IB phy Part 5

Work, Energy, and Power

https://scienceknowledge.webador.com/

Work

- A measure of energy transfer that occurs when an object is moved over a distance by an external force at least part of which is applied in the direction of the displacement.
- Scalar quantity (dot product)
- $W=F d \cos \theta F$ The uncle between

$$
\uparrow r=F \& d
$$

Fore applied

$$
[\text { applied } \quad \text { Jove } 1]=\mathrm{Kg} \cdot \mathrm{~m}^{2} \cdot s^{2}=\frac{k g \cdot m^{2}}{s^{2}}
$$

$$
\begin{aligned}
W & =F d \cos 90^{\circ} \\
& =F d 0 \\
w & =0 \mathrm{~J}
\end{aligned}
$$

$F d \cos \theta$
Fqd

A mass is being pulled along a level road by a rope attached to it in such a way that the topper makes an angle of 34 degree with the horizontal. The force in the rope is 24 N . Calculate the work done by this force in moving the mass a distance of 8.0 m along the level road.

$$
\begin{aligned}
\left\{\begin{array}{rl}
W= & F d \cos \theta \\
= & (24)(8) \cos \left(34^{\circ}\right) \\
= & 159.175 \mathrm{~J} \\
& \text { (Approximation) }
\end{array}, \begin{array}{rl}
24 N=F
\end{array}\right)
\end{aligned}
$$

Kinetic Energy (En erg)
Kinetic energy is the energy an object has because of its motion

- Energy E is also a scalar quantity,
- Toul $=\mathrm{kg} \cdot \mathrm{m}^{2} \cdot \mathrm{~s}^{2}$

$$
\begin{aligned}
& \text { - Joel }=\prod_{m \rightarrow-m, ~}^{m} \rightarrow \frac{1}{2} m v v^{2} \Delta^{2}=v_{f}^{2}-U_{i}^{2} \\
& K=\frac{1}{2} m v^{2} \\
& \begin{array}{l}
=\Delta K=K_{-}-K_{I}=\frac{1}{2} m V_{f}^{2}-\frac{1}{2} m v_{i}^{2}
\end{array} \\
& =\frac{1}{2} m\left(v_{t}^{2}-V_{i}^{2}\right)
\end{aligned}
$$

(a) What is the kinetic energy of an 80-kg athlete, running at $10 \mathrm{~m} / \mathrm{s}$? (b) The Chicxulub crater Yucatan, one of the largest existing impact craters on Earth, is thought to have been created y an asteroid, traveling at $22 \mathrm{~km} / \mathrm{s}$ and releasing $4.2 \times 10^{\wedge} 23 \mathrm{~J}$ of kinetic energy upon impact. an important role. What is the kinetic energy of such a particle? important role. What is the kinetic energy of such a particle?
(a) $I I=\frac{1}{2} M V^{2}=\left(\frac{1}{2}\right)(80)\left(100^{2}\right)=4000 \mathrm{~J}$
(b) $M=\frac{22 \mathrm{k}}{v^{2}}=\frac{(2)\left(4.2 \times 10^{23}\right)}{22 \times 10^{+3}}+1 \mathrm{~km}=1000 \mathrm{~m}$
$m=3.82 \times 10^{+19} \mathrm{Kg}$
(c) $\mathbb{I}=\frac{1}{2 m V^{2}}=(1)\left(\frac{1}{2}\right)\left(2.2 \times 10^{+3}\right)=1.1 \times 10^{3} \mathrm{~J}$

Work-Energy Theorem

$$
W=\frac{1}{2} m\left(V_{f}^{2}-V_{i}^{2}\right)
$$

Pro of:

$$
F=m a, a=\frac{F}{m}
$$

$$
\begin{aligned}
& V_{f}^{2}-v_{i}^{2}=2 a s \\
& V_{f}^{2}-v_{i}^{2}=2 \frac{F}{m s} \quad \frac{1}{2} m_{f}^{2}-\frac{1}{2} m_{i}^{2}=F_{s} \\
& \frac{1}{2} v_{f}^{2}-\frac{1}{2} v_{i}^{2}=\frac{F}{w_{s}}
\end{aligned} \quad \lambda \quad \frac{1}{2} m\left(v_{f}^{2}-v_{i}^{2}\right)=w
$$

Potential Energy

- Potential energy is defined as mechanical energy, stored energy, or energy caused by its position

$$
U_{g}=m g h, \frac{1}{2} k x^{2}=U_{s}
$$

Spring/Elastic Potential Energy

- Elastic potential energy is Potential energy stored as a result of deformation of an elastic object, such as the stretching of a spring

$$
\begin{gathered}
W=\int F \cdot d x=\int K x \cdot d x=k \int x \cdot d x \\
W=K \frac{1}{2} x^{2}=\frac{1}{2} k x^{2} \\
\Delta W=\frac{\Delta K}{T} \quad \begin{array}{c}
\text { Change in energy } \\
= \\
\quad \begin{array}{l}
\text { orr k done by } \\
\text { and fore }
\end{array}
\end{array}
\end{gathered}
$$

Spring in Series and Parallel

A mass of 8.4 kg rests on the top of a vertical spring. The spring compresses by 5.2 cm . a)
a) $K=1584.69 \frac{\mathrm{~N}}{\mathrm{~m}}$
b)

$$
\begin{aligned}
U_{s} & =\frac{1}{2} K X^{2} \\
& =\left(\frac{1}{2}\right)(1584.69)(0.052)^{2} \\
U_{s} & =2.1425 \mathrm{~N}
\end{aligned}
$$

Gravitational Potential Energy

- Gravitational potential energy is energy an object possesses because of its position in a gravitational field.

$$
\begin{aligned}
& \text { - Vg }=\prod_{\text {mass }}^{m g \text { vertical }} \text { position } \\
& \text { - Conservation fore Fy }
\end{aligned}
$$

$$
\begin{aligned}
& V_{g}+\uparrow \frac{G m_{1} m_{2}}{r^{2}} \\
& U_{g}<0 \\
& U_{g}>0
\end{aligned}
$$

Conservative and Non-Conservative Force

- The work done by a conservative force is independent of the path
- A force is conservative if the work it does around any closed path is zero:

- Non-conservative forces are dissipative forces such as friction or air resistance.
- These forces take energy away from the system as the system progresses, energy that you can't get back.
- These forces are path dependent; therefore it matters where the object

Power

$$
\begin{aligned}
P & =\frac{w}{t}=\frac{E}{t}=\frac{F \cdot d}{t}=F \cdot \frac{d}{t}=F v \\
P & =\left[\frac{J \text { ouvl }}{\mathrm{s}}\right]=[\mathrm{watt}] \\
& =\left[\frac{\mathrm{Kg} \cdot \mathrm{~m}^{2}}{\mathrm{~s}^{2}}\right]=\left[\frac{\mathrm{Kg} \cdot \mathrm{~m}^{2}}{\mathrm{~s}}\right]
\end{aligned}
$$

An 80-kg army trainee does pull-ups on a horizontal bar. It takes the trainee 0.8 seconds to 60 cm . How much a lower position to where the chin is above the bar. The trainee moves position to where the chin is above the bar?

$$
\begin{aligned}
& T \quad P=\frac{E}{t}=\frac{w}{t}=\frac{F \cdot d \cos \theta}{t} \\
& =\frac{m g h}{t} \\
& U_{g}=\sqrt{m g h} \quad=\frac{(80)(9.81)(0.6)}{0.8} \\
& G 0 \mathrm{~cm}=0.6 \mathrm{~m}
\end{aligned}=529 \mathrm{w} .
$$

An 80-kg army trainee does pull-ups on a horizontal bar. The trainee moves up at a velocity of 5 cm per second, and he moves for 2 second. How much energy does the trainee gain?

$$
\begin{aligned}
& P=\frac{W}{t}=\frac{E}{t}=F v \\
& E=m_{\hat{\xi}}=m g v t \quad \frac{d=v t}{\text { displacement }=\text { Average velocity y }}+\quad \text { +ike }
\end{aligned}
$$

$$
\begin{aligned}
& I=\frac{1}{2} m V^{2} \\
& U_{s}=\frac{1}{2} K x^{2} \\
& U_{g}=m g h \quad \begin{array}{l}
\text { potential } \\
\text { energy }
\end{array}
\end{aligned}
$$

$$
\int^{\text {mech }} \text { ene }
$$

mechanical energy

Mechanical Kinetic Potential Energy = energy t energy

Conservation of Energy

The law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be conserved over time

$$
\begin{gathered}
K_{i}+U_{s i}+U_{s i}=K_{f}+U_{s f}+U_{s j}+E_{t n_{k} m-1} \\
\frac{1}{2} m v_{i}^{2}+\frac{1}{2} K x_{i}^{2}+m g h_{i}=\frac{1}{2} m v_{t}^{2}+\frac{1}{2} K x_{f}^{2}+m g h_{f}
\end{gathered}
$$

Comment

$\frac{1}{2} K K X^{2}=\frac{1}{2} K\left(X_{f}^{2}-X_{i}^{2}\right)$

$$
m g \Delta h=m g\left(h_{f}-h_{i}\right)
$$

$$
\Delta h=\Delta x
$$

Spring's Maximum Stretch

A block of mass 2.5 kg slides on a rough horizontal surface. The initial speed of the block is $8.6 \mathrm{~m} / \mathrm{s}$. It is brought to rest after travelling a distance of 16 m . Determine the magnitude of he
frictional frictional force.

Energy gand = Energy lust $=$ Work done
gains friction el lost kinetic energy

$$
\begin{aligned}
\text { Energy } & =\Delta K \\
\text { Ethermal } & =\Delta K \\
f \cdot d & =\frac{1}{2} M V_{i}^{2} \\
-f=\frac{M v_{i}^{2}}{2 d} & =\frac{(2.5)(8.6)^{2}}{2(16)}=5.778 \mathrm{~N}
\end{aligned}
$$

A pendulum of length 1.0 m is released with the string at a angle of 10 degree to the vertical Find the speed and mass of the pendulum when it passes the lowest position

$$
\begin{aligned}
& \Delta h=1-1 \cos 10^{\circ}=1\left(1-\cos 10^{\circ}\right) \\
& E_{i}=E_{f} \\
& K_{i}+U_{s i}^{0}+U_{5 i}=K_{f}+y_{s t}+U_{5 i} \\
& U_{\text {gi }}-U_{g+}=K_{f}-K_{i} 0 \quad g \Delta h=\frac{1}{2} v_{i}^{2} \\
& \rightarrow \Delta U_{g}=\Delta K=K_{f} \quad \sqrt{2 g h}=V_{i} \\
& \text { bhgoh } \left.=\frac{1}{2} k v_{i}^{2} \quad 2(10)(1-1 \cos)^{2}\right)=V_{i}
\end{aligned}
$$

$$
\begin{aligned}
& =0.55 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

