HL Paper 1

Given the enthalpy change for the reaction below:

$$2 ext{H}_2(ext{g}) + ext{O}_2(ext{g})
ightarrow 2 ext{H}_2 ext{O(l)} \quad \Delta H^\Theta = -572 ext{ kJ}$$

which statement is correct?

- A. The standard enthalpy change of combustion of $H_2(g)$ is -286 kJ mol^{-1} .
- B. The standard enthalpy change of combustion of $H_2(g)$ is $+286 \text{ kJ mol}^{-1}$.
- C. The standard enthalpy change of formation of $H_2O(1)$ is -572 kJ mol^{-1} .
- D. The standard enthalpy change of formation of $H_2O(1)$ is $+572 \text{ kJ mol}^{-1}$.

Consider the two reactions involving iron and oxygen.

$$egin{aligned} & 2\mathrm{Fe}(\mathrm{s}) + \mathrm{O}_2(\mathrm{g})
ightarrow 2\mathrm{FeO}(\mathrm{s}) & \Delta H^\Theta = -544 \ \mathrm{kJ} \ & 4\mathrm{Fe}(\mathrm{s}) + 3\mathrm{O}_2(\mathrm{g})
ightarrow 2\mathrm{Fe}_2\mathrm{O}_3(\mathrm{s}) & \Delta H^\Theta = -1648 \ \mathrm{kJ} \end{aligned}$$

What is the enthalpy change, in kJ, for the reaction below?

$$4 \text{FeO}(\text{s}) + \text{O}_2(\text{g}) \rightarrow 2 \text{Fe}_2 \text{O}_3(\text{s})$$

- A. -1648 2(-544)
- B. -544 (-1648)
- C. -1648 544
- D. -1648 2(544)

Enthalpy changes of reaction are provided for the following reactions.

$$\begin{split} &2C(s) + 2H_2(g) \rightarrow C_2H_4(g) \quad \Delta H^\Theta = +52 \text{ kJ mol}^{-1} \\ &2C(s) + 3H_2(g) \rightarrow C_2H_6(g) \quad \Delta H^\Theta = -85 \text{ kJ mol}^{-1} \end{split}$$

What is the enthalpy change, in $kJ \, \mathrm{mol}^{-1}$, for the reaction between ethene and hydrogen?

$$C_2H_4(g) + H_2(g) \to C_2H_6(g)$$

- A. -137
- B. -33
- C. +33
- D. +137

The enthalpy change for the dissolution of NH₄NO₃ is +26 kJ mol⁻¹ at 25 °C. Which statement about this reaction is correct?

- A. The reaction is exothermic and the solubility decreases at higher temperature.
- B. The reaction is exothermic and the solubility increases at higher temperature.
- C. The reaction is endothermic and the solubility decreases at higher temperature.
- D. The reaction is endothermic and the solubility increases at higher temperature.

Which equation represents the standard enthalpy of formation of liquid methanol?

A.
$$C(g) + 2H_2(g) + \frac{1}{2}O_2(g) \rightarrow CH_3OH(l)$$

B.
$$C(g) + 4H(g) + O(g) \rightarrow CH_3OH(l)$$

$$\text{C.} \quad C(s) \ + \ 4H(g) \ + \ O(g) \rightarrow CH_3OH(l)$$

D.
$$\mathrm{C}(\mathrm{s}) \,+\, 2\mathrm{H}_2(\mathrm{g}) \,+\, \frac{1}{2}\mathrm{O}_2(\mathrm{g})
ightarrow \mathrm{CH}_3\mathrm{OH}(\mathrm{l})$$

Which reaction has an enthalpy change equal to the standard enthalpy change of combustion?

A.
$$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$$

B.
$$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(l)$$

C.
$$2C_4H_{10}(g) + 13O_2(g) \rightarrow 8CO_2(g) + 10H_2O(l)$$

D.
$$C_5H_{12}(g) + 8O_2(g) \rightarrow 5CO_2(g) + 6H_2O(g)$$

Which process is endothermic?

A.
$$2C_4H_{10}(g) + 13O_2(g) \rightarrow 8CO_2(g) + 10H_2O(g)$$

B.
$$Na(g) \rightarrow Na^+(g) + e^-$$

C.
$$H_2SO_4(aq) + 2KOH(aq) \rightarrow K_2SO_4(aq) + 2H_2O(l)$$

D.
$$NH_3(g) \rightarrow NH_3(l)$$

Which equation represents the bond enthalpy for the H-Br bond in hydrogen bromide?

A.
$$HBr(g) \rightarrow H(g) + Br(g)$$

$$\mathsf{B.}\quad H\mathrm{Br}(g)\to H(g)+\mathrm{Br}(l)$$

C.
$$\mathrm{HBr}(\mathrm{g}) \to \mathrm{H}(\mathrm{g}) + \frac{1}{2}\mathrm{Br}_2(\mathrm{l})$$

D.
$$\mathrm{HBr}(\mathrm{g}) \to \mathrm{H}(\mathrm{g}) + \frac{1}{2}\mathrm{Br}_2(\mathrm{g})$$

The same amount of heat energy is added to 1.00 g of each substance.

Substance	Specific heat capacity / J g ⁻¹ K ⁻¹	
Copper	0.39	
Aluminium	0.90	
Sodium chloride	0.90	
Water	4.18	

Which statement is correct if all the substances are at the same temperature before the heat energy is added?

- A. Copper will reach the highest temperature.
- B. Water will reach the highest temperature.
- C. All four substances will reach the same temperature.
- D. Aluminium will reach a higher temperature than sodium chloride.

1.0 g of sodium hydroxide, NaOH, was added to 99.0 g of water. The temperature of the solution increased from 18.0 °C to 20.5 °C. The specific heat capacity of the solution is $4.18~\mathrm{J\,g^{-1}K^{-1}}$. Which expression gives the heat evolved in $k\mathrm{J\,mol^{-1}}$?

- A. $\frac{2.5 \times 100.0 \times 4.18 \times 1000}{40.0}$
- B. $\frac{2.5 \times 100.0 \times 4.18}{1000 \times 40.0}$
- C. $\frac{2.5 \times 100.0 \times 4.18 \times 40.0}{1000}$
- D. $\frac{2.5 \times 1.0 \times 4.18 \times 40.0}{1000}$

Consider the equations below.

$$\begin{split} \operatorname{CH}_4(\mathbf{g}) + \operatorname{O}_2(\mathbf{g}) &\to \operatorname{HCHO}(\mathbf{l}) + \operatorname{H}_2\operatorname{O}(\mathbf{l}) \\ \operatorname{HCHO}(\mathbf{l}) + \frac{1}{2}\operatorname{O}_2(\mathbf{g}) &\to \operatorname{HCOOH}(\mathbf{l}) \\ \operatorname{2HCOOH}(\mathbf{l}) + \frac{1}{2}\operatorname{O}_2(\mathbf{g}) &\to (\operatorname{COOH})_2(\mathbf{s}) + \operatorname{H}_2\operatorname{O}(\mathbf{l}) \\ \end{split} \quad \Delta H^\Theta = x$$

What is the enthalpy change of the reaction below?

$$2\text{CH}_4(\mathrm{g}) + 3\frac{1}{2}\text{O}_2(\mathrm{g}) o (\text{COOH})_2(\mathrm{s}) + 3\text{H}_2\text{O}(1)$$

- A. x + y + z
- B. 2x + y + z
- $\mathsf{C.}\quad 2x+2y+z$
- $\mathsf{D.} \quad 2x + 2y + 2z$

Which processes are exothermic?

I.
$$\mathrm{CH_3CH_2CH_3(g)} + 5\mathrm{O_2(g)} \rightarrow 3\mathrm{CO_2(g)} + 4\mathrm{H_2O(g)}$$

II.
$$\operatorname{Cl}_2(g) o 2\operatorname{Cl}(g)$$

$$\text{III.} \quad CH_3CH_2COOH(aq) + NaOH(aq) \rightarrow CH_3CH_2COONa(aq) + H_2O(l)$$

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

Which equation represents the standard enthalpy change of formation, ΔH_f^Θ , of tetrachloromethane?

A.
$$C(g) + 4Cl(g) \rightarrow CCl_4(g)$$

B.
$$C(s) + 4Cl(g) \rightarrow CCl_4(l)$$

$$\text{C.}\quad C(g)+2Cl_2(g)\rightarrow CCl_4(g)$$

D.
$$C(s) + 2Cl_2(g) \rightarrow CCl_4(l)$$

Consider the following two equations.

$$2\mathrm{Ca(s)} + \mathrm{O}_2(\mathrm{g}) o 2\mathrm{CaO(s)} \quad \Delta H^\Theta = +x \ \mathrm{kJ}$$

$$\mathrm{Ca(s)} + 0.5\mathrm{O}_2(\mathrm{g}) + \mathrm{CO}_2(\mathrm{g})
ightarrow \mathrm{CaCO}_3(\mathrm{s}) \quad \Delta H^\Theta = +y\,\mathrm{kJ}$$

What is ΔH^{Θ} , in kJ, for the following reaction?

$$CaO(s) + CO_2(g) \rightarrow CaCO_3(s)$$

- A. y 0.5x
- B. y-x
- C. 0.5 y
- D. x-y

Which ionic compound has the most endothermic lattice enthalpy?

- A. Sodium chloride
- B. Sodium oxide
- C. Magnesium chloride
- D. Magnesium oxide

The combustion of glucose is exothermic and occurs according to the following equation:

$$C_6H_{12}O_6$$
 (s) + $6O_2$ (g) \rightarrow $6CO_2$ (g) + $6H_2O$ (g)

Which is correct for this reaction?

	ΔH ^e	ΔS ^e	Spontaneous/ non-spontaneous
A.	negative	positive	spontaneous
B.	negative	positive	non-spontaneous
C.	positive	negative	spontaneous
D.	positive	positive	non-spontaneous

The equation for the formation of ethyne is:

$$2C(s) + H_2(g) \rightarrow C_2H_2(g)$$

What is the enthalpy change, in kJ, for this reaction using the enthalpy of combustion data below?

Reaction	ΔH° / kJ
$C(s) + O_2(g) \rightarrow CO_2(g)$	-394
$2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$	-572
$2C_2H_2(g) + 5O_2(g) \rightarrow 4CO_2(g) + 2H_2O(l)$	-2602

A.
$$2 \times (-394) + \frac{1}{2} (-572) - \frac{1}{2} (-2602)$$

B. $2 \times (-394) + (-572) - (-2602)$
C. $2 \times (-394) + \frac{1}{2} (-572) + \frac{1}{2} (-2602)$

B.
$$2 \times (-394) + (-572) - (-2602)$$

C.
$$2 \times (-394) + \frac{1}{2}(-572) + \frac{1}{2}(-2602)$$