HL Paper 3

The integral I_n is defined by $I_n = \int_{n\pi}^{(n+1)\pi} \mathrm{e}^{-x} |\sin x| \mathrm{d}x, ext{ for } n \in \mathbb{N}$.

- a. Show that $I_0 = \frac{1}{2}(1 + e^{-\pi})$.
- b. By letting $y=x-n\pi$, show that $I_n={
 m e}^{-n\pi}I_0$.
- c. Hence determine the exact value of $\int_0^\infty \mathrm{e}^{-x} |\sin x| \mathrm{d}x$.

In this question you may assume that $\arctan x$ is continuous and differentiable for $x\in\mathbb{R}.$

a. Consider the infinite geometric series

$$|1-x^2+x^4-x^6+\dots$$
 $|x|<1$

Show that the sum of the series is $\frac{1}{1+x^2}$.

b. Hence show that an expansion of
$$\arctan x$$
 is $\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$ [4]

c. f is a continuous function defined on [a, b] and differentiable on]a, b[with f'(x) > 0 on]a, b[. [4]

Use the mean value theorem to prove that for any $x, y \in [a, b]$, if y > x then f(y) > f(x).

d. (i) Given
$$g(x) = x - \arctan x$$
, prove that $g'(x) > 0$, for $x > 0$.

(ii) Use the result from part (c) to prove that $\arctan x < x$, for x > 0.

e. Use the result from part (c) to prove that
$$\arctan x > x - \frac{x^3}{3}$$
, for $x > 0$. [5]

f. Hence show that
$$\frac{16}{3\sqrt{3}} < \pi < \frac{6}{\sqrt{3}}$$
. [4]

a. Prove by induction that $n!>3^n$, for $n\geq 7,\;n\in\mathbb{Z}.$	[5]
---	-----

b. Hence use the comparison test to prove that the series $\sum_{r=1}^{\infty} \frac{2^r}{r!}$ converges. [6]

```
a. Show that n! \ge 2^{n-1}, for n \ge 1.
```

b. Hence use the comparison test to determine whether the series $\sum_{n=1}^{\infty} \frac{1}{n!}$ converges or diverges.

[2] [3]

[6]

[4]

[5]

[1]

[4]