration of free fall (the gravitational " eld strength) on a planet 10 times as massive as the 
Earth and with a radius 20 times as large.

From g = 
GM
r 2

 we " nd:

 g = 
G(10M)
(20r E)2

 g = 
10GME

400r E2

 g = 
1
40 

GME

r E2

 g = 
1
40 gE ≈ 0.25 m s−2

6.11 Calculate the acceleration of free fall at a height of 300 km from the surface of the Earth (the Earth’s radius, 
r E, is 6.38 × 106 m and its mass is 6.0 × 1024 kg).

The acceleration of free fall is the same as the gravitational " eld strength. At height h from the surface:

 g = 
GME

(r E + h)2

where r E = 6.38 × 106 m is the radius of the Earth. We can now put the numbers in: 

 g = 
6.67 × 10−11 × 6.0 × 1024

(6.68 × 106)2

 g = 8.97 ≈ 9 m s−2

Exam tip
Notice the addition of the height to 
the radius of the Earth. Watch the units.

Exam tip
For this type of problem write the formula for g and 
then replace mass and radius in terms of those for Earth.
It is a common mistake to forget to square the factor of 
20 in the denominator.

Orbital motion
Figure 6.13 shows a particle of mass m orbiting a larger body of mass M 
in a circular orbit of radius r. To maintain a constant orbit there must be 
no frictional forces, so the only force on the particle is the force of 

gravitation, F = 
GMm

r  2  . This force provides the centripetal force on the 

particle. Therefore:

mv2

r 
 = 

GMm
r  2

Cancelling the mass m and a factor of r, this leads to:

v =     
GM

r

m

M

r

Figure 6.13 A particle of mass m orbiting 
a larger body of mass M in a circular orbit of 
radius r. 
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This gives the speed in a circular orbit of radius r. But we know that 

v = 
2πr
T . Squaring v = 

2πr
T  and equating the two expressions for v 2, 

we deduce that:

 
4π  2

T 2
 = 

GM
r

 

⇒ T 2 = 
4π  2r3

GM 

This shows that the period of planets going around the Sun is 
proportional to the 32 power of the orbit radius. Newton knew this from 
Kepler’s calculations, so he knew that his choice of distance squared in the 
law of gravitation was reasonable.

The same calculations apply to objects orbiting the Earth, such as 
communications and weather satellites or the International Space Station 
(Figure 6.14).

Nature of science 
Predictions versus understanding
Combining the laws of mechanics with the law of gravitation enables 
scientists to predict with great accuracy the orbits of spacecraft, planets 
and comets. But to what degree do they enable an understanding of why 
planets, for example, move the way they do? In ancient times, Ptolemy 
was also able to predict the motion of planets with exceptional precision. 
In what sense is the Newtonian approach ‘better’? Ptolemy’s approach 
was speci" c to planets and could not be generalised to other examples of 
motion, whereas the Newtonian approach can. Ptolemy’s method gives 
no explanation of the observed motions whereas Newton ‘explains’ the 
motion in terms of one single universal concept, that of a gravitational 
force that depends in a speci" c way on mass and separation. In this sense 
the Newtonian approach is superior and represents progress in science. 
But there are limits to the degree to which one demands ‘understanding’: 
the obvious question for Newton would be, ‘Why is there a force between 
two masses?’. Newton could not answer this question – and no-one 
has been able to since. There is more in Option A on relativity about 
Einstein’s attempt to answer this question.

Figure 6.14 The International Space Station 
orbits the Earth in a circular orbit.
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a Determine the gravitational force the mass m 
experiences.

b Determine the gravitational force m exerts 
on M.

  A second mass m is now placed a distance of 2r 
from the centre of the shell, as shown in 
diagram b. 
c Determine the gravitational force the mass 

inside the shell experiences.
d Suggest what gravitational force is 

experienced by the mass outside the shell.
 17 Stars A and B have the same mass and the radius 

of star A is nine times larger than the radius of 
star B. Calculate the ratio of the gravitational 
" eld strength on star A to that on star B.

 18 Planet A has a mass that is twice as large as the 
mass of planet B and a radius that is twice as 
large as the radius of planet B. Calculate the ratio 
of the gravitational " eld strength on planet A to 
that on planet B.

 19 Stars A and B have the same density and star A 
is 27 times more massive than star B. Calculate 
the ratio of the gravitational " eld strength on star 
A to that on star B.

 20 A star explodes and loses half its mass. Its radius 
becomes half as large. Determine the new 
gravitational " eld strength on the surface of the 
star in terms of the original one.

 21 The mass of the Moon is about 81 times less 
than that of the Earth. Estimate the fraction of 
the distance from the Earth to the Moon where 
the gravitational " eld strength is zero. (Take into 
account the Earth and the Moon only.)

 22 The diagram shows point P is halfway between 
the centres of two equal spherical masses that are 
separated by a distance of 2 × 109 m. Calculate 
the gravitational " eld strength at point P and 
state the direction of the gravitational " eld 
strength at point Q.

 23 A satellite orbits the Earth above the equator 
with a period equal to 24 hours. 
a Determine the height of the satellite above 

the Earth’s surface.
b Suggest an advantage of such a satellite.

 24 The Hubble Space Telescope is in orbit around 
the Earth at a height of 560 km above the Earth’s 
surface. Take the radius and mass of the Earth to 
be 6.4 × 106 m and 6.0 × 1024 kg, respectively. 
a Calculate Hubble’s speed.
b In a servicing mission, a Space Shuttle spotted 

the Hubble telescope a distance of 10 km 
ahead. Estimate how long it took the Shuttle 
to catch up with Hubble, assuming that the 
Shuttle was moving in a circular orbit just 
500 m below Hubble’s orbit.

 25 Assume that the force of gravity between two 

  point masses is given by F = 
Gm1m2

r n
 where n is 

a constant.
a Derive the law relating period to orbit radius 

for this force.
b Deduce the value of n if this law is to be 

identical with Kepler’s third law.

? Test yourself

m

M

r

a

m 2r

M

r

b

2 × 109 m

109 m3 × 1022 kg 3 × 1022 kg

P

Q

 15 Calculate the gravitational force between:
a the Earth and the Moon
b the Sun and Jupiter
c a proton and an electron separated by 10−10 m.

 16 A mass m is placed at the centre of a thin, hollow, 
spherical shell of mass M and radius r, shown in 
diagram a.


