HL Paper 1

According to the Brønsted-Lowry theory, how does each species act in the equilibrium below?

$$\mathrm{CH_{3}COOH} + \mathrm{H_{2}SO_{4}} \rightleftharpoons \mathrm{CH_{3}COOH_{2}^{+}} + \mathrm{HSO_{4}^{-}}$$

	CH₃COOH	H_2SO_4	$CH_3COOH_2^+$	HSO ₄
A.	acid	base	base	acid
B.	acid	base	acid	base
C.	base	acid	base	acid
D.	base	acid	acid	base

Aqueous solutions of a weak acid and a strong acid of equal concentration are compared. Which statements are correct?

- I. The weak acid is less dissociated than the strong acid.
- II. The strong acid reacts with a metal oxide but the weak acid does not.
- III. The strong acid has greater conductivity than the weak acid.
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

What is the pH of 1.0×10^{-3} mol dm⁻³ sodium hydroxide, NaOH(aq)?

$$K_{\rm w} = 1.0 \times 10^{-14}$$

- A. 3
- B. 4
- C. 10
- D. 11

Which solutions have a pH less than 7?

- I. $Na_2CO_3(aq)$
- II. $[Fe(H_2O)_6]Cl_3(aq)$
- III. $(NH_4)_2SO_4(aq)$

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

What is the correct expression for the ionic product constant of water, $K_{\rm w}$?

A.
$$K_{
m W}=rac{
m [H^+]}{
m [OH^-]}$$

B.
$$K_{
m W} = rac{
m [H_2O]}{
m [H^+][OH^-]}$$

C.
$$K_{W} = [H^{+}] + [OH^{-}]$$

D.
$$K_{\mathrm{W}} = [\mathrm{H}^+][\mathrm{OH}^-]$$

Which of the following is an example of a Lewis acid-base reaction, but not a Brønsted-Lowry acid-base reaction?

A.
$$2 {
m CrO}_4^{2-}(aq) + 2 {
m H}^+(aq)
ightarrow {
m Cr}_2 {
m O}_7^{2-}(aq) + {
m H}_2 {
m O}(l)$$

$$\text{B.} \quad \mathrm{Co(H_2O)_6^{2+}(aq) + 4HCl(aq) \to CoCl_4^{2-}(aq) + 4H^+(aq) + 6H_2O(l)}$$

$$\text{C.} \quad \mathrm{NH_3(aq)} + \mathrm{H^+(aq)} \rightarrow \mathrm{NH_4^+(aq)}$$

$$\label{eq:definition} \text{D.} \quad CH_3COO^-(aq) + H_2O(l) \rightarrow CH_3COOH(aq) + OH^-(aq)$$

What is the pH of a solution in which the hydroxide ion concentration is 1×10^{-11} mol dm⁻³ at 298 K?

$$K_{\rm w} = 1 \times 10^{-14} \text{ at } 298 \text{ K}$$

- A. 3
- B. 7
- C. 11
- D. 14

Which species acts as a Lewis and Brønsted-Lowry base?

- A. $[AI(H_2O)_6]^{3+}$
- B. BF₃
- C. NH₄⁺
- D. OH-

The table below shows data for the $K_{\rm a}$ and ${
m p}K_{
m b}$ values for some acids and bases at 298 K.

Acid	$K_{\rm a}$	Base	pK_b
HC1O	2.9×10 ⁻⁸	NH ₃	4.75
C ₆ H ₅ CH ₂ COOH	4.9×10 ⁻⁵	C ₆ H ₅ NH ₂	9.13

Which two formulas represent the weakest acid and the weakest base in the table?

- A. HClO and $C_6H_5NH_2$
- B. $C_6H_5CH_2COOH$ and NH_3
- C. $C_6H_5CH_2COOH$ and $C_6H_5NH_2$
- D. $\,$ HCIO and NH_{3}

Which species produced by the successive dissociations of phosphoric acid, H₃PO₄, are amphiprotic?

- A. HPO_4^{2-} and PO_4^{3-}
- B. $H_2PO_4^-$ and HPO_4^{2-}
- C. $H_2PO_4^-$ and PO_4^{3-}
- D. HPO₄²⁻ only

What is the conjugate base of phenol, C_6H_5OH ?

- A. $C_6H_4^-$ –OH
- $\text{B.}\quad C_6H_5\text{--O}\,H_2$
- C. C_6H_5 – O^-
- D. $C_6H_6^+$ –OH

What are the conjugate acid-base pairs in the following reaction?

$$\mathrm{HCO}_{3}^{-}(\mathrm{aq}) + \mathrm{H}_{2}\mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{OH}^{-}(\mathrm{aq}) + \mathrm{H}_{2}\mathrm{CO}_{3}(\mathrm{aq})$$

	Brønsted–Lowry acid	Brønsted–Lowry base	Conjugate acid	Conjugate base
A.	HCO ₃ ⁻ (aq)	H ₂ O (1)	H ₂ CO ₃ (aq)	OH ⁻ (aq)
B.	H ₂ CO ₃ (aq)	OH ⁻ (aq)	HCO₃¯(aq)	H ₂ O (1)
C.	H ₂ O (1)	HCO3 (aq)	H ₂ CO ₃ (aq)	OH ⁻ (aq)
D.	H ₂ O (1)	HCO ₃ ⁻ (aq)	OH ⁻ (aq)	H ₂ CO ₃ (aq)

If $20~{\rm cm^3}$ samples of $0.1~{\rm mol\,dm^{-3}}$ solutions of the acids below are taken, which acid would require a different volume of $0.1~{\rm mol\,dm^{-3}}$ sodium hydroxide for complete neutralization?

- A. Nitric acid
- B. Sulfuric acid
- C. Ethanoic acid
- D. Hydrochloric acid

Which group of three compounds contains only weak acids and bases?

A.	Ba(OH) ₂	CH ₃ NH ₂	CH₃COOH
B.	CH ₃ CH ₂ CH ₂ COOH	CH ₃ CH ₂ NH ₂	НСООН
C.	NH ₃	HNO ₃	CH₃CH₂COOH
D.	NH ₃	NaOH	H ₂ CO ₃

Which salts will dissolve in water to give solutions with a pH above 7?

- I. Na₂CO₃
- II. CH₃COONa
- III. Na₂SO₄
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

What describes HPO₄²⁻?

- A. Amphiprotic but not amphoteric
- B. Amphoteric but not amphiprotic
- C. Amphiprotic and amphoteric
- D. Neither amphiprotic nor amphoteric